
Computer Direct 312/ 382-5050

ATARI®
BASIC Tutorial

Robert A. Peck

-

ATARI® BASIC Tutorial

Robert A. Peck has had over 12 years experience in
the area of engineering product development and testing
in hardware, software, firmware, and user documentation.
He is a regi stered professional eng ineer in the State of
Illinois, and is presently Manager of Techni cal Documen·
tation for Amiga Corp., in Santa Clara, California. Previ·
ously, he has held managerial positions with Savin
Information Systems and Memorex Corp., and was a Senior
Project Engineer with Underwriters Laboratori es, Inc., fo r
nine years.

Mr. Peck received a bachelor 's degree in electrical
engineering from Marquette University in Milwaukee, Wis·
consin (1969) and a master's degree in business adminis·
tration from Northwestern University in Evanston, Illinois
(1974). He has had numerous artic les published in va rious
trade magazines and has written operations manuals for
several manufacturers, including ATAR I®, Inc.

ATARI® BASIC Tutorial
by

Robert A. Peck

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST . INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1983 by Howard W. Sams & Co., Inc.
Indianapolis, IN 46268

FIRST EDITION
FIRST PRINTING-1983

All rights reserved. No part of this book shall be repro
duced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical , photocopying, re
cording, or otherwise, without written permission from
the publisher. No patent liability is assumed with re
spect to the use of the information contained herein.
While every precaution has been taken in the prepara
tion of this book, the publisher assumes no responsibil
ity for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the in
formation contained herein.

International Standard Book Number: 0-672-22066-0
Library of Congress Catalog Card Number: 83-50177

Edited by: C. W. Moody
Illustrated by: R. E. Lund

Printed in the United States of America .

PREFACE

Your ATARI ®* Home Computer System is a tool you may use
for many purposes. Among the uses are entertainment, home
finance, letter writing , education, and many more.

As with many other tools, the more you know about it, the more
useful it will become. It is really a general purpose tool, because
it does what you tell it to do. This book will help you learn how to
use the ATARI Home Computer by showing you, step by step,
how the ATARI BASIC language can be used to control the
computer.

In this book, you will find a large number of functioning ex
amples that you can tryon your machine. All of these examples
have been tested carefully and will work on all of the ATARI Home
Computers.

By reading the text and by trying the examples, you will be
able to understand the way the various BASIC commands work.
You may, if you wish, use some of the examples as a basis for
your own programs.

In some cases, the text will start out with a short program
that illustrates a certain point. Then additional program lines will

*ATARI ® is a registered trademark of ATARI®, Inc., A Warner Communica
tions Company.

PREFACE

be added to this functioning base program to perform additional
functions. However, an attempt has been made throughout the
book to keep the examples as short as possible. Those of you
who may not have a data storage device available will therefore
be able to follow along with the examples with little difficulty.

Throughout thi s book, the primary concentration of the pro
gram examples will be a user-interactive approach. In other words,
the programs will be designed , as much as possible , to have you
working with the computer, or for the computer to provide you
with information , then asking what it should do next. This type of
approach to programming is often called user-friendly We hope
you will find thi s approach helpful in the design of your own
progams.

ROBERT A. PECK

CONTENTS

INTRODUCTION

CHAPTER 1

INTERACTING WITH THE MACHINE. A FIRST ApPROACH .

Immediate Commands vs . Program Writing - The ATAR I Screen Ed
itor - Other Sc reen Editor Functions - Sta rt ing to Prog ram - An
Introduction to Variab les -- Sta rting to Make Deci sions - Sta rt ing
to Interact Wi th the Machine - Compound Statements - Review of
Chapter 1

CHAPTER 2

9

11

COMPUTERS COMPUTE. .. 40

Other IF Tests - How to Make the Compute r "Compute" - Oper
ator Precedence - A New Value for a Variable - The INT Func
tion - Other Functions Built-In to ATAR I BASIC - Other Math
Func tions - Review of Chapter 2

CHAPTER 3

STRING ING ALONG 67

How ATARI BASIC Handles Str ings - Oth er String Functi ons
Str ing Comparison Features - The ASC and CHR$ Funct ions
Review of Chapter 3

CONTENTS

CHAPTER 4

DESIGNING A PROGRAM, '

Planning a Program - Program Save and Load - Introduction to
DOS - Making a Program Selection - Review of Chapter 4

CHAPTER 5

PULLING DATA OUT OF DIFFERENT BAGS,

The DIM Statement - FOR-NEXT Statements - Nesting Loops
More About the Accountant - The DATA Statement - The RE
STORE Statement - The RND Function - Review of Chapter 5

CHAPTER 6

92

116

MENU PLEASE, ,.145

Accessing the Screen Editor from Within a Program - Absolute Cur
sor Positioning - The PEEK Statement - The POKE Statement -
Game Controllers (Joysticks) for Menu Selection - How to Keep
Control of the Machine During User Input - Review of Chapter 6

CHAPTER 7

INTRODUCTION TO SUBROUTINES, , .. ,177

Structure of a Subroutine Ca ll - Sc reen Decoration Subroutine
More Uses for Subroutines - Review of Chapter 7

CHAPTER 8

GETTING COLORFUL, GETTING NOISY, '" """""""'"",,195

Graphics Capabilities - True Graphics - Sound Capabilities -

Review of Chapter 8

REFERENCES .

INDEX,

, 216

, 217

INTRODUCTION

Before starting anything with the computer, be sure everything
is plugged together just as the manual states. The design of the
ATARI® Home Computer Systems makes it difficult, if not impos
sible, to plug them together incorrectly, but check with the man
ual to be sure.

Before applying power to the ATARI ® 400™, 800™, or 1200XL™
Home Computers, insert the ATARI BASIC cartridge into the car
tridge slot. Because there is an interlock on the system for the
cartridge, it is not really required to have the power off at this
time, but it is just a good pract ice that you might want to adopt.
(Some other computer manufacturers do not provide this protec
tion and it will be necessary to turn off the power before inserting
or removing an accessory. This prevents damage either to the
accessory or to the computer.)

If you have a disk unit, be sure, before the disk is turned on,
that a floppy disk is installed correctly. See your ATARI DOS
Manual for the precautions to take with your disks. Once the DOS
is loaded, you will be able to store your example programs on
the disk for future reference .

If you have the ATARI ® 810™ Disk Drive, or any other acces
sories such as the ATARI ® 850™ Interface Module, turn on the
power to these accessories before you turn on the power to the

9

10 INTRODUCTION

computer. Then, when you turn on the computer, one of the first
things it will do is to ask the accessories, "Who's out there?" and
"Te ll me how to handle your data." If the power to the accessory
is off when the computer is turned on, it will not know the acces
sory is there and may not be able to use it later.

Now apply the power to the computer. You should see a solid
blue screen (or gray if not on a color TV set). Then, after the
accessories have had a chance to talk to the computer, you will
see the computer tell you it is "READY. " This means it is listen ing
to the keyboard and wants to know what you want it to do next.

CAPS/LOWR KEY

ATARI BASIC only accepts commands in upper case (all cap
ital letters). There is a key on the keyboard located between the
lit:Ii'Jim and "'''3:lIi'' keys labeled 11f!1:1iO-iJ.'WAil. If you press
thi s key, it performs a function similar to the unlock-shift function
on a typewriter. All letters typed from then onward will be "small "
letters . If you give the computer a command spelled in th is form,
it will not understand you. To return to the all capital letters mode,
hold down the "''';Wli'' key, then touch the 1'M:IiO-i4.'WAil key.
This has the same effect as a lock-sh ift function and puts the
machine back in the correct state. When the power first comes
on, or if you touch , it will also go into the all
capitals state.

Now turn to Chapter 1 to find out how to give the computer its
instructions .

CHAPTER

Interacting With the Machine, a First
Approach

Perhaps the most important thing the computer can do is provide
the user with information . This information can come from many
different sources , such as a data file on tape or disk, a series of
computed numbers (answers to mathematical problems) , or
communications with other computers across telephone lines or
another form of communications network.

In order to start some form of dialog with the machine, the
computer must be told where to find the data you require, then it
must be told what to do with it. In this, the first example you will
tryon the machine, you will be providing a complete instruction
on a single line . The computer will follow that instruction , then
again tell you it is READY for another.

The ATARI BASIC language has, as its commands, a set of
English-like instructions that are each very closely related to the
function it performs. For all of the BASIC commands, the com
puter can only obey the command if it is spelled exactly correctly.
This is because there is only a limited amount of room in the
cartridge and it therefore can have only a limited vocabulary.

For the program examples that will be shown in this book, after
you type each line, press the lil:liIJM. key. Thi s means you are

11

12 ATARI BASIC TUTORIAL

RETURNing control to the computer and it is to process the line
of data input you have provided.

Try the following command as an example. Type it exactly as
shown. If you make a typing mistake before you press 'jl#l'II;IU
use the key to go back to correct your error.
Type the following:

PIDNT "HELLO"

and remember to press 'jl#l'lljIU The computer responds im
mediately by printing the word HELLO below your command line.
Then it tells you that it is again READY for another command . In
this PRINT command, the word HELLO is enclosed in quotes.
You will use the quotes in the same way a writer uses them in a
book, such as: He said, "THIS IS EXACTLY WHAT I WANT YOU
TO PRINT." The computer takes everything literally and will print
exactly what it finds between the quotation marks.

This is one example of the use of the PRINT command . You
may use it to print many different things. It may also be used to
print into a data file or to the line printer. For the early examples,
however, printing to the screen will be the primary use of the
command.

IMMEDIATE COMMANDS vs. PROGRAM WRITING

The command you have just given the computer caused it to
perform the requested action immediately. This is therefore re
ferred to as an immediate command . After the command has
been performed , the computer will not remember that you gave
the command. If you want to do it again, you have to type it in
again or find another way to do the same thing.

There is a way you can make the computer remember a series
of instructions. This is called programming. In programming, in
stead of the immediate mode of operation, you will be using the
deferred mode. This means the computer will not execute the
instructions immediately, but will wait for you to tell it to RUN the
program.

As promised in the introduction, this book will attempt to mini
mize your typing. Therefore, it is time to introduce the functions

INTERACTING WITH THE MACHINE 13

of the ATARI Screen Editor before programming is officially
introduced.

THE ATARI SCREEN EDITOR

One of the functions built into your ATARI Home Computer
allows you to modify the display on the screen if the computer is
in the command mode (ready to accept either immediate or de
ferred commands). There is a rectangle on the screen which
shows where the next character can be printed. This is called the
cursor. When the 1;l::a'lljm key is pressed, if the cursor is within
the same line in which a data display change has been made,
the computer will obey the command contained on that line. This
section will teach you how to use the Screen Editor.

Cursor Control

Look at the keyboard (Fig. 1-1). At the left side, there is a key
labeled lIi'jlM with a light-colored background . At the right side
of the keyboard, there are four keys, each with the same light
colored background, and each with an arrow pointer on it (one
points up, another down, another left, and the fourth points right).
These keys are known as cursor control keys.

Fig. 1-1. The keyboard of the ATARI® 800.

14 ATARI BASIC TUTORIAL

The control key ~ must be held down, just as a shift key
is held down on a normal typewriter, to obtain the control func
tions that move the cursor. Just as with a shift key, if you touch
the ~ key alone, nothing happens; it just selects an alternate
function for the key with which it is pressed.

Try it now To move the cursor left, hold down the ~ key,
then touch the left-arrow key. To move it right , hold l!ilil!I and
touch the right-arrow key. Up and down are controlled by the up
arrow and down-arrow keys, respectively, with the ~ key.
(See Figs. 1-2 through 1-5.)

These keys have no permanent effect on the display. They only
move the cursor to a different spot so you can change the screen
contents using some other key or key combination When the
cursor is positioned over a letter or symbol on the screen, that
item is displayed in reversed video (dark on li ght background)
instead of normal video (light against dark background). This is
done so you can still see the cursor, but also so you can still see
which character is there . When the cursor is again moved, the
original display is restored in th e position it was before.

Notice that when the cursor leaves the screen at the top it
reappears at the bottom, st ill travel ing upward . Likewise, when it
exits left or right it reappears at the opposite side, again moving
in the original di rection. You can take advantage of this to mini-

1m PRINT "THI S IS THE FIRS T LINE."
2m PRINT "THI S I S A lINE WHI CH I S REAL
l Y rn~E l OG I CAL lINE . BUT IS THREE PHYS
l eAL lINES l'JW:;." 0t
3m PRINT "THI S IS THE NE XT lINE.".

11 the cur sor IS here
the key comblflallon of

IiiiII and 0
will move the cursor up one space II IllS 311he lop ollhe screen th iS co mbinat IOn will move II to
the very bottom 01 th e screen at the same number of lellers Irom th e lef t edge as It wa s before

Fig . 1-2. Screen Editor function: cursor up.

INTERACTING WITH THE MACHINE 15

10 PRINT "THI S IS THE FIRST LINE."
20 PRINT "THIS I S A LINE WHICH I S REAL
LY ONE LOGI CAL LINE. BUT IS THREE PHYS
I CAL LmES LON,::;." It
30 PRINT "THIS I S THEONE XT LIi'~E."

11 the cursor IS here .
the key combinati on 01

riiiIJ ane! 0
will move the cursor down one space 11 II IS al the bottom of the screen . this combination will
move it to the very lop 01 the screen . a\ the same Ilumber of leHers Irorn the leU edge as It was
before

Fig. 1-3. Screen Editor function: cursor down.

10 PRINT "THIS IS THE FIRST LINE."
20 PRINT " THIS I S A LINE WHI CH I S RE AL
LY ONE LOGI CAL LINE. BUT IS THREE PHYS
ICAL LINES LO~V'." ..-
30 PRHH "THI S I S THE NEt~ ii LINE."

II the CU lsor IS here.
the key combinati on of

riiiIJ and II
Will move the cursor left one spa ce lIlt IS at the le ll edge 01 the screen, this combinat io n Will move
1\ to the very figh t edge 01 the screen on the sa me tille as II was before.

Fig. 1-4. Screen Editor function: cursor left.

mize your program editing time by moving the cursor in which
ever direction it will travel the least to get to the item you want to
change.

Notice that when you hold down IIUjJ. and one of those keys
for more than one-half second, the key begins to repeat. This
function is common to all of the key combinations in the system.
This is called the AUTOREPEAT function.

16 ATARI BASIC TUTORIAL

10 PRINT "THI S IS THE FIRST LINE."
20 PRINT "THIS IS A LINE WHICH I S REAL
LV ONE LOG I CAL LINE. BUT IS THREE PHYS
I CAL LINES LOW:; ." ~
30 PRINT "THI S IS THE NE XT LINE."

lithe cur sor IS here
the key combination 01

aiiIJ and II
will move the cursor right one space. II II IS allhe light edge althe screen. th is combmatlOn will
move ilia the very lell edge ol lhe screen on the same Ime as It was before.

Fig. 1-5. Screen Editor function: cursor right.

Move the cu rsor onto the H of the line you original ly typed
(PRINT "HELLO") . In place of the word HELLO, type:

OTHER STUFF"

The line should now read:

PRINT "OTHER STUFF"

If it does not, use the cursor controls to move to the incorrect
items and retype them so that it looks exactly as shown. Leave
the cursor somewhere with in the same line you changed, then
press IjJ3IiIJjJU The computer responds by printing:

OTHER STUFF

in place of the word HELLO. This demonstrates that the computer
has seen the new immediate command and has executed it.

How Long Is a Line?

When you type lines on your ATARI Home Computer, it is pos
sib le for you to type a line which is longer than the width of the
screen . Each actual line on the screen is called a physical line .
There are 24 physical lines of text that can be displayed on the
screen.

INTERACTING WITH THE MACHINE 17

If an ATARI BASIC line is longer than 38 characters, it will
automatically continue on another physical line. This means that
if you are typing a long line that contains more than 38 charac
ters, if you want it to be all part of the same BASIC statement, do
not press 'jl3i'IJjm when you get to the right margin. Just keep
typing and the cursor will return to the beginning of the next line.
The Screen Editor will automatically accept the continuation on
the following line as though it were one long continuous line.

If the ATARI BASIC line is longer than 76 characters, it will
continue on the third physical line. The line may be composed of
a maximum of 120 characters (114 if the normal left margin of
two positions is used) . ATARI BASIC will not accept any line with
more than this number of characters and will "beep" at you when
you near the end of the third line.

This long single line is called a logical line. As indicated in a
previous paragraph, each logical line may be composed of up to
three physical lines.

In the description of the Screen Editor, which follows in this
chapter, you will see descriptions of inserting lines and deleting
lines. All blank lines, if deleted , will make everything else on the
screen move up one line.

If you place the cursor somewhere on the screen within a logi
cal line composed of two or three physical lines, and execute the
delete-line function, you will delete that logical line. This means
that each time you do the delete-line function , one, two, or three
lines will disappear from the screen.

The line-delete function does not cause ATARI BASIC to delete
a program line from a program. Under the direct control of ATARI
BASIC, this may only be done either by typing the line number to
be deleted, then pressing 'iI3l'IJi!~1 (deletes that line only be
cause it is replaced by a blank, and therefore is no longer remem
bered), or by typing NEW (which deletes all lines of a program).

Error Noticed After Hitting 'il:liIJim
What if you discover an error after you have hit the 'j!#j'IJjm

key? If it is a command that ATARI BASIC does not understand, it
will repeat the line you just typed with the characters "ERROR-"
in the first part of the line. Also , it will print a cursor character in

18 ATARI BASIC TUTORIAL

this error line over the first characte r that ATARI BASIC thinks
does not belong.

To correct this error, move the cursor to the original line you
typed . Move the cursor to the error and type in the correction.
Use the character-insert or character-de lete functions (see next
section), if necessary, then hit lil3lilliW again .

If the line is st ill not correct, ATAR I BASIC will overwrite the old
error line with a new one and show you where the' new error is
located. If the line is correc t now, the cu rsor will simply be posi
tioned on the next line (where the error line was printed) . Do not
press lil:dlJiW at this pOint! If you have been successful in
correcting the error, move the cursor down, past the error-printed
line, before making any more data entries.

ATARI BASIC uses the Screen Editor, which can read the line
on which the cursor is located , to obtain its data input. If you
press lil:iillim at this time, it would reread the error line, finding
another error!

OTHER SCREEN EDITOR FUNCTIONS

Let 's look at some other things you can do with the Screen
Editor. (Refer to Figs. 1-6 through 1-9.)

Line Insert (Fig. 1-6)

Use the cursor control keys to move the cursor to the leading
o of the newly printed line OTHER STUFF. Now hold down the
1#J:II;u key, and press II~M*i'. The function SHIFT INSERT
inserts a blank line at the cursor position. The words OTHER
STUFF and everything else on the screen shift down by one line
to make room for the new blank line.

Line Delete (Fig. 1-7)

Leave the cursor exactly where it was after you tried the line
insert function. Now hold down the ~·'J:lli:U key and touch
"]#lM3II#I. The function will remove the logical
line on which the cursor is resting and move all other lines below
it on the screen up one line. With this command you will have
removed the blank line you inserted in the preceding example.

INTERACTING WITH THE MACHINE 19

PRINT "THI S IS THE FIRS T LINE._" ___ >;--,
PRINT "THI S I f.: A LINE ~JHICH IS REAL]J
m~E LOGI CAL LINE . BUT IS THREE PHYS

I CAL LI NES L ON':;." j
30 PRINT "THI S If.: THE NE XT LINE. "

These and all other lines on the screen move down onc poslhon

If th e cur sor 1$ her e
th e key combmatroll 01

A blan~ Ime appear s here with th e cur sor at Its lellmost pos it IOn

mIIii and IImD
wli llflscrt a blank Ime at the cur sor P051 11011 All ot her loglcal lmcs on the screen below thaI wrll be
moved down to make room tal Ihls new blank !tne to lit II you now type a new Ime mlo th iS space.
and i1 thiS !l ew tille takes up morc than one physical line the Sc reen Editor will automatically push
everything down onc more space to make room tor the rest 01 th e logical Ime

Fig. 1-6. Screen Editor function : line insert.

Character Insert (Fig. 1-8)

Move the cursor onto the 0 of the line you printed containing
OTHER STUFF. Now hold down the lIi-j'. key and press
.1~M*i'. The function takes al l of the charac
ters within the logical line where the cursor is sitting , moves them
one character position to the right , and inserts a blank space
where the cursor is located. The cursor doesn't move, so the next
thing you could do is type a character in this blank space. This is
why it is called a character-insert function .

Character Delete (Fig. 1-9)

Leave the cursor where it was and hold down the [iiiiJI key
again . Now touch the •• g .• :u:t key. The func
tion deletes the character on which the cursor is sitting and moves

10 PRINT "THIS IS ~HE FIRST LINE."
20 PRINT "THIS IS fit LINE WHICH IS REA~
LY ONE LOGICAL LINE. UT IS THREE PHY~
leAL LINES LONG. "

~3. PRINT "THIS IS THE NEXT LINE.··

Th IS .nd . 11 olher hnes below will move up Ihe space occupied by Ihe deleled Ime

When the cursor is anywhere with in a logical line. the entire logica l line will be
deleled with this command.

INoie thallhe Screen Editor . on using the EmIl function. does not delete a BASIC program
line ilself. II you LIST a BASIC program. Ihal line number will slill be Ihere. The Screen Edilor
changes only the display when th is lunction is usedj

the key combination 01

a:IIii and IEiJ
will delete entire logical line al the cursor position. All other logical lines on the screen below
Ihal will be moved up 10 lill Ihe space lell by Ihe removal of Ihal line.

Fig . 1-7. Screen Editor function: line delete.

all of the other characters on that logical line one space to the
left.

STARTING TO PROGAM

Now that you have a way to move the cursor and have the
computer accept a new version of your data, you can begin to
program the machine.

The first step is to understand how the system tells whether a
command line is an immediate command or a program line which
it is to remember but not yet execute. The rule for ATARI BASIC
is simple: Any line which begins with a number between 0 and
32767 is treated as a program line . Any other type of line input is
treated as an immediate command.

INTERACTING WITH THE MACHINE 21

10 PRINT "THIS IS THE FIRST LINE."
20 PRINT."THIS IS A LINE WHICH IS REA~

]JLY ONE LOGI CAL LINE. BUT IS THREE PHYla:
]] I CAL LI NES LONG. '

30 PRINT " THI S IS THE NE XT LINE. "

From previous line

the key co mbination 01

mmJ and IImIDI
will insert a space at the cursor po si tion. All characters will be moved to the right by one position.
Th is means Ihallhe lirsl L ollhe word REALLY will be moved down 10 Ihe nexlline and Ihe S of the
word PHYSICAL will also be moved. Logical lines are composed of up to three physical lines.
Deleting or adding characters to a logical line moves all characters of thai line as needed.

Fig. 1-8. Screen Editor function: character insert.

Let's use thi s fact to write the first line of your first program.
Move the cursor up to the line on which you printed OTHER
STUFF and position it over the O. Now use the line-delete function
to erase the entire line.

If you now move the cursor up to the line on which you have
the PRINT command and touch IjJ3iilJjm again, it will reprint
OTHER STUFF on the line you just erased . However, if you use

22 ATARI BASIC TUTORIAL

10 PRINT "THI S IS THE FIRST LINE."
..-20 PRINT."THIS IS A LINE L-JHICH IS REAL[b.
'- 1Jv ONE LOG I CAL LI NE. BUT I S THREE PHYS[
C]CAL LI NES LONG."

30 PRINT "THIS IS THE NE XT LINE."

From followmg Ime

These move up one line to end 01 preceding Ime.

the key combination of

mmI·nd IEiJ
will delete the character at th e cursor position . All characters in thai logical line
will be moved to the lelt by one position. Deleting or adding characlers 10 a logical line
moves all characters 01 thai line as needed.

Fig. 1-9. Screen Editor function : character delete.

the instructions that follow, thi s command line will then become
part of a computer program. To start , first move the cursor to the
line where the machine printed OTHER STUFF, and use the line
delete function to erase it again . You will now use another of the
ATARI Screen Editor commands to insert a character.

Move the cu rsor onto the P of the PRINT command line. Hold
down the leUjJ. key, and touch the Im3*i' key twice . The
entire line will be moved to the right by two spaces. In those
spaces , type the digits 10 (making this line number 10). Now
press IjJ#IIilJjJU

Notice that this time the machine did not print OTHER STUFF
on the line immediately below the command line. This is because
the 10 placed in front of the command line told the machine to
remember th is line as part of a program.

Just to confirm that the machine will now remember this in-

INTERACTING WITH THE MACHINE 23

struction, you will now use another function of the Screen Editor
to clear the screen.

Clear Screen

Hold down either the ~i:Ujl' key or the lIi'jlll key. Now press
the (!J-::tiljl key. This Screen Editor function, or
CTRL CLEAR , will erase all the contents of the screen and
move the cursor to the upper left-hand corner. Thi s is called the
HOME position . Whenever this book refers to CLEAR SCREEN or
HOME the cursor, this is the function you will do. Now type:

LIST

and touch Ijl:"'Jil~l. You should see the following

1 0 PRINT "OTHER STUFF"
READY

What you have just done is to list the contents of the program
which the computer has in its memory. In later sections, you will
be told how to add to a program, how to delete sections from it,
and how to control the sequence of the program's functions . For
now, however, let's tell the computer to execute this program.
Type RUN and touch the liJ:"'Ji!~1 key. The computer responds
by printing:

OTHER STUFF
READY

You have just RUN your first program!
When you typed the word RUN , it told the computer to go from

command mode (listening to the keyboard for what to do next)
into execute mode (reading its program for the commands to
perform). The computer will stay in this execute mode unti l it
reaches the end of your program or until it reaches an exit point
(END point) which you have defined. Then it returns to the com
mand mode again to wait for you to tell it what to do.

Programming in ATARI BASIC can be compared to making up
a recipe wh ich the computer is to fol low. Continuing the compar
ison, if you wou ld separate a recipe into a number of different
steps, and write each step on a separate card, your recipe would

24 ATARI BASIC TUTORIAL

be very much like a computer program. Now imagine numbering
each of the cards of your recipe . Place all recipe cards in the
correct numerical order so that the lowest numbered card repre
sents the first step, the next lowest is the next step , and so on to
the highest numbered card.

When you follow this recipe in numerical order, you will be
acting exactly like ATARI BASIC acts when it reads and executes
a program. ATARI BASIC programs are executed by the machine
performing the command at the lowest program line number, and
continuing at the next lowest sequential line number, then the
next, etc., proceeding to the end of the program. This line num
ber sequence will continue unless you have placed some deci
sion points within the program that will change the order of the
command execution.

To demonstrate this sequential prog ram execution, type in the
following program lines, in the order shown:

3D PRINT "THEN LINE 3~ ''

10 PRINT "THIS PROGRAM EXECUTES LINE 10"
40 PRINT "AND FINALLY LINE 40"
20 PRINT "THEN LINE 20"

Remember to press IjJ#jilJjm to enter each of the lines. Now
that the program has been entered , LIST it. Notice that the com
puter has taken all of the lines that you typed and placed them in
numerical order. This is the order in which they will be executed .
Whichever lines you add will be added to the program in the
numerical sequence in which they belong, from lowest to highest
number.

Going back to the rec ipe idea again, if you had your cards all
in order, and someone suggested that step 5 could be changed
to add a different ingredient, you might either erase and write
over step 5 with a new version , or perhaps throwaway the step
5 card entirely and write up a new one to be added to the recipe .

You will notice from the earlier example that the line 10 PRINT
"OTHER STUFF" has now been replaced by the new line 10
which you just typed . This is because the computer is doing the
same type of housekeeping that you would do for a recipe . It has
replaced the old line 10 with the new one.

INTERACTING WITH THE MACHINE 25

RUN this program and note the display. Again it demonstrates
how the computer executes its program instructions if you don 't
specify any change to its normal seq uential operation.

One of the ways you can change the order of command exe
cution is to use the BASIC command called GOTO. The way this
command appears when used by itself is as in the examples
given here. Type in all five exactly as shown. This assumes that
the program mentioned above is still in the machine, so these
program lines will be added to it .

5 GOTD 30
35 GDTO 10
15 GOTO 40
45 GDTO 20
25 END

When you RUN this program, the command sequence will not be
10, 20, 30, 40 any more. It will instead be 5, 30, 35, 10, 15, 40,
45, 20, 25, and finally a return to the command level caused by
the machine reading the END statement. The GOTOs have
changed the order in which the machine has performed the in
struction sequence.

This showed you a way you can directly define the sequence
for the program statement execution. However, it does not do
much. Later you will see some ways in which a GOTO can be
used to save you some time in programming. FOr now, though,
we will use the GOTO in combination with other ATARI BASIC
statements.

Throughout the remainder of this book, you will be using many
different program examples. Many of the examples given will be
unrelated to the preceding example. Therefore, you will need to
erase the old program from memory before trying to do the new
program. This is easily accomplished with the ATARI BASIC key
word NEW.

When you type the word NEW, ATARI BASIC erases all refer
ences in its memory to the program that was there before. If the
GOTO demo program is still present, LIST the program to the
screen, then type NEW, then type LIST again. You will see that
after typing NEW, the only response from the computer is READY.

26 ATARI BASIC TUTORIAL

This is because the program is gone. In the chapters that follow,
you will be instructed to type the word NEW when the example to
be shown does not relate to the preceding one.

Usually, when you are doing a project of some kind, you wil l
find that there may be more than one way to perform the project.
You would need some way to decide which pathway to take. The
next section introduces one of the ways in which ATARI BASIC
handles numbers . By using numbers, and by introducing another
ATAR I BASIC statement (the IF statement) immediately thereafter,
you wi ll be able to tell the computer to do something based on a
decision it wil l make.

AN INTRODUCTION TO VARIABLES

If you want the computer to remember a number value and to
tell you what that number is later when you ask for it, you must
give the computer a name to associate with that number. This is
similar to the way a person remembers something. As an exam
ple, if you have a friend named Ted and his age is 15, you may
associate the words Ted and age, if they are used together, with
the number 15. If you wou ld express this so the computer could
make the same association, it might read as with the following
ATARI BASIC program line:

100 TEDSAGE = 15

or you can also say

100 THEAGEDrTED = 15

or abbreviate to

100 T = 15

The names you have given to this number are called variable
names. By naming a variable , it directs ATAR I BASIC to reserve
space in memory. In this space, then , it will store any number you
assign to that variable name. When you again ask the computer
to tell you (or to use) the value of that variable , it will go to the
same memory location each time to get the value to use. Like
wise , if you tell it that the variable has a different value , that new
value replaces the old value and wil l be used from then onward .

INTERACTING WITH THE MACHINE 27

You can see how the computer keeps these values by typing
the following immediate data entry lines:

ABC=l

The computer responds :

READY

Now type:

PRINT ABC

This command says print the value of the variable called by the
name ABC. The computer responds:

1
READY

Now type:

PRINT B

telling the computer to print the value of the variable cal led B.
The computer responds :

o
READY

What happened here? You did not give any value to the variable
name B. This meant there was no memory space assigned to
hold a value named B. When ATARI BASIC searched the memory
and did not find an assigned value for this variable, it assumed a
value of zero. This value is what was printed. Now try :

PRINT ABC2

The computer again responds:

o
READY

The variable ABC2 hasn 't been defined either, so you get the
same response . The reason you were asked to do this is to illus
trate another point about ATAR I BASIC. This is that all
characters in a name are considered to be "significant." Each

28 ATARI BASIC TUTORIAL

variable name may be many characters long if you wish (limit
about 110 characters for each name). This example shows that
the variable ABC is different from ABC2.

If you assign two names to two variables, and if each name is
100 characters long, and the first 99 characters of each are iden
tical, with the last different, ATARI BASIC will still be able to tell
the difference and will store each in the correct memory location.

This is a situation that many other versions of BASIC do not
provide. Most other BASICs only care about the first two charac
ters. In other words, ATARI BASIC can easily tell the difference
between the variable name TED and the variable name TEMPER
ATURE. However, other BASICs will treat both names as though
they shared the same memory location or number storage space,
which they would call location TE. This is mentioned here in case
you will ever need to convert one of your ATARI BASIC programs
to run on another machine.

Each of the variable names that you define must start with an
alphabetic character, A-Z, and may contain up to 110 alphabetic
characters or any of the numbers, 0-9. Examples of names which
ATARI BASIC will accept are:

ABC1DDD
HHHHHHHHH
M$(l)

The last example is a special type of variable called a string . You
will learn about strings in Chapter 3. The parentheses () shown
in the last of the name examples are used to indicate an array.
Arrays are covered in Chapter 5 of this book.

Arrays and strings were mentioned here because the names
applied to the strings or arrays are part of the total number of
names that ATARI BASIC can handle. You cannot define more
than 128 different names in a single ATARI BASIC program. It will
not accept any more and will say "ERROR 4 AT LINE XXX." XXX
stands for the last line number that was read acceptably before
you tried to insert the program line defining name number 129.
ERROR 4 is the "too many variable names" error.

Now that you know what a variable is, you will be told how it
can be used. When you ran the last demo program segment, you

INTERACTING WITH THE MACHINE 29

printed the value of the variable using the statement PRINT ABC.
This has been another way in which you can use the PRINT
command. The previous way, if you recall, was to print a message
to the screen. In that use, the message appeared in quotes within
the command line.

Sometimes you will need to make up a line of information to the
computer operator composed partially of your letter message,
and a number that has been generated by the computer pro
gram. In this case, you will take the two forms of the PRINT com
mand as you now know them and combine them to produce a
single line of printed output. You can do this by using a semicolon
(;) at the end of the first (or the first of many) PRINT statements.
When the computer executes this line and sees the semicolon, it
will keep the printing cursor (current print position) exactly where
it was after printing the final character of the line you specified .
Therefore, the next character to be printed will be placed in the
next available position to the right of the character last printed .

If you do not use the semicolon, any line you ask the computer
to print will cause a carriage return (print cursor will move to left
hand margin) and a line feed (print cursor will move down to next
lower line from that last printed). An example program for show
ing how the semicolon is used is shown below. In this example,
you will type NEW first to erase any old program lines which might
have been in the memory before you started this section.

NEW
10 PRINT
2oA=1
3D PRINT "THE VALUE OF VARIABLE A IS: ";
40 PRINT A

When you RUN this program, the computer executes line 1 0 first.
This line says to PRINT, but it does not specify what is to be
printed . Therefore, the computer prints nothing . But there is no
semicolon present there , so the computer performs a carriage
return/line feed (goes to leftmost position of next line) resulting in
a blank line appearing on the screen between the command RUN
and the message output line.

Line 20 defines the value of the variable called A. Line 30 prints

30 ATARI BASIC TUTORIAL

the first part of the message and, because of the semicolon ,
keeps the print cursor immediately followi ng the last space in the
message. Thi s allows line 40 to place the value of A on the same
line, resulting in the display output:

THE VALUE OF VARIABLE A IS: 1
READY

To make things a little more compact, you can combine the
PRINT statements from lines 30 and 40 onto a single line . First,
on a separate line type:

40

then liJ:iiIJim. This wi ll erase line 40. AT ARI BASIC sees line 40
as blank because of the new data entered. A blank line does not
have to be remembered . Now type:

LIST 30

then liJ:dlJiJU The computer responds:

30 PRINT "THE VALUE OF VARIABLE A IS : ";

Use the cursor controls (reminder, ~ arrow key combina
tions) to move the cursor to the space just after the semicolon.
Then type an A at that spot, making the line read:

30 PRINT "THE VALUE OF VARIABLE A IS : ";A

With the cursor positioned within this line somewhere, press
liJ3iiIJiW. This causes ATARI BASIC to accept thi s line as in put,
replac ing the original line 30.

Now RUN this modified program. You wil l see that the printed
result is exactly the same. Therefore , the semicolon, in ATARI
BASIC, can be used to combine different types of data output
onto a single line, and may be used within a single PRINT com
mand if desired.

STARTING TO MAKE DECISIONS

Going back to the recipe example again , it might be written
with decision points throughout tile recipe. Examples that might
be found in a typical recipe are:

INTERACTING WITH THE MACHINE 31

• If the batter is too thin , then add a little flour;
• If the oven is not up to 400°, then don't start baking the

item yet;
• If the item becomes brown on top, then test it for done

ness ; and so forth .

All of these different decisions may be expressed in the form:
IF (some condition is true) THEN (do something) OR ELSE (con
tinue doing the next thing).

ATARI BASIC can make decisions based on the same type of
logic. In fact , the BASIC commands that are used for this deci
sion making are called IF and THEN . There is no equivalent to
the OR ELSE part of the example in ATARI BASIC. This condition
is fulfilled by executing the next sequential command in case the
IF condition turns out to be false.

The condition that can be tested may be as simple as a single
number value or it may have many conditions combined into a
single test. These multiple conditions are bovered elsewhere in
this book and in the Advanced ATARI BASIC Tutorial. For now,
however, you will just use very simple tests for the IF statement,
at least until you are adjusted to the way in which the commands
function.

The IF statement must always have a THEN associated with it,
contained within the same program line. The ATARI BASIC Editor
will not accept a program line unless it contains the correct as
sociated components. An IF statement alone is incomplete with
out the THEN. The computer will first make the test specified after
the word IF and before the word THEN.

If the condition results in a false indication, or if the result of an
arithmetic test of some kind is zero, BASIC will go directly to the
next sequential statement. If the condition evaluates as true , or if
an arithmetic test results in a nonzero value, whatever BASIC
statements that are contained within the command line following
the THEN are executed. The following example will show you one
way the IF-THEN statement can be used. To try the program, just
type the lines exactly as shown. As before, if you make any mis
takes, use the Screen Editor cursor-move keys and functions to
make the corrections.

32 ATARI BASIC TUTORIAL

NEW
10 N=3
20 PRINT "THE VALUE OF N IS: ";
30 IF N = 1 THEN PRINT "ONE."
40 IF N = 2 THEN PRINT "TWO."
50 IF N = 3 THEN PRINT "THREE."
60 IF N = 4 THEN PRINT "FOUR."
70 END

All this prog ram does is translate the number value of the vari
able N into a written value. Program line 10 sets the value of N.
Line 20 prints the first part of the data output line. It keeps the
cu rsor one space past the colon because the PRINT statement
was used with the semicolon. (Recall that this prevents the car
riage return/line feed from happening so you can make up a line
using different PRINT statements .)

Program lines 30 through 60 are the IF-THEN program state
ments. In words, each spells out what it is to do. If you run this
program, you will notice that only one of the PRINT commands
actually happens. This is because the value of N is exactly 3 in
the example shown. Therefore only the PRINT command associ
ated with the word "THREE" will be performed.

Another thing you should notice here is how very similar each
of the program lines 30 through 60 are to each other. Did you
remember to try to use the Screen Editor to save yourself some
time in typing them in? Just to show you how you might have
done this, you could have typed in :

30 IF N = 1 THEN PRINT "ONE."

Then hit Ijl#iIlJjIU hold down the MimI and up-arrow keys to
move to the 3 of line 30, then type a 4 in place of the 3, hold
down the Iij'jl! and right-arrow keys to move to the 1 and re
place it with a 2, move to the 0 of the word ONE, and then type
TWO ." in place of the orig inal word, then hit Ijl:ulJjm ... and
so on until you had entered the entire program from 30 to 60. It
would have saved you some typing, right?

So now you know, if you see a program example which uses
many lines that are simi lar to each other, you can use the Screen

INTERACTING WITH THE MACHINE 33

Editor to save you some work. This could happen when you are
typing a large program from a magazine or other printed source.
Let's say that line 1500 is ve ry similar to a line 30 you typed earlier
and you want to use the Screen Editor to save some work. The
LIST command can be used to help here. FDr example you can
tell the machine to:

LIST 3D

and it would respond with a li st ing of line 30 of the program. You
could then use the Screen Editor to remake the printed listing of
this line into the right form for line 1500, and press IjJ3i'IJjW to
enter this new program line. The original line 30 would be un
changed because you had not asked the machine to enter any
changes there .

If you wanted to use the Screen Editor on all lines from 30
th rough 60, the LIST command also allows you to specify a range
of lines. This form of the LIST command would look like this:

LIST 30,60

and would list all lines between and including 30 and 60. Since
longer programs will not all fit into a single screen display, by
using this form of the command you can look at pieces of your
program at a time. These pieces can be as small as one single
line if you specify one line number, or as large as the entire
program if no line number range is given. Try each of the forms
of the LIST command now on the program you just typed in:

LIST 3D

LIST 30,60

LIST

(lists only line 30)

(lists lines 30-60 ·i nclusive)

(lists the whole program)

Now RUN this program. The output should read:

THE VALUE OF N IS: THREE.

Then it will print:

READY

34 ATARI BASIC TUTORIAL

Just to demonstrate that each of the values will cause the correct
output, once the machine says READY, change prog ram line 10
by typing :

10 N=2
RUN

or,

10 N = 1
RUN

or,

10 N = 4
RUN

In each case, the computer will print the correct value if the
program was typed as shown. Now try typing:

10 N=5

then RUN this version. It prints:

THE VALUE OF N IS:

but does not complete the statement. This is because all of the
conditions of the IF statements were found to be false . Therefore,
no value was filled into the statement.

STARTING TO INTERACT WITH THE MACHINE

This book promised that you would be able to have the ma
chine work with you to get a job done. In the examples shown so
far, the machine always came back to you and said READY. Then
you had to change the instructions you gave it, and tell it to RUN
again. Now it is time to show you how to keep the machine in the
RUN mode; in other words, to stay within the program you write
rather than the master program which only says READY all the
time.

Using the same program that was just discussed , make the
following changes. (Be sure to LIST the program to make sure
the changes appear as shown.) When you do a LIST, do not be
concerned if the spacings of the commands are not exactly as

INTERACTING WITH THE MACHINE 35

you entered them. ATARI BASIC ignores al l extra spaces except
those that appear between a pair of quote marks. Those are
always kept as you entered them. (Remember to use the Screen
Editor to save typing.)

10 PRINT "PLEASE INPUT VARIABLE N"
15 INPUT N
30 IF N = 1 THEN GDTO 300
40 IF N = 2 THEN GDTO 400
50 IF N = 3 THEN GDTO 500
60 IF N = 4 THEN GDTO 600
70 PRINT N
75 GDTO 10
300 PRINT "ONE."
310 GOTO 10
400 PRINT "TWO."
410 GOTO 10
500 PRINT "THREE."
510 GDTO 10
600 PRINT "FOUR."
610 GDTO 10

You have added a new type of statement to the program. This
is in line 15. The INPUT statement, in ATARI BASIC, is used in a
program when you want the machine to pause and ask for a
number value to be typed at the keyboard. Once the number
value has been typed, the computer operator must hit the
I;J*iilJ;m key to return control to the machine. The cursor must
be on the same line as the number that has been input to allow
the machine to see the number correctly.

LIST your program so you can look at it. What does this pro
gram do? If you follow the statements closely, you will see the
way it will look at the line numbers. Line 10 asks you for a numeric
value. Once you type it in , line 20 prints the same lead-in mes
sage as before. Lines 30, 40, 50, and 60 each try to see if N is
exactly the value that is in the IF-THEN test. If it matches, the
English equivalent is printed . Then the program continues again
asking for another value. This is caused by the GOTO statements
that we added to change the sequence of the program.

36 ATARI BASIC TUTORIAL

Now RUN this program. The machine will ask you what value
of N is to be used and will keep asking you for a new value in an
endless loop. After each new value , it will see if it can translate
the value to words. If it cannot do so, it will print the number value
instead.

This program illustrates another idea about programming. That
is, there should always be some way the machine shou ld reply to
a user request. Whether the typed data is good or bad, there
should be some way the machine is supposed to respond in
each case. If you don't tell it how to respond , you may give an
incorrect reply to a question. (If all replies to a question are tested
and found false, there should be a response marked to be used
for the all-false condition .)

RUN the program and enter some different numbers, including
the numbers 1, 2, 3, and 4. Watch the results it prints . Try the
numbers 1000, -10, 9.99999999E + 97, and 1.0E - 98. These
last two numbers are entered in what is called scientific notation.

The large number, 9.99999999E + 97, means a number almost
equal to 10 followed by 97 zeros. This is the largest number that
can be handled by ATARI BASIC. Notice when you entered this
number that it printed all of the digits when line 70 was executed.
This indicates that ATARI BASIC can remember nine digits for
any number, even a very large one. If you enter a number greater
than this, you will exit the program to the command mode indi
cating an ERROR 8, saying the input data is not acceptable. You
will also see an ERROR 8 if you try to give the machine an alpha
betic input (ABC, etc .; any characters not strictly numeric or sci
entific notation as shown in the examples) .

The small number, 1.0E - 98, means a number 0.00000 01 ,
where the number of zeros between the decimal point and the 1
is 97. This is the smallest number ATARI BASIC can handle. If
you enter a smaller number, then line 70 will print the value zero
(0) .

If you produce an ERROR 8, to continue to try to enter numbers
you must tell the machine to RUN again. The question mark (7)
on the screen is called a prompt. It is present to tell you that
ATARI BASIC is waiting for your input from an INPUT statement.

Since, as you will see in later sections of this book, the INPUT

INTERACTING WITH THE MACHINE 37

statement can be used for alphabetic as well as numeric inputs,
it is good practice to tell your program user exactly what type of
data is expected. If the system is expecting a number and gets
a letter, you will get an error that will interrupt the program. There
is a way to handle this error, though, called a TRAP statement.
This will be introduced later in this book.

You would probably like to go on to something else now. But
the machine keeps on asking you for more input. To do anything
else, you will have to return to command mode from the execute
mode. To do this , simply touch the I:J;t:M:. key. The I:J;t:M3I
key will stop a running program, telling you "STOPPED AT LINE
XXX." Here, XXX represents the line number the machine was
about to execute when it saw you press I:J;I*'31·

COMPOUND STATEMENTS

The program you just performed did do some user question
and answer work, but it involved a bit more typing than neces
sary. There is another feature in ATARI BASIC that you can use to
make this program a bit shorter. This feature is called the
compound statement.

A compound statement is a set of BASIC statements all with
the same line number and all within the same "logical line." Each
ATARI BASIC statement is separated from the preceding state
ment by a colon (:).

In ATARI BASIC, each of the "logical lines" takes up anywhere
from one to three actual lines on the screen. Since each line is
normally 38 characters wide, the maximum normal BASIC state
ment can be 3 times 38 characters , or 114 characters total.

Let's look at how using some compound statements would
have made the program shorter (and less work) . Use the Screen
Editor to make changes to lines 30 through 60 as follows:

LIST 30,60

Then use the 'IU;1I1 and arrow keys to move to the correct
spot on each line to make the lines read as follows . Remember,
you must touch I;J#iIlJ;J¢1 after making the change on each line,
with the cursor within that line, for ATARI BASIC to accept the

38 ATARI BASIC TUTORIAL

new changes. Since each Ijl:ulJjW keypress moves the cursor
down one line , it will be easiest for you to make these changes if
you start the change on line 30. Here is how these lines must
read after the changes:

30 IF N = 1 THEN PRINT "ONE." :GDTO 10
40 IF N = 2 THEN PRINT "TWO ." :GOTO 10
50 IF N = 3 THEN PRINT "THREE." :GOTD 10
60 IF N = 4 THEN PRINT "FOUR." :GoTO 10

The new program requires only the line numbers 10, 15, 20,
30, 40, 50, 60, 70, and 75. Since lines 300- 610 are not being
used , you could type:

300 ';t;lIiIlitU
310 'ilii-litU

and so forth to delete these unused lines . But for now, just leave
them in .

RUN this new ve rsion of the program. The results are the same
as before. Use the I:JjJ:t!1~ key to return to the command mode.

As you can see from this example, the other way does require
much more typing and much more space. This other way may be
needed if you need each IF-THEN test to perform many different
things, and when the total of those things it must do wi ll not fit in
a compound statement on a logical line. (Remember that every
thing within the logical line following the word THEN is part of
what will be executed if the IF statement has a "true" result.)

An example of a long compound statement is as follows:

200 IF N = 1 THEN B;= lOo:PRINT "THE NEW VALUE
OF B IS";B:PRINT "AND THE VALUE OF N IS";N

Notice that all of the BASIC statements from which the compound
statement is made are complete and correct (each cou ld have
been used separately in a statement having a separate line
number).

Because of the ru les for the IF-THEN combination, all of the
statements following the THEN will be executed , in the order
given, if the IF condition is tru e. None of those statements will be
executed if it is fal se.

INTERACTING WITH THE MACHINE 39

REVIEW OF CHAPTER 1

Thus far, you have learned that

1. Capital letters must be used for the ATARI BASIC commands.
2. Immediate commands do not have line numbers , program

lines do have line numbers .
3. The ATAR I Screen Editor can be used to save some work in

a programming job. The ~"mlid. (eUjl .. , 111=1.: .. =«, 11~!#J*i'
and arrow keys are used to call the Screen Editor functions.

4. Line numbers in an ATAR I BASIC program specify the nor
mal sequence of execution of the program from lowest number
to the highest (0-32767) . The program sequence may be modi
fied, in one way, by a GOTO statement.

5. A variable is a named memory area used to store a number
value . There are two different types of variables , numbers and
strings. A number variable can have a value anywhere from
1.0E - 98 to 9.99999999E + 97. ATAR I BASIC saves nine signifi
cant digits.

6. A program can be LISTed anytime while in the command
mode. You can LIST either one selected line number, a range of
line numbers separated by a comma, or just say LIST (with no
line number range) to list the entire program.

7. A program can be RUN once it is entered . To exit the pro
gram, if you have no other exit method installed , the I:J;J:M3 key
can be used .

8. Compound statements can be used to save typing (and
time, as will be seen in later chapters)

If you are not familiar with one or more of the preceding review
items, we suggest you consu lt the index and go back to reread
the section which covers that subject. Then you may proceed to
the next chapter.

CHAPTER

Computers Compute

In this chapter, you will learn more about the test conditions for
the IF statement introduced in Chapter 1. You will also learn how
you can use the computer as a number processor. The ATARI
Home Computer is, after all, performing most of its operations
based on some mathematical function. You will therefore learn
how to use it in this same way.

OTHER IF TESTS

In Chapter 1, you were shown an example where the IF state
ment tested an "equals" condition. The example was:

30 IF N = 1 THEN PRINT "ONE."

The ATARI BASIC IF statement can test other conditions also. For
example, it can test if N is greater than 1, if N is less than 1, or if
N is not equal to 1. These particular IF tests can be written in
ATARI BASIC as follows : In ATARI BASIC, a right-arrow bracket
(» represents the "greater-than" condition. A left-arrow bracket
«) represents the "less-than" condition.

Each arrow bracket looks like the item it represents because
whichever variable is at the "small end" of the arrow is being

40

COMPUTERS COMPUTE 41

tested to see if it is smaller than the item at the "large end" (open
part of the bracket) of the arrow bracket. Therefore, an example
of a test for a number being greater than 1 looks like:

14 IF N > 1 THEN PRINT "IT IS GREATER THAN 1."

And an example of a test for a number being less than 1 looks
like:

18 IF N < 1 THEN PRINT "IT IS LESS THAN 1."

The conditional test for "not equal" must mean that one varia
ble is expected to be either greater than or less than the other
variable. In ATARI BASIC, this condition test is represented by a
combination of the symbols for each test (greater than/less than)
and appears as follows:

<>

When it is used in an ATARI BASIC statement, the statement, if N
is not equal to 1, print something, looks like:

30 IF N <> 1 THEN PRINT "IT IS NOT EQUAL TO 1."

There are two other tests the IF statement can make. These are
used to test if a number is greater than or equal to another num
ber, or if a number is less than or equal to another. Again , the
symbols for each are a combination of the symbols for the indi
vidual test conditions .

To test whether a number is greater than or equal to another,
this symbol is used:

> =

An example of this is as follows:

3S IF N > = 1 THEN PRINT "N IS GREATER THAN OR EQUAL TO 1."

To test whether a number is less than or equal to another, this
symbol is used:

< =

An example of this is as follows:

40 IF N < = 1 THEN PRINT "N IS LESS THAN OR EQUAL TO 1."

42 ATARI BASIC TUTORIAL

You might have wondered why these conditional IF statements
are covered in a chapter called "Computers Compute" Well, the
way the computer is ab le to tell if the conditional test is true is to
perform a subtraction, and this is computing. It subtracts the right
side of the comparison (in each preceding case, the number 1)
from the left side of the comparison. Then the condition test is
made on the result.

For example, the equals comparison says the IF statement is
true if the result of the subtract is equal to zero. The less than or
equal comparison says the IF statement is true if the result of the
subtract is less than or equal to zero, and so forth.

When ATARI BASIC completes its evaluation of the comparison
statement, it comes up with one of two possible values. A condi
tion true produces a nonzero result. A condit ion false is assigned
to a zero result.

In some cases, you would need to comb ine various tests to
see if a number was in a certain range or if two numbers have
specific values. A number range test could be written as:

40 IF N > 10 THEN IF N < 20 THEN PRINT "N IS OK RANGE"

Notice the construction of this statement. The first THEN is the
companion to the first IF. When the first IF test is found not to be
true, the second IF is not even executed because of the IF-THEN
rules. ATARI BASIC would just have gone on to the next sequen
tial statement. However, when the first IF is true, then the second
IF is tested. When it is true also, the PRINT statement takes place.
(The PRINT statement is the completion of the second THEN for
the second IF.) This is a bit awkward. ATARI BASIC does, how
ever, provide another way to combine these two tests. This is with
a connecting statement called AND . If you used the AND state
ment, the preceding test would look like this:

40 IF N > 10 AND N < 20 THEN PRINT "N IS OK RANGE"

What this says is that both the test N > 10 must be true and the
test N < 20 must be true, in order for the combination of the two
to be true. If either is false, the combination test is false and the
condition following THEN will not be executed. AND can only be
used within an IF test.

COMPUTERS COMPUTE 43

Another combination test you might want to do is to see if one
condition or another condition is true. ATARI BASIC provides this
capability also. An example is shown here

50 IF N < 10 OR N > 20 THEN PRINT "N IS OUT OF RANGE."

This is testing the same condition as in the previous example for
AND, but it states it from another angle.

The combination conditional test is true if either of the condi
tion tests is true. The keyword OR can only be used within an IF
condition test.

Now that you have seen how the different options of the IF
statement can be used, you may want to try an example program
using this command. But before that, look at another command
(the TRAP statement) that is going to be used as an error catcher.
If you remember from the earlier program using the IF statement,
it was possible to cause an error by giving the program some
data that was not strictly a number. FOr example, if it asked you
to input a number, and you typed XYZ then IjJ3iiIJjJ~I, it would
exit the program with an ERROR 8. This would say that the input
was not as it expected. A quick example of the use of a TRAP is
shown here. Try it. These program lines will be used in the next
couple of examples also.

NEW
10 TRAP 200
20 PRINT "PLEASE TYPE A NUMBER VALUE"
30 INPUT N
40 PRINT "THANK YOU"
100 GDTo 10
200 PRINT "SORRY, THAT DID NOT LOOK R-lGHTI"
210 GDTO 10

RUN this program and see what happens when you try to enter
either an alphabetic input or just a IjJ3iiIJjW with no number
entered. Instead of giving you an ERROR 8, the machine now
tells you that you didn't enter a number correctly. Now the only
way you will be able to exit the program is to touch the 1=ljJ*'3
key or the , because you have used the pro-

44 ATARI BASIC TUTORIAL

gram itself to catch the errors and to handle them . Still using this
program, change line 210 to read:

210 GDTo 20

and RUN the program again. Now give it bad data twice. (Just
enter XYZ I;I3iilliW, then just lil3iillim.) The first time you do
it, it gives you the right message. The second time, though, it
gives an ERROR 8 and leaves the program execute mode. ATARI
BASIC requires that the TRAP be reset each time it is used. In
this mode, it is much like a mousetrap. It must be freshly set each
time it is to be ready for another use.

Add the following lines to the program. Be sure to change line
210 back to the original reading (210 GOTO 10). The program
then will also illustrate some combination IF tests.

50 IF N > 0 THEN PRINT "THIS IS A POSITIVE NUMBER"
60 IF N > 100 AND N < 1000 THEN PRINT "IT IS BETWEEN 100
AND 1000"
70 IF N > = 1000 THEN PRINT "IT IS 1000 OR GREATER"
80 IF N = 0 THEN PRINT "THIS NUMBER IS ZERO"
90 IF N < 0 THEN PRINT "THIS IS A NEGATIVE NUMBER"
100 IF N <> 999 THEN GoTo 10
110 PRINT "IT WAS 999, EXIT TO COMMAND MODE"
999 END

This program will test the value of N that you enter, and print only
those things about N that are true. If you wish, you may add some
more tests and PRINT statements to this program which would
test the size of a number less than zero. This program also uses
the IF test to allow an exit to the command mode by testing if N
is equal to 999 (tested in line 100). If it is equal to 999, then the
IF test in line 100 fails (the not-equal test is false) and the program
exits.

RUN the program and try some values of N. To return to com
mand mode, type 999 then liHUllila

HOW TO MAKE THE COMPUTER "COMPUTE"

Your ATARI Home Computer can perform arithmetic and many
different kinds of math functions . These functions will be dis-

COMPUTERS COMPUTE 45

cussed later in this chapter. First, though, you must learn how to
write a math statement that ATARI BASIC will understand.

Normally, when people think about arithmetic problems, they
would often write them , for example, as:

A+B-C=D

and then perform the operation in the order in which it is written.
For all arithmetic statements, ATARI BASIC requires that the an
swer variable must be shown first. This means that the example
must be written (if shown as a program line) as:

100 D = A + B - C

ATARI BASIC wants you to tell it where the answer is to be stored,
then to tell it how to calculate the answer. That is why the variable
D is shown first.

The arithmetic operations ATARI BASIC can do using a single
character as the operation indicator are as follows :

• Addition, for which you use the plus sign (+).
• Subtraction , for which you use the minus sign (-).
• Multiplication, for which you use the asterisk (*).
• Division, for which you use the slash mark (I).
• Exponentiation , for which you use the caret symbol (/\).

Here are some examples of how an arithmetic problem might
normally be written , and how it must be written for ATARI BASIC:

Addition:

5
+3

8
10 A = 5
20 B = 3
30 ANSWER = A + B
40 PRINT ANSWER

Or, if you want to do it another way (not use 10,20):

30 ANSWER = 5 + 3
40 PRINT ANSWER

46 ATARI BASIC TUTORIAL

Subtraction:

12
- 5

7
10 A = 12
20 B = 5
30 PRINT A - B

In this second example, you should notice that ATARI BASIC
will print, as a number quantity, any value which is correctly spec
ified. In this example, instead of assigning the result to a variable
called ANSWER, you have just asked the machine to print what
ever are the results, without saving them for any other use.

Multiplication:

6
x7
42

10 A = 6
20 B = 7
25 ANSWER = A * B
30 PRINT ANSWER

Or, if you wish:

30 PRINT A * B

Division:

Answer Dividend

I
or Answer =

Divisor Dividend Divisor

You can ask ATARI BASIC to do this in a statement, such as:

30 ANSWER = DIVIDEND / DIVISOR

Here, the direction of the slash mark makes it seem as though
the item at the left is "over" the item at the right of the slash mark.

COMPUTERS COMPUTE 47

Exponentiation:

This is the arithmetic operation which is used to "raise a num
ber to a power." For example, 2 raised to the third power would
be written this way:

23

and its value is 2 x 2 x 2 = 8. You may have ATARI BASIC
calculate this value this way:

100 ANSWER = 2 /\ 3:PRINT ANSWER

As with other types of commands, either numbers or variable
names can be used in the arithmetic expressions. But the power
to which the number is raised must be an integer (examples: 2,
3, - 7) , in other words, it must not have a fractional part (exam
ples of powers which cannot be used: - 2.12, 3.5). If you do not
use an integer, your program will halt with an ERROR 3, a value
error.

When you are using command mode, you may sometimes want
to use your ATARI Home Computer as a calculator. Just tell it
what numbers to calculate, and it will give you an immediate
reply. For example, you can type:

PRINT 24 * 60 * 60

The machine will reply:

86400
READY

This is a quick calculation of how many seconds there are in a
day (24 hours in a day, times 60 minutes in an hour, times 60
seconds in a minute). Or you may try anything else of interest to
you in this way.

OPERATOR PRECEDENCE

Each of the arithmetic symbols for addition, subtraction, and
so forth are called operators. Operator precedence means the
order of importance of each of the operators.

ATARI BASIC has rules about the order in which arithmetic

48 ATARI BASIC TUTORIAL

operations should be performed. It is possible for you to change
the rules by using parentheses to tell ATARI BASIC exactly what
to do first. The order of precedence for all arithmetic and logical
operations is shown in Table 2-1 . The precedence order shows
which one is done first, before others on a lower level.

Table 2-1. Order of Precedence for Arithmetic Operations

Operator Description Meaning

() Paren theses Left and right parentheses tell
ATAR I BASIC that it should
change the evaluation order.
See Note 1.

String Relationals See Note 2.
- Unary Minus Refers to a negative number,

such as - 20. 14. A unary minus
is not a part of an arithmetic
expression. Instead , it is
closely tied to the number,
indicating that it has a minus
va lue.

A Exponentiation Raising a number to a power.
This is done before any of the
operators that follow.

* / Multiplication and These have equal precedence
Division and are performed from left to

right.

+- Addition and Subtracti on These also have equal
precedence and are performed
from left to right after
multiplication and division.

Number Relationals See Note 3.

NOT Logica l NOT Unary operator for a logical
(true/false) operation . In other
words, if variab le V = 0, then
NOT V has the logi ca l value of
1 (NOT 0).

AND Logical AND See Note 4.
OR Logica l OR See Note 4.

Note 1. Parentheses are used to chang e the order in which ATARI BASIC will
evaluate an equation . For example, if you notice in the table , the multiply

COMPUTERS COMPUTE 49

operation is more important th an the add operation . Let' s look at an example:

D = A+B · C

ATARI BASIC would Ihen evaluate Ihis equation as B times C plus A, and store
the results in variable D. It is because of thi s precedence that the multiply
operation is done first. What if you wanted the add operation to be first? You
must enclose the add operation in parentheses (), such as:

D = (A + B) · C

Whatever ATARI BASI C sees with in parenlheses will then be done before any
other operation . This is because parentheses have the highest of all precedence.

Parentheses can also be used to group various operation s, and may be
"nested" inside of each other. An example of nesting is shown here :

E=(A'(B- C)) + D
a b cd

A left parenthesis adds a nest level, a right parenthesis subtrac ts one nest
level. The small leiters below the diagram show:

(a) the start of nest level 1
(b) the start of nest level 2
(c) the end of nesl level 2
(d) th e end of nest level 1

Level 2 is "inside" of level 1 and is , in this example, the innermost nest leve l.
ATARI BASIC will perform all arithmetic it finds in the innermost nest level first ,
then the next innermost , th e next , and so forth until it is outside all levels of
parentheses. Inside of any sing le nest level, the other operator sequences will
sti ll be the same.

Note 2. String compare operations are shown in the next chapter.

Note 3. Number compare operato rs are those you saw discussed at the
beginning of thi s chapter, namely:

>,<,= , > =, < = ,<>

These comparison operators are not only used in IF statements , but they can
also be used in an arithmetic statement. When they are used this way, th e
result of the use of a compare operator is either a 1 (representing the condition
TRUE), or a 0 (representing the condition FALSE) Examples are:

where,

x = 1 if A is greater than B
X = 0 if A is less than B

where,

Y = 1 if C is not equal to D
Y = 0 if C is equal to D

X=A > B

Y = C <> D

50 ATARI BASIC TUTORIAL

Note 4. The log ical operators, AND and OR, are used to combine logic tests
into one single larger test. You already saw at the beginning of this chapter
how the AND and the OR operators were used within an IF statement. Th ey
may al so be used in an arithmetic statement in the same way. Here are a
couple of examples.

G = D AN D E

If the absolute value (ignore the sign + or -) of the numbers 0 and E are
both greater than or equal to one (1) , then the value of G will be a 1. If the
absolute value of either one is less than 1, the value of G will be a zero .

H = A OR B

If the absolute value of either of the numbers A or B is greater than or equal to
one (1), then the value of H will be a 1. On ly if both A and B are less than 1 will
H be a zero.

A NEW VALUE FOR A VARIABLE

When you define an arithmetic statement, such as

C=A+B

ATARI BASIC will perform the calculation which you define on the
right side of the equals sign , no matter how complicated , then it
will finally store the value in the variable named on the left side of
the equals sign. Because of the order of calculations you may, if
you wish , use the "old " value of the variable itself in the calcula
tion. In fact , you will see this type of statement very often in
programs, and it will appear like this :

D = D + 1

Where the new value of D is calculated to be the present value
of D with one added to it .

Let's look at an example program that uses this type of arith
metic to do something useful. Type in the program exactly as
shown. The NEW statement is shown, as usual, to tell the com
puter to erase all old program pieces which might still be lying in
the memory.

NEW
10 D = 0
20 PRINT "A TABLE OF SlJUARES":PRINT
30 PRINT "NllMBER","N-SlJUARED"

40 D = D + 1
50 PRINT D,D*D
60 IF D < = 9 THEN GDTO 40

COMPUTERS COMPUTE 51

RUN this program It will give you a table of squares for the
numbers from 1 to and including 10. Line 10 sets the initial value
of 0 (initializes D) Line 20 prints the heading for the table. The
compound part of line 20 prints a blank line. Line 30 prints an
other header. Line 40 gives 0 a new value each time it is exe
cuted, using the old value as the starting point as explained
above. Line 50 prints both the number and the square of the
number (that number times itself). Line 60 tests the current value
of D. The program will go to line 40 again until the value of 0 is
greater than 9. By then , it will have completed the table from 1 to
10.

Line 50 also introduced a new ATARI BASIC control character
in the PRINT statement. This is the comma. When you place a
comma in a PRINT statement, it tells the computer to skip to the
next print-tab stop on the screen.

The print-tab stops are not related to the Screen Editor tabs.
Print tabs are fixed at screen locations 1, 11, 21, and 31 where
column 1 represents the leftmost printing position on the screen.
(The normal screen form leaves the leftmost 2 columns blank,
starting printing in column 3 of the actual screen, with 38 actual
printing columns available. Therefore the normal print-tab loca
tions are at real columns 3, 13, 23, and 33 on the screen.)

By using the comma in the PRINT statement, you can see you
have a neatly arranged display. In the chapter titled "Menu Please ,"
you will see other ways of positioning the printing on the screen.
Now make a change to line 60, so that it now will read:

60 IF D < = 9 THEN 40

Clear the screen and RUN the program again.
There is no difference in the way it runs now This is because

ATARI BASIC saw a number quantity after the THEN keyword.
The rule here is that if there is nothing except a number quantity
following a THEN, ATARI BASIC thinks that is a line number to
which it must execute a GOTO. The GOTO is not needed. How-

52 ATARI BASIC TUTORIAL

ever, this number must be a "literal " number, such as 40 or 100
or 32500. It cannot be a variable if the GOTO keyword is deleted.

If the GOTO is left there, you may use it as part of a "computed
GOTO." This would be used where the value following the GOTO
is a variable. The value of the variable must be equal to one of
the program line numbers so that it will really have a place to
GOTO. Change the program to add line 5, and change line 60
as shown here:

5 M = 40
60 IF Il < = 9 THEN GOTD M

Clear the screen and RUN the program again. There is no differ
ence, because ATARI BASIC found a GOTO 40 when the value
of M was evaluated at the IF test .

Before leaving this example program, make another change,
this time in line 50. Change it to read:

50 PRINT Il,Il/\2

Now you will be using the exponentiation function to calculate the
squares of the numbers. RUN the program again. The answers
look a little different, don't they?

Exponentiation uses a special arithmetic formula. Because ATARI
BASIC can only save a total of 10 digits, we say it is "limited to
1 O-digit precision ."

When the formula is done, there may be a need to save more
than 1 0 digits sometimes (not only with this, but with any math
function) to be sure the result is exact. Since only 1 0 digits can
be saved, you may wish to do some "rounding " of the result
before you print it. This depends on the type of problem you are
doing, and has been shown here just to demonstrate that the
answer you expect may not always be the one you will get be
cause of what is called round-off error.

THE INT FUNCTION

How can you do the rounding? ATARI BASIC provides a func
tion that will let you separate the whole numbers from the frac
tions. It is called the INT function. The INT function takes a number

COMPUTERS COMPUTE 53

value, and calculates the whole number part of that value. You
use the INT function as follows :

N=INT(O)

where 0 is a variable which has some digits after the decimal
point and you want N to be just the whole number itself, with
nothing after the decimal point. The INT function automatically
rounds down to the next nearest whole number. This means that
the number 3.99999996 becomes 3 if you try the INT function. To
round up to the next number, you would need to do something
like this:

N = INT (0 + 0.5)

As a matter of fact, let's try that in the example. Change line 50
again, this time to read:

50 PRINT O,INT(0 1\ 2 + 0.5)

RUN the program again . This time the numbers look OK. There
is , though, another way you could take advantage of the rounding
down which INT always does. Because of the rounding down,
negative numbers get rounded "correctly," as an example shows
here:

N = INT(-3.99)

This results in N = - 4. So let 's make one more change in line
50 of the demo program to use this fact:

50 PRINT 0, - INT (- (0 1\ 2))
deb a ae

The preceding letters may help you to understand what is hap
pening. The letters "a" mark the inner set of parentheses. This
tells ATARI BASIC what function to do first (calculate the square
of the number). The letter "b" points to the minus sign, saying
that it must make the result negative. You need the parentheses
here to change the order of operations . Since the unary minus is
more important than exponentiation, without the parentheses ATARI
BASIC would have performed it this way: (- N)1\2, which would
always result in a positive number.

54 ATARI BASIC TUTORIAL

The letters "c" mark the outermost level of parentheses , which
enclose the number on which the INT function is supposed to
operate. Thi s makes the INT function work always on a negative
number. Finally the "d" points to the final minus sign , saying turn
the result of the INT function (which will be minus) into a plus
number (since - 1 times - 1 equals + 1).

RUN the program again . See that the results are still the same
as before, it only used a different way of getting there .

Another Use for INT

Sometimes when you are doing a division problem, you would
like to know the answer in terms of the quotient and the remain
der. In ATARI BASIC, when you express a division problem, it
would look like thi s

40 RESULT = DIVIDEND / DIVISOR

If you want to express the result as QUOTIENT plus RMAIN
DER, you can use the INT function as shown in the following
example. Notice the spelling that was used for "remainder." There
is a reason for thi s. The word REM is a reserved word in ATARI
BASIC. Everything ATARI BASIC sees following the letter combi
nation REM will be treated as a "REMark" or comment. It is kept
as part of the program, but anything on the logical line following
the REM will be ignored when the statement is executed . The
REM statements you will see in the programs that follow will be
the method by which the programs will be "documented."

When you type an example program, you do not have to type
in any of the REM lines or any of the comments following the REM
if it occurs on a compound statement line. However it is good
pract ice , when you design your own programs, to put in some
REM statements here and there to tel l yourself (and perhaps
others who will use you r program) what each section of the pro
gram is supposed to be doing.

Getting back to the division example, here is a program that
will present division results in the form just mentioned :

10 TRAP 300
20 PRINT "SPECIFY WHOLE NUMBER DIVIDEND";:INPUT DIVIDEND
25 REM YOU DoNT HAVE TO TYPE THIS LINE OR ANY REM LINE.

COMPUTERS COMPUTE 55

30 REM IN LINE 20, THE SEMICOLON TELLS ATARI BASIC
35 REM NOT TO SPACE DOWN TO THE NEXT LINE. THIS
40 REM ALLOWS IT TO ACCEPT THE DIVIDEND ON THE SAME
45 REM LINE AS THE REQUEST ITSELF THE COLON IN
50 REM LINE 20 ALLOWS THE INPUT STATEMENT TO SHARE
55 REM THE PROGRAM LINE 20 WITH THE PRINT STATEMENT.
60 REM
70 PRINT "INPUT A WHOLE NUMBER DIVISOR "; :INPUT DIVISOR
80 PRINT:REM THIS PRINTS A BLANK LINE
90 RESULT = DIVIDEND / DIVISOR
100 WHoLEPARTOFRESULT = INT (RESULT)
105 REM YOU CAN ABBREVIATE ANY OF THE NAMES.
110 REM THE EXAMPLE USES THE LONG NAMES JUST
115 REM TO BE SURE YOU WILL UNDERSTAND WHAT THE
120 REM VARIABLES MEAN.
125 REM
130 FRACTION PART = RESULT - WHOLEPARTOFRESULT
140 REM NOW TO GET THE REMAINDER, JUST MULTIPLY
145 REM THE FRACTION PART BY THE DIVISOR,
150 REM BUT ALSO MAKE SURE THIS RESULT IS A
155 REM WHOLE NUMBER.
160 REM
170 RMAINDER = INT (FRACTION PART * DIVISOR + 0.5)
175 REM NOTICE THE SPELLING OF THE WORD ABOVE
180 REM SO ATARI BASIC DOESN'T IGNORE THE LINE.
185 REM ALSO USING THE 0.5 TO CAUSE ROUNDING UP
190 REM BECAUSE OF PRECEDENCE, THE MULTIPLY IS DONE
195 REM FIRST.
200 PRINT "THE DIVISION PROBLEM ";DIVIDEND;"/";DIVISOR
210 PRINT
220 PRINT "GIVES A RESULT OF ";WHoLEPARToFRESULT
230 PRINT
240 PRINT "WITH A REMAINDER OF ";RMAINDER
250 PRINT
260 PRINT "TO EXIT, USE BREAK KEY":PRINT
270 GoTO 10
300 PRINT "THAT DID NOT LOOK RIGHTI"
310 PRINT "PLEASE TRY AGAIN":PRINT
320 GOTo 10

56 ATARI BASIC TUTORIAL

This program actually only consists of the following line num
bers: 10, 20, 70, 80, 90, 100, 130, 170, and 200- 320. The rest
are all comments (remarks). It does what we started out to do,
but something is missing . No, the error trap is there , but there is
no check to see whether the input numbers, dividend or divisor,
are whole numbers. If they are not whole numbers, you will get
inaccurate arithmetic results . How can you be sure the user of
the program does input whole numbers? You can do this by using
the INT function again! See the following test which could be
included in the program. Let's look at it as though it was a sepa
rate set of tests. Don 't type in these lines. They are here just for
discussion. In the section following this discussion, you will see
a way to combine all of these tests into a single line!

In this example, the logic names are called PART1, PART2,
and PART3. The logic test PART1 determines if the number has
any fractional part or is a whole number. PART1 is true if it is a
whole number. PART2 is called true if the number is nonzero.
(You cannot divide by zero, and this test avoids an error.) PART3
is true if both PART1 and PART2 are true . If PART3 is not true,
then there is an error and it should be trapped .

500 TRUE = 1
503 FALSE = 0
505 FRACTPART = N - INT (N)
510 PART1 = FALSE
512 PART2 = FALSE
514 PART3 = FALSE
520 IF FRACTPART = 0 THEN PART1 = TRUE
525 IF N <> 0 THEN PART 2 = TRUE
530 IF PART1 = TRUE AND PART2 = TRUE THEN PART3 = TRUE
535 REM LINE 530 COULD ALSO BE WRITIEN AS:
540 REM IF PART1 AND PART2 THEN·PART3 = TRUE
550 IF PART3 = FALSE THEN GOTO 400
560 REM 550 COULD ALSO BE WRITIEN AS
570 REM IF NOT PART3 THEN GOTO 400
580 REM BECAUSE IF PART3 WAS FALSE, THEN THE
590 REM STATEMENT "NOT PART3" WOULD BE TRUE
600 REM AND THE GOTO 400 WOULD HAPPEN.

COMPUTERS COMPUTE 57

This set of statements, in sequence, then means that if the num
ber is a whole number (has no fraction part) and if it is greater
than zero, go on to the next statement. If it either has a fraction
part or if it is equal to ze ro, then GOTO 400.

Here is an example of using the parentheses to combine a
whole set of logic tests into a single line. This saves a lot of typing
as you can see when comparing it to the previous example.

22 N = IlIVIDEND
23 IF NOT(N < > 0 AND ((N - INT (N)) = O))THEN GOTO 400
24REM d cb a ab cd
400 PRINT "THAT WAS SUPPOSED TO BE A WHOLE NUMBER"
410 GOTO 310

Line 23 looks somewhat complicated, but if you break it down,
the functions it performs are identical to those in the many-line
example presented just ahead of this section . The small letters
are used again to mark the various levels of parentheses so you
can see what ATARI BASIC will do first.

Just remember, when looking at parentheses, start counting
them from left to right. ATARI BASIC will look at them the same
way. It will say, looking at the preceding example, "Left paren
thesis, another left parenthesis, another left one, another left .. .
aha, a right parenthesis . .. that must apply to the most recent
left one I saw." (This forms the "innermost nesting level. ") "Now
I'm looking for the next right parenthesis , which will be a match
for the second most recent left parenthesis I saw ... " and so
forth until it finds a match for each one. Once it finds a match for
one, the entire enclosed quantity can be calculated and can be
considered as though it was a single variable.

You will see in the following explanation how the levels of pa
rentheses match up, using the left-to-right scanning as explained
in the preceding paragraph.

(a) Marks the parentheses which tell the INT function what
number to operate upon.

(b) Tell s ATARI BASIC to calculate the value N - INT (N) ; in
other words, take away the whole number part and just
leave the fraction .

58 ATARI BASIC TUTORIAL

(c) Tells ATARI BASIC to test if the fraction part is greater
than zero (or you could test if it was greater than .0001 or
something else)

(d) Tells ATARI BASIC to see if N is greater than zero AND if
the fraction part is equal to zero meaning that it is a whole
number not equal to zero.

(e) If all of those things are true, then it is OK to do the next
line. If any of them is fal se, the number value resulting from
the AND will be a zero . When you add the NOT in front of a
zero result , it makes the result NOT zero , which means true.
When the IF statement sees a true result , it does what
comes after the THEN . In this case , it goes to 400 , the error
handler.

Use of Keywords

In line 240 in the preceding sample program, the word "re
mainder" is spelled correctly. As long as it is within the quote
marks, any of the ATARI BASIC keywords may be used within
words or as part of a string expression . However, when you make
up variable names, you cannot use these keywords as part of the
names.

For any keyword it finds, ATAR I BASIC will try to execute the
function. Therefore, you should at least be familiar with the key
words themselves when you try to write your own programs, even
if you may not be totally familiar with the functions of each one.

OTHER FUNCTIONS BUILT-IN TO ATARI BASIC

Certain arithmetic functions have been built-in to ATARI BASIC
so that you don't have to write a lot of formulas for things which
might often be done. These are described in this section.

SGN Function

The SGN function is provided to allow you to determine if a
number is greater than, less than, or equal to zero. You would
use it as follows:

200 5 = SGN (0)

COMPUTERS COMPUTE 59

The variable S becomes + 1 if the variable 0 is positive, 0 if the
variab le 0 is zero , and -1 if the variable 0 is negative . When
you use SGN, it saves writing up to three program statements,
namely

200 IF D > 0 THEN S = 1
201 IF D = 0 THEN S = 0
202 IF D < 0 THEN S = - 1

Only one of the preced ing IF tests will be true , so S will get the
correct value. But , as you can see, it is easier to use the SGN
function instead.

THE SQR() Function

ATARI BASIC provides a function that will calculate the square
root of a number. It is written as follows:

B = SQR (A)

The parentheses are a part of the expression of the function and
must be used.

Try a square root demonstration program. It will not only cover
square roots , but it wil l also make a couple of other statements
about programming . Here it is:

NEW
10 PRINT "GIVE ME A NUMBER,"
15 PRINT "I WILL CALCULATE THE SQUARE ROOT"
20 PRINT
30 TRAP 200
40 INPUT N
50 SN = SQR (N)
60 PRINT "THE SQUARE ROOT OF ";N
70 PRINT "IS: ";SN
80 GOTO 10
200 PRINT "THAT DOES NOT COMPUTEI"
210 PRINT:GOTO 10

If you RUN this program, you must use the 1=lil%131 key or
SYSTEM RESET to exit.

Look at the preceding program. You will see that line 50 has

60 ATARI BASIC TUTORIAL

been used to calculate the square root value, directly after the
INPUT statement. Why? Well , this program allows two possible
chances for an error to occur. The first chance is during the
INPUT statement where, if you gave it a bad number, it could
generate an ERROR 8. The second chance is during the SOR
calculation where a bad value would generate an ERROR 3 (value
error). The program uses the TRAP statement to catch both of
the errors. Whichever error causes the TRAP into line 200 prints
the message. The recycle back through lines 10-30 resets the
TRAP again.

If line 50 had ~een left out, then line 70 would have to read:

70 PRINT "IS: ";SQR(N)

If you did this, then gave the SOR function a bad input number
(such as -1), then the computer would print:

THE SQUARE ROOT OF - 1
IS: THAT DOES NOT COMPUTE!

instead of just the message

THAT DOES NOT COMPUTE!

It is up to you how you trap and report the errors. But this exam
ple, at least, shows you what could happen to a calculation within
a PRINT statement and how to prepare for that kind of error.

The ABS() Function

In the first example of the IF statement in this chapter, you saw
a program which tested an input value, then printed all the things
about it that were true. In that example, nothing much was done
with the values less than zero. Let's look at what might have been
done with them.

ATARI BASIC has a function called ABS. It is used to find the
absolute value of any number. This value will always be a positive
number. As an example, the function is written in this way:

200 C = ASS (N)

The parentheses are part of the expression of the function and
must be used. (The statement C = ABSN will not call this func-

COMPUTERS COMPUTE 61

tion; instead it will equate C to the variable "ABSN.") If N is a
positive number, then C = N. If N is a negative number, then C
= (-1 times N). (In other words, C = the value of N with the
minus sign changed to a plus sign.)

A partial example program is shown here. It does not include
the error testing, but is complete enough to be RUN to show how
to use the ABS() function. It will also show you some other ways
to form an IF test.

NEW
10 PRINT "GIVE ME A NUMBER"
20 INPUT N
30 NA = ABS(N)
40 IF NOT N THEN PRINT "N IS ZERo":GOTo 10
50 IF N < 0 THEN PRINT "N IS NEGATIVE"
60 IF N > 0 THEN PRINT "N IS POSITIVE"
70 IF NA > 1000 THEN PRINT "ITS VALUE IS OVER 1000"
80 IF NA < = 1000 THEN PRINT "ITS VALUE IS LESS THAN OR
EQUAL TO 1000"
90 GOTo 10

Line 30 calculates the absolute value . In line 40, the THEN part
of the line not only prints the statement about the value , but it also
performs the GOTO function. This was done to prevent the IF test
in line 80 from beirig performed. Can you tell why line 90 was
added at the bottom of the program? Why didn't the program just
end with line 80 reading as follows?

80 IF NA < = 1000 THEN PRINT "ITS VALUE IS LESS THAN OR
EQUAL TO 100o":GOTo 10

Well, if N was greater than 1000, and if there was no line 90
included, ATARI BASIC would evaluate line 80 as false, and never
do anything within that same statement following the THEN.
Therefore, it would run out of statements to execute and wind up
back in the command (READY) mode.

There is another solution to this problem. That would be to
change line 70 of the program to read:

70 IF NA > 1000 THEN PRINT "ITS VALUE IS OVER 10oo":GOTo 10

62 ATARI BASIC TUTORIAL

which means there is a GOTO 10 as part of both a test that will
be true and a test that will be false . Therefore , one of these paths
to line 10 will be taken . Remember that this program did not use
any input error testing. By now you shou ld know how to put in
error TRAPs.

OTHER MATH FUNCTIONS

ATARI BASIC includes a number of other math functions you
can use. These are speci fied in this section . This book is not
intended to give extensive examples for the use of al l the math
functions. Rather, it is intended to show you the correct way to
write ATARI BASIC statements and what each of the keywords
means.

In addition, a goal of this book is to show you exactly what the
process of designing a program is all about. Therefore, these
math functions show on ly how to write the statement correctly.
Many BASIC users will use these functions far less than any
others mentioned in this book.

CLOG Function

ATARI BASIC inc ludes this function to calcu late a value equal
to the logarithm (base 10) of the variable or expression enclosed
in parentheses . This function can be used as follows:

200 ANSWER = CLOG(VARIABLE)

The parentheses are required . (Note: There are small bugs in this
routine which return incorrect values for CLOG(1) and CLOG(O).
These are specified in your ATARI BASIC Reference Manual.)

LOG Function

ATARI BASIC includes this function to calcu late a value equal
to the natural logarithm (base e) of the variable or expression
enclosed in parentheses. This function can be used as follows:

200 ANSWER = LDG(VARIABLE)

The parentheses are required . (Note: There are small bugs in this
routine which return incorrect values for LOG(1) and LOG(O) .
These are specified in your ATARI BASIC Reference Manual .)

COMPUTERS COMPUTE 63

EXP Function

ATARI BASIC provides this function to calculate a value of e
(approximate value 2.71828283) raised to the power you specify
within the parentheses. As with other functions , the item enclosed
in the parentheses can be a variable or an expression . This rou
tine can only be used if the accuracy of the result is required to
be six significant digits or less. An example of the way to use the
EXP function is:

200 ANSWER = EXP (VARIABLE)

DEG / RAD Functions

For the trigonometric function descriptions that follow, the
expression within the parentheses will be evaluated either in ra
dians or in degrees. When the computer is first powered up, the
RADians function is active. The words DEG and RAD are used to
switch back and forth between the two. If you type

I1EG l;ujjI!;I~1

or use

200 I1EG

in your program, then any trig functions will be evaluated in de
grees from that time on . Likewise, if you type

RAIl li'iilli'U
or use

300 RAIl

then any trig functions will be evaluated in radians.

SIN Function

This function calculates the sine of the angle specified in the
parentheses. An example is shown below:

200 I1EG
210 ANSWER = SIN(45)
220 PRINT ANSWER

64 ATARI BASIC TUTORIAL

This program calculates the sine of the angle 45°. This result is
approximately 0.707. The parentheses are required. The value of
SIN() will always be between 0 and 1.

COS Function

This function calculates the cosine of the angle specified in the
parentheses. An example follows:

200 DEG
210 ANSWER = COS(60)
220 PRINT ANSWER

This program 'calculates the cosine of the angle 60°. This result
is approximately 0.5. The parentheses are required. The value of
COS() will always be between 0 and 1.

ATN Function

This function returns the arctangent of the variable value which
you enclose in the parentheses. This function is the reverse of the
tangent function in that it calcu lates the angle in degrees or ra
dians from which the tangent value would have been derived. An
example will show what this means :

Appendix E of the ATARI 400/800 BASIC Reference Manual
shows that the tangent function can be calcu lated from the SIN
or COS functions as follows :

TANGENT = SIN(X) 1 COS(X)

where X is the angle in degrees or radian s. If X = 45°, then the
program shown here will calculate the tangent, then use the ATN
function to prove that th is is the ang le which would produce th is
tangent value.

NEW
100 DEG: REM USE DEGREES
110 TANGENT = SIN(45)1COS(45)
120 PRINT ATN(TANGENT)

You will see that the answer is about 45Q (Again, the limits of
precision within the machine may give an answer very close but
not exactly correct.)

COMPUTERS COMPUTE 65

REVIEW OF CHAPTER 2

Thus far, you have learned that:

1. The IF test can be used to test many different conditions
and combinations of cond itions.

2. A TRAP statement can be used to prevent a bad input from
affecting the program outcome, but the TRAP must be reset each
time it is used.

3. ATARI BASIC can do various numerical calculations. In the
process of doing the calcu lations, it evaluates your program lines
from left to right, but also does certain operations before it does
others. This is known as operator precedence.

4. Parentheses-enclosed expressions are evaluated from the
innermost set to the outermost set. ATARI BASIC matches up
parentheses by taking the last encountered left parenthesis as a
mate to the earliest encountered right parenthesis. After each
match-up, that entire quantity can be treated as though it is a
separate variable.

5. Logic expressions, such as used in the IF tests, are called
true if the value is nonzero, and false if the value is zero. An IF
test will pass (that is, allowing its THEN part to be executed) only
if the expression it tests is true.

6. A variable can be used as a counter (see "A New Value for
a Variable") by adding a quantity to the old value of the same
variable.

7. Following the THEN in an IF-THEN statement, a line number
may be used, as long as the line number is an actual number
and not a variab le (such as: 40 and not something like: M).

8. If you wish to assign a variable that will tell ATAR I BASIC
where to go following an IF test, the THEN will be followed by a
GOTO, and the line number following the GOTO may be a varia
ble, such as

IF (N > 0) THEN GOTO M

where M is a variable equal to one of the actual line numbers in
the program. This is known as a computed GOTO. (It does not
need to be part of an IF-THEN test, it may be used wherever a
GOTO can be used.)

66 ATARI BASIC TUTORIAL

9. The INT function always rounds down to the next nearest
integer value.

10. Anything following the letter combination REM is ignored
by ATARI BASIC. It is, however, stored as part of a program and
will be there again when you list it. It merely does not execute
any part of the statement following the REM.

11 . You must be careful when choosing variable names to
prevent ATARI BASIC from misinterpreting you. Any variable name
cannot contain any of the reserved keywords .

12. ATARI BASIC has some math functions built-in to aid your
calculations .

As with Chapter 1, if any of the preceding items seem unfamil
iar to you, it would be a good idea to go back through this chapter
and become familiar with them. This book was designed to build
on previous examples wherever possible, both to save you typing
and to logically build up your familiarity with ATARI BASIC, step
by step.

CHAPTER

Stringing Along

The purpose of this chapter is to show you how ATARI BASIC
handles and uses strings. The first thing you have to know here
is:

"WHAT IS A STRING?"

Well, the easy answer to that question is shown by example.
And the example is the question itself!

A string is a group of characters enclosed between a pair of
double quotation marks . The characters that are used in a string
in ATARI BASIC can be capital or small letters, numbers, arith
metic symbols , and just about anything else having an ATARI
ASCII (ATASCII) value. (See Appendix C of your ATARI BASIC
Reference Manual for the appearance of some of the symbols
that might occur in a string.) In fact , the only character that ATARI
BASIC cannot allow in a string is the double-quote (") character.
This is because the first double quote marks the beginning of a
string, and the second double quote signals ATARI BASIC that
this is the end of the string.

Normally, one expects to see and use the alphabet, numbers,
and punctuation signs in a string. The "normal things" will be
what will be used for strings in this book.

67

68 ATARI BASIC TUTORIAL

You have seen strings before in the first two chapters, such as
the strings "HELLO" and "OTHER STUFF. " In the first two chap
ters, strings were used strictly for passing small messages to the
user. In this chapter, you will see how strings can be used in
other ways. For example, in the second chapter you saw an ex
ample program in which you had to type a number as a reply to
a program question. It would be nice if instead of a number, the
reply could be a word , such as YES or NO, or maybe just Y or N
for short. Using strings in your program can provide this capability.

HOW ATARI BASIC HANDLES STRINGS

Strings in ATARI BASIC are handled a little differently than in
other forms of BASIC. In particular, the various Microsoft® BASICs
do not require that you save space for a string . ATARI BASIC
does require that space be saved for each string you will use. No
string in ATARI BASIC is allowed to be larger than the storage
space you have set aside for it.

The DIM Statement

Here is an example program showing how you save space for
a character string . It will also show what happens to the extra
characters if there is not enough space to store them . The DIM
keyword is the word that tells ATARI BASIC to save some space
for the string . (The DIM statement has other uses in what is called
array storage, but that is a more advanced topic and will be
covered later.) Try this example and see for yourself what happens:

10 DIM A$(9)
20 A$ = "123456"
30 PRINT A$

Before you run the program, check a couple of notes on what
you see here.

DIM is actually short for DIMension (but never use the whole
word , ATARI BASIC won't understand it) . This specifies the size
of the memory in one "dimension." In this case, only one dimen
sion, that of "length ," is specified . String variables can only have

STRINGING ALONG 69

the dimension of length. When you do arithmetic with number
arrays, you will see that numeric variables can also have the
dimension of width. But again , that is a future subject.

You will notice that the string variable ends in a dollar sign ($) .
This is common to all string variables and tells ATARI BASIC that
it is a string. This means that you cannot make up a number
variable name which ends in a dollar sign .

Line 20 assigns a value to A$. Notice that since it is a string
variable, the value assigned to it is a string and is enclosed in
quotes. RUN this program and see what happens. The full set of
characters assigned to A$ has been printed by the PRINT state
ment. Now change line 10 to read :

10 DIM A$(3)

and RUN the program again .
Now notice that only the first three characters have been printed.

ATARI BASIC has reserved only a space three characters long
for the string called A$. Any extra characters wouldn 't fit into that
space, so ATARI BASIC has thrown them away! This did not
cause any error, it is just the way ATARI BASIC handles strings.
Now, change line 10 back to DIM A$(9), add the following line:

25 A$(7) = "789"

and RUN the program again.
You will see that ATARI BASIC allows you to merge together

sets of strings into one longer string just by telling it the position
number at which the add-on is to start. Now change line 25 to
read :

25 A$(10) = "789"

and RUN the program again .
This time the program stopped with an ERROR 5. This means

that you tried to assign a start position number that was larger
than the dimension number you spec ified for the string array.
Remember that it is OK to add extra characters which ATARI
BASIC will just throwaway, but you must specify a starting point

70 ATARI BASIC TUTORIAL

within the dimension of the string in the first place. Now change
the example again to read :

10 DIM A$(9)
20 A$ ="XX"
40 PRINT A$

and RUN the modified program.
What does the string look like? Just a pair of XXs, right? Even

though you have reserved nine spaces for the string , you only
used the first two spaces. ATARI BASIC knows this and when you
say PRINT A$, it means print A$, starting at character one, and
print as many characters as the user has assigned to this string .

Now change the example program again. Thi s time add line
30 shown here:

30 A$(8) = "XX"

and RUN the program again . What did it print?
Yes, the XXs are where you would have expected them to be,

but what is between the XXs? If you have followed along with the
preceding examples, the result most likely reads:

XX34567XX

These are the leftovers from the previous program you tried where
A$ was defined as "123456789." This shows you that when a
program starts (using the RUN statement) , the string variable
areas, which you define, may contain any kind of data, even
graphics characters or other "garbage." ATARI BASIC does not
clear out any data left in these areas either at program start or
during the program run. Again , to further demonstrate that, change
line 30 to read :

30 A$(3) = "Z"

RUN the program, then change line 30 to read :

30 A$(9) = "Z"

and RUN it once more. Notice that after the first change , the extra
characters temporarily disappear. Thi s is because the very last
time that ATARI BASIC sees something added to a string, it says

STRINGING ALONG 71

that the last character position filled defines the end of the string.
Therefore, when you tell it to print A$ it prints from the first char
acter to and including the "last known" character position .

The last change mentioned to line 30 shows you that even
though ATARI BASIC temporarily changed its definition of where
the string ended, it did not change any of the characters that
were part of the earlier version of the string. This means that if
you really want to be sure you know what characters are part of
a long string , you must define them yourself for the full length of
the string. Some programs will use strings in this way to build up
a whole line of data for output. This is known as formatting an
output line. You will see this subject later in the chapter titled
"Menu Please."

Without running the program again, type the following com
mand in direct mode

PRINT M(5) (and press 1;llIIill;011

Notice that this prints the string beginning at the fifth character,
and prints all of the rest of the string. Again, once ATAR I BASIC
has been told to print the string, it begins where you tell it to start,
then cont inues till it reaches the position indicated by the "current
length ."

Now, how about doing a little string "splitting "? Sometimes you
might want to look at just one character, or maybe a group of
characters that are part of a longer string . Try the following add
on to the preceding example. The whole example is shown here
just in case you put the book away and have just picked it up
again for this section. Here, the complete example wil l show a
string split method , and includes all of the changes you made so
far.

5 DIM 8$(10)
10 DIM A$(9)
15 A$ = "123456789"
20 A$= "XX"
25 A$(8) = "XX"
30 PRINT "CURRENT A$ CHARACTERS: ";A$
358$ = A$(4,6)
40 PRINT "CHARACTERS 4 THRU 6 ARE: ";8$

72 ATARI BASIC TUTORIAL

RUN this program. The second line should show the contents of
B$ (pronounced "B string") are "456. " (No quotes will be dis
played on the screen with the string value.)

Notice that you can, if you wish , combine the printing of a string
variable with a character string on the same line, as in line 30.
You can even use a PRINT statement to group together a number
of different strings, such as by the statement:

PRINT A$;B$

or some similar type of statement. Again, the semicolon tells ATARI
BASIC to stay in the last position after you print that section of
the line . .. don't go on to the next line before you print what's
coming next.

Line 35 says B$ = A$(4,6). This says start defining the charac
ters for B$ starting at character position 1 and use A$ character
number 4 as the starting character and A$ character number 6
as the last character. Since this is three characters total, B$ will
have a length of three , and will be composed of the characters
"456."

This type of command not only allows you to split strings but
also to rearrange them. For example, to move characters from
one section of a string to another, you might use the following
type of program. Again, it has been kept as short as possible to
save you some typing.

NEW
10 REM THIS PROGRAM MAY BE PART OF
20 REM A MAILING LIST PROGRAM
30 DIM A$(4o),B$(4o)
40 A$ = " ":A$(11) = A$:A$(21) = A$:B$ = A$
50 PRINT "TYPE YOUR LAST NAME AND PRESS RETURN"
60 INPUT A$

70 PRINT "TYPE YOUR FIRST NAME AND PRESS RETURN"
80 INPUT B$
85 A$(26) = B$
90 PRINT "YOUR NAME IS STORED AS :"
100 PRINT A$
110 B$ = A$(26):B$(16) = A$

STRINGING ALONG 73

120 PRINT "WHEN YOU PRINT A MAILING LABEL'
130 PRINT "IT SHOULD APPEAR THIS WAY"
140 PRINT B$
150 END

Line 30 reserves 40 spaces for each string. A$ (remember, it is
pronounced "A string ") is going to be used to store your name in
the form LASTNAME, FIRSTNAME just as you might see it on an
index card . If someone was going to mail you a letter, though , it
would look funny if he put your last name first. So this program
will use the built-in ATARI BASIC string functions to swap the last
name and first name before they are printed.

In line 40, we got a little fancy. Remember you saw that ATARI
BASIC does not do anything to the memory areas assigned to
string storage before these areas are used. Line 40 is in there to
put some starting values into the memory so you won't see any
garbage. A set of 10 periods is used between the quotes . So the
first part of line 40 assigns the first 10 positions of A$ to be 10
periods.

The second part of line 40 does a second part of setting up
the value in A$. (Remember compound statements . if not,
recheck Chapter 2 again ... use the colon to separate parts of
the compound statement.) It takes the value currently in A$, start
ing with character 1, and duplicates that value in character posi
tion 11 , duplicates position 2 in position 12, and so forth until the
length of A$ is 20, and the first 20 characters are all periods. The
third segment of line 40 assigns characters 21-40 the same as
characters 1- 20. The final segment initializes B$.

But wait, there's something fishy here, isn't there? Earlier you
saw that ATARI BASIC , when it is supposed to do something with
a string , starts at the spec ified position (or the first position if it is
not told where to start) . This program starts with a string that is
10 characters long , and fills in the 11 th character, then the 12th,
and so on . As it is going onward, it is supposed to keep going
until it reaches the end of the string. But this statement, A$(11) = A$,
would seem to keep making the string longer and longer. Why
doesn't it go on forever if the string is 10 characters long when it
starts, then 11 characters long after one character is moved , then

74 ATARI BASIC TUTORIAL

12 and so on? It would seem that it would always be 10 charac
ters behind any ability to perform this request.

Well, ATARI BASIC solves this problem by always remember
ing what the "current length" of the string happens to be before
it starts anything like this. Then, only after the data move has
happened does it change the "current length" to whatever it has
become as a result of the move. Therefore , if it starts with a length
of 10, it moves 10 characters only. Then it looks to see what the
length has become and remembers this, after the move has
happened.

Lines 60 and 80 are there to show you that you can use the
INPUT statement to input a string variable, just as you used it in
Chapter 2 to input number values. All you have to do is tell ATARI
BASIC what kind of variable is to be input, and it handles the rest.
Line 110 says:

110 B$ = A$(26):B$(16) = A$

Let's look at a picture of what this line does. First, let 's assume
that you entered A$ to read:

LASTNAME

then

FIRST

It would be stored as:

LASTNAME FIRST

with the periods for the fillers . Periods don 't appear after the word
FIRST because the total length of A$ was defined by the last
character position that was filled.

Now the first part of line 110 does this (Here's a diagram of B$
after the first part of line 110):

FIRST

It is five characters long, starting with character 26 from A$, and
running out to the current length of A$, which wou ld be 30 char
acters (moved numbers 26- 30, inclusive) . Now the second part
of line 110 reads:

B$(16) = A$

STRINGING ALONG 75

This says to take all characters from A$, one at a time , and assign
them to B$ starting at character position 16. This does the follow
ing: Old B$ is:

FIRST

But the entire B$ data area looks like this:

FIRST.

because the area was initialized in line 40 with periods (40 total) .
Now we add A$ contents starting at position 16, (B$ data area

copied again just to show everything up close):

<- 40 characters long -->
FIRST.

LASTNAME

(This line is down here to illustrate FIRST
that ATARI BASIC "d rops" the extra
characters which go beyond the end
of the available data space.)

When the lower line (containing LASTNAME) is stored into the
memory space containing the upper line (FIRST. ..), the B$ mem
ory looks like this:

FI RST LASTNAME ..
<- 40 characters long -->

and it will print in the correct order as the program is supposed
to do.

The LEN Function

In the preceding discussions, there are many references to the
length of the string. Since ATARI BASIC knows what the length of
each string happens to be, it might be useful for us to know this
also. Why? Well, someday you might want to write a program that
does crossword puzzle word searches. Let's say you have your
"dictionary" set up so that you have all of the one-letter words
first, then all of the two-letter words, the three-letter words, and
so on. Then when you ask the program to give you all of the four
letter words starting with "g" and having an "e" in the fourth

76 ATARI BASIC TUTORIAL

position, you would not want the computer to waste its time
searching all of the one-letter words first, then the two-letter words,
and so on . In particular, it is a waste of time, especially if the
language, such as BASIC, is a little slow on long searches. There
fore, you would need to know the length of the word you were
looking for so the computer could start its search at the most
efficient place in the dictionary.

Fortunately, ATARI BASIC provides the LEN function for this
purpose. The LEN function returns a value which is the number
of characters currently assigned to the string name you request.
You write this function as follows:

10 N = LEN(A$)

where the complete name of the string variable is enclosed in the
parentheses. Here is a very short program which demonstrates
the LEN function:

NEW
10 DIM A$(12o)
20 PRINT "TYPE SOMETHING AND HIT RETURN"
30 PRINT "I WILL TELL YOU HOW MANY CHARACTERS"
40 PRINT
50 INPUT A$
60 PRINT
70 PRINT "YOU TYPED ";LEN(A$);" CHARACTERS"
80 END

The value you get from the LEN function can be used like any
other number value. It is an integer (whole number) and can be
used in calculations or anywhere else a number is accepted.
That is why the first example line showed the statement, N =

LEN(A$).
When you look at the mailing list program again, you will see

that if you used the LEN function, you might have done things a
little differently. For example, the way the final printed name (first
. . . last) is put together, there is a lot of space allowed between
the first name and the last. Also, maybe you wouldn't want to print
the dots there after all.

Let's look at how the LEN function could have helped to make

STRINGING ALONG 77

the final printed form a little better looking . In the example, the
last name was read, then the first name. After the last name was
read, ATARI BASIC knew that the length of A$ was eight (LAST
NAME). A number variable could have been assigned to hold
that value, let's say it was called LNAME. So to use the LEN
function for this, you would have written :

65 LNAME = LEN(A$)

After the first name was read , ATARI BASIC knew the total length
of A$, and that was 30 characters (25 characters and dots com
bination allowed for the last name section, then 15 characters
and dots allowed for the first name). Since you knew where the
program started storing the first name (at character position 26),
you can move only the right amount of characters into the area
(B$) from which you wish to print. Let's see how.

Please refer back to the mailing list program as we show these
add-ons to it. The purpose of the add-ons is to show you how the
LEN function can help. You may try to RUN the modified program
if you wish. Add line 65 as shown above (repeated here):

65 LNAME = LEN(A$)

Retype line 110 to read :

110 B$ = A$(26,LEN(A$))

or

110 B$ = A$(26)

which , in this case, does the same thing (uses characters from
26-30). Then add lines 113, 114, 115, reading:

113 LFIRST = LEN(B$)
114 B$ (LFIRST + 1) =" "

115 B$ (LEN(B$) + 1) = A$(l ,LNAME)

What are the functions of each of these lines? Line 113 says the
number variable called LFIRST is set to the current length of B$.
This becomes a pointer to the last character you added into B$,
which here is the last character of the first name. Line 114 says
starting with the next character position , add onto B$ with a string

78 ATARI BASIC TUTORIAL

composed of two blank spaces (because that is what is con
tained between the two quote marks). So far, this builds B$ into
the first name, followed by two blanks. Line 115 says starting with
the first character position following the two blanks, begin storing
the characters of the last name. On the right side of the equals
sign it shows the character limits, from 1 to the length of the last
name (which line 65 calculated).

On the left side of the equals sign , it shows that we didn't
assign any temporary variable name to the value LEN(B$) , as we
had done with LFIRST and LNAME previously. Anywhere that a
value is needed only once in a program, it is usually OK to use
the equation which represents that value, especially since ATARI
BASIC will calculate the value most anywhere it is properly placed.
Since it is inside the parentheses, ATARI BASIC must do every
thing that is inside of the parentheses before it can find out what
number is to be used. Therefore , this type of equation is OK to
use.

There is another reason for sometimes using the equation rather
than assigning a new temporary variable name. That is, the limit
of 128 variable names which was mentioned in Chapter 1. How
ever, it is not too likely that a beginning programmer will run into
this limit very often. It is just a little something to show you now,
so that you might recall seeing it "somewhere" when you do find
such a problem.

Now if you RUN the mailing list sample program with those
changes in place, you will see the output generated as:

FIRST LASTNAME < -(no dots here anymore)
- > <-{two spaces here)

and this looks a bit better than what we started with.

OTHER STRING FUNCTIONS

Let's now look at a couple of other string functions that ATARI
BASIC has, namely the STR$ and VAL functions. These functions
are the link between number variables and string variables be
cause by using them you can convert one kind to the other.

STRINGING ALONG 79

The STR$ and VAL Functions

First we'll look at the STR$ function. Its purpose is to convert a
number variable into a string variable. You would write a line
using this function in this way:

200 A$ = STR$(N)

The first condition is that A$ has had a DIM statement near the
top of the program so that there is some space reserved for
ATARI BASIC to store the characters.

The second thing you shou ld know is that N is a numeric vari
able. The value of N can be an integer or a real number (can
have a decimal point). The value of N can be any value which
ATARI BASIC considers within its maximum range (roughly
+ 1.0E + 97 to 1.0E - 97). In fact, if you give a number to this
function having the "E" in it, it will also convert the "E" part to a
string. So, for example, if N = 1.348E -17, then the string value
of N will be 1.348E -17, and so forth for any real number.

The VAL function provides exactly the opposite action, taking
a string representation of a number value and convert ing it into a
real number you can work with. You would use the VAL function
in this way: Assume that A$ contains the characters, 3.14159,
then the line:

300 N = VAL(Affi)

would assign the value of 3.14159 to the variable N.
What is the advantage of being able to go from string variables

to numeric variables and back again? Well , let's look at a couple
of example problems. Say you were asked to write a program
that would take any input number and tell how many digits there
were after the decimal point. How wou ld you do it? Look at the
number 123.1. This one would seem easy to do. First, use the
integer function program that was developed in Chapter 2 to strip
off the digits before the decimal point , then just work with the
remainder (which wi ll be all of the digits after the decimal point).
So the remainder is 0.1. How can you use a program to tell how
many digits there are in this number? First, you multiply the num-

80 ATARI BASIC TUTORIAL

ber by 10 (resu lt is 1.0) . Then use the integer function again to
strip off the whole number and see if the remainder is zero. If it is
not zero (such as if the number was 123.147), then add 1 to a
counter and let the counter count the number of digits past the
decimal point. Keep going until the remainder is zero .

Th is program is shown here for you to try if you wish. You will
see that for the smallest number that ATAR I BASIC can handle
(about 1.0E - 97) , this program runs through 97 passes before it
finally discovers how many digits will be placed after the decimal
point. (Recall that this number is a 1 preceded by 96 zeros ,
making a total of 97 digits to the right of the decimal point.)

There is a second program that follows this one. It will use the
STR$ function to do the same work. You will see that it takes on ly
one pass through the program to do the same job . If time is
important , it is usually best to choose the most efficient way to do
a job .

Here's the first digit counter program, using the INT function as
mentioned earlier:

10 N = -l:REM SET DIGIT COUNTER TO FIRST VALUE
20 PRINT "INPUT A NUMBER, I'LL TELL YOU"
30 PRINT "HOW MANY DIGITS ARE TO THE"
40 PRINT "RIGHT OF THE DECIMAL POINT"
50 PRINT "NUMBER = ";:lNPUT X
60N =N+l
70 Y=INT(Xl
80 Z=X- Y
90 IF Z = 0 THEN GoTo 200
100 X = Z*lo
110 GDTo 60
200 PRINT "THERE WERE ";N;" DIGITS TO THE RIGHT"

Line 1 0 says to set up the value of N as - 1. The reason for this
is that the first time the INT function is used, the program wi ll
dump all digits which are to the left of the decimal point. This
means that the correct answer for an integer value shou ld be
"0" digits. Line 10 will cause this result.

Each run from line 60 through line 110 will then count one more
digit, moving all the rest of the digits to the left by one slot, then

STRINGING ALONG 81

tossing them away (Z = X - Y), leaving only the remainder. As
long as the remainder is not zero, the program will keep looping
around, trying to count yet another digit after the decimal point.

A number like 1.23456E - 96, though, will not have any digits
move until very near the end of the counting. That is because this
number is 123456 preceded by 95 zeros. So it wi ll be a batch of
zeros that will always occur to the left of the decimal point for
each multiplication , and the remainder will be nonzero until the
very last digit has been counted.

Try the program. It wi ll work on all positive and negative num
bers, whether large or small. But notice that for the smallest ones,
it could take up to 97 loops through the test part before it is able
to report the results. Try the number 1.2345678E - 97. This one
will take about 3 or 4 seconds to produce the result. That is OK,
but it is one case where there is a more efficient way to do some
thing . If your program has to do a lot of this kind of calcu lations,
the fastest way will be the best for you most of the time .

Now you can look at and perhaps try the next program. It does
the same thing as the last one, but uses the STR$ function in
stead. You will see that it is much faster, even on the example
number (E - 97).

If you have already entered the earl ier program, you can just
enter this one by changing the lines from 60 to 160, and adding
line 5. The rest of the program is exactly the same.

5 DIM A$(2o)
10 N = -1:REM SET DIGIT COUNTER TO FIRST VALUE
20 PRINT "INPUT A NUMBER, I'LL TELL YOU"
30 PRINT "HOW MANY DIGITS ARE TO THE"
40 PRINT "RIGHT OF THE DECIMAL POINT"
50 PRINT "NUMBER = ";: INPUT X
60 A$ = STR$(X)
70 DP = o:E = o:LEFT = o:RIGHT = oP = 1
80 IF DP<>D THEN GOTO 95
85 IF A$(P,P) = "." THEN DP = P:GOTO 105
88 IF A$(P,P) = "E" THEN E = P:GOTO 120
90 LEFT = LEFT + 1 :GOTO 105
95 IF A$(P,P) = "E" THEN E = P:GOTO 120

82 ATARI BASIC TUTORIAL

1 DO RIGHT = RIGHT + 1
105 P = P + l:1F P < = LEN(A$) THEN GoTD 80
110 N = RIGHT:GOTO 200
120 P = P+ 1:0 = LEN(A$)
130 Z = VAL(A$(P,Oll
135 IF A$(l, 1) =" -" THEN LEFT = LEFT-l
140 Z=Z+LEFT
150 GROUP = LEFT + RIGHT:N = GROUP - Z
160 IF N < 0 THEN N = 0
200 PRINT "THERE WERE ";N;" IJIGITS TO THE RIGHT"

If you try this program, it will run much faster than the earlier
version, even though it is longer. It will take no more than 12 or
so calculations, regardless of the size of the number, to figure out
how many digits there are. How does it work?

Line 60 sets A$ equal to the string equivalent of the number
you entered. Line 70 sets various number variables to zero. The
number called DP represents the position of the decimal point in
the string. It is set to zero to start because the search has not yet
started. Likewise, the E variable is set to zero and will represent
the position, if any, of an E in the string (if it is a very large or very
small number, it will be printed with the E) . Variables LEFT and
RIGHT will represent how many digits are found to the left and
right of any decimal point. They are zero to start also, as the
search begins.

Line 80 is a test. It sees if the pointer has reached a decimal
point previously. If so, no more LEFT digits should be counted.
Line 85 checks to see if the current character, A$(P,P) , is a deci
mal point. If so, DP will now be set to a number other than zero.
This line looks at the value of a single character of A$ by using
the index of (P,P) . If you recall earlier, we used the numbers in
the parentheses for a string to show which character positions to
operate with , such as A$(4 ,6). This meant take the characters
starting with number 4 and continue on with the string until char
acter 6 is used. In this case (P,P) , it means take only one char
acter. For example, (4,4) says it is a one-character string that we'll
use for the comparison operation, and it is character 4 (starts
with 4, ends with 4) . Line 85 is comparing this one character at

STRINGING ALONG 83

the selected position to a decimal point. If it is a decimal point,
the program needs to search no more. If not, the program will fall
through to line 88.

Line 88 is also a test. Very large and very small numbers are
printed by ATARI BASIC with an E in them. If the pointer into the
string has found an E, it is also time to stop counting LEFT digits.
Line 90 adds 1 to the pointer and sends the program back to the
top again if another LEFT digit (digit to the left of a decimal point)
has been found. Line 95 is identical to line 88. If the program
finds the E character, it will have no more digits to count to the
right of the decimal point.

Line 100 adds 1 to the count of RIGHT digits. Line 105 adds 1
to the character position pointer and checks to see that it is less
than or equal to the number of characters in the string . If so, the
program proceeds to examine another character.

If the program gets to line 110, it means that there was no E
character encountered. Therefore, the number of digits to the
right of the decimal point was equal to RIGHT. If the program
found the end of the string before any decimal point was seen,
then RIGHT = 0 and it reports it this way.

At line 120, the E character has been found, and a pair of digits
is produced which will point to the start and the end , in the string ,
of the digits after the E character. For example, in the number
1 .2345E - 24, it points to the characters making up the - 24. Line
130 then uses the VAL function to change the - 24 characters
into a number which you can add or subtract with other numbers.
This number is called Z.

At line 135, the value of LEFT is adjusted in case there was a
minus sign present as part of a number. Because of the way the
number LEFT was counted , it is possible that the number of char
acters to the left of the decimal point should be one less than the
number found . As an example, in direct mode you can type:

N = 100 IjulJim'U
PRINT N

and the response will be:

100

84 ATARI BASIC TUTORIAL

But, if N is a negative value, the first character that will be
printed will not be a "number," it will be a minus sign. For example:

N= -34
PRINT N

will respond:

-34

Since the STR$ function operates the same way as printing to
the screen, line 135 is used to test the first character to see if it is
a minus sign . It tests A$(1 , 1), which is the first character, with a
LEN of 1. If it is a minus sign, then there is one less digit to the
left of the decimal point than the value currently in variable LEFT,
and it has to be adjusted to LEFT - 1 .

Line 140 says Z = Z + LEFT. This adjusts the value found past
the E character to "normalize" the number. This means that it
places all characters after the decimal point and tells what the
value of Z would be if that would happen .

Line 150 says GROUP = LEFT + RIGHT, meaning that the total
group of digits which were handled and which are now to the
right of a phantom decimal point are the total of the left-hand and
right-hand digits combined . It also sets N = GROUP - Z. This takes
the normalized E number and adds the total number of digits to
it. The result is the total number of digits to the right of the decimal
point.

Line 160 says that if N is less than zero, there must be zero
digits to the right of the decimal point. Whatever value is deter
mined is printed by line 200.

Let's look at an example number just to see why the program
does what you see:

1.725E -10

This value could also be represented as:

.1725E - 09

because moving the decimal point to the left by one subtracts
one from the E-character value . This number, as normalized , now
says there are 9 zeros to the right of the decimal point. We can

STRINGING ALONG 85

also see that there are 4 digits to the right of the decimal point in
the E-representation of the number. Therefore, if the number was
drawn out completely, it would have to look this way:

0.0000000001725

or a total of 9 + 4 = 13 digits to the right of the decimal point .
This is what the program will calculate and display as described .

Again, when you try the program, notice how much faster it is
than the other version. Even though the program is longer, it takes
much less time to do the job.

STRING COMPARISON FEATURES

In the preceding program, you saw a couple of uses of the
comparison operators (the equals sign and the less-than-or-equals
sign) in the IF statements. This time they were not being used on
regular number quantities, but rather on string variables. In fact ,
al/ of the comparison operators are just as valid on string varia
bles as on numeric variables . For example, you can try a small
program like this :

NEW
10 DIM G$(lO),H$(lO)
20 G$ = "ABCDE"
30 H$= "Z"
40 IF G$ < H$ THEN PRINT G$;" BELONGS IN FRONT OF ";H$
50 IF G$ = H$ THEN PRINT G$;" AND ";H$;" ARE IDENTICAl:'
60 IF G$ > H$ THEN PRINT G$;" BELONGS BEHIND ";H$

Try it , then if you want to try some combinations, change lines 20
and 30 to read :

20 PRINT "PLEASE SPECIFY STRING l "; :INPUT G$
30 PRINT "PLEASE SPECIFY STRING 2";:INPUT H$

and add line 70:

70 IF H$ < > "STOP" THEN GOTO 20

The program, with these changes, will keep accepting input strings
from you until you type the word STOP as string number 2. Then

86 ATARI BASIC TUTORIAL

it will return to BASIC direct command level. Now you have a
convenient, English-language way to make your program stop
without hitting 1:lil#£131 or or using any num
ber tricks,

You may have some occasion to do alphabetic sort ing at some
time in the future. One thing you must know about these string
comparison features is that they take things very " literally." They
compare the first character to the first character, then the second
character to the second character, and so on until one of the
strings runs out of characters to compare.

If, at the time a string runs out, both strings are identical , the
one with the larger number of characters will be considered to be
the greater one. As an example, use the preceding program to
compare a string 1 and string 2 of:

MOTH
MOTHER

You will see that MOTHER comes after MOTH, and is considered
a higher number value, This is as it should be and is as a diction
ary would list it. It does not matter, for example, if you had speci
fied string 1 earlier as ZZZZZZZZZZ, then respecified it as MOTH.
The string memory storage, if you remember, will have the word
stored as MOTHZZZZZZ, which would certain ly make it seem to
come after MOTHER, But the comparison operators only care
about the current length of the string variable, So MOTH will
come first.

If, in the process of comparing the values, you had specified
lines 20 and 30 as follows:

20 G$ = "ABC"
30 H$ = " Z"

you might think , . . "Z comes later than ABC in the alphabet, so
I think I shall have to put it that way," ATARI BASIC, on the other
hand, has no choice but to look at it on a character-by-character
basis. It doesn't care that these are alphabetic characters, and
can only go by the ATASCII number value assigned to the char
acter itself , The ATASCII value for a blank space (which precedes
the Z) is decimal 32. The ATASCII value for the capital letter A is

STRINGING ALONG 87

decimal 65 . Therefore , the string with the Z in it, since it has a
lower number value in a numeric placement, must come first!

Therefore , when you are trying to compare ATASCII character
strings, make sure that the first characters are lined up the same
way you want them to be interpreted . (This is called "left-justi
fied ," meaning butting-up against the left-hand edge of the space
reserved for the word.)

THE ASC AND CHR$ FUNCTIONS

ATARI BASIC has two more string-related keywords. These are
ASC and CHR$. VAL and STR$ are related to number conver
sions only. For example, if you tried to perform a VAL function on
a nonnumeric string, ATARI BASIC would give an ERROR 18 (an
unexpected value was found) .

The ASC function will return the decimal value of the single
ATASCII character on which it operates. For example, the line:

PRINT ASC ("K)

returns the value 65.
The CHR$ function will return the character whose value is

specified in the parentheses. For example the line:

PRINT CHRffi(65)

prints the character A. In this manner, the ASC and CHR$ func
tions are exact complements of each other. This can also be
shown by the sample line:

PRINT CHRffi(ASC("Kll

which also prints the character A. If you remember the rules on
parentheses-enclosed items, the "innermost" function is done first ,
then each outermost function until the line is complete . In this
case , the ASC function is done first, putting the value 65 into the
CHR$ parentheses. Thi s then prints the letter A.

You will see strings used elsewhere in this book for various
purposes. Most of them, due to the nature of the book, will be
used to communicate somehow with the user.

In the chapter titled "Menu Please," you will see an example of

88 ATARI BASIC TUTORIAL

the use of the ASC function to simulate the VAL function , and
another example will show you how to use the CHR$ function to
do the same thing that the STR$ function will do.

Why would you want to do this? Well , let's say there was a case
where you wanted a number of items to be entered on a single
line. If you did not want to ask the user to enter a comma between
each item to separate them, you might need to separate the
string items yourself and find out if they were numeric or string
data. These program pieces will give you an introduction to the
use of these functions.

Such a function might be used in a program language transla
tor where it is necessary to see if the item entered is a number or
a variable name. In each case, the item would be treated differently.

The CHR$ function can also be used to install characters in a
character string, which are sometimes difficult to print otherwise.
For example, you may, as a writer, want to print a line that would
say:

HE SAID, "THAT WAS EASY"

If you recall at the start of this chapter, when you have a string , it
is usually defined by a double quote at the beginning and a
double quote at the end. It is, therefore , difficult to find a way to
make a double quote as part of a string itself. You can do this ,
however, using the CHR$ function. Taking the example line as
something you want to print:

10 !JIM A$(50)
20 A$ = "THAT WAS EASY"

(Note that if this is printed directly, the quotes disappear.)

30 PRINT "HE SAID, ";CHR$(34);A$;CHR$(34)

If this program is RUN , the results will be the sentence shown
earlier. CHR$(34) is the double-quote character.

You can find this, and other characters you can produce using
the CHR$ function, in Appendix C of your ATARI BASIC Refer
ence Manual. The character produced is in the right-hand col
umn, and the decimal number you give to the CHR$ function is
listed in the leftmost column . You will find the double quotes listed
at decimal 34 of the table.

STRINGING ALONG 89

One additional thing you should know about the STR$ and
CHR$ functions is the warning given in your ATARI BASIC Refer
ence Manual. It is that in logical comparisons, do not use more
than one STR$ or CHR$ in a logic equation. This means, for
example, don't make an equation that says this :

IF STR$(N) > STR$(F) THEN GOTO 100

because this type of equation will not execute correctly. The rea
son for this is that ATARI BASIC uses a spec ial memory area to
hold the converted string value when the STR$ function is per
formed . If you try to perform it twice in a single line, there will be
a problem since the second use of the STR$ function uses that
same memory area. This will make the logic comparison opera
tion result incorrect.

The way to avoid this problem is to store the results of the STR$
(or CHR$, same problem) somewhere before making the com
pare. This means that the example would be better worded this
way:

10 DIM TEMP$(2D)
20 TEMP$ = STR$(N)
3D IF TEMP$ > STR$(F) THEN GOTO 100

This example is valid because the results of the first STR$ are
already stored away when the second STR$ is performed.

If this problem is present for a string comparison, why then is
it not present for an arithmetic comparison? For example:

lOM=lO:N=5
20 G=2: H=l
3D IF (M + N) > (G + H) THEN PRINT "GREATER"

If you RUN this example, you will see it print the word GREATER.
If you add line 25 as follows :

25 G = 14

and RUN it again , the comparison will find two equal values and
the word GREATER will not be printed . Or if you change line 25
to read G = 100 and RUN it again, then GREATER is not printed
either. Why does this work and string comparisons using STR$
don't work?

90 ATARI BASIC TUTORIAL

ATARI BASIC uses two temporary memory storage areas, called
accumulators, to store the temporary results for the arithmetic
type of operations. One is used for the left side of the compare
operation, the other is used for the right side. Therefore , the com
pare can always be done correctly.

In the string operation , only one area is used for the temporary
data, so the operation demonstrated in the example must be
performed if you are doing a STR$ or CHR$ type of operation.

REVIEW OF CHAPTER 3

1. A string is a group of ATASC II characters. When defining a
string variable, the characters used to define it are enclosed in
double quotes (") .

2. Any ATASCI I characters can be used in a printable string
except the double-quote character itself. But this character may
be inserted during the printing by using the CHR$ function .

3. String variable names must end with the character "$" (the
dollar sign). If the variable is named A$, then you pronounce its
name as "A string" (not "A dollar sign").

4. You have to save space for each string using the DIM func
tion , such as DIM A$(1000) , which will reserve 100b spaces for
character data that is part of A$.

5. The current length of a string will be determined by the last
defining statement which works on that string. You can find out
the current length of the string using the LEN function .

6. When ATARI BASIC reserves space for a string or does any
work on that string , it on ly works on the parts of the string which
you specify are to be changed . Any other parts not included in
the "scope" of the string usage will remain unchanged .

7. You can add onto a string just by specifying at which char
acter position the add-on is to occur. You can look at pieces of a
string just by specifying the beginning and ending character po
sition for the g roup of characters you want to use. For example,
position 6 only would be specified as A$(6,6)- the string piece
begins and ends at position 6. For another example, look at three
characters beginning at position 3-A$(3,5)-specifies a string
length of three characters , numbers 3, 4, and 5.

STRINGING ALONG 91

8. For any string operation, the limits of the character positions
to be used must be within the limits of the space you saved for
the string using the DIM statement. Otherwise an error will occur.

9. If you specify a string and not use any parentheses, ATARI
BASIC thinks you mean to use the whole string, from character
position 1 through and including the length of the string. If you
specify a string using one length number in parentheses, such
as A$(7), ATARI BASIC assumes that the string section you want
to look at starts at character position 7 and goes to the length of
the string. If you specify two numbers in the parentheses, then
ATARI BASIC uses only those two positions as the character
limits of the string; for example , A$(3,6) .

10. The VAL function can be used to find the value of a num
ber that was originally entered as, or assembled internally as, a
string. It is used where arithmetic must be performed on the value
and where that arithmetic can only be done in the number mode,
not the string mode. This can be used on a long string of data
which really represents a number value.

11. The STR$ function can be used to convert real number
values into string values.

12. The ASC function can be used to convert a single string
character into a number, representing the ATASCII value of that
character.

13. The CHR$ function can be used to convert a single AT AS
CII value into a character string character.

CHAPTER

Designing a Program

In Chapter 3, one of the program examples contained a chal
lenge ... "How would you do this?" For that challenge, you had
already been given a fair set of tools with which a program could
be developed, but thus far no instructions on exactly how a
program is developed. This chapter will give you a brief introduc
tion to program planning.

PLANNING A PROGRAM

As you saw in Chapter 1, the real reason you have a computer
is that it can do something for you. Because it works very fast, it
can do many things in a short time. Because it can be pro
grammed, it is very versatile. This section will concentrate on how
you can decide how the machine should go about doing its job.
To get started, let's look at the diagram in Fig. 4-1, which shows
the job of the computer. This diagram basically holds true for
most applications-from games , to accounting programs, control
programs, and almost anything else the computer can do.

This chart can be generalized to a set of three smaller boxes ,
as shown in Fig. 4-2. The entire process of writing a program can
be generalized to a form of the chart in Fig. 4-2.

92

Fig. 4-1. Flowchart showing
basic job of computer.

Fig . 4-2. Flowchart of Fig.
4-1 simplified.

DESIGNING A PROGRAM 93

As you are developing an application, it is not always neces
sary to do everything at once. It may be easier to break up the
application into many small pieces. Then you may want to take
each piece, make it function OK on its own , then finally "link"
together all of the working pieces into a functioning program.

This technique of breaking things up and developing them
individually is called modular programming. It is very useful be
cause it is usually easier to work with and understand small sec
tions of a computer program one at a time than to try to understand
and get the bugs out of the whole thing at one time.

How then does the diagram in Fig . 4-2 apply to modular pro
gramming? Well , the block called INPUT can refer to the group
of program pieces which lead into a particular module. The block
called OUTPUT can refer to the group of program pieces which
follow a particular module. So the program modules, once as
sembled , would look like Fig. 4-3. If you consider the output of
one module to be the input of another, then the chart would look
like Fig. 4-4. What you see here is a very simple version of a
flowchart. You will see other flowcharts used in this text, just to
get you used to organizing your programs properly.

94 ATARI BASIC TUTORIAL

Fig. 4-3 . Flowchart illustrating
modular programming.

Fig . 4-4. Flowchart of
Fig. 4-3 simplified .

DESIGNING A PROGRAM 95

In some cases, you will also see what could be called flow
narratives for some programs. A flow narrative is a description
of the flow of the program and might be used to substitute for the
flowchart. Flow narratives are also used to emphasize the need
for organizing things properly before trying to do the final program.

The brief drawing shown in Fig . 4-2 doesn't take into account
that the process has to provide for decision making in most ap
plications. You have been shown a decision-making tool , the IF
statement, in Chapter 2. Now let's see how you would represent
it on a flowchart.

The IF statement is represented by a diamond-shaped block,
as shown in Fig. 4-5. An IF test has only one entry point (from the
top) , and should have only two possible exit points. One exit is
for the overall result of all compound tests (many tests linked with
a set of AND, OR, etc.) being true. The other exit is for the con
dition where one or more of the conditions tested is false, which
makes the whole test false.

PREVIOUS PROGRAM PART

ALL PARTS
"TRUE"

/
NOT ALL PARTS TRUE.

/ CONTINUE REST OF PROGRAM.

PERFORM
"THEN "
PART

Fig. 4-5. Flowchart illustrating the IF test for decision making .

If you consider the structure of the BASIC program, the IF
statement, if it fails , performs the next sequential statement (the
one "directly below" it). If the test is true, the statement performs
the THEN part, which is written "off to the side" of the original
statement. Therefore, when you use the flowchart symbol for the

96 ATARI BASIC TUTORIAL

INPUT

>----TRUE

FALSE

Fig . 4-6. Flowchart of Fig . 4-5 simplified .

IF statement, you should have the FALSE exit at the bottom, and
the TRUE exit off to one side or the other, as shown in Fig. 4-6.

You already have a powerful set of programming tools. The rest
of thi s book wi ll be used to demonstrate them , and to add other
tools that wi ll make your job easier. Whenever a tool is added,
you will see a comparison to the type of operation you might have
had to perform if that tool had not been available. This wi ll al low
you to simplify some of the things you might already be doing
where the tool is already availab le to make the job easier.

Just to demonstrate the effectiveness of the tools you have,
let's look at a typical application and bu ild a flowchart from it.
Then from the flowchart, we wi ll do the prog ram.

An application most people would be familiar with is a check
book balancer. Let 's look at what features it shou ld have:

(a) Ask for initial balance at program start.
(b) Allow input of the following types of amounts:

Checks.
Deposits.
Service Charges.
Transfers (such as automatic overdraft protection pro
vided through a credit-card link).
Withdrawals (such as cred it-card-based autoteller cash
access) .

(c) Give a running balance after each transaction.
(d) Offer to do another transaction or quit.

START - Ask Initial Balance
Define memory to hold reply.

FALSE

DESIGNING A PROGRAM 97

Ask amount.
TRUE subtract from

balance.
disp lay balan ce

Ask amount.
add to balan ce.
disp lay balance

Unknown command

Fig . 4-7. Flowchart of checkbook balancing program.

Fig . 4-7 shows how this may be simplified on a flowchart. The
structure of such a program becomes ve ry simple once the flow
has been defined

10 DIM ASi(2o):REM SAVE SPACE FOR USER REPLY
20 PRINT "WHAT IS START BALANCE?"
30 PRINT "EXAMPLE 1234.56 THEN PRESS RETURN"

98 ATARI BASIC TUTORIAL

40 INPUT BALANCE
50 PRINT:PRINT
60 PRINT "TYPE FIRST LETTER, THEN RETURN"
70 PRINT "TO SELECT TRANSACTION TYPE"
80 PRINT
90 PRINT "[CHK,DEp,SRVCHG,TRNSFR,WDRAWL,OUIT)"
100 INPUT A$
140 IF A$[l , 1) = "C" OR A$[l , 1) = "5" OR A$[l , 1) = "W" THEN GoTo 200
160 IF A$[l , 1) = "T" OR A$[l , 1) = "D" THEN GoTO 300
180 IF A$[1,1) = "0" THEN END
190 IF A$[l ,l)<>"C" OR M [l ,l)<>"S" OR A$[l, l)<>"W" THEN
GoTO 100
200 PRINT "PLEASE SPECIFY AMOUNT"
210 INPUT AMOUNT
220 BALANCE = BALANCE - AMOUNT
230 GoTD 400
300 PRINT "PLEASE SPECIFY AMOUNT"
310 INPUT AMOUNT
320 BALANCE = BALANCE + AMOUNT
400 PRINT "CURRENT BALANCE IS: ";BALANCE
410 GoTo 50

Thi s completes the program. All positive-type amounts (trans
fers, deposits) are added to the balance. All negative-type amounts
(checks, withdrawals, service charges) are subtracted from the
balance. There is a command that allows an easy exit to BASIC,
the command called QUIT

RUN the program and try it out. What happens if you give it an
entry such as "JUNK" when it asks for the initial balance or any
check amount? Thi s is not a va li d entry and halts the program.

Now, if you want to make the program more "bulletproof, " you
can install error checking here. The following TRAP statements
would help thi s situat ion :

15 TRAP 15
55 TRAP 50

If you remember the TRAP statement, it tells ATARI BASIC to go
to the line number spec ified in the TRAP if it fin ds an error during

DESIGNING A PROGRAM 99

the program execution . In this case, you are trying to trap bad
data input. In the first case, the TRAP will spring if there is a bad
input during data entry for the initial balance. In the second case,
the TRAP will execute statement 50 if there is an error in the input
of the amount . Each time the program passes through a loop to
expect another input , the TRAP statement will be reset, ready to
function again .

Now RUN the program. Any bad data input wil l simply ask you
for the same data (correctly stated this time) to be entered .

PROGRAM SAVE AND LOAD

Now that you know how to plan your programs, you will prob
ably be developing some of your own in the near future. As a
matter of fact, you may want to save pieces of the programs you
are learning from this book to use as parts of your own programs.
This section will show you two different ways to save your pro
grams to cassette or to disk, and two different ways to load them
back into the computer.

If you are using the ATARI ® 410 T
• Program Recorder as your

main program storage device, you will be able to save and load
programs at any time the machine is on . If you are using disk,
however, you will always have to remember to TURN ON THE
DISK UNIT BEFORE TURNING ON THE COMPUTER. As a re
minder, when the power comes on the computer looks to see if
there is a disk unit or other accessories connected to it . If it does
not see them, it will not understand any commands you might
give to try to talk to these accessories . Therefore, remember that
the disk unit (or units) must be ON before the computer.

Make sure there is a disk in the disk unit. If you forgot to turn
the disk unit on first , turn it on now. Then turn off the computer
and turn it back on again . The disk unit will come on for a while ,
then go off again. This fixes things so that the computer will be
ready to talk to the disk when you ask it to do so.

There are two different ways to save a program. One is what
ATARI calls a tokenized form. This means the program is only
readable by the machine because all of the BASIC keywords
have been replaced by some numbers ATARI BASIC uses to

100 ATARI BASIC TUTORIAL

represent the words. This is the actual way the program appears
in the memory system.

The tokenized version of the program takes up less memory
than the original version where all of the keywords were spelled
out. It is like a "shorthand" version of the program. When stored,
the tokenized version will take up less disk or cassette memory
space, and will save to and load from disk or cassette faster (less
data to load or save).

Once you look at examples of loading and saving programs,
you will then see examples of the other way of doing it and the
advantages you might have. First, we will discuss the tokenized
versions . Let's take a small program as an example. You may try
any combination of ATARI BASIC statements you desire; these
are just here for conven ience and to prove that the programs can
be stored on the cassette or disk. Here's a very short program
you can practice with:

NEW
10 PRINT "THIS PROGRAM GOT SAVED OK"
20 PRINT
30 PRINT "AND IT RUNS OK ONCE I LDAD IT"
40 PRINT

You know what this program does . Now let 's save it to cassette.
Type CSAVE and press IjJ#iilljW. The ATARI Home Computer
will "beep" twice to tell you that it wants you to position the tape,
using the forward or rewind keys , to the starting point you wish .
The ATARI Program Recorder has a counter on it. If you rewind
the tape all the way to the beginning , then use the fast-forward
key, you can advance it to any position you desire your program
to start. When you want to get your program back off the tape,
you will have to position the tape to that same counter number.
The ATARI Home Computer wil l expect the data to be there when
it tries to read it.

The best kind of tape to use is a computer tape. This wi ll
usually not have any "leader" on the start or end. This allows the
computer to start recording from the very beginning of the tape.
Assuming you have started from tape counter position zero, and
have positioned the tape to the very beginning, you can now

DESIGNING A PROGRAM 101

press and hold down the RECORD button, and then press the PLAY

button . Both of them should stay down , but the tape will not yet
start to record .

Now press the IjJ .. IIJjW key on the computer. The tape unit
will start and the program will be recorded. Once the tape has
stopped, write down the tape counter value. Add about 10 counts
to it, and you can use this new counte r value as the position at
which another program can be stored on the same tape. When
the recording is complete, the computer responds:

READY

Now type NEW to erase the program in memory. Then type LIST
to see that there is nothing there . Now use the REWIND key on the
recorder to reposition the tape to the beginning . Type CLOAD
and hit IjJ#illljW. The ATARI Home Computer will beep once to
ask you to position the tape, then to press the PLAY button. When
you press PLAY , nothing happens. Press the IjJ#i'IJjW key on the
computer.

Now the tape starts to run and your program will be loaded
again. CLOAD means "Cassette-LOAD." Once the tape stops,
type RUN to confirm that the tape loaded OK. If you hit any error
conditions, check your ATARI Program Recorder manual or the
front or back pages of your ATARI BASIC Reference Manual to
see what they mean . If you have followed instructions, there should
be no errors.

If you are going to save more than one program on a tape, you
may want to name your programs to prevent the machine from
loading something unless the names match . This is a different
form of cassette save and load, which is not compatible with the
first kind. In other words, if you save sor:nething with a CSAVE,
you must load it again with a CLOAD, and not with the way you
will now see.

Saving "Named" Programs on Cassette

Assuming you have a program now in the memory that you
want to save (maybe the example showed earlier) , you may type:

SAVE "C:TESTNAME"

102 ATARI BASIC TUTORIAL

Again you will hear two beeps, asking you to position the tape
and press the RECORD and PLAY buttons together. Again you will
press IjJ3ii'Jjm to start the SAVE, and again the tape unit will
come on, record the program, and go off.

This is sti ll the tokenized version of the program being saved .
It is just a different way to do it. The difference here is that the
tape "file" now has a name. A "fi le " is a name given to a group of
data of some kind. You will also see files described where disk
operations are specified . The sequence you typed:

SAVE "C:TESTNAME"

consisted of the command SAVE plus the file specification (file
spec). The file specification consists of the device type , in this
case C:, which stands for the cassette recorder, plus the file
name, which was TESTNAME.

A file name may be up to eight characters long and must start
with one of the letters of the alphabet. The rest of it can be any
combination of letters and numbers. ATARI BASIC also allows
you to add something onto the fil e name. This is called the
extension and it is just another way you can tell the difference
between different types of data files.

The extension is formed by having a period or dot (.) following
the eight (or less) characters of the name, then using up to three
characters for the extension. The period is not actually a part of
the extension, it is only the separator between the name and the
extension . Here are some examples:

TESTNAME.BAS
MYJOB.ASM
LAST. OBI

The extensions in the examples are called "BAS" for BASIC pro
grams, "ASM" for assembly programs, and "OBJ" for special files
called executable files. If you are interested in assembly lan
guage programming , you will see these last two types of files
many times. These names are only suggestions ; ATARI BASIC
does not require that you use the extensions, it only makes your
job easier to have them available.

The quotation mark (") is there to tel l ATARI BASIC that there is

DESIGNING A PROGRAM 103

a name of a filespec coming up, and that it should get ready to
send that filespec to the cassette handler (or the disk handler if
a disk is being used) .

Saving "Named" Programs on Disk

The same type of program save can be done using the disk
units. In that case , you will issue the command

SAVE "D:TESTNAME"

In this case, the device name is D:. This automatically assumes
disk unit number 1. If you have more than one disk unit and you
want to save on a unit other than number 1, you must tell it which
one to use by specifying the unit number as part of the device
name, such as:

SAVE "D2:TEST2.BAS"

Again , all of these saves will be done using the tokenized vers ion
of the file .

Loading "Named" Files from Cassette or Disk

The command requ ired here is:

LOAD "C:TESTNAME"

if cassette, or:

LOAD "D:TESTNAME"

if disk unit number 1 . You may try any BASIC program to practice
this SAVE and LOAD. Then type NEW to erase it from memory,
LOAD it again from the disk, and RUN it to be sure it does come
back, or LIST it to see it again on the screen.

Listing Programs to Tape or Disk

There is another way you can save your programs to tape or
disk. This is to LIST them on the tape or disk file. Why? Well, the
program will not be saved in a tokenized form, so it wil l be more
easily readable. But that is not the real advantage, as you will
soon see. The advantage of listing your programs to tape or disk
is that they can be entered later from the same device. What's so

104 ATARI BASIC TUTORIAL

special about the ENTER command? IT DOES NOT ERASE ANY
PROGRAM CURRENTLY IN THE MEMORY. Instead, it treats the
data coming in from the tape or disk as though you were entering
it from the keyboard! This is just like moving a program into
memory, then changing it the way you want, then running it in its
customized form. Just to make this very clear, let's look at an
example:

Let's say you have a title block. . a group of BASIC state
ments you will always want to have as part of every program. It
could include a copyright notice or just your name and address
such as:

2 PRINT "I WROTE THIS PROGRAM AND"
4 PRINT "IT IS OK FOR PEOPLE TO"
6 PRINT "COPY IT AS LONG AS THIS"
8 PRINT "NOTICE STAYS WITH IT"
10 PRINT "c - 19831. SMITH"

Now those lines may be a real pain to type each time you write a
new program, especially if they are much longer than this partic
ular batch of lines . Let's assume you have placed these lines on
a disk file by using the command :

LIST "D:MYTITLE.BAS

Notice that this time the command line did not use the final quote
mark. If you are using a direct command entry, and if this is the
last item on the line where the direct command is entered, ATARI
BASIC will not care if you use the final quote mark. It will auto
matically terminate the string you have entered when it sees the
end-of-line character on the screen. The end-of-line will have
been entered automatically when you hit the IjJ#jI.'jW key.

(As a side note here, when you are writing a program you can,
if you wish, leave out the ending quote mark at the end of a string
definition or a PRINT statement, but it is not a good idea. For
example, the line:

10 PRINT "THIS USES THE LAST (JUOTE":GOTO 50

will execute correctly, but the line:

10 PRINT "THIS ONE LEAVES IT OFF :GOTD 50

DESIGNING A PROGRAM 105

will never go to line 50 because it will think that the part saying
GOTO 50 is part of the string.)

Now let's return to the subject. If you issued the preceding LIST
command, the data will be listed to the disk file named:

MYTITLE.BAS

Now, if all of the line numbers in that file were below line number
100, you could write any other program you wanted using no line
number below 100, then add the title block to the program just
by typing the command:

ENTER "D:MYTITLE.BAS"

with your new program already in the memory.
What this will do is leave the current program alone in memory

and read the MYTITLE.BAS file as though you were typing it in
yourself. As you may remember, if you type a line number that
already exists, whatever you type will replace the earlier version
of that line number. Or if you type a new line number, the contents
of that line will become a part of your program. So as each of the
lines of MYTITLE.BAS is read, if your new program has any of the
same line numbers, they will be replaced by those in MYTI
TLE.BAS. When the file reading is complete, the program will
consist of a combination of the lines from both files . In this way,
you can easily add your title block to all of your programs.

Of course, this is not just limited to title blocks . If you have
developed a set of instructions for your programs that can be
used in common for all programs, such as a way of presenting a
menu , for example, then this set of instructions may be used in
the same way. When you get to the chapter titled "Menu Please,"
you will see a set of ATARI BASIC instructions that have been
deliberately structured in thi s way for your convenience, if you
care to use them in your own programs.

You have seen that the SAVE, LOAD, ENTER, and LIST instruc
tions are all structured as:

(instruction) "D:NAME"

where the filespec is in quotes. Th is means that the filespec is a
string. Therefore , this also means that ATARI BASIC will accept

106 ATARI BASIC TUTORIAL

the name of a string in this command in place of the quoted part.
For example, if you have the program we've been using as an
example (the four print statements) , instead of the SAVE or LIST
instructions you practiced with, you could have entered the fol
lowing in direct mode:

DIM A$(20)
A$ = "D:TESTNAME"
SAVE A$

and the file would have been saved in the same way
The next chapter covers ways to find data other than always

asking the user to type it in. You will see more uses for the disk
or cassette in that chapter as well. They are good for other things
besides the programs. The next chapter is titled "Pulling Data
Out of Different Bags" and that's just what you will be doing.

Once a program has been stored on disk using the SAVE com
mand, there is one other way to get it back into memory and start
it going. This way is to use the extended version of the RUN
command that is structured just like the LOAD command , and
looks as follows:

RUN "D:MYFILE"

The RUN command acts just like the LOAD command . It erases
any program that might currently be in memory. Then it does the
same thing that the LOAD command does. Finally, it starts the
program at the lowest line number you have provided in the
program.

The RUN command is normally used in direct mode, when you
are deciding which program to do. But is is OK to use the RUN
command from within a program also.

The type of program that would use the RUN command is a
program that may control many other programs. What this means
is that you may have a disk that has many games on it, or maybe
many different programs that you have written to manage the
home expenses. Instead of trying to remember the exact spell
ing of the names you have given to each of these programs, it
would be nice if you could use the machine to do this for you.

DESIGNING A PROGRAM 107

Here are some examples of some programs you might have
on the disk:

CHERBOOKBAS
FOODPLAN.BAS
CARSTUFFBAS
BOORLIST.BAS

When you turn on the disk unit, then the computer, the disk unit
runs for a while , then shuts off. Then the screen presents you with
the word READY This does not really remind you which programs
you have on the disk, or tell you anything else about how to get
going. Let's see what steps you would have to take normally, then
you will be shown how to do a program that would save you
some work.

Those of you who only have cassette recorders can skip this
part if you wish and go on to the next chapter. Unfortunately, the
cassette does not have a Disk Operating System, or DOS as it is
called, so the things discussed here will not be helpful to cassette
users .

If you are already familiar with ATARI DOS, you can skip for
ward to the section titled "Making a Program Selection" for a
continuation of this discussion.

INTRODUCTION TO DOS

The ATARI Disk Operating System is introduced here to allow
the first-time user enough experience so that he or she can follow
along with the rest of the examples in the book.

Turn off the computer. Insert your ATARI MASTER DISKETTE
into disk drive 1. (If you have more than one drive, make sure that
you have set the addressing switches differently, and that one of
them is set to address 1.) See your ATARI DOS Manual for more
data on disk unit addressing. Now turn on the disk drive, then the
computer. The disk unit turns on for a while, then off again. Now
the screen says "READY " Type the command DOS, then hit
IjJ3iiIJjW. The disk comes on again and soon provides you with
a menu showing the different kinds of things it can do, using one-

108 ATARI BASIC TUTORIAL

letter commands. In the chapter titled "Menu Please," you will
see how to form your own selections like this. For now, though,
let's just look at a couple of the commands and how they can be
used.

The command "A" in ATARI DOS 1 and 2 selects the directory
command. This will list the contents of the disk. The example
which led into this discussion reminded you that you need to
know what is on the disk before you can RUN any of its programs.
This command would normally be used here. Type A, then hit
Ijl3lilJjiU The screen will display the following data:

DIRECTORY --SEARCH SPEC, LIST FILE?

At this point we are not interested in anything except a com
plete list of what is on the disk. If you want more information about
this command, please refer to your ATARI DOS Manual. For now,
just type

IJl :

then IjI3liIJjl~l. Now the screen shows the following:

IJoS SYS 039
IJUP SYS 042
AUToRUN SYS 001
625 FREE SECTORS

(This is the display for ATARI DOS 20S; your display may differ
slightly.)

What this tells you is the name of each of the files on the disk,
which are DOS.SYS, DUP.SYS, and AUTORUN .SYS, but it doesn 't
show the period between the parts of the name.

As you may recall earlier in the text, the name can be up to
eight characters long; then, after a period , the name can have an
"extension" which gives a clue as to what kind of file it is. In this
case, the extension is called SYS meaning a "system" file , one
that is needed to make DOS work.

The numbers next to the names tell you how many "sectors"
each of these files occupies on the disk. A sector is an area on
the disk which can be compared to a mailbox. Each sector, like

DESIGNING A PROGRAM 109

a mailbox, can only be stuffed with a certain maximum amount of
data. Each disk can be compared to a post office, having a
maximum number of mailboxes that can be used.

A new disk, when it is "formatted," will have available for use a
maximum of 707 free sectors. This is comparable to putting up a
post office, installing a number of mailboxes, then going around
to each to see how good a job the construction crew has done.

In some cases, the boxes will have been damaged and cannot
be used to store mail at all. In this case , the postmaster will not
allow any customers to rent these boxes and will put a sign on
them saying they are not available.

ATARI DOS does the same thing for disk sectors. After it writes
data on a disk for the first time, it will look at the whole disk
carefully, trying to find out if it can use all of the sectors on the
disk. If not, it will mark them in its directory as unusable. This is
an indication of the quality of the disk, and it can tell you (if there
are many sectors marked unusable) that maybe you should not
use this disk to store your programs or data.

Now it is time to make up a working disk to use for program
saving . The screen menu of ATARI DOS now says:

SELECT ITEM OR I;IHillilU FOR MENU

Press IjJ#iIlJjJU then get a blank disk. You will prepare it for use
now. Notice the difference between the blank disk and the MAS
TER DISKETTE. The blank has a little notch taken out of the side
of it. This is called the write-protect notch . The ATARI Disk Drive
cannot write on a disk if this notch is not there or is covered with
a piece of opaque tape. After you develop some of your own
programs, you may want to write-protect your program disk to
prevent a program or data from being altered. To do this you will
put a piece of opaque tape over the notch .

Now you have the blank disk. Remove the MASTER and insert
the blank. Close the door carefully as always. Now select the item
called "FORMAT DISK. " This is item I of ATARI DOS 2.0S. Then
press IjJ:dIJjJU ATARI DOS asks:

WHICH DRIVE TO FORMAT?

110 ATARI BASIC TUTORIAL

Type:

1 liljil!;l~1

or

D1 liljillilO

or

D1: liljillil~1

(ATARI DOS 2,OS is very forgiving here and will accept any of
these inputs,) ATARI DOS then replies:

TYPE "Y" TO FORMAT DRIVE 1

ATARI DOS is asking you if you are really su re you want to do
this because formatting will erase all data you already have on
the disk, If you started with a blank disk here, type Y, then
IjJ3IiIJjW, Otherwise, you may first want to check the directory
to see if the disk is really blank or if there is still something on it
you want to save,

If you typed Y, the ATARI Disk Drive will click and spin for a
while, then return control to DOS, What it did was to entirely
rewrite the disk contents on every track, then check to see how
good the disk was, Again, using the post office example, ATARI
DOS writes the equivalent of a box number (sector address) onto
the various sections of the disk, and stores some data in each of
those sections, Then it looks back to see if it can read the data it
put there, This is why you will hear the ATARI Disk Drive take 40
fast steps (it is writing the data then), followed by 40 slow steps
(when it trys to find and read the data in each sector),

Before you try to use the disk, you should do a directory list
(item A of ATARI DOS 2,OS) on this blank disk, The screen should
show 707 FREE SECTORS, If it does not, ATARI DOS found some
of the sectors were not good, This may mean a flaw or a scratch
on the disk and may be an indication of future trouble,

The primary concern here would be the total number of sectors
you have available for your data, because ATARI DOS can use
a slightly scratched disk, if the scratch happened before the
data was put there , What this means is that when ATARI DOS

DESIGNING A PROGRAM 111

writes any data onto the disk, unless it is told otherwise, it will
always read the disk again from each sector before going on to
write another sector. As it uses each sector, ATARI DOS keeps a
map showing which sectors are used and the sequence in which
they are used for a data fil e. Generally speaking, if the data could
be written there on the disk in the first place, the system was able
to read it back at least once , and should still be able to read it in
the future if there is no damage to the disk.

Now you have a blank formatted disk. If you want this disk to
be the one you always start with for your programming , you must
also put the DOS fil es on it. They take up some room, of course,
but if you don't want to have to swap disks (put in MASTER, turn
on system, take out MASTER , put in program disk, then go), you
should have the DOS files on it. To do this, select the item that
says:

WRITE DOS FILES

and press IjJ:UIJjm. ATAR I DOS 2.0S will say:

DRIVE TO WRITE DOS FILES TO?

Type 1 (or D1 or D1) then IjJ:UIJjJ~I.
Again, ATARI DOS gives you a second chance, as in the FOR

MAT command, with the statemen t:

TYPE "1" TO WRITE DOS TO DRIVE 1

Type Y, then IjJ3iiIJjJ~1 Thi s will write DOS.SYS and QUP.SYS to
the newly formatted disk.

MAKING A PROGRAM SELECTION

Those of you who were already familiar with ATAR I DOS came
here directly. Those of you who needed some introduction now
have a blank formatted disk ready to use. If you are st ill in DOS,
type B IjJ3iiIJjm. This will run the ATARI BASIC language. The
screen will clear and the computer will respond "READY."

Just so that you have some programs on the disk with which to
practice , try the following. (If you already have some BASIC pro-

112 ATARI BASIC TUTORIAL

grams on your disk, you cou ld use their names instead of these ,
but new users can practice with these examples.) Type the fol
lowing lines:

5 DIM A$(1o)
10 PRINT "THIS IS PART OF CHEKBooK'
20 PRINT "CONTINUE DR END"
3D INPUT A$
40 IF A$(l,l)="C" THEN RUN "D:SELECT"
50 IF A$(l, 1) = "E" THEN END
60 GOTD 20
SAVE "D:CHEKBOoK

Now type:

10 PRINT "THIS IS PART OF FOoDPLAN"
SAVE "D:FOODPLAN.BAS

Now type:

LIST 10

Use the control-arrow keys to move onto the F of the word FOOD
PLAN and type over it with the word CARSTUFF and hit
lil3i,IJiIU Remember, use the Screen Editor if it can save you
some work.

Now, if the SAVE command is still visible on the screen, use
the control-arrow keys to move onto the word FOODPLAN in that
line and change it also to read CARSTUFF, then hit lil:lilJilU
Notice that the Screen Editor works with the SAVE also.

Do the sequence of changing line 10 and save the changed
program for the word BOOKLIST also Now you have four dummy
programs on the disk, with the names CHEKBOOK, FOODPLAN,
CARSTUFF, and BOOKLIST They don't do much, but they will at
least show you that the program that follows can be used to call
each program individually. Your own program names will be used
here instead, when you have done them.

This program must also be typed in, just as shown. It is the
program master which will control the running of all of the others .
The "flow narrative" for this program (used here in place of a
flowchart) describes what the program should do.

DESIGNING A PROGRAM 113

Flow Narrative:

1. Set up any initial condit ions.
2. Ask the user what program to RUN.
3. Present the possibi lities.
4. Accept the input.
5. Is it first choice? If so , RUN it.
6. If not , is it second choice? If so, RUN it.
7. Same for all choices possible.
8. If command not found , go back to Step 2.

NEW
10 DIM A$(lO), B$(l)
20 PRINT "WHICH PROGRAM DO YOU WANT?"
30 PRINT "TYPE FIRST 2 LETTERS, THEN"
40 PRINT "HIT RETURN"
50 PRINT
60 PRINT "PROGRAM CHOICE:";:INPUT A$
70 B$=A$(l,l):REM SHORTER COMPARE IN NEXT LINES
80 IF A$(1 ,2)="CH" THEN RUN "D:CHEKBooK"
90 IF B$ = "F" THEN RUN "D:FooDPLAN.BAS"
100 IF A$(1 ,2) = "CA' THEN RUN "D:CARSTUFFBAS"
110 IF B$ = "B" THEN RUN "D:BooKLIST.BAS"
120 PRINT "NO SUCH CHOICE FoUND":GDTo 20

Now save this program on the same disk with the command :

SAVE "D:SELECT"

If it saved OK, ATARI BASIC will return with the word READY. Now
let's simu late what will happen when you sit down fresh at the
keyboard. If this is the disk you have initialized to include DOS
files as well as your BASIC files , when you insert the disk, turn on
the ATARI Disk Drive, then turn on the computer, the word READY
will appear. Now you can type:

RUN "D:SELECT"

and hit liJ:UIJiJ~I. You are presented with the lines from the
SELECT program asking what program to do. Follow its instruc
tions . You should see the disk unit come on , and the new pro-

114 ATARI BASIC TUTORIAL

gram you selected will replace the SELECT program and begin
to run .

Each of the sample programs you saved allows you to type the
first letter "C" for continue, or "E" for END. A continue instruction
here tell s the system to RUN the SELECT program again. Thi s is
known as linking programs together, where one program tells the
computer to RUN another. You will see more of th is in "Menu
Please."

REVIEW OF CHAPTER 4

1. You can plan a program in advance. All it takes is to break
down the application into a sequence of small steps consisting
of INPUT, PROCESS, DECISION, and OUTPUT Then write down
the steps, and do the program using them as a guide.

2. If you are using ATARI DOS, you can prepare a new disk for
program storage using the FORMAT disk command.

3. Then you can store programs on the disk using either the
SAVE"D:NAME" or LIST "D:NAME" commands. The SAVE com
mand stores the program in a spec ial way that requires the com
puter to erase anything in memory while it is being LOADed or
RUN . The LIST command saves the prog ram in a form similar to
direct typing , and does not destroy cu rrent memory contents
when it is ENTERed back into the machine using th e command
ENTER"D:NAME".

4. To get back a prog ram you saved using the SAVE com
mand , you can either LOAD or RUN it, using the commands
LOAD"D:NAME" or RUN"D:NAME".

5. To save a program on cassette , you must posit ion the tape
and remember the count at which the program is to begin , then
issue the command CSAVE or the command SAVE"C:NAME".
The computer beeps twice to tell you to push the RECORD and
PLAY buttons together, then to push li):ii'Jim to record the
program.

6. To load a program from cassette , you must position the tape
to the same count at which it was started for the save, then issue
the command CLOAD if it was saved using a CSAVE, or
LOAD"C:NAME" if it was saved using a SAVE"C ... command.

DESIGNING A PROGRAM 115

The two different kinds of save command are not compatible.
you cannot load one kind if it was saved using the other kind of
command. The computer beeps once to ask you to push the PLAY

button, then to press Ijl:UIJjW to load the program.
7. The LIST and ENTER commands can also be used with the

tape unit.

CHAPTER

Pulling Data Out of Different Bags

In the preceding chapters , you were given enough BASIC tools
to do most any of the straightforward tasks you might encounter.
This chapter, and those that follow, will give you additional tools
that will make your programming job easier or, in some cases,
just more "effective."

THE DIM STATEMENT

In the earlier chapters, you have seen the DIM statement used
primarily as a way to save room for character strings as

DIM A$(20)

which means reserve 20 places for a character string known as
A$ (remember "A string " as the pronunciation). This DIM state
ment also provides a way to define "arrays" of numbers.

An array is a group of items that may be related in some way
If you are performing some type of repeated operation on a group
of items, it would be very tiring to have to write a program to refer
once to each one of them. Such an example follows.

Let's say you had 26 numbers to add together. You could choose
to assign each one of the numbers to a different variable name;

116

PULLING DATA OUT OF DIFFERENT BAGS 117

for example, A for the first one, B for the second one, C for the
third, and so on. But your program would become very long to
write and you would probably haul out a calculator or just use a
calculator-like program instead of writing your own. Let's see why
by looking at what you might have written:

10 PRINT "WHAT IS VALUE OF P;'

20 INPUT A
30 INPUT "WHAT IS VALUE OF B"
40 INPUT B

400 TOTAL = A + B + C . . . + Z
410 PRINT "TOTAL IS: ";TDTAL

Lines 1 0 and 20, lines 30 and 40, and so forth , are very much the
same, and they look just like something that would be better done
in some kind of repeating " loop" (you will see more about loops
as this chapter progresses) . But you can see that lines 20 and 40
are different because of the choice of the variable name.

Here is where the DIM statement can help you. Instead of
giving the numbers different names all the way down, let's give
the numbers an "index," which means a position within an array.
Here is how to do it:

10 DIM NUMBER (26)

This statement will reserve a space in your ATARI Home Com
puter for 26 elements called NUMBER. Each one of the elements
is going to be a number of some kind because the name used
here does not end in a dollar sign ($), so ATARI BASIC knows
these are not string elements.

If you want to refer to any individual element in the array, you
must specify which element it is by telling ATARI BASIC the index
number. You do this as follows

• First element in the array is: NUMBER(1)
• Tenth element in the array is: NUMBER(10)
• Last element in the array is: NUMBER(26)

118 ATARI BASIC TUTORIAL

The index is placed in the parentheses behind the array name
and that tells ATARI BASIC which one to use.

Now, using this knowledge , let's take another look at the way
the total program would be structured . (Note: You may remember
that you've already seen a total-getting program in an earlier
chapter ... the main difference here is that each of the data
entries is being saved along the way. There is a reason for this,
and you will see it soon.) The flow narrative for this program
would then be:

1. Ask for a value.
2. Put it away ..
3. Add it to the total .
4. Is it the ending value? If not, go back to 1.

First we will look at how a program would be made up to do
this flow narrative, then we will add error trapping. Then we will
go on to other statement types which might be able to make the
job easier. Here's a program piece that will do it:

10 DIM NUMBER (100)
20 REM SAVE SPACE FOR 100 NUMBERS
30 TOTAL = 0
40 INDEX = 1
45 REM START AT FIRST LOCATION
50 PRINT '"INPUT ENTRY # "; INDEX
60 INPUT ZZ:NUMBER(INDEX) = ZZ
70 IF NUMBER(INDEX) = 9999 THEN GOTO 500
80 REM LINE 70 USES 9999 AS END CONDITION
90 IF INDEX > 1 DO THEN GOTO 500
100 REM LINE 90 ONLY ALLOWS 100 ENTRIES
105 TOTAL = TOTAL + ZZ
110 INDEX = INDEX + 1: GOTO 50
500 PRINT "TOTAL IS: ";TOTAL

Note line 60; ATARI BASIC won't let you write a statement such
as INPUT A(N). Array "equates" cannot be used in an INPUT
statement.

As in previous examples, you don't have to type the REM state
ments if you don't want to , but they are handy sometimes to

PULLING DATA OUT OF DIFFERENT BAGS 119

remind you what you were trying to accomplish, especially if you
come back to the program many weeks or months later. But, if
you are in a crunch for program space and you need to cut out
every bit of extra information , you may want to eliminate the REM
statements and try to put everything on the same line, if possible.
Here is another version of the same program piece that does just
that:

10 DIM NUMBER(loo):TOTAL = o:lNDEX = 1
50 PRINT "INPUT ENTRY # ";INDEX:INPUT ZZ:NUMBER
(INDEX) = ZZrF NUMBER(INDEX) = 9999 THEN 500
90 IF INDEX > 100 THEN 500
1 DO TOTAL = TOTAL + ZZ
110 INDEX = INDEX + 1: GoTo 50
500 PRINT "TOTAL IS ";TOTAL

This program piece reports the total when you either enter more
than 1 00 numbers, or when you enter 9999 as the last one.

Now that we have this part of the program, let's look at error
trapping. For a number entry program, the most common error is
for someone to hit the liJ:;iiIJiJ~1 key without entering a number.
Another common error is to have a combination of letters and
numbers entered in place of just numbers. Add the following
three lines to the program

40 TRAP 1000
lDoo PRINT "THIS PROGRAM ONLY ACCEPTS NUMBERS"
lolD GoTo 40

This will give you error trapping for those two kinds of errors.
Now, the program can take 100 entries and can handle some

kinds of data errors. Why should you want to save the entries as
well as the total? Well , suppose you are an accountant, or just
trying to get a total of your checks or bills ... it would be nice to
be able to ask the machine to tell you not only the total , but also
to present you with a complete list of the numbers you entered
so you can be sure they are right. (The total is no better than the
numbers that went into itl)

Let's add this capability to the program to allow the user to see
the data entered. Add the following lines to the program:

120 ATARI BASIC TUTORIAL

5 DIM Z$(l)
600 X = 1
610 PRINT "PRESS RETURN TO SEE LIST"
620 PRINT "OF NUMBERS ENTERED"
630 INPUT Z$
640 PRINT "ENTRY # ";X;" = ";NUMBER(X)
650 X = X + 1
660 IF X > INDEX THEN END
670 IF (lx/10) - INT(X/1o)) > .09 THEN 640
680 PRINT "PRESS RETURN TO SEE NEXT GRoUP":GoTO 630

These lines allow a way for the user to view the data entries 10 at
a time. The item Z$ is entered as a string of length 0 when the
lil3lilJil~1 key is hit. If you tried to use a number entry here, the
liJ3IiIJjJ~1 key would have caused an error, requiring another
TRAP statement.

Line 600 sets up the initial value of the array pointer (index
value) for X, then lines 650 and 660 control the branching back
to do more. Line 670 is a test to see if there is a remainder when
you divide a number by 10. It uses the INT function to check, for
example, if 41 I i 0 (which equals 4.10) is greater than the integer
value of this division (which is 4) by at least 0.09. The reason that
0.09 is used instead of seeing if the result of Xli 0 compared to
INT(X/1 0) is zero is that occasionally the ari thmetic values can be
a little imprecise, as demonstrated in Chapter 2, "Computers
Compute." So it is usually safer to compare a result to something
c lose to zero, rather than to believe it will always be shown as
zero.

Now, once the total has been established, hitting Ijl*iilJjW
will display 10 of the original input values, then 10 more for each
IjJ#iiIJjW until all have been displayed for checking against the
original input. The program now looks like this:

5 DIM Z$(l)
10 DIM NUMBER(1oo):ToTAL = o:lNDEX = 1
50 PRINT "INPUT ENTRY # ";INDEX:INPUT
ZZ:NUMBER(INDEX) = ZZ:lF NUMBER(INDEX) = 9999 THEN 500

PULLING DATA OUT OF DIFFERENT BAGS 121

90 IF INDEX > 100 THEN 500
100 TOTAL = TOTAL + ZZ
110 INDEX = INDEX + 1 :GOTO 50
500 PRINT "TOTAL IS: ";TOTAL
600 X = 1
610 PRINT "PRESS RETURN TO SEE LIST"
620 PRINT "OF NUMBERS ENTERED"
630 INPUT Z$
640 PRINT "ENTRY # ";X;" = ";NUMBER(X)
650 X = X + 1
660 IF X > INDEX THEN END
670 IF ((Xl10) - INT(Xl10)) > .09 THEN 640
680 PRINT "PRESS RETURN TO SEE NEXT GROUP":GOTO 630

The next section of this chapter shows you how to make this
program even more useful.

FOR-NEXT STATEMENTS

Until now, anytime we've tried to do anything in a repeated
form, we have always set up loop control variables. This was in
the form of:

INDEX = 1
INDEX = INDEX + 1
IF INDEX < MAXINDEX THEN GOTO (somewhere)

ATARI BASIC allows an easier way to express this kind of " loop"
control in the form of a FOR-NEXT statement pair. Let's look at
two example program pieces, one with the index variable, and
the other with the FOR-NEXT loop used. The example will be just
a do-nothing counter which you will occasionally use just as a
time delay. Here they are:

Loop With Index Variable Control

300 INDEX = 1
310 INDEX = INDEX + 1
320 IF INDEX < = 10000 THEN 310

122 ATARI BASIC TUTORIAL

This will produce a time delay of about 30 seconds, so if you
run it, don't think that the machine has gone bad on you.

Loop With a FOR-NEXT Statement in Control

400 FOR N = 1 TO 10000
410 NEXT N

This will also take about 30 seconds to execute , but it does the
same thing in a more efficient manner. How does it work? In the
case of the index control variable, each time we got to the end of
the loop we had to do a test, then tell ATARI BASIC where to go
next. In the case of the FOR-NEXT statement combination, ATARI
BASIC already knows where to go.

The statements that will be executed in a loop as a result of
this structure are those contained between the FOR statement,
which states the starting value of the control variable, and the
NEXT statement, which automatically increments and tests it. Or,
in diagram fashion

FOR (variable = initial value)

under control of this 100

NEXT (variable name)

What the FOR-NEXT loop performs in terms of a flowchart is
shown in Fig. 5-1. The value of 1 is the default. This means that if
nothing e lse is specified, ATAR I BASIC wil l use 1 as the adjust
ment value. To assign an alternate value, simply add the word
STEP to the FOR statement , as the following example shows

500 FOR N = 10 TO 100 STEP 10
510 PRINT N
520 NEXT N

FOR

(statements)

NEXT
I
I
I
I
I
I
I
I

(test)

PULLING DATA OUT OF DIFFERENT BAGS 123

Set initia l
value of
variable .

remember Ihe
final value

PROCESS
the statements
within the loop

YES (TRUE) Return to do
the process
step again.

Fig. 5-1. Flowchart of FOR-NEXT loop.

This allows you to step the N value by 10 each time it performs
all of the steps between the FOR and NEXT statements. This is a
bit simpler than setting up the index and increment/test
arrangement.

What about the case where you want to go down in value? You
just specify a high starting value, a low ending value, and a
negative step value, such as:

124 ATARI BASIC TUTORIAL

600 FOR N = 100 TO 10 STEP -10
610 PRINT N
620 NEXT N

The last case is where you don't want to use an integer value
(whole number) for the increment. Again , just tell ATARI BASIC
that the step value is a real number, as follows:

700 FOR N = 3.47 TO 4.12 STEP 1.2E - 3
710 PRINT N
720 NEXT N

In each of thElse last three cases, the word NEXT causes ATARI
BASIC to recall what the next STEP value is supposed to be. It
then uses that for the value change, and uses the specified final
valuE? for the comparison.

NESTING LOOPS

Sometimes you will want to do something to a group of things
such as an array. And you will want to do that operation to both
the rows and columns of the array. You may want to set up a loop
of some kind that would set the row value, then have what is
called an inner loop which would perform the function on all of
the columns before the outer loop incremented to the next row.
Or you may simply be handling a single array of some kind and
just want to split up the handling of it in some convenient manner
so that, for example, only 10 items are printed out at a time.

We have an excellent example of that case in the last program
we did just ahead of the FOR-NEXT explanation . But before we
get into how a nested loop can help this kind of operation, let's
just look at the general rules that should be applied to nested
loops. These are given in two forms , one a set of diagrams, the
other a set of statements, both illustrating the same rules.

The following diagram illustrates that th e statements compris
ing the "body" of a FOR-NEXT loop shou ld be totally enclosed
within the FOR-NEXT pair. Another FOR-NEXT pair can be "nested"
within the first one if a different control variable name is selected
for it. These loops can be nested to any number you wish to use.

PULLING DATA OUT OF DIFFERENT BAGS 125

FOR (statement)

statements

FOR (statement-different
control variable name)

statements for inner
loop to perform

NEXT (inner loop variable name)
statements

NEXT (outer loop variable name)

Another way to illustrate this is by the use of a set of word
diagrams, which can illustrate multiple levels of nesting . The in
dentations from the left-hand margin indicate at what level you
might be, and the control variables are named N1 , N2A, N2B,
N3, and so forth, to show the nesting level:

FOR Nl = STARTl TO ENDl
statements
FOR N2A = START2A TO END 2A

statements
NEXT N2A
statements
FOR N2B = START2B TO END 2B

statements
FOR N3 = START3 TO END3

statements
NEXT N3
statements

NEXT N2B
NEXT Nl

126 ATARI BASIC TUTORIAL

What you don't want to do is construct a set of nested loops
so that they overlap each other, as is illustrated in the following
diagram:

r-----FOR N = 1 TO 10

OUTER
LOOP?

FOR M = 1 TO 10-----~

L----NEXTN INNER
LOOP?

NEXTM------------------~

You don't want to do this because the computer will become
confused and will execute the entire outer loop first , for all initial
values of M, then will hang up with an ERROR 13 because you
tried to increase the outer loop value beyond its ending point. Try
the following bad example of nested loops just to see why it is
so important to do it right:

Problem: To generate a li st of the first 100 numbers of a mul
tiplication table .

Wrong Way:

5 HOWMANY = 0
10 FOR N = 1 TO 10
20 FOR M = 1 TO 10
30 PRINT M;" TIMES ";N;" = ";M*N
35 HOWMANY = HOWMANY + 1
40 NEXT N
50 NEXT M
60 PRINT "I HAVE PRINTED ";HOWMANY;" LINES."

RUN this and see what you get.

PULLING DATA OUT OF DIFFERENT BAGS 127

Right Way: Same as before, except c reate the loop nesting
correctly by changing lines 40 and 50 as follows:

40 NEXT M
50 NEXT N

Now RUN it again. You can see how important it is that your loops
are nested correct ly.

MORE ABOUT THE ACCOUNTANT

Before the FOR-NEXT loops were explai ned , you saw an ex
ample program for helping an accountant balance his or her
books. Thi s example will continue here, showing how the FOR
NEXT loop can be used to build pieces of a helper program.

The way the program was before, it would be necessary to
RUN it twice in order to get a pair of adding-machine-type lists of
numbers to check. Let's look at a way to avoid running it twice.

If there are to be two sets of entries, with 100 numbers per
entry, the addition process could be done once for each set of
entries. Likewise, the presentation process should be done once
for each . It wou ld be possible to define two d ifferent arrays of
numbers, such as:

DIM NUMBERSET1(100), NUMBERSET2(100)

But thi s would cause you to have to write at least part of the
program statements twice, once for each number set. Let's change
line 10 of the original program to read :

10 DIM NUMBER(200):TDTAL = O:INDEX = 1

Now you can treat the first 100 numbers as part of number group
1 and the second 100 numbers as part of number group 2. If you
want to work with either the first group or the second group, all
you have to do is change the way ATARI BASIC points to wh ich
one of the values it will use. Look at the following example:

NUMBER(INDEX + OFFSET) = ZZ

Thi s is a changed ve rsion of line 50 of the original program.

128 ATARI BASIC TUTORIAL

The number value in the parentheses (INDEX + OFFSET) will
specify which of the values in the array NUMBER will be used. If
the value of OFFSET is zero, then the program will run exactly as
it did before, using the first 100 positions of the NUMBER array
to store the results. However, if the value of the item called OFF
SET is changed to 100, then the positions from NUMBER(1 01)
through NUMBER(200) will be used throughout the program. No
tice, though, that line 640 would have to be changed to read:

640 PRINT "ENTRY # ";X + OFFSET;" = "; NUMBER (X + OFFSET)

To set up for this , let's ask the accountant which one of the
entries he is working on, this way:

3ooFFSET=0
35 PRINT "WHICH NUMBER GROUP IS THIS? (1,2),,;
38 INPUT Z$:lF Z$(1, 1) = "2" THEN OFFSET = 100

Then, to use this information correctly, here is the rest of the
beginning part of the program:

3 TRAP 5oo:REM PRINT TOTAL IF ONLY HIT RETURN
5 DIM n(1),Z$(1), CHECK (200), NUMBER (200)
40 TOTAL = o:lNDEX = 1
50 PRINT "INPUT A NUMBER "; :lNPUT ZZ
55 NUMBER(INDEX + OFFSET) = ZZ
60 IF NUMBER(INDEX + OFFSET) = 9999 THEN 500
90 IF INDEX > 100 THEN 500
100 TOTAL = TOTAL + ZZ
110 INDEX = INDEX + 1 :GOTo 50
500 PRINT "TOTAL IS ";ToTAL
501 TRAP 5oo:lF INDEX = 1 THEN 30

The FOR-NEXT loops can help in other ways to make the bot
tom part of this program a little less complicated. Let 's see how
Here is the FOR-NEXT version of the data print part:

600 X= 1
610 PRINT "PRESS RETURN TO SEE LIST"
620 PRINT "OF NUMBERS ENTERED"

PULLING DATA OUT OF DIFFERENT BAGS 129

630 INPUT Y$
640 FOR OUTERLDOP = 1 TO 10
643 FOR INNERLDOP = 1 TO 10
646 PRINT "ENTRY # ";X + OFFSET;" = ";NUMBER(X + OFFSET)
650 X = X + l:1F X = INDEX THEN GOTO 680
655 NEXT INNERLDOP
660 PRINT "PRESS RETURN TO SEE NEXT GROUP"
670 INPUT Y$:NEXT OUTERLOOP

This version of the program is more useful because it can handle
two different entry groups independently. On completion of a set
of entries, the total is given and the list of entries can be seen , 10
at a time. Look at the FOR-NEXT part in this program segment.
Notice the correct nesting of the inner loop inside of the outer
loop.

This program uses an extra counter, called X, which is used as
a pointer into the NUMBER array. It is also used to list only as
many entries as were made, even though the NUMBER array can
hold many more. Thi s example also shows you that it is OK to exit
early from a FOR-NEXT loop if you need to .

Now look again at statement number 5. There is an extra array
mentioned there . It is called CHECK, and there are 200 spaces
reserved for it . Why was thi s put here? Well , instead of having the
accountant check his figures from both of the data entries, why
not let the computer do it for him?

Let 's look at a typical data entry session . Only the array con
tents will be shown , just to keep it a bit shorter. Initially, let 's
assume that the CHECK array is all zeros .

ARRAY POSITION NUMBER CHECK

1 12.56 0
2 3.01 0
3 9.22 0
(first total 24.79)
101 12.56 0
102 9.22 0
103 3.81 0
(second total 25.59)

130 ATARI BASIC TUTORIAL

Now if you were the accountant, you would use the CHECK col
umn to go down each of the lists and find the numbers that
matched, Then the nonmatching entries cou ld be used to point
out where the error might be, The result would then appear like
this

ARRAY POSITION NUMBER CHECK

1 12,56 1
2 3,01 0
3 9,22 1
101 12,56
102 9.22
103 3,81 0

Here, a 1 in the check column indicates that there was a match
ing entry somewhere in the opposite entry group, If there is a
zero there after checking, there was no match and this shou ld be
reported as an error, Let 's see how to add this feature to the
program,

First, it is necessary to make sure the whole check array has
nothing but zeros in it. Here's how to do that

700 FOR V = 1 TO 200:CHECI1(V) = o NEXT V

Once both sets of entries have been made, one list can be used
as the base, and the other list can be used to compare it against.
It does not matter in which order the entries have been made, if
the entire list is searched until a matching entry with no check
mark is found, each can be matched up or declared as non
matching , The flow narrative for this is:

1, Find out which array has more values in it and use that index
number to search both for matches,

2, Set up a loop to look at all entries in the first array,
3, Look at an entry in the first array,
4, Set up a loop to compare it to all of the entries in the second

array, one at a time, If the checkmark item for the second array is
zero, and if the numbers match, then make the checkmark item
for both arrays at the pointer locations into a 1 and exit the outer

PULLING DATA OUT OF DIFFERENT BAGS 131

loop (return to Step 3 for the next entry in the first array). Other
wise, compare the next entry.

5. If the entire second array has been searched with no match,
leave the checkmark position as a zero for this first-column posi
tion , and go on to the next one.

6. Once all of th e entries have been matched up, go through
both sets looking for whichever entries have a zero still in the
CHECK position and report them as possible errors.

For the moment, just assuming that the correct number of items
was entered both times , let's see how to perform this test

800 FOR M = 1 TO INDEX
810 FOR N = 100 TO 100 + INDEX
820 IF NUMBER(M) = NUMBER(N) AND CHECK(N) = 0 THEN GOTO
840
830 NEXT N
835 GDTO 845:REM DO NOT SET CHECK IF NOT FOUND
840 CHECK(M) = 1 :CHECK(N) = 1 :REM FOUND MATCH
845 NEXT M

This part takes care of the checking, now to add the reporting of
errors:

900 PRINT "HERE ARE THE UNMATCHED ITEMS"
905 PRINT "FROM THE FIRST SET OF ENTRIES"
910 FOR W = 1 TO 200
920 IF W < > 100 THEN 950
930 PRINT "HERE ARE THE UNMATCHED ITEMS"
940 PRINT "FROM THE SECOND SET OF ENTRIES"
950 IF W < INDEX THEN 980
960 IF W > = INDEX AND W < = 100 THEN GOTO 990
970 IF W > = 100 + INDEX THEN 1000
980 IF CHECK(W) = 0 THEN PRINT NUMBER(W)
990 NEXT W

Notice how thi s sect ion of the program treats the whole array
called NUMBER at one time, and likewise looks at each of the
checkmark columns. If there are st ill any zeros (missing check

132 ATARI BASIC TUTORIAL

marks), then there is an unmatched number in that location and
it should be reported.

Can you figure out the reason why lines 950 through 970 are
used? The reason is because each number entry set has 100
reserved locations, but the accountant has not necessarily made
100 entries for each. Therefore, you can only ask the program to
check the entries that were actually made, namely 1 through
INDEX-1, and 100 through 100+INDEX-1.

Finally, you have to know how to patch in the checking part of
the program so it can be used . This is done by adding lines 680
through 690:

680 IF Z$(1,1)<>"2" THEN 30:REM CHECR 2ND ONLY
685 PRINT "DO YOU WANT TO CHECR ENTRIES (YIN)"
690 INPUT 1$:IF 1$(1,1) <> "Y" THEN GoTO 30

For those of you who want to try this program, the whole text of
the program developed is collected here with a couple of error
traps added:

1 REM THE ACCOUNTANT'S HELPER
3 TRAP SOO:REM RETURN ONLY GETS TOTAL
5 DIM 1$(1),Z$(1), CHECR(2oo), NUMBER(2oo)
10 TOTAL = o:INDEX = 1
300FFSET=0
35 PRINT "WHICH NUMBER GROUP IS THIS? (1,2),,;
38 INPUT Z$: IF Z$(1,1) = "2" THEN OFFSET = 100
40 TOTAL = o:INDEX = 1
50 PRINT "INPUT A NUMBER ";:INPUT ZZ
55 NUMBER(INDEX + OFFSET) = ZZ
60 IF NUMBER(INDEX + OFFSET) = 9999 THEN 500
90 IF INDEX > 100 THEN 5oo:REM TARE 100 MAX
100 TOTAL = TOTAL + ZZ
110 INDEX = INDEX + 1 :GOTO 50
500 PRINT "TOTAL IS: ";TOTAL
501 TRAP 5oo:IF INDEX = 1 THEN 30:REM NO ZERO ENTRIES
600 X= 1
610 PRINT "PRESS RETURN TO SEE LIST"
620 PRINT "OF NUMBERS ENTERED"

PULLING DATA OUT OF DIFFERENT BAGS 133

630 INPUT Y$
640 FDR oUTERLOoP = 1 TO 10
643 FOR INNERLOoP = 1 TO 10
646 PRINT "ENTRY # ";X + OFFSET;" = ";NUMBER (X + OFFSET)
650 X = X + 1 :IF X = INDEX THEN GoTO 680
655 NEXT INNERLooP
660 PRINT "PRESS RETURN TO SEE NEXT GROUP"
670 INPUT Y$NEXT oUTERLooP
680 IF Z$(l ,l) <> "2" THEN 30
685 PRINT "DO YOU WANT TO CHECK LISTS (YIN)"
690 INPUT Y$:lF Y$(l , 1) < > "1" THEN 30
700 FOR V = 1 TO 2oo:CHECK(V) = o:NEXT V
800 FOR M = 1 TO INDEX
810 FOR N = 100 TO 100 + INDEX
820 IF NUMBER(M) = NUMBER(Nj AND CHECK(N) = 0 THEN GoTO
840
830 NEXT N
835 GOTo 845:REM DO NOT SET CHECK IF NOT FOUND
840 CHECK(M) = 1 :CHECK(N) = 1
845 NEXT M
900 PRINT "HERE ARE THE UNMATCHED ITEMS"
905 PRINT "FROM THE FIRST SET OF ENTRIES"
910 FOR W = 1 TO 200
920 IF W <> 100 THEN 950
930 PRINT "HERE ARE THE UNMATCHED ITEMS"
940 PRINT "FROM THE SECOND SET OF ENTRIES"
950 IF W < INDEX THEN 980
960 IF W > = INDEX AND W < = 100 THEN GoTO 990
970 IF W > = 100 + INDEX THEN GoTO 1000
980 IF CHECK(W) = 0 THEN PRINT NUMBER(W)
990 NEXT W
1000 PRINT "PRESS RETURN TO SEE COMPLETE LIST"
1010 INPUT Y$
1025 PRINT "HERE IS A LIST OF EVERYTHING":PRINT
1050 PRINT "FIRST","CHECK","SECOND","CHECK"
1100 FOR] = 1 TO INDEX - 1
1110 PRINT NUMBER[J), CHECK[J),NUMBER[J + loo), CHECK(] + 100):
NEXT]

134 ATARI BASIC TUTORIAL

There are other th ings you can add to the program, such as
different error trapping for bad data entries and saving the value
of INDEX for both the first set and the second set of entries. (In
the program, we just assume that the total number of entries to
check is based on the last number counted for th e variable called
INDEX.) However, the purpose of the program was to show you
how arrays can be used, along with the FOR-NEXT loops, and
this program does use a few of them.

This chapter was tit led "Pulling Data Out of Different Bags ."
One of the "bags" you saw initially was the user input. In other
words, you asked the user for data. The next place from which
you could pull data is the array.

THE DATA STATEMENT

Now you wi ll see another of the ATAR I BASIC statements used
to provide yet another sou rce of data for you to use. Thi s is the
DATA statement. The DATA statement provides you with a way to
store data in your program, either to initia lize an array (give every
thing a starting value) or to simply store number or character
string data for the program's use.

What is meant by initializing an array? Well, if you remember
the early sections of this book where the string splitting opera
tions were discussed , you may recall that ATAR I BASIC does not
store anyth ing to any of the memory areas you might use for
strings or numbers when the program starts. You just get what
ever the memory has lying around in it. To refresh your memory,
try the following example:

10 DIM A(lOo)
20 FOR N = 1 TO 100
30 PRINT "A(";N;") = ";A(N)
40 NEXT N

Now RUN the program. If you have just turned on your machine,
it is possible you wi ll li st all zeros. Then again , if you have been
using it for a while, there is no figuring what kind of numbers wi ll
be listed.

PULLING DATA OUT OF DIFFERENT BAGS 135

If you did list all zeros, try thi s experiment afterwards. Type the
direct command:

A(99) = 1234567

Then RUN the program again. Notice that the second to last line
shows the value you just entered! This means that ATARI BASIC
did not, on starting the program, change any of the values of the
arrays. This illust rates that if you want to be sure of what values a
number or an array has, you must initialize it before you use it.

Suppose you wanted to start an array with all zeros. That could
be done like this

10 IlIM NUMBERS(1oo)
20 FOR N = 1 TO loo:NUMBERS(N) = o:NEXT N
30 FOR N = 1 TO 100
40 PRINT NUMBERS(N)
50 NEXT N

The actual work, of course, is done by line 20. Line 10 was nec
essary so that ATARI BASIC wou ld know how many spaces to
save for the array called NUMBERS. The rest of the program is
just to show us that the array did initialize correctly.

What would happen if it were necessary to initialize an array
with a bunch of numbers not related to each other? Zeros were
easy; so is a number progression where one number is related to
the next by simple addition or somethi ng similar. Let's say, for
example , that the numbers to be initialized were as follows : (Note
that our program will not actually enter the following sequence; it
is only for demonstration purposes.)

NUMBER(1) = 52
NUMBER(2) = 37
NUMBER(3) = 93
NUMBER(4) = 12
NUMBER(5) = 1

Since the numbers may not be related to each other in any per
ceptible way, but are perhaps needed by the program in that
exact sequence, it would grow ve ry tiring to have to enter a
bunch of NUMBER(XX) = statements in the program just to ini-

136 ATARI BASIC TUTORIAL

tialize it. Even when you might use the Screen Editor to duplicate
most of the information along the way, it still is difficult.

You can use the ATARI BASIC DATA statement to help you
here. Using the preceding numbers as an example, the form of
the DATA statement is as follows:

100 DATA 52,37,93,1 2,1

where each of the data elements is separated from the previous
one by a comma.

To use the DATA statement in this example, another statement
is used to read the data. This is the READ statement. When the
system sees a READ statement , it looks for the next available
DATA statement item that has not yet been read, then takes that
item and places it into the variable named in the READ statement.
If there has not been any READ statement performed previously,
then the first data item read is the first data item in the first DATA
statement the system can find .

Remember that ATARI BASIC will search from the very first line
number in the program when it tries to find the DATA statements.
Therefore, the first DATA item will be in the DATA statement that
has the lowest line number. To illustrate how this works, try the
following example:

20 DIM NUM(lO)
30 FOR N = 1 TO lo:NUM(N) = o:NEXT N
40 FOR N = 1 TO 5:PRINT NUM(N):NEXT N
50 FOR N = 1 TO 5
6oNUM(N)=M
70 READ M
80 PRINT M
90 NEXT N
200 DATA 52,37,93,12,1

Line 30 puts zeros in the whole array. Line 40 prints out the first
five elements to prove that zeros are stored there. Lines 50 through
90 pull five elements for the array out of the DATA statement, and
line 80 prints them to prove that the DATA statement, with the
READ statement, really works . Now change line 200 to read:

200 DATA 3.14, - 2E21, .3, 0.0, .00004

PULLING DATA OUT OF DIFFERENT BAGS 137

and RUN the program again. This proves that the DATA state
ment works with whole numbers also.

Now change the program to read :

20 DIM A$(100)
30 FOR N = 1 TO loo:A$(N) = " ":NEXT N
40 PRINT A$
45 A$ = "":REM NO SPACES BETWEEN THE OUOTES (LEN = 0)
50 FOR N = 1 TO 5
60 READ A$
65 PRINT A$
70 NEXT N
200 DATA "STRING 1 ","STRING 2 ","STRING 3 ","S4 "
210 DATA "FINAL STRING OF 5"

and RUN it again . This time the DATA statement provides string
variables to read instead of numbers.

For a string variable , anything can be enclosed in quotes if you
wish . That is, anything other than the double-quote character.
This means that even though the comma is normally used as the
separator for the DATA items, it could be included in a string
DATA item if it was within the pair of double quotes. So a string
DATA item might look like this "FOR PARTS 1,2, AND 3."

Now, using the preceding program, it is possible to read in a
number of strings and make them all part of one large string. But,
in its present form , there is no way to tell where one string piece
leaves off and another begins.

One thing you might consider doing is to store a marker after
each string. Then, as you try to print the string piece, count the
markers as you go until you come to the one you want. But if the
string gets longer and longer, the search time becomes propor
tionately longer!

Another alternative is to remember where each string piece
starts and ends as it is added to the long string . (By the way, the
reason this is being discussed here is that ATARI BASIC does
not provide string arrays.) To do this memory work, first let's add
the following DIM statement to the program:

15 DIM S(loo), E(lOo)

138 ATARI BASIC TUTORIAL

letting S stand for the start position of the selected string variable,
and E for the end position of the selected string variable. If there
were only one S and one E, then a single string variable could be
printed by specifying the print statement as:

PRINT A$(S,E)

If we use the first string variable, called "STRING 1 ", then S
would have to be a 1 and E would have to be a 9, which translates
into:

PRINT A$(1,9)

(Print all characters in the array between 1 and 9 inclusive.)
Now, suppose we keep track of the "index" numbers for the

start and end positions of each of the strings. Then to print any
one of them, say item X, if the start and end positions for each
are stored in the Sand E arrays, the PRINT statement will look
like this:

PRINT A$(S(X) , E(X))

The extra spaces are just there to make it easier for you to see
what is enclosed in the parentheses. Now let 's look at how to
keep track of those numbers. Here is the revised program:

15 DIM 5(100), E(1oo)
20 DIM A$(1oo), B$(2o)
30 FOR N = 1 TO 1 oo:A$(N) =" ":NEXT N
40 PRINT A$
45 A$ = "":REM NO SPACES BETWEEN THE DUOTES (LEN = 0)
50 FOR N = 1 TO 5
55 S(N) = LEN(A$) + 1
60 READ B$
62 A$(S(N)) = B$
65 E(N) = LEN(A$)
70 NEXT N
100 PRINT A$
110 FOR N = 1 TO 5
120 PRINT "A$(" ; S(N);",";E(N);") = ";

130 PRINT A$(S(N),E(N))
140 NEXT N
200 DATA STRING 1 , STRING 2 , STRING 3 , 54
210 DATA FINAL STRING OF 5

PULLING DATA OUT OF DIFFERENT BAGS 139

After printing the entire string called A$, this program prints out
five lines which say, for example:

A9l(1,8) = STRING 1
A9l(10,18) = STRING 2

and so forth. This shows you that you can use single long strings
as string arrays (groups of string items) just by keeping track of
where, in the string, each one begins and ends. This not only
works with DATA statements, you can also take string data from
the user in the same way.

Notice that in line 120 the semicolon (;) is used several times.
Remember, the semicolon tells ATARI BASIC that the printing
cursor must remain exactly where it was when the preceding item
has been printed. (Don't move it; don't go on to a new line.) You
can put many things together on the same line th is way if you
wish. Line 120 demonstrates that even though the line is ended,
the printing cursor still stays on the same line when line 130 is
executed.

String arrays can also be used to help you save space, such
as by somehow encoding what you want to say. A string array
can hold a lot of different words for you, with another array pair
holding the pointers to the words. Then, to print out a sentence,
instead of having to store all of the words for all of the sentences
you wish to use, in the correct sentence sequence, you might
store the sentences as:

231, 42, 68, 2, 8, 18, 5

which might mean (you are going)(down a)(long)(tunnel)(with)
(three)(possible exits), where each of the word groups (not stored
with parentheses, just there to show the possible groupings) might
have been stored as shown, with the indexes into the word arrays
selected by the numbers used .

In fact, the way that many of the early "adventure-type" games
managed to store so many messages and instructions in so small
a space was to store each message piece just once, then to use
an index method to ask for each selected message piece to be
printed out again. In other words, the message was listed as a
series of numbers , representing a sequence of phrases.

This brings up another important point about DATA statements

140 ATARI BASIC TUTORIAL

. for ATARI BASIC, they can be just about anywhere in the
program. They are actually nonexecutable statements, and are
treated as REMarks in the program. ATARI BASIC will even permit
a DATA statement or a REM statement to be used as the target
for a GOTO statement, but please don't do that as it is very bad
programming practice.

The other important point to be made about DATA statements
is that ATARI BASIC treats all DATA statements as though they all
occurred one right after the other, no matter how far separated in
the program they might be, and no matter how the program may
branch and jump and GOTO. For example, if there were eight
data items in the program, in lines:

1 DATA 1,2,3
(MORE STATEMENTS)
500 DATA 4,5,6
(MORE STATEMENTS)
21000 DATA 7
(MORE STATEMENTS)
32500 DATA 8

Then ATARI BASIC would treat these statements no differently
than if they had been entered in the first place as:

1 DATA 1,2,3,4,5,6,7,8

The reason this is mentioned is that some people, when writing
programs, like to group the data near to where it is to be used,
such as:

REM THIS IS GROUP ONE DATA
(LOOP FOR READ GROUP ONE)
DATA
DATA
DATA
(OTHER STATEMENTS)
REM THIS IS GROUP TWO DATA
(LOOP FOR READ GROUP TWO)
DATA
DATA

PULLING DATA OUT OF DIFFERENT BAGS 141

This structure is accepted by ATARI BASIC although it may not
be accepted by an ATARI BASIC compiler. (Some BASIC com
pilers insist that all DATA statements be grouped together and
placed as the last line numbers in the program.) It just provides
you with different ways you can write your programs. (One way
may be easier to understand , the other way may be required by
the compiler if used. It is your choice how to organize your DATA
statements.)

THE RESTORE STATEMENT

ATARI BASIC, as you ask it to perform READ statements, keeps
a pointer that tells it which of the DATA items was last read . Then,
for the following READ statement performed, it points to the next
available DATA item. There may be cases where the DATA state
ment is not used just to initialize an array, but the data must be
used in some repeated fashion anyhow. Instead of writing many
multiples of the DATA statements, ATARI BASIC allows you to tell
it to RESTORE the pointer to the first item again and reuse the
data. A simple example of this is shown here:

10 DATA 6,5,4,3,2,1
20 FOR N = 1 T06
25 PRINT "THE FIRST ";N;" DATA ITEMS ARE:"
30 FORM = 1 TON
40 READ NUM
50 PRINT NUM;:lF M <> N THEN PRINT ",";
60 NEXT M
70 PRINT:PRINT:REM 2 BLANYi LINES
80 RESTORE
90 NEXT N

RUN the program and see the effect that the RESTORE statement
has. It reused the group of data items.

Now change the program by adding the following lines, just to
see another couple of uses for this (you may think of many more):

22 SUM = O:MULT = 1
45 SUM = SUM + NUM:MULT = MULT*NUM

142 ATARI BASIC TUTORIAL

65 PRINT:PRINT "THEIR SUM IS ";SUM
68 PRINT "ALL MULTIPLIEIJ TOGETHER = ";MULT

RUN it again just to see how something extra has been added.

THE RND FUNCTION

In the programs we've done so far, we have always asked the
user to make some kind of decision, which told the machine
exactly what to do next. This may not always be the best way to
go. Say, for example, you are designing a game of some kind . If
the game always makes the same decision each time a person
plays it, it may not be very interesting for long. Once you play it a
number of times, you wou ld know what it wou ld do. If something
is too easy to beat, it is not interesting any more. Therefore , you
must throw in a few "twists" at times .

In the process of making decisions, or in pulling data out of
different bags, so to speak, you can use the RND function pro
vided by ATARI BASIC. This function provides a number between
zero and one. The number is said to be random, which means
unpredictable. If you base some of the program decisions on an
unpredictable number, then the game you design could always
be somewhat fresh, with many different possible decisions being
made each time that section of the game is performed. Here is
how to call the RND function:

A = RNIJ(X)

where X can be any number or variable name (if it is not used by
ATARI BASIC) . But there must be no more than one variable
name or number present in the parentheses. The result is as
signed to be the value of var iable A (or whatever name you use) .
If you execute this statement, or better still, try a one line program
such as:

1 PRINT RNIJ(X):ENIJ

then each time you specify RUN, a different random number,
between zero and one, will be printed .

This is not very practical, initially. In most programs, you will

PULLING DATA OUT OF DIFFERENT BAGS 143

have a need for random numbers between certain other ranges.
For example, you may want to print one of 10 possible messages.
For this you wil l need a number between 1 and 10. And especially
if there are only 10 messages , the numbers cannot be allowed
to go outside of this range for indexing the messages (ATARI
BASIC would give an out-of-range error). Therefore , the random
number you get must be converted . Let's see how.

The general formula for getting a random integer between X
and Y is to first take the range Y - X + 1, where Y is greater than
X. For example, with the numbers 1 and 10, the range of possible
values (if only integer values are to be used) is 10. (The actual
values are 1,2,3,4,5,6,7,8,9, and 10.) Then take this number (10)
and multiply it by the random number received, such as:

lO*RND[X)

This gives a number from 0 to 10 (10 times the original range of
o to 1).

If the numbers are truly random , they wi ll be somewhat evenly
distributed. This means that about one out of each 10 will be in
each one of the ranges (averaged over many numbers selected).
This means that of 1000 numbers chosen, about 100 will be
between 0 and 1, about 100 between 9 and 10, etc .

The numbers between 0 and 1 are not useful here, because
they are outside the rang e of 1 to 10. Also, there are no numbers
generated in the actual number 10 itself. Therefore, the result
must be adjusted to use all of the numbers we want, by adding
one to each number we get, then making it a whole number. This
is the way it is done:

10 DIM N[1o)
20 FOR M = 1 TO lO:N[M) = O:NEXT M
30 REM:SET COUNTERS TO ZERO
35 FOR M = 1 TO 1000
40 A = INT[RND[X)*10) + 1
50 N[A) = N[A) + 1
60 PRINT M, A
70 NEXT M
80 PRINT:PRINT "HERE ARE THE COUNTS OF NUMBERS"
90 PRINT "IN EACH RANGE OF NUMBERS"

144 ATARI BASIC TUTORIAL

100 PRINT
110 FOR M = 1 TO lO:PHINT "COUNTER # ";M;" = ";N(Ml
120 NEXT M

If you RUN this program many times, the counters will differ each
time. If you increase the outer loop value to 10000 instead of
1000, the counts may be somewhat closer in actual percentages,
if the counter is truly random.

Now, how can a random number generator be used to direct
the grabbing of data from different areas? Well, if you set up an
array, the random number generator can be used to select the
index into the array and pick a different number each time. If the
array contains word pointers, such as the Sand E arrays de
scribed in the preceding example, then select ing a random value
for the pointer array wi ll select a random word to be printed . You
can use your own imagination for other applications.

REVIEW OF CHAPTER 5

1. The command used to reserve space either for a string or a
set of numbers is the DIM command.

2. More than one item can be specified in the DIM command,
as long as each is separated from the previous one by a comma.

3. Arrays are groups of numbers that are related to each other
in some way. The array has a single name and many individual
pieces, each of which can be accessed using an index number
to tell which one of the pieces to use. The index number must be
less than or equal to the maximum number reserved by the DIM
statement for the array

4. A FOR-NEXT statement is a very handy way of making some
sequence of statements repeat. It also allows a STEP part of the
sequence to tell the direction and the amount to step the control
variable. The FOR-NEXT loops must be properly nested in order
to function correctly.

5. Arrays may be used together to accomplish various tasks,
as shown in the accountant's helper program.

6. The RND (random number generator) function can be used
to generate different kinds of results each time a program is run.

CHAPTER

Menu Please

In this chapter, we are going to add some more ways of making
a program presentable to the user. You already have a good
amount of basic tools with which to construct a program. Now
you will learn things to make it look better. The first tool you will
be using is the Screen Editor. If you remember, you saw it intro
duced before in Chapter 1. There , though, you were only taught
to use it to make up your programs. The Screen Editor can also
be used from within your programs. The following section tells
how.

ACCESSING THE SCREEN EDITOR FROM WITHIN A
PROGRAM

Accessing the Screen Editor from within a program requires
what is called an escape sequence . This means that the key
labeled 1m (for escape) is part of the group of keystrokes that
must be used to access the Screen Editor functions. Any Screen
Editor command normally performed by pressing the (tjijJ' key
along with some other key can also be done using an escape
sequence from within an ATARI BASIC program.

When the escape sequence is used , the program as LISTed

145

146 ATARI BASIC TUTORIAL

on the screen will not actually show the escape character. But it
will show the character in a command sequence that wi ll actually
perform the Screen Editor function you want to do. These each
relate to the character that is printed on the top of the key, which
is how you normally find it in the first place when you use the
Screen Editor. So this makes it easier.

Clearing the Screen

If you recall from Chapter 1, clearing the screen is done by
pushing the Wijl. key down, then touching the [!J.:riljl button.
(This one has no character printed on it, but it does have the
word CLEAR.)

Clearing the screen from within a program requires putting the
required escape sequence into a string , such as:

10 PRINT "~ "

where the character sequence that is actually inserted in the
string is 1m then SiillIlij.:rJjl. From this point onward in
this chapter, the notation SiillI (something) means that the
liUjUI key is held down, and the other key is pressed.

The character that goes into the string is a kind of "kinked-up
left" arrow. This is a graphics symbol that means "home" the
cursor, or clear the screen and move the cursor to the uppermost
left-hand corner of the screen .

The reason an escape sequence is used is to allow you to LIST
your program to examine the things you are telling it to do. If the
" real " c lear-screen character was to be "printed ," it would make
it impossible to LIST that part of your program. (The screen would
clear each time, so the escape sequence is used.)

Moving the Cursor One Position Down

This function, if you remember, was called from the direct com
mand mode by using the SiillI key along with the down-arrow
key. To put this function into your program, put the following es
cape sequence into a string in a PRINT statement:

1m IIUjl. (down-arrow key)

MENU PLEASE 147

ATAR I BASIC prints a down-arrow graphics character in your
string and executes this command (in graphics mode 0) when
the string is printed. (The graphics commands are introduced in
a later chapter, "Getting Colorful."

Moving the Cursor One Position Up

This function was called from the direct command mode by
using the 'IOilll key along with the up-arrow key. To put this
function into your program, put the following escape sequence
into a string in a PRINT statement:

1m 'IOilll (up-arrow key)

ATARI BASIC prints an up-arrow graphics character in your string
and executes this command (in graphics mode 0) when the string
is printed .

Moving the Cursor One Position Left

This function was called from the direct command mode by
using the 'IOilll key along with the left-arrow key. To put this
function into you r program, put the following escape sequence
into a string in a PRINT statement:

1m 'IOilll (left-arrow key)

ATARI BASIC prints a left-arrow graphics character in your string
and executes this command (in graphics mode 0) when the string
is printed .

Moving the Cursor One Position Right

This function was called from the direct command mode by
using the ,10il. key along with the right-arrow key. To put this
function into you r program, put the following escape sequence
into a string in a PR INT statement:

1m 'IOilll (right-arrow key)

ATARI BASIC prints a right-arrow graphics character in your string
and executes this command (in graphics mode 0) when the string
is printed.

148 ATARI BASIC TUTORIAL

Notice that the last four functions are called cursor moves. This
means that as they move around on the screen, they don't do
anything to whatever characters may already be on the screen.
They only move the cursor to a new position, potentially useful for
input or for output at that new position.

Moving the Cursor Back One Position, Erasing Character

Normally, when you use the key in direct
mode, it is like the backspace key on a typewriter. You want to
go back and type over a mistake of some kind , replacing what
you did before with something new. You can use the same func
tion in your program by putting the following escape sequence
into a string in a PRINT statement:

DELETE/BACK S

When ATARI BASIC sees this sequence, it will put into the string
a graphics character that looks like a left-facing triangle pointer
instead of the left-arrow, which normally represents a cursor move
only. This is done to allow you to recognize what will happen.

What might this be used for? Well , maybe you have formed a
nice menu on the screen (menu being a selection of programs to
do), or maybe you are simply accepting a line of input from a
user. Now, perhaps this person enters a bad input and your pro
gram knows it cannot use it. How do you make the screen pretty
again? One way you could correct the error is to completely clear
the screen, tell the user he or she made a mistake, then com
pletely rewrite the screen again . This is not necessarily the best
way. Let's explore some others.

First, let's look at usi ng the escape se-
quence just shown. We'll do this with a short sample program
that will clear the screen , then print a sample line and demon
strate the function .

5 PRINT " ~ ":REM CLEAR SCREEN (ESC, CTRL-CLEAR)
10 DIM A$ (100)
20 A$ = "THIS STRING IS GETTING SHORTER AND SHORTER AND
SHORTER AND SHORTER"
30 PRINT A$;

MENU PLEASE 149

40 FOR N = 1 TO 66
50 PRINT " ~ "; :REM CHAR FROM ESC THEN IlEUBACl'i S
60 FOR X = 1 TO 500:NEXT X
70 NEXT N

When you enter the program, don't forget the semicolons, other
wise the operation of the program won't make any sense. The
semicolons keep the cursor on the same line so the delete/back
space function you put into the PRINT statement in line 50 can
do its job properly. (By the way, line 60 is a FOR-NEXT statement
with nothing to do inside of the loop . A do-noth ing loop is often
used as a time delay, and that is what it is doing here so you can
see what is happening .) Now RUN the program. What happens
is just what the string says!

How would this be used in a program on user data input? You
could ask the user for a number or a word of some kind as the
reply to a question . Then, instead of asking your program to
accept a number directly, for example, you could get "smart" and
accept the entire input as a string variable. Thi s means that in
one part of the program you might have the statement:

IlIM REPLY$(40)

and in another part of the program, where the input is to be taken ,
the statement:

INPUT REPLY$

Then you could use your string-splitting instructions such as:

NUMffi = REPLY$ (X,Y)

which would take the piece between and including positions X
and Y in the string , and make them part of a separate string, etc.
Then , if you are expecting a number, you could use the VAL
function , and so forth. But , we are getting ahead of ourselves.
Let's do an input example later, and put in all of the error trapping
and so on when we do that. But for now, how do we make the
display pretty again, once we find that the input is actually bad?

Before we go on , though , let's discuss one more point. That is ,
be sure you remember the way the Screen Editor treats " logical

150 ATARI BASIC TUTORIAL

lines" of data. As you ran the preceding sample program, did
you notice that after the program did a delete/backspace on the
second line, it continued at the last character of the previous line?
This is a log ical line that you printed. It was printed without any
end-of-line characters in it because of the semicolon (;) at the
end of each line. If you wish, you can print very long log ical lines.
The Screen Editor wil l handle all of them in the same way as just
happened (just like one long cont inuous line)

But, you must also be aware that the Screen Editor does have
a limit on the length of a line it thinks is part of a logical line, even
though you may print a longer one. The limit is 120 characters ,
and this is reduced by as many characters as the indent from the
left-hand side of the sc reen (put there for many TVs because of
overscan, if you remember). Typicall y, then, the maximum length
of physical/logical string that can be handled by the Screen Edi
tor is 38 x 3 or 114 characters.

The limit on the number of characters was mentioned because
we are going to look at more than one way of making the screen
pretty again. First, let 's look at some kind of a data entry form.
Then let's try some of the cursor move acti vities on it. The fol low
ing program wil l clear the screen , then it wi ll print a couple of
questions on the screen . When you have a menu on the screen,
it is sometimes more effective in communicating with the user
than if you just print you r questions one at a time. Here it is:

10 DIM A$(loo), B$(lOo)
20 PRINT "~ ":REM ESC THEN CTRL-CLEAR
30 FOR N = 1 TO 3:PRINT " ~ "; NEXT N
35 REM LINE 30 WAS AN ESC THEN CTRL-DOWN ARROW
38 REM GO DOWN 4 SPACES
40 PRINT "NAME: "
50 PRINT:PRINT:PRINT:PRINT
60 PRINT "AGE: "
70 FOR N = 1 TO 6:PRINT " t ~";:NEXT N
72 REM THIS IS THE CURSOR UP AND CURSOR RIGHT
75 INPUT A$
80 FOR N = 1 TO 4 PRINT " ~ - ";:NEXT N
90 INPUT B$

MENU PLEASE 151

RUN this program and see what the menu presentation looks
like. Try a couple of data entries. The example was kept as simple
as possible so that we can work with it. Now enter the direct
command:

PRINT A$

and see what you get. It printed out exactly what you entered. In
this case, the Screen Editor began the line immediately at the
current cursor position, and accepted everything you typed
thereafter.

With thi s kind of menu, what happens if you type a name reply
that is two or three lines long? Try it l When you type the reply long
enough to go more than one line, did you see the AGE: entry
move down one line to make room on the screen for the entry?
And , when you hit IjJ:dlJjm to accept the entry, did you notice
that the cursor moved down to exactly the right position on the
screen as it normally did? This happened because of the Screen
Editor again. The Screen Editor automatically makes room for the
coming line by pushing everything down one space, for a maxi
mum of three lines or 114 characters total as discussed earlier.
You see, the cursor motion controls you have put into this dem
onstration program are " relative-motion " controls. In other words,
the cursor will move in some way relative to where it is now. Since
everything on the sc reen moved down, including the position at
which your carriage return happened , the cursor wound up at the
right position for the second data entry.

ABSOLUTE CURSOR POSITIONING

In contrast to what you just used for the data entry, here is a
modified version of the same program. You will notice that it is
shorter, but performs the same function. The exception is in the
cursor positioning method .

10 DIM A$(1oo),B$(lOo)
20 PRINT " ~ ":REM ESC THEN CTRL-CLEAR
30 POSITION 2,4
40 PRINT "NAME: "
50 POSITION 2,8

152 ATARI BASIC TUTORIAL

60 PRINT "AGE: U

70 POSITION 7,4
75 INPUT A$
80 POSITION 7,8
90 INPUT 8$

Notice that if you RUN this version, it does not respond correctly
to the case where you enter more than one line of "name" data.
This is because absolute cursor positioning is being used. The
program does not "realize" that the data has been moved on the
screen, and will put the cursor in the wrong place to get the next
data entry. First we'll describe absolute positioning, then later
we'll look at the different ways you could compensate for this kind
of problem.

The ATARI graphics mode 0 screen we have been using for all
of our data entry and program development is composed of 24
lines of 40 character positions on each line. When the Screen
Editor is being called directly to place the cursor and to accept
characters , it pays attention to the left-hand margin setting and
reduces the effective width of the screen automatically. However,
ATARI BASIC does have the keyword POSITION available for
placing the cursor on the screen anywhere you want. The POSI
TION keyword expects to have with it a pair of X and Y positions
specified . These can be calculated values or fixed numbers.

The range of numbers for the X part of the POSITION statement
goes from 0 (meaning the farthest left-hand edge of the screen
and ignoring any left margin) to 39 (meaning the farthest right
hand edge of the screen). The range of numbers for the Y part of
the POSITION statement goes from 0 (meaning the topmost line
of the screen) to 23 (meaning the bottommost line of the screen) .
In a diagram, it would look like Fig. 6-1. The margin mentioned
earlier starts at X pOSition 2 on the screen and operates normally
for Screen Editor data handling . However, when you use the PO
SITION statement, the left margin is overridden. You can use
columns 0 and 1 also.

The reason these numbers are referred to as 0 to 39 and 0 to
23, instead of 1 to 40 and 1 to 24, is that the values in the X and

MENU PLEASE 153

x. y
O. 0

O. 23

+----------------------------------+
I
I
I
I
I
I
I
I
I
I
I
I
+----------------------------------+

x. y

39. 0

39. 23

Fig. 6-1. The range of X and Y numbers for the POSITION statement.

Y coordinates can be used directly in an equation to locate screen
data in the memory according to the formula:

DATA ON SCREEN = SCREEN DATA START + 40 x Y + X
- - - -

But that is a more advanced topic and will not be covered in this
book.

Now you have three possible choices for data entry:

1. Print a line for each question , accept the answer there, or
2. Print a menu, then move around on it using relative cursor

motions, or
3. Print a menu using fixed cursor positioning and move around

it to the next data entry point using relative cursor motions.

So far, it looks as though items 2 and 3, if used together, might
offer you some of the easiest menu handling. But let's look at
some other possibilities first; maybe there are still some better
ways to do things and keep "control " of what the user is going to
see on the screen.

154 ATARI BASIC TUTORIAL

THE PEEK STATEMENT

It is time now to introduce the PEEK statement. This allows you
to look directly at th e contents of any memory location. The ones
we will be primarily interested in are those that have something
to do with controlling the system. The format of this statement is:

ANYNAME = PEEK(MEMORYLOCATION)

where the value given by the PEEK function to ANYNAME is
anywhere from 0 to 255. An example is shown later.

THE POKE STATEMENT

If it is necessary that we not only look at something in the
memory, but also to put something there for control purposes, the
POKE statement is used. Its format is:

POKE MEMORYLDCATION, VALUE

where the VALUE, which is placed in a memory location , is any
where from 0 to 255. Any value outside of thi s range will cause
an error.

Let's say that you wanted to give somebody instruction s which
said

PRESS OPTION TO CHANGE DIFFICULTY
PRESS SELECT TO CHANGE GAME
PRESS START TO BEGIN GAME

The following sequence of ATARI BASIC statements will read the
option switches and will do the selected function on request. The
example is here only to demonstrate the technique. This may give
you some ideas for how it could be used in your programs:

10 DIFFICULTY = l00o:GAMESELECT = 2ooo:BEGIN = 4000
15INFOX = 2:INFOY = 2:3:REM LAST LINE POSITION
20 REM DEFINES ACTUAL LINE NUMBERS FOR A VARIABLE
30 REM GOTO-TYPE STATEMENT AS SHOWN BELOW
35 REM LINE 15 DEFINES WHERE ERROR MSGS ARE PUT
300 PRINT "PRESS OPTION TO CHANGE DIFFICULTY"
310 PRINT "PRESS SELECT TO CHANGE GAME"
320 PRINT "PRESS START TO BEGIN GAME"

MENU PLEASE 155

Now to see if anyone of those keys is pressed, we have to write
a loop that will stay in one place "forever" until the user obeys
one of the th ree instructions we have provided. Here it is:

400 POKE 53279,8

readies the machine to read the console switches,

410 SW = PEEK(53279)

reads the current state of the switches,

420 IF SW = 7 THEN 400

If the value is 7, it means that one of the switches is pressed .

430 IF SW = 3 THEN GOTO DIFFICULTY
440 IF SW = 5 THEN GOTO GAMESEL
450 IF SW = 6 THEN GDTO BEGIN
460 POSITION INFOX,INFOY
470 PRINT "ONLY ONE SWITCH AT A TIME PLEASE"
480 GDTO 400

Line 430 defines the value you wi ll find in locat ion 53279 if only
the [IJ:llji[IJ~1 switch is pressed. Line 440 defines the value if only
the __ 1#1M#(IU switch is pressed. Line 450 defines the value you
will find if only the --iMi.i switch is pressed . If the value 7 is
found there, it means that none of the switches is pressed, so this
program piece goes back to look again. This assumes that this
is the only instruction group provided for the user on the screen.

If there is any value oth er than those tested, the program warns
that only one switch at a time shou ld be pressed. Thi s is because
each bit presents one "low bit" to the total to be shown here. The
--i(Jiii switch creates a low on bit 1, making the total 7 -1 = 6
if only that switch is pressed. The t*'M#(lji switch creates a low
on bit 2, making the total 7 - 2 = 5 if on ly the __ 1#1M#(lji switch is
pressed. The [IJ:llji[IHI switch creates a low on bit 4, making the
total 7 -4 = 3 if only the [IJ:llji[lm switch is pressed. Therefore,
any combination of these swi tches wi ll make the total a different
value. If you wanted to, you cou ld use this information to report
wh ich combination was selected , and to make decisions based
on that combination.

156 ATARI BASIC TUTORIAL

You will also notice that decision lines 430, 440, and 450 have
used the names DIFFICULTY, GAMESEL, and BEGIN instead of
the line numbers where the routines may be found. This is , as
described in an earlier chapter, the variable-GOTO statement
which ATARI BASIC allows. It is more descriptive and shows what
is happening in the program. Using this kind of "internal docu
mentation" is sometimes as good as putting in a lot of REMarks
to tell what is going on. It lets you, and others, understand the
operation of your program because you have related the pro
gram names and things it is doing to the actual BASIC instruction
code that does the operation .

GAME CONTROLLERS (JOYSTICKS) FOR MENU
SELECTION

Suppose, instead of or in addition to the keyboard, you wanted
to use the joysticks to select what was to happen next? ATARI
BASIC provides a set of keywords for read ing these as well. We
will relate them here to their possible use in menu selection, but
you can use the values you see here to apply to games and other
applications.

The ATARI ® 400™ and 800™ Home Computers provide four
possible positions into which joysticks can be connected . The
AT AR I ® 600XL TM, 800XL TM , 1 200XL TM, 1400XL ™ , and 1450XLD ™
Home Computers provide two positions. To be compatible with
all units, we will primarily concentrate on the first two joysticks,
accessed through the ATARI BASI C keyword STICK. STICK is
actually a function, and needs a variable name to make it work.
For example, STICK(O) and STICK(1) are the first and second
joystick ports on the unit, respectively.

We will look at two different demonstration programs here. The
first is used strictly to show you what the values of the different
positions of the STICK can be. This is done with a simple graph
ics demonstration . The second demonstration program uses the
joysticks to move a pointer from one position to another, and
introduces another ATARI BASIC keyword , STRIG. First, let's clear
the screen :

10 PRINT "~"

MENU PLEASE 157

Now, for this program, we only want to move the cursor around a
bit, and not leave anything permanent on the screen. So the
program will be designed just to move the cursor around and
leave it there until something different happens. Notice in the
program that there is always a PRINT statement following each
cursor move. This is because ATARI BASIC does not actually
move the cursor to a new location determined by a POSITION
statement until a PRINT statement has been issued. Here is an
other part of the program:

20 POSITION 2,3:REM LINE 3, SECOND COLUMN
30 PRINT, 10, 14,6
35 POSITION 2,8
40 PRINT, 11 , 15, 7
45 POSITION 2,13
50 PRINT,9,13,5
60 REM GIVES A DISPLAY
70 POSITION 2,20
80 PRINT "PLUG INTO FIRST PORT, MOVE STICR"
90 PRINT "CURSOR FOLLOWS STICK, VALUE = STICK(o)"
95 REM TELL USER WHAT TO DO

Now, we must provide a way for the computer to tell us it knows
what value is being read from the joystick. In order to do this
graphically, we must know where to put the cursor. In each case,
we want the cursor to be near the number it is reading. Since that
would take a lot of IF-THEN combinations, let's use an array of X
and Y coordinates to show where the cursor should be for each
reading of the STICK. First, reserve some space for the sets of X
and Y values:

5 DIM X(16),Y(16)

Then, read in the values. Since they only range from 5 to 15,
these are the only values we will have to read into the array:

120 FOR N = 5 TO 15:READ P:X(N) = P:NEXT N
130 FOR N = 5 TO 15:READ P:Y(N) = P:NEXT N

Lines 120 and 130 read the X values first, then the Y values.
Now we must provide the data for the READ statements to work

158 ATARI BASIC TUTORIAL

on. In this case , we wi ll keep the DATA statements in the middle
of the prog ram rather than moving them to the end. As mentioned
when the DATA statement was first introduced, it is treated just
like a REM statement, and is basically ignored by anything but
the READ statement .

Note that this also means you cannot combi ne anything else
with the DATA statement and expect it to work. As a separate
program sometime, try the following:

1 DATA 1,2,3:PRINT "I SAW THAT PART"
- 2 END

The DATA statement is treated the same as the REM statement ;
anything within th e same line fo llowing the DATA statement is
ignored.

Here is the data, corresponding to the X and Y cursor positions
for where the numbers 5,6 ,7,(8) ,9,10, 11 ,(12) ,13,14,15 are printed
on the screen. Of course there is no 8 or 12, but the array just
uses a place holder for th em.

140 DATA 30,30,30,0,10,10,10,0,20,20,20
150 DATA 13, 3, 8,0,13, 3, 8,0,13, 3, 8

Now for the endless loop that will just take in the value of the
STICK(O) function , and put the cursor in the ri ght spot. Then it wi ll
loop back forever, doing it again .

200 M = STICK(o)
210 POSITION X(M),Y(M)
220 PRINT " "; :REM ONE BLANK SPACE
230 GOTO 200

Follow the instruct ions (if you have a joyst ick, that is) and see the
cursor move to show the value that is being read . Make sure you
hold the joysti ck pointing the right way, wi th the forward arrow
pointing forward, and the cursor wi ll move on the screen exactly
the same way you are moving th e st ick.

In th e second demonstrat ion program , we will use this stick
reading to move a cu rsor on the screen with a menu selection on
it . Then, pushing the trigger button on the joystick wi ll be the
signal that the menu select ion currently chosen should be exe-

MENU PLEASE 159

cuted. That will introduce another ATARI BASIC keyword, STRIG.
Let's start with a clear screen again:

10 GR.o

This is a slightly different version of clear screen. It says to go
into graphics mode o. In other words, reinvent the screen display.
This takes a little longer than the PRINT statement because the
clear-screen function just sends blanks to the data area of the
screen, while the GR.O (or, spelled out completely, GRAPHICS 0)
command actual ly redefines all of the screen instructions as well
as setting up the graphics 0 data area. You will see more on this
subject in the chapter on "Getting Colorful."

Now, to set up a phony menu from which a program can be
selected:

20 DIM M(2o),B$(2o),C$(2o),D$(2o),E$(2o),F$(2o)
30 A$ = "PROGRAM ONE":B$ = "PROGRAM TWO"
40 C$ = "PROGRAM THREE"

For the following lines, just before you type the word PROGRAM,
touch the ATASCII key (II!), then touch it again just before you
touch the ending quote on each of the strings in lines 50 and 60.
This will make the letters appear in reverse video, which is the
way the program is to be done:

50 D$ ="

60 F$= "
PROGRAM ONE ":E$="
PROGRAM THREE

PROGRAM TWO

Now, to print these items as a menu , let's use the same line
positions as in the joys tick example ... Iines 3, 8, and 13 from the
top:

100 POSITION 2,3 PRINT A!Ii
110 POSITION 2,8:PRINT B!Ii
120 POSITION 2,13:PRINT C!Ii

Now print the user instructions:

150 POSITION 2,18
155 PRINT "PLUG IN STICR 0, MOVE IT"
160 PRINT "TO SELECT MENU ITEMS,"
165 PRINT "PUSH TRIGGER TO EXECUTE PROGRAM"

160 ATARI BASIC TUTORIAL

We are going to do one more thing that is important to menu
selection items: make the cursor invisible; it will just distract the
user in this program.

180 POKE 752,1 :REM MAKE CURSOR DISAPPEAR

The plan for the program is to have all three of the menu selection
items initially in regular video. Then , depending on the position of
the stick, the invisible cursor should be respositioned , and the
menu selection at that cursor position should be rewritten in re
verse video to highlight that this is the selection we want.

In the previous example, the cursor was moved to the position
corresponding to the stick position. This would be undesirable in
this case since we want to be able to let go of the joystick after
making a menu pointer move, and not have to hold it there while
we press the button to select that item. Therefore, we will be
sampling the stick position and comparing the old position to a
new position to see if the user has indicated some kind of move.

Also, we will be waiting a time between each look at the stick
so it doesn't "circle" rapidly through the menu selections, making
it impossible to stop at one correctly. (Sometimes BASIC is slow,
and sometimes it can seem very fast.)

First, let 's assume that the joystick is in the center po"sition and
nobody is moving it. At the start of the program, one of the pro
gram selections must be automatically selected. Let's make it the
center one, just for an example:

300 POSITION 2,8:PRINT E$:Y = 8

which makes the center selection appear in reverse video, and:

210 OLDMOVE = 0

which says that this is the last known position of the joystick. (We
haven't even looked at it yet, but this is program start time, and
line 210 says that the input device is silent at the start.)

Now, for reading the joystick, we have nine different kinds of
possible readings. The menu select should respond the same
way whether the user pushes the stick forward, or forward and to
the right, or forward and to the left, so we must distinguish be
tween the various values and call all forward movements the

MENU PLEASE 161

same, treat all center positions the same, and treat all rear move
ments the same. Let's see how:

350 T = STICI'i(O)

This saves us some typing during the test parts.

360 UP = - 5 : DOWN = 5

This tells us the direction of motion for the POSITION statement.

370 IF T - 2*(INT(T/2)) = 0 THEN MOVE = UP:GOTO 400

Notice that all of the up-movement joystick readings are even
multiples of 2. This statement takes the whole number, divides it
by 2, and then sees if there is any fractional part as a result. The
numbers 6, 10, and 14 will have no fractional part after dividing
by 2.

If it wasn't a move up, maybe it was a move down:

380 TA = INT(T/2)
385 IF TA - 2*INT(TAl2) = 0 THEN MOVE = DOWN:GOTO 400

This is how we can tell the movements apart .
The move-down values are 5, 9, and 13. The center values are

7, 11 , and 15. When they are divided by 2 and the fractional part
is discarded , the values become:

DOWN = either 2, 4, or 6.
CENTER = either 3, 5, or 7.

With these new values, we can say that if the result is odd , the
stick is centered; if it is even , the stick is pulled down.

Since line 370 took care of the UP condition , and lines 380 and
385 took care of the DOWN condition , then the only condition left
is the CENTER condition , which is:

390 MOVE = 0

where each of the values of MOVE will indicate how many posi
tions on the screen we should move from the current one, based
on the position of the stick. If you remember, at the beginning of
the program the menu was printed at locations 2,3; 2,8; and 2,13
on the screen. So, if the current pointer says we are at location

162 ATARI BASIC TUTORIAL

2,8; then a value of + 5 or - 5 applied to the Y part of the POSI
TION statement will make us move to either the bottom or the top
printed line.

Now, let's look at how to move just one position at a time on the
screen :

400 IF MOVE = OLDMOVE THEN 340

This says that if the stick is held in anyone position, don't do
anything except go back to line 340. Here is line 340

340 FOR M = 1 TO 50:NEXT M:OLDMOVE = MOVE

Th is is just a time delay before we fall into line 350, which looks
at the stick again . What this says is that if the user is holding the
stick in a forward or a reverse position , then make only one move
per movement of the stick. In other words, center the stick first,
then move it forward again to select an up motion of the pointer,
or downward to select a down motion of the pointer.

The next line of the program forces it to do nothing if the stick
is centered. The stick is automatically centered if nobody is
touching it , so there should be no action on the screen at this
time.

445 IF MOVE = 0 THEN 340

Now if it was not a no-move , it must be a move, but which way?
For any kind of move, before we move, first we have to reprint the
line in regular video instead of reverse video. Then we can go to
the new line, print it in reverse video, and return to scan the st ick
again.

Thi s next part of the program is not intended to be the most
efficient in the way it handles the strings. It is just written in seg
ments that try to be very understandable.

450 IF MOVE = 5 AND Y = 13 THEN 340
455 REM DON'T MOVE FARTHER DOWN THAN LAST LINE
460 IF MOVE = - 5 AND Y = 3 THEN 340
465 REM DON'T MOVE FARTHER UP THAN FIRST LINE
470 IF MOVE = 5 AND Y = 8 THEN GDTO 600
480 IF MOVE = 5 AND Y = 3 THEN GDTO 700
480 IF MOVE = - 5 AND Y = 13 THEN GOTO 800

MENU PLEASE 163

500 REM THIS CASE IS MOVE = - 5 AND Y = 8
510 POSITION 2,8:PRINT B$:REM RESTORE OLD
520 Y = 3:POSITION 2,Y:PRINT D$:GoTo 340
600 POSITION 2,8:PRINT B$:REM RESTORE OLD
610 Y = 13:PoSITION 2,Y:PRINT F$:GDTo 340
700 POSITION 2,3:PRINT A$:REM RESTORE OLD
710 Y = 8:PoSITION 2,Y:PRINT E$:GoTO 340
800 POSITION 2, 13:PRINT C$:REM RESTORE OLD
810 Y = 8:POSITION 2,Y:PRINT E$GOTO 340

Last , we need to add someth ing that gets us into the program
we want to run if the trigger button is pressed :

345 IF STRIG(o) = 0 THEN 1000

The ATARI BASIC STRIG function always returns a value of 1 if
the trigger button is not pressed, and 0 if the button is pressed .
The trigger on the second port can be accessed by STRIG(1).
Likewise, the other two ports on the ATARI 400 and 800 Home
Computers have trigger functions named STRIG(2) and STRIG(3).

Let' s add someth ing for the program to do, now that the selec-
tion part is fini shed :

1000 GR.o
1010 PRINT "NOW LOADING .. . ,
1020 IF Y = 3 THEN PRINT A$
1030 IF Y = 8 THEN PRINT B$
1040 IF Y = 13 THEN PRINT C$
1050 POSITION 2,2o:END

For your program, you might want to make the subject of the
THEN part of lines 1020, 1030, and 1040 something different,
such as:

1020 IF Y = 3 THEN PRINT A$:LOAD "D:PROGRAM1.BAS"

or THEN GOTO 2000 (start of a program piece), or something
else.

The important part of menu selection is to try to keep the user
entered errors to a minimum, and to tell the user what is happen
ing along the way. It is very distressing if a program begins a

164 ATARI BASIC TUTORIAL

long set of calculations, or maybe a program load or search , and
doesn't tell the user what is going on. After designing a program,
you will know how long an operation should take and tell the user
about it by adding another output line somewhere. If you don 't,
the user may think that either the program or the machine has
gone bad.

HOW TO KEEP CONTROL OF THE MACHINE DURING USER
INPUT

Earlier in this chapter, the ways of keeping the screen pretty
were mentioned . We went from accepting direct strings of user
input to using the function keys and the joysticks as input. These
last two certainly help to keep control over the appearance of the
screen. However, there are times when nothing less than an input
string will really serve the purpose. Here, then, is the way to
handle that:

Before now, whenever you were looking for a user input, you
used the INPUT statement. That always meant that the user was
in complete control of what went onto the screen, and that your
program never got control back until the IjJ#i'IJjW key was
pressed. You have seen how this could mess up the screen dis
play, especially if the user hit some cursor-move keys during data
inputs. The better way to handle this is to have you control ex
actly what will be input , and exactly what will appear on the
screen.

You can read the keyboard directly, using the following
command:

KEY = PEEK(764)

If there is no key pressed , this memory location in your ATARI
Home Computer will contain the number 255. If a key has been
pressed , however, the computer wi ll contain another number.
That number is called the internal key code , and it relates to the
position of the key on the keyboard, as well as whether either the
t!iiil! or the 3;lIi .. keys have been pressed .

Try the following program. It is a continuous loop that will read
the keyboard location and tell you what key was found to be

MENU PLEASE 165

pressed last (the internal key code only). Following this example
is an explanation of how the key code relates to the normal AT AS
CII input that the INPUT statement normally receives.

10 KEY = PEEK(764)
20 PRINT "INTERNAL KEYCODE FOR THAT KEY IS: ";KEY
3D GOTo 10

When you ·RUN this, you will notice that it continues to display the
number representing the last key you entered. This is because it
operates as a "latch" and does not "c lear" itself. If you want to
read a different key each time, you must clear it yourself. The
ATARI Operating System normally does this for you when you use
the INPUT statement, but now you are in direct control.

Change the program to read the following, demonstrating the
clearing of the keyboard location between reads:

10 KEY = PEEK(764)
15 IF KEY = 255 THEN lO:REM NO REPORT IF NO KEY
20 PRINT "INTERNAL KEYCODE FOR THAT KEY IS: ";KEY
25 FOR M = 1 TO 50:NEXT M
26 REM CALL THIS AUTOREPEAT DELAY
28 POKE 764,255:REM PUT 255 AT 764 TO CLEAR IT
30 GOTo 10

Now, when you press any key, it reports the internal key code
assigned to it. Try any key with the "'''Ullj'' key held down. It is
different than with the key alone. Try any key with the lijijlll key
held down. It , too , is d ifferent. This is how the ATARI Home Com
puter can tell the difference.

From an internal key code viewpoint, you wil l notice that a
regular A = 63, a "''';1:IIj'' + A = 63 + 64 = 127, and a l!lImI
+ A = 63 + 128 = 191. And so it goes for all of the keys on the
keyboard. A "' ... W1ili+[!iiillI+key generally provides 192 + key
code, but this group of combinations is not really supported by
the ATARI Operating System, so it is best left alone.

For our purposes , we will be concerning ourselves primarily
with the alphabetic and numeric keys, since these are the ones
most likely to be used for user input. One thing to notice is that
the combination ItUj11l + the "1" key does not respond. This is

166 ATARI BASIC TUTORIAL

a special operating system function that says "stop the listing to
the screen" and will not report the key code as long as the ATARI
Operating System is in control.

If your menu has on it a set of items that perhaps says:

PRESS LETTER TO SELECT PROGRAM

A. CHECFiBooK
E. ACCOUNTANT
C. PAKMANIA

You wou ld then have a way other than using the INPUT statement
to get the user response . Such a menu program would look like
thi s:

10 GR.o:REM CLEAR SCREEN
15 POKE 752,1:REM MAKE CURSOR VANISH
20 PRINT "PRESS LETTER TO SELECT PROGRAM"
30 POSITION 2,8
40 PRINT "A. CHECKBooFi":PRINT:PRINT
50 PRINT "E. ACCoUNTANT":PRINT:PRINT
60 PRINT "C. PAKMANIA'
80 POKE 764,255:REM CLEAR BEFORE READ
90 KEY = PEEK(764)
100 IF KEY = 63 THEN RUN "01 :CHEKBOoK.BAS"
110 IF KEY = 21 THEN RUN "01:ACCOUNT.BAS"
120 IF KEY = 18 THEN RUN "01 :PAK.BAS"
130 GDTD 90:REM IF NO KEY, TRY AGAIN

Another thing you cou ld offer, of cou rse, is "HIT ANY OTHER KEY
TO SEE MENU #2" and continue on with another display with
other menu choices, perhaps even including RUN another menu
program!

So th is gives you direct control over single inputs, but it does
require that you know in advance what the relationship of the key
codes is to the characters you want to input. Wh at we're saying
here is that the key codes seem to have no direct relationship to
the ATASCII character set (see the Appendix in your ATARI BASIC
Reference Manual titled "AT ASC I I Character Set").

In particular, the ATASCII for an "A" is supposed to be decimal

MENU PLEASE 167

65, B is 66, C is 67, D is 68, and so forth . When you give a
command to PRINT CHR$(65), you print the letter A, CHR$(66)
prints the letter B, and so on. But these key codes, if you were
reading the keyboard directly to "user-input" a character string,
don 't give the same numbers. For example, A is 63, B is 21, C is
18, and so on. An interpreting program would become long if
only key codes could be used this way. How do we make the
conversion?

One way would be to provide a set of tables in each program ,
such as CODE(64) and CONVERTED(64), with DATA statements
for each one to provide the correct translation . But that is the long
way! The ATARI Operating System already provides a conversion
table for you to use. It contains all of the conversion codes and
may be referenced from BASIC. If you want to use this approach,
the correct sequence would be:

300 PORE 764,255:REM CLEAR
310 !'lEy = PEER(764):REM READ IT
320 IF !'lEy > 192 THEN 300:REM IGNORE CTRL + SHIFT
325 REM ALSO IGNORES VALUE 255 = NO REY
330 ATASCII = PEER(REY + REYTABLESTART)

Then use the ATASCII value in any way you would normally use
a key entry. The value you get this way is an integer value, com
parable to the value you get with the statement:

ATASCII = AScrZ$)

where Z$ is a one-character string. To make this value into a
string character, you would have to:

STRINGPART$ = CHR$(ATASCII)

Or, to add it onto a string, once you were satisfied that it was one
of the possibly correct values :

A$(LEN(A$) + 1) = CHR$(ATASCII)

which would tack it onto the back of an existing string.
But, to be able to use this approach, you would have to know

where the internal ATASCII key code conversion table is located .
Depending on the version of the machine you own, the table will

168 ATARI BASIC TUTORIAL

be located in different places. The technique of interpreting the
values remains the same, but you must locate the table start in
your own machine. You can do this with the following program:

10 X = 53245
20 FOR M = 1 TO 200
30 FOR N = 1 TO 196
4oX=X+l
50 Yl = PEER(X):Y2 = PEER(X + 1):Y3 = PEER(X + 2)
60 IF Yl <> 108 THEN 100
70 IF Y2< > 106 THEN 100
80 IF Y3< > 59 THEN 100
90 PRINT "TABLE STARTS AT: u;X:END
100 NEXT N
110 PRINT "SEARCHING FOR TABLE START AT: u;X
120 NEXT M

Once you have this number, called TABLESTART (of course, you
can call it anything you like), you can use it to confirm that the
values are as you would have expected. For example, you know
that the key codes for A, B, and Care 63, 21, and 18. You can
confirm that you can look them up in the key code table by doing
the following experiment:

20 PRINT "PLEASE INPUT A REYCODE"
30 INPUT REYCODE:IF REYCODE > 255 THEN 20
40 ATASCII = PEER(TABLESTART + REYCoDE)
50 PRINT "THE ACTUAL ATASCII OF THAT REYCODE IS: ";
60 PRINT ATASCII
70 PRINT: PRINT "AND THE CHARACTER IT REPRESENTS IS: ";
80 PRINT CHR$(ATASCII)
90 PRINT
100 GDTo 20

and try the following key codes:

63
127
191

21
85

149

18
82

146

(small a, b, and c)
(I--1:11i1' + A, B, and C)
(l!iGI!II + A, B, and C)

MENU PLEASE 169

Notice the sequence of the ATASCII codes which come back out
of the table . They are in direct numerical sequence. If you had
tried the key codes for the numerals a through 9 (50, 31, 30, 26,
etc.), you would also find that they are in numerical sequence.
This was intentional when the character sequence was chosen.
You will see how this fact can be used in the following example.

To show a practical use for what we just developed, let's take
another look at the program piece that we did early in this chapter
(asked for name and age) . This time, since we are going to be
controlling the input, there will be no problem with the absolute
or relative cursor motion . We will print onto the screen something
related to what the user enters, and only accept a keystroke if it
is one of the ones we are expecting .

5 REM NEW VERSION OF NAME! AGE PROGRAM
10 DIM A$(30):REM ROOM FOR MAX NAME SIZE
20 GR.O:REM CLEAR SCREEN
30 POSITION 2,4
40 PRINT "NAME: "
50 POSITION 2,8
60 PRINT "AGE: "
70 POSITION 2,2o:REM GIVE INSTRUCTIONS
80 PRINT "ENTER LAST NAME, COMMA, FIRST NAME"
90 PRINT "THEN PRESS RETURN"
100 POSITION 8,4:REM PUT CURSOR THERE FOR INPUT
101 PRINT " ";:REM ONE BLANK SPACE

Now the input should be managed by the key code input method
shown earlier in this chapter. For now, we will add in the key code
routine here, then to control which part of the program is using
the routine, we will use a "flag" so we know where to go back to
when done. In a later chapter, you will see how to reuse routines
without tricks as will be used here.

Here is the key code translator routine repeated from earlier.
Remember that you must substitute your own value of KEYTA
BLESTART or this won't work right:

1300 KEY = PEEK(764)
1304 IF KEY> 192 THEN 1300:REM IGNORE CTRL + KEY

170 ATARI BASIC TUTORIAL

1308 POKE 764,255:REM CLEAR FOR NEXT ONE
1312 ATASCII = PEEK(TABLESTART + KEY):REM USES
TABLESTART NO. FROM EARLIER PROGRAM
1320 IF KEY < 64 AND KEY <> 32 AND ATASCII > 64
THEN KEY = KEY + 64:REM MAKE ALL UPPER CASE
1330 ATASCII = PEEK(TABLESTART + KEY)
1340 IF FLAG = 1 THEN 120
1350 IF FLAG = 2 THEN 280
1360 PRINT "ERROR IN FLAG SELECT":END

In the following section, we will be trying to determine if the user
has indeed done what we asked ; that is, to enter a last name, a
comma, and a first name.

One thing that was added to the key code part was to convert
all characters received to upper case (all key codes except the
comma have been converted to a code between 64 and 127).
This means that the user need not hold down the Ull;: .. key,
and so on. And even if he did, the letter group would still be
accepted the same way-as all capitals.

So, now the key reading routine can be entered from the cur
rent section of the program:

105 CFLAG = 0
110 FLAG = 1:GDTO 1300:REM GET AN ATASCII VALUE
120 IF CFLAG = 1 AND ATASCII = 44 THEN 2000
125 REM NO MORE THAN ONE COMMA IN NAME LINE
130 IF ATASCII = 44 THEN CFLAG = 1:GDTO 160
135 IF ATASCII = 155 THEN 200:REM USER HIT RETURN
140 IF ATASCII > = 65 AND ATASCII < = 90 THEN 160
145 REM ENTER ATASCII CHARACTER BETWEEN A AND Z
150 GOTO 110:REM IF NOT, THEN TRY AGAIN
160 POKE 53279,7:REM MAKES CLICK TO TELL USER INPUT
ACCEPTED
170 PRINT CHRffi(ATASCII);

Line 170 prints the character and keeps the cursor right where it
is for the next acceptable character to come along.

Now, we have to make provisions for accepting the string for
storing the name:

MENU PLEASE 171

12 Affi = ""REM NOTHING BETWEEN OUOTES (LEN(Affi) = 0)

and then a way to collect the characters we are receiving, but
not more than 29 total

180 IF LEN(M»28 THEN 3000

where 3000 is the location which should report that too many
characters were entered and maybe give the user a second try
at it.

190 M (LEN(Affi) + 1) = CHRffi(ATSCII):GOTO 110

Line 190 adds the character to the back of the string we are
putting together, and goes back for more.

The next part should get an age from 0 to 99 (we are assuming
a typical user, but let 's go from 000 to 999 just in case). The
inputs must be numbers, not letters, so after getting the ATASC II
values, each must be in the range of 48 through 57. (See the
ATARI BASIC Reference Manual , ATASC II Character Set Appen
dix, or simply PRINT ASC("O") then PRINT ASC("9") to confi rm
these numbers.)

First , we have to change the instructions to the user, then put
the cursor in the right spot and ask for the input. Here is one of
the places where we can use those "embedded control codes,"
Screen Editor commands to get rid of the previous instructions,
and then to print our new instructions there.

200 POSITION 2,2o:REM GO TO THE INSTRUCTION LINE
210 PRINT " •••• ";

These string characters in line 210 are inverse video up-arrows.
They were entered , after the first double quote, by the key
sequence:

lm r-i: II iI' + I!l3! lm r-i:lljU + I!l3! ~ r-i:nil' + I!l3!
This line contains the deferred Screen Editor command to delete
the line on which the cursor is presently sitting. Thi s is entered
three times, to get rid of all three lines there. Each line lower
moves up to fill the space. Therefore, since the cursor doesn't
move in between , al l three lines are deleted with a sing le com
mand line.

172 ATARI BASIC TUTORIAL

Now that the old command lines have disappeared , we can
print the new ones:

220 PRINT "AGE ... NUMBERS ONLY ... 000--999"
230 PRINT "THEN TOUCH RETURN"

and put the cursor at the right point to accept the numbers:

240 POSITION 8,8:PRINT " ";

Now to enter the key input routine, with a bit of setup first:

250 FLAG = 2:REM TELL WHERE CAME FROM
260 AGE = 0
270 GDTo 13oo:REM GET INPUT
280 IF ATASCII = 155 THEN 4oo:REM IF RETURN HIT, PROGRAM
ENDS
290 IF ATASCII > = 48 AND ATASCII < = 57 THEN 320
300 GoTO 27o:REM OUT OF RANGE, NO !'lEY CLIC!'l
320 Po!'lE 53279, 7 REM CLIC!'l !'lEY = o!'l
330 NXTDIGIT = ATASCII - 48
340 AGE = AGE*1D + NXTDIGIT:REM CALCULATES AGE
345 IF AGE > 999 THEN 4000

Line 345 provides for an error report if the user enters a number
too large with no IjJ:UIJjJU

350 PRINT CHRffi(ATASCII);

Line 350 prints the character and leaves the cursor in position for
the next character.

360 GDTo 27o:REM GET NEXT CHARACTER

Then the last thing to do is to exit gracefully:

400 POSITION 2,20
410 PRINT" __ ":REM !'lILL MESSAGES
420 PRINT "THAN!'l YOU ":END

Lines 2000, 3000, and 4000 should also be added somewhere
to tell the user that he (2000) can't have more than one comma in
the line, or (3000) can 't enter more than 29 characters in the
name, or (4000) can't enter an age greater than 999. For each

MENU PLEASE 173

error, the screen should be "fixed" by erasing the last user input,
or maybe just specify the error and tell the user to press
IjJ:illJjW to try again (then erase old input, and re-enter to try it
again). You may wish to modify this structure or to compose your
own.

For those of you who wish to check against a complete version
of the program, here it is :

5 REM ALTERNATE DATA ENTRY FOR "NAMEAGE" PROGRAM
10 DIM ASi(30):REM SAVE SPACE FOR STRING
12 ASi = "":REM NOTHING BETWEEN QUOTES (LEN(ASi) = 0)
20 GR.o:REM CLEAR SCREEN
30 POSITION 2,4
40 PRINT "NAME: "
50 POSITION 2,8
60 PRINT "AGE: "
70 POSITION 2,20
80 PRINT "ENTER LAST NAME, COMMA, FIRST NAME"
90 PRINT "THEN PRESS RETURN"
100 POSITION 8,4
101 PRINT " ";:REM ONE BLANK SPACE TO MOVE CURSOR
105 CFLAG = 0
110 FLAG = l :GOTO 13oo:REM GET AN ATASCII VALUE
120 IF CFLAG = 1 AND ATASCII = 44 THEN 2000
130 IF ATASCII = 44 THEN CFLAG = l:GOTo 160
135 IF ATASCII = 155 THEN 2oo:REM USER HIT RETURN
140 IF ATASCII > = 65 AND ATASCII < = 90 THEN 160
150 GOTo 110:REM IF NOT, THEN TRY AGAIN
160 POKE 53279,7:REM CLICK SPEAKER
170 PRINT CHRSi(ATASCII);
180 IF LEN(A$) > 28 THEN 3000
190 ASi(LEN(ASi) + 1) = CHRSi(ATASCII):GOTo 110
200 POSITION 2,2o:REM GO TO THE INSTRUCTION LINE
210 PRINT " ";:REM ESC SHIFT + DEL 3 TIMES
220 PRINT "AGE ... NUMBERS ONLY ... 000-999"
230 PRINT "THEN TOUCH RETURN"
240 POSITION 8,8:PRINT " "; :REM ONE BLANK
250 FLAG = 2:REM TELL WHERE CAME FROM

174 ATARI BASIC TUTORIAL

260 AGE = 0
270 GoTO 13oo:REM GET INPUT
280 IF ATASCII = 155 THEN 400
290 IF ATASCII > = 48 AND ATASCII < = 57 THEN 320
300 GoTO 27o:REM OUT OF RANGE, NO I1EY CLICI1
320 Pol1E 53279,7:REM CLICI1 I1EY = 011
330 NXTDIGIT = ATASCII - 48
340 AGE = AGE * 10 + NXTDIGIT
345 IF AGE > 999 THEN 4000
350 PRINT CHR$(ATASCII);
360 GoTO 27o:REM GET NEXT CHARACTER
400 POSITION 2,20
410 PRINT " •••• "REM I1ILL MESSAGES
420 PRINT "THANI1 YOU "END
1300l1EY = PEEI1(764)
1304 IF I1EY> 192 THEN 13oo:REM IGNORE CTRL + I1EY
1308 Pol1E 764,255:REM CLEAR FOR NEXT ONE
1312 ATASCII = PEEI1(TABLESTART + I1EY):REM USES
TABLESTART NO. FROM EARLIER PROGRAM
1320 IF I1EY < 64 AND I1EY <> 32 AND ATASCII > 64
THEN I1EY = I1EY + 64:REM MAI1E ALL UPPER CASE
1330 ATASCII = PEEI1(TABLESTART + I1EY)
1340 IF FLAG = 1 THEN 120
1350 IF FLAG = 2 THEN 280
1360 PRINT "ERROR IN FLAG SELECT":END
2000 POSITION 2,22:PRINT "****";

2005 PRINT "ONLY ONE COMMA ALLOWED"
2010 POSITION 8,4
2020 FOR N = 1 TO LEN(A$) + 1
2030 PRINT " ";
2040 NEXT N:REM ERASE USER INPUT
2050 A$ = "":GoTO 100
3000 POSITION 2,22:PRINT "****";

3005 PRINT "NAME FIELD ONLY 29 MAX"
3D1o POSITION 8,4
3020 FOR N = 1 TO LEN(A$) + 2
3030 PRINT" ";

3040 NEXT N:REM ERASE USER INPUT
3050 A$ = '''':GDTo 1 DO
4000 POSITION 2,22:PRINT "****";

4005 PRINT "AGE MUST BE UNDER 999."
4D1o POSITION 8,8
4020 FOR N = 1 TO 4
4030 PRINT "[J";:REM ESC CTRL + DEL

MENU PLEASE 175

4035 REM LOOKS NEATER TO HAVE STRING PULLED BACK
4038 REM TO ORIGIN THAN BEING WIPED OUT BY CURSOR
4040 NEXT N:REM ERASE USER INPUT
4050 GDTO 240

REVIEW OF CHAPTER 6

1. The process of forming a menu can be aided by using the
built-in functions of the ATARI Screen Editor.

2. The Screen Editor functions are put into character strings
by the 1m key, followed immediately by the ~i:Uid+key or
[ii"ii]] + key, which would normally perform a screen edit func
tion in direct mode.

3. Absolute cursor positioning can be specified for placement
of text on a graphics 0 background, and one can move around
the screen if desired using relative cursor motion.

4. The PEEK statement is used to look directly at memory lo
cations . The value found in any location will vary from 0 through
255. PEEK is a function, and to use it, you say X = PEEK(MEMORY),
where the memory value is from 0 to 65535.

5. The POKE statement is the opposite of PEEK. It is used to
put something into memory. To use it, you say simply POKE MEM
ORY,CONTENTS, where the memory address is as in item 4, and
the contents is from 0 to 255.

6. The condition of the option switches can be determined by
reading (doing a PEEK) from location 53279. By doing a POKE
53279,7 you can also make the keyboard on the ATAR I 400/800
Home Computers make a clicking sound.

7. The joysticks can be read using the ATAR I BASIC keyword
STICK(N) , where N = 0,1,2, or 3 representing the four possible

176 ATARI BASIC TUTORIAL

plug-in positions. The triggers can be read using the keyword
STRIG(N). These also are functions , so they need to be read by
specifying ANYVARIABLE=STRIG(N) or ANYVARIABLE =

STICK(N).
8. It is possible to maintain control over exactly what the user

inputs to your program by reading the keyboard directly instead
of using INPUT statements. This is done by reading location 764
and translating the key code found there into something you can
use.

CHAPTER

Introduction to Subroutines

At the end of Chapter 6, there was an example of a keyboard
reading routine which was entered from two different points in the
program. In both cases , we wanted to read the keyboard without
using the INPUT statement because it meant better control of the
user input.

Because it was entered from two different points in the pro
gram, it was necessary to inc lude a variable called FLAG, which
had a different value for each entry point. Then, at exit, the value
of FLAG was tested and the keyboard reader returned to the
correct routine based on the value of FLAG.

There is another way this could have been done. In fact , the
concept you are about to see is very widely used. This is the
concept of subroutines. A subroutine is, as its name implies, a
routine that "serves" another routine ... a routine that is called
upon by another one and performs a task. On completion of the
subroutine's task, it RETURNS to the calling routine.

ATARI BASIC allows one subroutine to serve many master rou
tines if desired. This is because ATARI BASIC always "saves the
RETURN address" of the calling routine so that, at exit, it can
RETURN to the correct place. In other words, when a subroutine
is given control , ATARI BASIC saves the previous runn ing status

177

178 ATARI BASIC TUTORIAL

of the machine (address of the calling routine) Then when the
subroutine is fini shed, ATAR I BASIC can restore the machine
operation to the way it was before the subroutine was "called. "

STRUCTURE OF A SUBROUTINE CALL

A diagram of a typical operation is shown in Fig . 7-1. This is an
example of another menu program, using the keyboard reader
built as a subroutine. Let's examine the typical structure of a
subroutine.

MAIN PROGRAM

(program statements)

GOSUB 1300 ------_~ 1300 KEY = .

STATEMENT FO LLOWING GOSUB 1--

(Program sta tements)

RETURN

GOSUB 1300 .. 1300 KEY = ..

STATEMENT FOLLOWING GOSUB .. RETURN

(Program statements)

including 1300 KEY = ..

1399 RETURN

Fig . 7-1. Diagram of a typical subroutine structure.

Fig . 7-1 shows a number of arrows, coming from different parts
of the program, going to what looks like a copy of statement
1300, then coming back. In fact, there is on ly one subroutine with
that line number in the program. The diagram is on ly intended to
show that the GOSUB statement can be used from anywhere in
the program, and wherever it is used , ATARI BASIC will return
control to the next statement in the sequence following the GO
SUB itself.

As indicated in Fig. 7-1, a subroutine call consists of the ATARI
BASIC keyword GOSUB, followed by the line number that is the
beginning of the subroutine itself. When the subroutine is finished
doing what it was designed to do, it uses the ATARI BASIC key-

INTRODUCTION TO SUBROUTINES 179

word RETURN. Here is an example program you can try that will
show you how subroutines are used:

10 PRINT "STARTED AT LINE 10"
20 PRINT "DID A GoSUB 6000 FROM 2o":GoSUB 6000
3D PRINT "RETURNED TO NEXT LINE 3~ ''

40 PRINT "DID ANOTHER FROM 4o":GoSUB 6000
50 PRINT "AND GOT BACK TO NEXT LINE OK"
60 END:NEED THIS ELSE WILL FALL INTO 6000
70 REM WITH NOBODY TO RETURN TO.
6000 PRINT:PRINT " GOT TO 6000 OK"
6D1o PRINT
6020 RETURN:REM RETURN TO WHOEVER CALLED IT

That was a real do-nothing program, but it did illustrate that when
the RETURN is performed , it returns to whichever place it came
from, just as though it never went anywhere at all.

Because we were relating the subroutine calls to the keyboard
routine before, let's look at how it would appear as a subroutine:

1300 KEY = PEEK(764)
1304 IF KEY> 192 THEN 1300
1308 POKE 764,255
1312 ATASCII = PEEK(TABLESTART + KEY)
1320 IF KEY < 64 AND KEY <>32 AND ATASCII> 64 THEN
KEY = KEY + 64
1300 ATASCII = PEEK(TABLESTART + KEY)
1340 RETURN

Notice that the only difference between this and the original ver
sion is that line 1340 now says RETURN , instead of a flag test.
This means that if you wanted to, you could use this subroutine
for many lines on the menu . Then, for each time it was used , you
wouldn't have to add a different flag test line or any flag setting
lines into the routines that used KEY.

Usually, you would tend to use subroutines where there was a
long group of program statements that you might want to do
many times in the program, in many different places. In these
cases, it is much easier to type GOSUB 10000 (or whatever num-

180 ATARI BASIC TUTORIAL

ber) than it is to type each of the groups of lines wherever they
might be needed . But you don't have to limit the use of GOSUB
to long sets of lines. You can use it wherever it is convenient.

Another thing that may make it more convenient for you is that
ATARI BASIC allows you to use variable names in the GOSUB as
well as the GOTO statement. This means that once you know at
which line number you have the starting location of the subrou
tine, you can define a variable name to be equal to that line
number. Let's see how this cou ld be used .

Let's say you wrote a program that had a lot of cursor motion
statements in it. The cursor control statements always need the
PRINT statement, along with the quotes, the [§[§l!J, and then the
lij'jU'+ someth ing. It would be tedious to have to write this
sequence many times in a program. So this is a case where a
one-line subroutine can help you write your programs. Here is an
example:

13000 PRINT " t ":RETURN:REM ESC CTRL + UP
14000 PRINT " + ":RETURN:REM ESC CTRL + DN
15000 PRINT "- ":RETURN:REM ESC CTRL + RT ARROW
16000 PRINT "- ":RETURN:REM ESC CTRL + LT ARROW
17000 PRINT " ~ ":RETURN:REM ESC CTRL+CLEAR

These are now the subroutines you can call to move the cursor
on the screen . To use them effectively, and to tell the user more
about what is happening in your program, you could now give
names to the subroutines, such as:

10 UP = 13ooo:DOWN = 14ooo:RIGHT = 15000
20 LEFT = 16ooo:BLANI'i= 17000

Now, in the body of the program you can use:

500 GOSUB BLANI'i:REM CLEAR THE SCREEN

or

670 FOR N = 1 TO 5:GOSUB DOWN:NEXT N

to move the cursor down five spaces, and so on .
Whenever possible, it is usually best to put thing s into the

programs that wi ll explain exactly what is happen ing, especially

INTRODUCTION TO SUBROUTINES 181

for a beginning programmer. This is called internally doc
umenting the program. If a program is properly documented
internally, you will be able to find out what it was supposed to do.
If you come back to the program months or even days later, it will
be easier for you to follow the train of thought if the variables and
the sequences mean someth ing in relation to what the program
is trying to accomplish.

There is another benefit you can get from using subroutines;
that is , you can develop a program in pieces. A typical structure
might be:

DO JOB NUMBER 1
DO JOB NUMBER 2
SET UP LOOP FOR-NEXT STEP
DO JOB NUMBER 3
LOOP BACK IF NOT DONE
DO JOB NUMBER 4

which cou ld translate to :

10 GOSUB 400
20 GOSUB 750
30 FOR N = 1 TO LOOPLIMIT
40 GOSUB 18720
50 NEXT N
60 GOSUB 23000
(rest of program, including subroutines)
32000 END

What this kind of structure means is that some of these subrou
tines may be developed separately, and stored separately on
you r disk.

While you are trying to get each subroutine ready to function ,
you might have a main program consisting of one or two lines
which set up the initial condit ions needed by the subroutine, if
any, then a sing le line consisting of a GOSUB to that subroutine,
followed by an END. Such a subroutine debugging program might
look like this :

10 DIM A9J(5),V(5)
20 DATA A,B,C,D,E

182 ATARI BASIC TUTORIAL

30 FOR N = 1 TO 5:READ Affi(N,N):NEXT N
40 FOR N = 1 TO 5
50 PRINT "PLEASE INPUT VARIABLE ";A$(N,N)
60 INPUT V(N)
70 NEXT N

Then, suppose the subroutine you are trying to test has variab le
names X, Y, Z, T, and H. The next few lines of the test program
would th en be :

80 X = V(1):Y = V(2):Z= V(3):T= V(4):H=V(5)

and

90 GOSUB 21000

assuming that subroutine 21000 was th e number of the one being
tested . Then, assuming that you had to g ive the subroutine sev
eral sets of numbers in order to see if it was working correc tl y,
the next line would be :

100 GOTO 40

An alternati ve to line 80 for naming the variables for test would
be to eliminate it entirely and change the DATA statement to read:

20 DATA X,Y,Z,T,H

whi ch, of course, is simpler.
Just to make sure you are not confused about subroutines and

how to construct them, here is another definiti on for a subroutine:
A subroutine is a statement, or a group of statements , which
terminates with a RETURN keyword. Thi s means th at even the
following can be called a subrouti ne

5000 RETURN

The other thing you must remember about subroutines is that
it is not poss ible to perfo rm the RETU RN statement unless some
other part of the prog ram has gone there using the GOSUB state
ment. The mistake that beginning prog rammers often make is to
put the subroutines in the prog ram somewhere, use them, then

INTRODUCTION TO SUBROUTINES 183

have the program, during its normal sequencing , "bumble into"
them. The following example shows what you should watch out
for:

300 GOSUB 2000
(more statements)
640 GOSUB 2000
(more statements)
1900 REM END OF PROGRAM NORMAL OPERATIONS
1950 REM BUT NO BASIC "END" STATEMENT USED
1980 REM AND NO GOTO ANYWHERE . .. NEXT ACTION
1990 REM IS TO FALL DOWN DIRECTLY INTO 2000
2000 REM SUBROUTINE START
2200 RETURN

What will happen here is that the program, although seemingly
finished when it gets to line 1990, will continue to execute at the
next line, which is part of the subroutine! You may never have
told ATARI BASIC that the subroutine was to be performed, but
then without the END statement before the subroutine, it doesn't
know any better. BASIC always executes the next sequential
statement if it is not told to do otherwise.

This points out an important pOint about the use of the END
statement. END does not have to be reserved for the very last
statement (highest numbered statement) in your program. In
stead, the word END tells ATARI BASIC that the processing job
is ENDed and it may return control to the direct command mode
again.

What kind of process is good for use as a subroutine? The
answer to this question is anything that makes the job easier.
The rest of this chapter will be dedicated to providing some ex
amples of subroutine construction and use. You will probably
think of many more.

SCREEN DECORATION SUBROUTINE

In Chapter 6, "Menu Please," we concentrated on how to ac
cept data gracefully from the user. This routine will aid in that

184 ATARI BASIC TUTORIAL

presentation by providing a way to decorate the menu. Assuming
that you have already placed the various menu choices on the
screen, it might make the screen more presentable if there was a
border of all asteriks(*) surrounding the data entry area. The fol
lowing routine will provide the capability to draw rectangular en
closures at any point on the screen, in any character, including
graphics symbols. It does not include all of the error checking
you might feel is necessary, but then you are the user. You can
feed the correct numbers through the program you design to use
the subroutine. The main program provided with the subroutine
here only shows you one of the ways it can be tested. First, the
concept itself . . . a flow narrative if you prefer:

1. The screen in graphics 0 is 40 characters wide by 24 char
acters high. When addressing this screen with the POSITION
statement, these limits must be specified as 0 to 39 horizontal ,
and 0 to 23 vertical to avoid generating an error.

2. For the sake of the test program, reserve the bottom four
lines of the display for the instructions. This means limit the sec
ond part of the POSITION statement to the range 0 to 19.

3. Because of the way the ATARI Screen Editor prints charac
ters to the screen , limit the first part of the POSITION statement
to the range 0 to 38. (If you print something in column 39, the rest
of the lines on the screen will be moved down to make room for
a new line that the Screen Editor thinks is coming next.)

4. Use loops to print an upper line, a lower line, and two en
closing lines, making sure that none of the areas printed fall out
side of the specified margins. If any do fall outside, then only
print the part that "should be visible."

Following the subroutine is a short test program constructed of
just a few lines, as suggested earlier in this chapter.

First, assume that the user-defined limits for a box to be drawn
on the screen are X1 and X2 for the X direction , and Y1 and Y2
for the Y direction. Then, to draw a line across the screen, keep
the Y part of the POSITION statement constant, and vary the X
part from X1 to X2:

20000 FOR X = Xl TO X2

INTRODUCTION TO SUBROUTINES 185

Now make sure that the value of X is in bounds:

2001 0 IF X < 0 OR X > 38 THEN 20080

Make sure that Y is in bounds, too:

20015 Y = Yl
20017 IF Y < 0 OR Y > 18 THEN 20040

Now position, then print the upper line if it is in bounds:

20020 GoSUB 23000 : REM A GoSUB INSIDE ANDTHER

where subroutine 23000 is composed of the following statements:

23000 POSITION X, Y
2301 0 PRINT Z$(1,1);
23020 RETURN

Now that we've defined that this subroutine will print a character,
it is time to define the space for the character in the memory:

10 DIM Z$(l)

Now continue with the rest of the routine .
The next part of the program must print the lower part of the

box, meaning the lowest line across the box bottom if it is in
bounds:

20040 Y=Y2
20045 IF Y > 18 OR Y < 0 THEN 20080
20050 GoSUB 23000

Finally, select the next position . (This will draw one character at a
time of the upper and bottom parts of the box, then go on to the
next character.)

20080 NEXT X

Now, the next part of the subroutine should draw the sides of the
box if they are in bounds:

21000 FOR Y = Y1 TO Y2
21010 IF Y < 0 OR Y > 18 THEN 21040
21015 X = Xl

186 ATARI BASIC TUTORIAL

And make sure X is in bounds:

21020 IF X < 0 OR X > 38 THEN 21040
21030 GoSUB 23000

Last, change X to X2 to draw the rightmost edge of the box:

21040 X = X2

And make sure that all of the X parts are in bounds:

21050 IF X < 0 OR X > 38 THEN 21090
21060 GoSUB 23000

Now do the next value:

21090 NEXT Y

Finally, RETURN from thi s subroutine to the calling routine:

22000 RETURN

Here is a small test program that can be used to demonstrate
this subroutine

1 PRINT " ~ ": REM CLEAR THE SCREEN (ESC, THEN CTRL +
CLEAR)
20 POSITION 2,2o:PRINT "CHARACTER = ";:INPUT Z$
30 POSITION 2,21:PRINT:PRINT:REM CLEAR LINES
40 POSITION 2,21:PRINT "SPECIFY X1,X2";:INPUT X1,X2
50 POSITION 2,22:PRINT "SPECIFY Y1 ,Y2";:INPUT Y1 ,Y2
60 GoSUB 20000
70 GoTD 20

If you RUN this program, you can enter single characters, then
an X1 comma X2 in the range of 0 to 38, and a Y1 comma Y2 in
the range of 0 to 19, and this subroutine will draw a box on the
screen in that character. If you specify X1 ,X2,Y1, or Y2 outside of
their ranges, the box will have only the limits that can actually fit
on the screen.

INTRODUCTION TO SUBROUTINES 187

MORE USES FOR SUBROUTINES

There are, of course, many other applications for subroutines,
but we will cover just one "officially" before proceeding to the
next chapter, since that one covers an introduction to graphics
and sound. There are some programs there that make use of
subroutines as well.

The following will introduce a handy subrout ine that converts
from memory va lue to binary. Binary numbers are what the com
puter normally uses to represent everything it is doing. This sub
routine wi ll allow you to split any number into its binary parts.
Then another test program will be shown which demonstrates
one of the uses of this binary subroutine.

First, though , you will have to know just what a binary number
is. In the world of the computer, all it really knows are two things,
on and off, represented by the numbers 1 for on and 0 for off. It
is by a combination of these numbers , 1 and 0, that the computer
makes up larger numbers. Some of these larger numbers are
used to make up control instructions for the machine, and some
others are just considered as data. At this time, we will only be
concentrating on the numbers used as data.

When the computer wants to represent a number, it must com
bine a batch of 1 s and Os in some way to accurately tell what the
number might be. It does this using the "powers-of-2" rule, as
follows

Each bit position in a multi bit word represents a spec ific power
of 2; that is, 2 to the zero power, which is 1; 2 to the first power,
which is 2; 2 to the second power (means 2 x 2), which is 4; 2
to the third power (means 2 x 2 x 2) , which is 8; then any whole
number can be represented by an addition of some of the powers
of 2.

Just to prove this , take a random whole number from 0 to 1000.
Following is a list of the various powers of 2. Pick the numbers
out of the list which add up to your selected number. You will
soon see that there is no whole number less than or equal to
65535 that you cannot represent by a combination of powers of
2. Notice that you need to take on ly one occurrence maximum

188 ATARI BASIC TUTORIAL

of any single power of 2. This is where the binary number system
comes into play. Here is the table

Power of 2 Value (decimal)

15 32768
14 16384
13 8192
12 4096
11 2048
10 1024
9 512
8 256
7 128
6 64
5 32
4 16
3 8
2 4
1 2
o 1

Once a binary number has been translated from the decimal,
it is represented by a string of binary digits whose positions cor
respond to the power of 2 which each represents, as:

1514131211 10 9 8 7 6 5 4 3 2 1 0 (powers of 2)
t t t t t ! ! ! ! t ! ! ! ! ! !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (binary number)

Thi s binary number is the largest one that can be represented
with 16 binary digits , because they are all 1 s. This number rep
resents decimal 65535, because it is the sum of all of the num
bers in the preceding table. When you make up a binary number,
and you want to translate it to decimal, you start out with a total
of zero. Then for each 1 in the binary number, you add the value
of its position in the number (from the table) to the sum until all
binary digits have been accounted for.

To convert from decimal to binary, on the other hand, is a
slightly easier task, since there is no table needed. The resulting
numbers will either be Os or 1 s. Converting from decimal to binary
consists of taking a number and dividing it by 2. If there is a
fraction left over, the fraction will be a 1. If the number divides

INTRODUCTION TO SUBROUTINES 189

evenly, the remainder of the division will be zero. The remainder
of the division is, in each case, part of the binary number you are
trying to convert. Then the remainder is discarded (actually made
part of the binary number) and the number that remains (half of
the previous value less any fractional part) is divided by 2 again
until the result is zero. Then what is left is the binary value. Let's
look at a typical sample number, say 200:

200/2 = 100 remainder = 0
100/2 = 50 remainder = 0
50/2 =

25/2 =

12/2 =

6/2 =
3/2 =

1/2 =

25 remainder = 0
12 remainder = 1
6 remainder = 0
3 remainder = 0
1 remainder = 1
o remainder = 1

Note that the division continued until the result of the division by
2 was zero. Copying down the binary number in the reverse order
of its remainders, the result is :

11001000

Referring to the table again, you can see that this is the value of
128 + 64 + 8 = 200, which is correct! This technique works for
any whole number.

This technique is used in the program that follows . There is a
reason for the splitting of a number into its binary parts . A sample
program demonstrating this will follow immediately after the sub
routine description.

The memory system of your ATARI Home Computer is eight
bits wide . This means that the contents of any of the different
memory locations in this machine can be represented by a series
of eight binary digits. This also means that the maximum decimal
value that can be found in any memory location is 255. If you
recall when PEEK and POKE were introduced, the maximum value
specified was 255. Now you know how this number came about.

If we are going to split a number from one value into eight
values , the splitting technique might be similar for all of the eight

190 ATARI BASIC TUTORIAL

different pieces. So it would be most efficient to use an array to
hold the eight pieces. Let 's define an array called BIN

5 DIM BIN(S)

Now we are going to define two subroutines, one that uses an
other one.

The first subroutine is one that does the dividing by 2 and then
defines that the number is now half of what it was to start with
(see the explanation of binary splitting in the preceding section).
This subroutine is as follows:

2000 Yl = INT (Y/2)
2010 BIT = Y - Yl*2
2020 Y = Yl
2030 RETURN

Line 2000 takes the value of Y, divides it by 2, and deliberately
throws away the remainder; line 2010 says that the remainder bit
equals the original value minus the value divided by 2 multiplied
by 2 after the remainder was discarded; finally, line 2020 says
the new value of Y is half what it started with. Then a RETURN is
at line 2030.

This subroutine does everything shown in the preceding ex
ample except for providing a place for putting the values to
gether. That is done by the routine that uses this subroutine
(assuming, for now, that all numbers to be converted are 255 or
less):

1000 FOR N = 1 TO S
1010 GoSUB 2000
1020 BIN(N) = BIT:REM SAVE THE BIT CALCULATED
1030 NEXT N

Now for a short routine which can test this subroutinegro.up:

10 PRINT "ENTER INTEGER BETWEEN 0 AND 255"
20 INPUT D
22 IF D = 0 THEN 26
24 IF D < 1 OR D > 255 THEN 10
26 IF Y - 2 * INT (Y/2) <> 0 THEN 10

INTRODUCTION TO SUBROUTINES 191

30Y = D
40 GoSUB 1000

This does the conversion, now for a presentation routine

50 SUM = 0
60 FOR N = 8 TO 1 STEP - 1

Here is the first time we're demonstrating that the steps can be
minus as well as plus.

70 SUM = SUM*lO + BIN(N)
80 NEXT N

This makes a binary number into a decimal number consisting of
a string of binary digits.

90 PRINT "BINARY EQUAL IS: ";SUM
100 GOTO 10

The reason we chose to reconvert the real binary number into
a decimal "equal" was because it is one of the easiest ways to
"suppress leading zeros." This means that if there are any zeros
in front of the value, they don't get printed by ATARI BASIC. This
prevents the number 1 from being printed as 00000001.

However, there are times when you want to see all of the zeros,
both leading and included zeros. Then, instead of the preceding
lines 50 through 100, you would use something like the following

50 V = ASC("o")
55 PRINT "THE FULL BINARY VALUE IS: ";
60 FOR N = 8 TO 1 STEP - 1
70 PRINT CHR$ (V + BIN(N));
80 NEXT N
90 PRINT
100 GOTO 10

This prints all of the zeros, both within the value as well as the
leading zeros. You may find statements 50 and 70 interesting.
We have converted from a character value to an ordinary number.
Then, we used the ordinary number to calculate a character value
to print.

192 ATARI BASIC TUTORIAL

Let's change the program one more time, then RUN it again.
This time the PRINT statement will print either a blank space or
an asterisk. It is this latest version that wil l be used in the dem
onstration program that follows. Again , lines 50 through 100 are
what we change, as follows:

55 PRINT "THE BINARY VALUE APPEARS AS: ";
60 FOR N = 8 TO 1 STEP - 1
70 IF BIN(N) = 0 THEN PRINT " ";
75 IF BIN(N) = 1 THEN PRINT "*";

80 NEXT N
100 GDTO 10 .

Now, we will use the last part of the demonstration program for
another purpose, as a subroutine to somethi ng else. Just for the
sake of completeness, the entire final version of the program is
contained here.

The purpose of this program is to show you how the characters
are formed on the screen. You will see that the ATARI Home
Computer stores the character set as a series of eight memory
locations in the Operating System area of the memory. When it
wants to produce a character on the screen, part of the ATARI
Home Computer called ANTIC figures out which character it is ,
then goes into the memory to find the bits of which the character
is made. This program does the same thing.

The character set for the computer starts at location 57344,
and contains 1024 total locations.

1 GR.o : REM CLEAR THE SCREEN
3 DIM BIN(8):REM SAVE SPACE FOR BINARY RESULT
15 X = 57344:REM START OF CHAR. SET
20 FOR CH = 0 TO 127:REM 128 CHARACTERS
22 PRINT "THE CHARACTER BELOW BEGINS AT ";X
25 FOR LN = 0 TO 7 :REM 8 LINES EACH CHARACTER
30 Y = PEEl'l(X)
35 GOSUB 1000
40 GOSUB 60
42 X=X+ 1
45 NEXT LN :REM DO NEXT LINE OF THIS CHARACTER

INTRODUCTION TO SUBROUTINES 193

48 PRINT
50 NEXT CH:REM DO NEXT CHARACTER
52 END
60 FOR N = 8 TO 1 STEP - 1
70 IF BIN(N) = 0 THEN PRINT " "; :GOTO 80
75 IF BIN(N) = 1 THEN PRINT "*";
80 NEXT N
85 PRINT
90 RETURN
1000 FOR N= 1 TO 8
1010 GOSUB 2000
1020 BIN(N) = BIT:REM SAVE THE BIT FOUND
1030 NEXT N
2000 Y1 = INT (Y 12)
2010 BIT = Y - Yl*2
2020 Y= Yl
2030 RETURN

If you wish , you can substitute line 75 with a cursor character
instead of the asterisk. You can embed a cursor into the PRINT
statement by pushing the ATASCII key (PI), then the space
bar, then the ATASCII key again , just after the first quote and after
the last one. This will make a more solid display.

Subroutines have many other possible uses. You will see more
of them used in Chapter 8.

REVIEW OF CHAPTER 7

1. Subroutines can be a useful way of performing repeated
sequences of statements.

2. A subroutine is simply one or more statements which termi
nate in the ATARI BASIC keyboard RETURN .

3. No matter from where in a program a subroutine is entered,
it automatical ly knows where to go back to when the RETURN is
issued .

4. It is possible to structure a program so that one subroutine
calls another, which calls another, etc.

5. If you develop a number of different routines, each of which

194 ATARI BASIC TUTORIAL

works by itself, and if you want to do a program that calls for a
number of these functions, it may be possible to construct a
program as a series of subroutine calls. This may be the next
best thing to a program that writes programs .

CHAPTER

Getting Colorful, Getting Noisy

This chapter will give you an introduction to the capabilities of
the ATARI Home Computer in both graphics and sound. Until
now, we have only been using one color, specifically white on
blue for the printed background. The ATARI Home Computer has
a wide range of colors that can be displayed, and a large group
of graphics modes in which the displays can be produced. Now
we can look at some of these capabilities and see how they might
be included in some of your programs.

GRAPHICS CAPABILITIES

The text screen that we have been using is called graphics O.
Its basic capabilities are 24 lines of 40 characters each. In addi
tion to being used as a text printing screen, it may also be used
as a graphics screen for drawing lines and shapes. But this sub
ject will be discussed later, after demonstrating some of the other
graphics modes and their color capabilities . Plotting and drawing
in graphics 0, 1, and 2 are a bit confusing and it would be better,
perhaps, to get the color handling straight before looking at the
"exceptions." For now, let's just treat the graphics 0 mode as a

195

196 ATARI BASIC TUTORIAL

text screen and show the ATARI BASIC keywords that may affect
what you see on the screen .

You have already used the POSITION and PRINT statements
on this text screen in the menu chapter. Just for a refresher, try
the following program. It demonstrates the outer limits of the po
sitioning area and labels those limits . It is for convenience that
X = 38 was chosen here; sometimes when you select 39, the
Screen Editor will add a blank line where it isn't wanted .

Note that this program will be used as the basis for the expla
nation and demonstration of all of the graphics modes the ATARI
Home Computer can display (from 0 through 11, anyway). All
that will be done is to change a couple of lines here and there ,
then RUN the program again .

You will see that some of the graphics modes have a higher
resolution than others. This means that some graphics modes
put more dots on the screen , which means that you can make
pictures or characters of finer detail in these modes. Here is the
demonstration program for graphics mode 0:

10 DIM X(4),Y(4),P(4),O(4)
20 GRAPHICS 0
3D FOR N = 1 TO 4
35 READ V:X(N) = V
40 READ V:Y(N) = V
45 NEXT N
85FORN = 1 T04
90 READ V:P(N) = V
95 READ V:O(N) = V
100 NEXT N
110 FOR N = 1 TO 4
120 POSITION X(N),Y(N)
130 PRINT " + ";
140 NEXT N
150 FORC = X(l)+l TOX(2)-1
160 POSITION C,Y(l):PRINT "-
170 POSITION C, Y(3):PRINT " -
180 NEXT C
200 FOR N = 1 TO 4

GETIING COLORFUL, GETIING NOISY 197

210 POSITION P(N),O(N)
220 PRINT X(N);",";Y(N)
230 NEXT N
1000 IlATA 2,2,38,2,2,20,38,20
1100 IlATA 3,3,34,3,3,19,34,19
9999 ENIl

What this program does is outline the boundaries of the screen,
then print, near the corners, the positions at which the boundaries
have been established.

The first FOR-NEXT loop reads the values of the X and Y posi
tions where the plus signs are to be placed, from DATA statement
1000. The second FOR-NEXT loop reads where on the screen the
X and Y identification numbers are to be placed . The third FOR
NEXT loop is used to actually position the data, and the last one
is used to label it correctl y. Note that we are printing one of the
things that was al so used for a plotting coordinate .

The color you see on the screen is a light blue. It can be
changed to other colors and other brightnesses . However, in
stead of explaining colors with graphics 0, it is much easier to
demonstrate the color capabilities using graphics 1. Try the dem
onstration program that follows . It shows five different colors on
the screen and will allow us to more easily explain about "color
registers" and their use.

If you want to simply leave the previous program in memory,
you can just type this one in directly. Then , add the line:

1 GOTO 4000

and RUN the program. As mentioned earlier, additional modifi
cations will be made to the previous program, so this piece can
be demonstrated on its own:

4000 GR.1 :REM NOTE THAT THIS ABBREVIATION IS OK
4010 IlIM Z$(20),G(4),H(4)
4020 Z$ = " COLOR REGISTER "
4021 G(4) = 16o:G(3) = 128:G(2) = 32:G(1) = 0
4022 H(4) = 96:H(3) = 128:H(2)= -32:H(1)=0
4030 FOR R = oT03
4040 FOR L = 1 TO LEN(Z$)

198 ATARI BASIC TUTORIAL

4050 IF ASC(Z$(L,L))< 65 THEN P = H(R + 1):GOTO 4070
4060 P = G(R + 1)
4070 PRINT#6;CHR$(ASC(Z$(L,L)) + P);
4080 NEXT L
4090 PRINT#6;CHR$(R + 48 + P)
4100 NEXT R

When you RUN this program, your display should appear as
follows:

COLOR REGISTER 0
COLOR REGISTER 1
COLOR REGISTER 2
COLOR REGISTER 3

in the top section of the screen, and

READY

at the bottom.
What you have just produced with this program is a split screen

graphics display, which is what is called for by ATARI BASIC,
GRAPHICS 1. Note that if you didn 't want the split screen, and
that the entire screen was to appear as the upper part, you would
have added 16 to the graphics mode number. In other words,
line 4000 would have been GRAPHICS 1 + 16. Try it if you wish.
However, for the discussion that follows, please replace the orig
inal line. Here is how the display got there:

In line 4000, you set up the graphics mode that you see. Line
4010 reserved space for the character string and for the "offset"
numbers. Lines 4021 and 4022 set the values of the offsets.
These offset numbers will be discussed shortly. Line 4030 sets
up a FOR-NEXT loop for writing the register number to the screen
(register 0, 1, 2, and 3). Line 4040 sets up another FOR-NEXT
loop to individually treat each one of the characters to be sent to
the graphics area of the screen . The rest of the program is dedi
cated to "adjusting" the value of the character to be printed so
that it appears in the correct color.

The graphics area of the screen is treated differently from the
text area (the last four lines you see in graphics mode 1). You

GETTING COLORFUL, GETTING NOISY 199

can print anything into the text area just using the regular PRINT
statement. Each time you print a line, the text screen "scrolls"
upward within that 4-line area just like it does in graphics mode
0; it is just that now there are only four lines to handle this way.

Graphics mode 1 is also a text graphics mode. You can print
any letter text into this area by using the PRINT statement, but
instead of the word PRINT alone, you must use the "word" PRINT
#6;. Examples of this are:

PRINT#6;"VALUE IS ";N
PRINT#6;A;" ";B
PRINT#6;" COLOR REGISTER ";R

Note that the PRINT #6; command cannot be used in direct com
mand mode once the program is ENDed; it will cause an ERROR
133. This is because this command is a special one in which the
#6 represents an " IOCB number, " which stands for Input/Output
Control Block. The statement PRINT #6; says to ATARI BASIC that
the character which would normally have been sent to the screen
by the normal PRINT statement is to be sent through the IOCB to
whichever device is being controlled by the IOCB. In this case,
the device is the graphics area of the screen. The Screen Editor,
then, is controlling only the bottom four lines, and it will scroll,
and so forth, normally.

This program modified the way the PRINT statement was used
because it now allows us to look at how certain of the ATARI
BASIC commands affect the color that appears on the screen. At
the moment, what you should see on the screen has COLOR
REGISTER 0 printed in a gold color, COLOR REGISTER 1 in light
green, COLOR REGISTER 2 in blue, and COLOR REGISTER 3 in
a light red. (Your television may be adjusted somewhat differently,
but these should be similar to the colors you see.) This was
printed for you so that you could see how the SETCOLOR state
ment works.

There are five different "Playfield" color registers in the ATARI
Home Computer, and four different "Player/Missile" color regis
ters as well. We won't be doing much in this book with the last
four registers , except for a demonstration in graphics modes 9
and 10.

200 ATARI BASIC TUTORIAL

A register is simply one of the memory locations within the
computer where some piece of information can be stored. In this
case, each register controls the part of the machine that controls
the color on the screen when a certain color register is selected .
You will see more about this later (see PLOT, DRAWTO).

The first four color registers are called 0, 1, 2, and 3. Their
contents determine the color that will be shown on the screen
when a particular "Playfield" data is shown on the screen. The
complicated PRINT #6; statement you saw earlier was just used
to make sure that the items we were printing would come out in
the colors we chose.

Note that in graphics mode 1 you can only print a limited part
of the character set. This is shown in Table 9-6 of the ATARI
BASIC Reference Manual, labeled "Internal Character Set." Bas
ically speaking, the characters that can be printed in this mode
(without any character set redefinition) are those from internal
character numbers 0 through 63. This covers the alphabet (all
capital letters), all numbers, and most basic punctuation marks.
This is a set of 64 characters representing the internal character
set values from 0 to 63 when the PRINT #6; statement is inter
preted. Each memory location can contain any number from 0 to
255, which is four times the number of characters that graphics
mode 1 will allow to be printed. What happens to the other 3/4 of
the number values? Well , you see the result on the screen. It
prints the same character set, but in four different colors. What
the "offset" numbers did was to adjust the value of each charac
ter when printed to make sure it would appear in the right color.

Now, we can use this information to explain what you see on
the screen. (Make sure the program to display the color registers
is still there, displayed on the screen .) Notice the bottom section
of the screen. This still looks like the text screen mode we used
prior to this chapter. It contains white letters on a blue back
ground . Now look up into the graphics area of the screen. Notice
that the data "COLOR REGISTER 2" is also printed in blue. This
is because graphics mode 0 uses the color contained in color
register 2 for the color which appears as its background display.

Now we can look at the ATARI BASIC command SETCOLOR.
You use the SETCOLOR command to put a value in the color

GETTING COLORFUL, GETTING NOISY 201

register. Any item on the screen that is supposed to be displayed
using that color register will appear in the color and brightness
you have put into this color register. The way the SETCOLOR
command appears is as follows:

SETCOLOR REGISTERNUMBER,KOLDR,BRITENESS

(I used a rotten spelling because ATARI BASIC uses the real
word COLOR as one of its commands and I didn 't want to con
fuse either you or ATARI BASIC.) REGISTERNUMBER is a num
ber in the range 0, 1, 2, 3, or 4. (You have not seen register 4 yet;
it will be shown soon.)

KOLOR stands for any number from 0 to 15. These are the
basic hues that can appear on the screen . Each of them can
appear in eight different brightness levels, allowing, for most
modes, the effect of 128 different colors that could be chosen to
appear on the screen . (Graphics mode 1 allows five different
colors on the screen simultaneously.)

BRITENESS is any even number from the choices 0, 2, 4, 6, 8,
10, 12, 14, where 0 means not really dark. The only color that will
allow you an almost black is color 0 (gray, or no color). Its lowest
brightness level gives the appearance of black (no brightness).
The maximum value for brightness is 14, which means so bright
it is almost white . Odd numbers are treated the same as the next
lowest even number, so only even values should be used to
distinguish the brightness levels. Try the typical direct command :

5ETCOLOR 2,6,2

Notice that it changed the color of the data "COLOR REGISTER
2" into a reddish purple. Notice that it also changed the color of
the background of the text area of the screen to the same color.
This demonstrates that graphics mode 0 gets its background
color from color register 2. Now issue the direct command:

5ETCOLOR 1,6,10

This means use color register 1, change the color to purple , but
make the brightness much higher than that of register 2. Notice
the difference between the brightness of the display of color
registers 1 and 2. Now issue the command (but before you touch

202 ATARI BASIC TUTORIAL

I;J::i"JiJ~I, make sure you are watching the text area of the screen
at the bottom so you can watch what happens to the text display):

SETCOLOR 1,6,14

Did you see what happened? The text got much brighter against
the background. This indicates that graphics mode 0 gets its
background color from color register 2 and its brightness from
color register 1.

Here is a chart showing the colors se lected when the SETCO
LOR command KOLOR is used:

KOLOR Value Color Selected

0 gray
1 li ght orange (gold)
2 orange
3 red-orange
4 pink
5 red
6 purple-blue
7 blue
8 blue
9 light-blue

10 turquoise
11 green-blue
12 green
13 yellow-g reen
14 orange-g reen
15 light-orange

You may experiment by issu ing various direct SETCOLOR com
mands, but notice that for each time you do, it might be best to
experiment only with color reg isters 0 and 3. This is because 1
and 2 affect the text screen appearance, and if the brightness of
1 is c lose to the brightness of 2, and the color of 1 is c lose to the
color of 2, it might be next to impossible to read the text area !

Instead of all of that typing , you cou ld try the following pro
gram. Again, it is short and can share the memory space with the

GETIING COLORFUL, GETIING NOISY 203

other two programs you have already entered. To perform this
program, simply type RUN once you have the program typed in:

5000 PRINT "PRESS ANY KEY TO CONTINUE"
5005 FOR N =0 TO 15
5010 FOR M = 0 TO 14 STEP 2
5020 POKE 764,255
5030 C = PEEK(764)
5040 IF C = 255 THEN 5030
5050 FOR X = 1 TO 50:NEXT X:REM SMALL DELAY
5060 SETCOLOR o,N,M
5070 PRINT "COMMAND WAS: SETCOLOR o,";N;",";M
5080 PRINT
5090 PRINT "PRESS ANY KEY TO CONTINUE"
5100 NEXT M
5110 NEXT N

Now RUN the program and follow instructions. There will be 128
different color combinations displayed in the graphics area line
labeled "COLOR REGISTER 0."

We have already established what color registers were used
for the display of graphics mode O. We have just shown also how
different text characters can be displayed in the graphics mode
1 screen. If you use the adjustment factors shown in the lines
4000--4100 program section, you will be able to PRINT #6; into
the graphics 1 top section in anyone of four different colors you
select yourself. But, we have stated earlier that graphics mode 1
allowed five colors to be displayed at one time. Where is the fifth
color? Well, the answer to that is the same as the answer to "How
do I use color register 47"

Color register 4 establishes the background color for all graph
ics modes. This is different from the background of graphics
mode 0, because its background is really the color of Playfield
number 2. It really looks as though the color of Playfield number
2 has been drawn as a set of squares on the screen, butting up
against each other so well there is no space between them . The
characters in graphics mode 1 appear then as "inverse video"
plots against the graphics mode 2 color.

204 ATARI BASIC TUTORIAL

Let's try a couple of experiments to show what color register 4
does. This assumes that the display for the previous program is
still on the screen. Type the direct command:

SETCOLOR 4,2,0

This says to use color register 4, set it to orange, and make it a
dark orange. That has lit up the whole screen in this orange color!
Thus, color register 4 controls the background color.

Notice that this color exists around the outer edges of the text
area also. If you were to now type the command GR.O, then again
the command SETCOLOR 4,2,0, you would see that orange color
now is the border around the text area here. Border/background
are, therefore, controlled by color register 4. Now change line
4000 of the sample program to read:

4000 GRAPHICS 2

and RUN the program again.
Graphics 1 gives you a graphics area that is normally used for

printing text material, and a text screen of four lines at the bottom.
Graphics 2 does the same, but in different sized letters. Graphics
1 will allow you to print up to 20 lines of these larger letters (20
characters per line instead of 40) or, if you are using graphics
1 + 16 (deletes the text area), lets you use 24 lines of characters.

In graphics 2, the letters are twice as tall as in graphics 1, and
twice as wide as in graphics O. So graphics 2 allows up to 10
lines of 20 characters each, or graphics 2 + 16 allows up to 12
lines.

Each time a PRINT#6; command terminates without a semi
colon, it says there is an end of line there and that the next line to
be printed using the PRINT command should appear on the next
line. Examples are:

PRINT#6

This prints one blank line into the graphics area.

PRINT#6;"THIS LINE IS HERE"

This prints THIS LINE IS HERE, then whatever line comes next
starts in the first position of the next line.

GETTING COLORFUL, GETTING NOISY 205

When you get to the bottom of the "page" in the graphics area,
it does not scroll up like the graphics 0 area. Before adding any
more lines of characters, you must clear the screen first. None of
the other Screen Editor modes will work on this graphics area
(cursor up, cursor left, and so forth) , but the screen clear com
mand will work, as:

PHINT#6;" ~ "

which, as you may recall, was printed by the command se
quence: quote ~ lijljJII+(IJ!::tl1jl quote.

TRUE GRAPHICS

Now we come to the first "true" graphics mode, namely mode
3. It is called a true graphics mode because points can be plot
ted against a background, and lines can be drawn with those
points.

Here is a complete reprinting of the original program shown at
the beginning of this chapter, changed for use with graphics
mode 3 instead:

5 REM GRAPHICS 3 DEMO PROGRAM
10 DIM X(4),Y(4),P(4),[J(4)
20 GRAPHICS 3
30FORN=1 T04
40 READ VX(N) = V
50 READ V Y(N) = V
60 NEXT N
70 FOR N = 1 TO 4
80 READ V:P(N) = V
90 READ VO(N) = V
100 NEXT N
110 FOR N = 1 TO 4
120 COLOR 1
130 PLOT X(N), Y(N)
140 NEXT N
200FORC = X(1)+ 1 TOX(2)-1

206 ATARI BASIC TUTORIAL

205 COLOR 2
210 PLOT C,Y(l):COLOR 3:DRAWTO C,Y(3)
230 POSITION C,Y(3)
240 PRINT#6;" - ";
300 NEXT C
255 END
1000 DATA 0,0,39,0,0,1 9,39,19
1100 DATA 1,1,15,1,1,18,15,18

RUN this program. Graphics 3 has a resolution of 40 blocks
across by 20 blocks down. (Graphics 3 + 16 deletes the text win
dow and gives a resolution of 40 by 24.) Each of these blocks
can be in anyone of four possible colors, where the color num
bers are not exactly as shown in the previous example. Specifi
cally, when you want to select a color to use, the color number
does not correspond exactly to the color register you set in the
first place. This will be explained later.

In all of the graphics modes from 3 through 8, when you want
to put a block of color on the screen (or a point of color-it
depends on how small the blocks are), you must first tell ATARI
BASIC which color you want to work with. It is like selecting a pen
that contains this color of ink. Each time you put that pen down
on the paper, it produces a blotch of that color. Once you select
a new pen , you can produce a new color. This is done with the
ATARI BASIC statement COLOR. An example of the COLOR
statement is:

205 COLOR 2

which means to select a color from the color register group to
use for any time an item is placed on the screen . The following
chart details what number specified in the COLOR statement
selects which color register. Unfortunately, if you say COLOR 1,
it does not select the color you specified in the SETCOLOR
statement for register 1, so you must refer to this table or simply
remember which goes with which . Note that this information is
also available in the ATARI BASIC Reference Manual in a chart
titled "MODE, SETCOLOR, COLOR TABLE."

GETTING COLORFUL, GETTING NOISY 207

FOR MODES 3, 5, AND 7:

The command COLOR 0 selects COLOR REG.4
The command COLOR 1 selects COLOR REG.O
The command COLOR 2 selects COLOR REG.1
The command COLOR 3 selects COLOR REG.2

Graphics modes 3, 5, and 7 are the four color graphics modes.
When you are trying to place points on the graphics area, you
can "PLOT" points in one of three possible colors. So you could
think of these as colors 1, 2, and 3 (corresponding to color reg
isters 0, 1, and 2). The PLOT command is the instruction to ATARI
BASIC to place a colored block onto the screen at the X,Y coor
dinates specified with PLOT. That block is to be of the color that
was last specified in the COLOR statement. The PLOT statement
basically has the same effect as the combination of:

POSITION X, Y

and

PRINT CHRffi(l'iOLOR)

An example PLOT statement looks like this:

PLOT X,Y

which assumes that it has been preceded somewhere by a state
ment of:

COLOR x

so it knew what color to use. If x is not specified, COLOR 0 is
used (background) .

For these graphics modes, we can consider COLOR 0, being
the background or border, as "no color." This essentially means
that if you plot in other colors against this background , then later
use COLOR 0, those points now plotted will disappear against
the background .

One of the things you may notice about the preceding program
is that line 240 is still the same as it was before, in the mode 0

208 ATARI BASIC TUTORIAL

demonstration program. Even though we are now using COLOR
and PLOT, the POSITION and PRINT statements sti ll function in
this graphics mode. Notice also that in line 205, a color is se
lected for the top line of the drawing. In line 210, a color is se
lected for the middle section of the drawing. But a different color
appeared along the bottom line. This is because we are using
the PRINT statement with the character" - ". The effect of using
a character with this graphics mode is to select the color auto
matically without a separate COLOR statement. All you need to
do is to print a character that has the right combination of "bits"
and it will perform the same task as separately specifying a COLOR
and then PLOTting a point. The letters P,Q,R , and S work just fine
for this sort of thing. For example, in line 240, substitute a P for
the hyphen and RUN the sample program again. Now the bottom
line is "empty" because it has been plotted in the background
color. The character P selected "COLOR 0" which is really color
register 4 per the chart shown earlier. Thi s is the background
color.

Likewise, the letters Q, R, and S when printed into this mode,
or modes 5 or 7, have the same effect as select ing COLOR 1, 2,
or 3, respectively, prior to a PLOT statement. Try them if you wish.
Now change line 20 to read:

20 GRAPHICS 4

and RUN the program again. You will see the display shrink to 11
4 of its original size. You can plot twice as many points in both
the X and Y directions in graphics 4 as you can in graphics 3.

One other command that is new to this demonstration program
is the DRAWTO command. It takes the last graphics point plotted,
wherever it might be or. the screen, and draws a best possible
connection between that last point and the new point specified,
using whatever color is in effect at the time. It does not matter in
which color the last point was plotted . For example, a point may
be plotted in the background color, then a line may be drawn in
another color from that " invis ible" point to a new point, in a visible
color if desired. An example would be to add the following lines
to the latest program, which now demonstrates graphics 4:

GETTING COLORFUL, GETTING NOISY 209

255 COLOR O:REM USE BACYiGROUND COLOR
300 PLOT 60,O:DRAWTO 65,35
310 COLOR l:DRAWTO 25,35

and RUN it again. Notice that only one line segment has been
made visible on the screen . The first segment kept the computer
busy for a little while, but we only got to see the second line
segment because the first was plotted in the background color.
Now change line 20 to read :

20 GRAPHICS 6

and RUN it again.
Both graphics 4 and 6 are two-color modes. Each can show

just the background color (specified by SETCOLOR 4, but se
lected by the command COLOR 0), and the color from color
register 0 (specified by SETCOLOR 0, selected by the command
COLOR 1). Using mode 4, you can plot 80 by 40 dots on the
screen in the single color against any selected background. Us
ing mode 6, you can plot 160 by 80 dots, as you can see from
the change in the size of the display. If you specify mode 4 + 16
or mode 6 + 16, the text window disappears and you can plot 80
by 48 dots (mode 4 .. . now mode 20), or 160 by 96 dots (mode
6 . . . now mode 22) in that single color. Now change line 20 to
read:

20 GRAPHICS 5

and RUN it again. This gives you the same size display and the
same number of plotting points as mode 4, but four colors are
allowed.

If you now change line 20 to read:

20 GRAPHICS 7

and RUN it again, it gives you the same size display and number
of points as mode 6, but four colors are allowed. In each case of
four colors used, the color selections are made as shown in the
chart for mode 3.

Modes 6 and 7 have the ability to produce 160 dots across by

210 ATARI BASIC TUTORIAL

80 dots down (or 96 if mode + 16 is specified). Why would any
body use a two-color mode when a four-color mode is available
having the same number of dots? Well , the four-color mode takes
nearly twice as much memory to store the screen image. In some
cases, when the program is very large, it may be critical that the
memory usage be kept to a minimum for the display.

Anyway, just to prevent you from thinking that the different dis
plays for the higher numbered modes are simply smaller, you
should make a change in the DATA statement, line 1000, so that
it can reflect the full size of the display. The contents of the DATA
statement for each mode can include the outer limits of the mode,
such as, for example, mode 7.

Mode 7 can plot 160 points in the X direction and, if the text
window stays there, 80 points in the Y direction . The upper left
hand corner of the graphics "window," as it is called, is at 0,0,
which means X = 0, Y = O. Therefore, the plotting capability is from
0,0 to 159,0 as the upper left and right corners, to 0,79 to 159,79
as the lower left and right corners. Make sure that line 20 reads

20 GRAPHICS 7

and then change the DATA statement to include all of the limits
for this mode:

1000 DATA 0,0, 159,0, 0,79, 159,79

You don't have to put in the spaces, it was just done to make it
easy for you to see the relationship between the data and how it
was included in the statement.

Now RUN the program again. This time the graphics 7 screen
is drawn to its limits along the top, bottom, and side edges. If you
have still included lines 255 through 310, you will see the for
merly invisible line now. That is because it is plotted against a
color which is not the background. Finally change line 20 to read :

20 GRAPHICS 8

and RUN it again. This mode has the highest resolution of all,
specifically 320 dots across by 160 dots down (192 down if
graphics 8 + 16, which is graphics 24, is used). This mode is also

GETTING COLORFUL, GETTING NOISY 211

limited in the color selections, but its limitations are more similar
to graphics ° than any other mode. In particular, graphics 8 can
have only one color, with two different luminances or brightness
values. The color of the background for mode 8 will be that spec
ified in color register 2, with the brightness of the background
also determined by that register. The graphics point that is plot
ted will have the same color as the background color (from reg
ister 2) , but will have the brightness specified in register 1 (refer
to the early discussions of mode 0, for example).

Practice, if you wish, using the POSITION or PLOT statements,
along with the DRAWTO statement to form lines in the various
graphics modes. One such application might be the drawing of
curves. Here is a sample program just to get you thinking of other
possible applications:

1 REM: THIS PROGRAM DRAWS A CIRCLE
2 GR.7
3 TB = Bo:T4 = 4o:T2 = 20
4 COLOR 1
5 SETCOLOR 1,14,14
10 FOR V = 0 TO 6.2B STEP 0.06
20 X = TB + T2*SIN(V)
30 Y = T4 + T2*COS(V)
40 PLOT X,Y
50 NEXT V

In this program, T2 specifies the radius of the circle, and T8 and
T 4 specify the position of the center of the circle in X and Y
coordinates , respectively.

Now, a final note before leaving this brief introduction to graph
ics is the use of PLOT and COLOR in modes 0, 1, and 2. It was
specified that these graphics modes were the exceptions to the
rule that the COLOR statement normally represented the selec
tion of which color register was to be used to show something on
the screen. Well, in modes 0, 1, and 2 the COLOR information is
what is used to determine what is placed on the screen all right,
but it is CHARACTER data instead of color-register data. This
may be illustrated with this short program:

212 ATARI BASIC TUTORIAL

5 REM COLOR DATA IN MODES 0,1 , AND 2 DEMO
10 GR.o:REM COMPUTER WILL SPELL IT OUT WHEN LISTED
15 POKE 752,1 :REM MAKE CURSOR VANISH
17 PRINT" ":REM GET RID OF EXTRA CURSOR
20 COLOR ASC("A')
30 PLOT 0,0
40 DRAWTO 39,20
50 POKE 752,0:REM CURSOR COMES BACK

You can repeat this for mode 1 also, with no changes other than
line 10 to show mode 1, and line 40 changed to read:

40 DRAWTo 19,20

since each character is twice as wide and has only 20 characters
across. Try mode 2 also, changing line 10 and then changing line
40 to read:

40 DRAWTo 19,10

SOUND CAPABILITIES

The ATARI Home Computer has a set of four sound generators
that may be used to produce interesting sound effects . This book
will explain how the sound generators can be used, then leave it
up to you to experiment with various combinations of sounds to
find those that might be useful .

The four sound generators are called 0, 1, 2, and 3. You can
turn them on using the ATARI BASIC statement SOUND. These
generators are interesting because any combination of one, two,
three, or four may be going at the same time if you wish . Also,
once you start them up, they keep going on their own until you
switch them off or until a program ends. (The only other thing that
normally affects them is any transfers of data to or from the disk
or cassette, because parts of the sound generators are used for
communicating with these devices.)

The SOUND statement is structured as shown in the following
example:

SOUND VOICE, PITCH, DISTORTION, VOLUME

GETTING COLORFUL, GETTING NOISY 213

where VOICE is any number from the group 0, 1, 2, or 3. It tells
which of the four sound generators should be given the com
mand contained in the rest of the group of numbers.

PITCH is any number from 0 to 255. A high number results in a
low note, a low number results in a high note. Table 10.1 of your
ATARI BASIC Reference Manual contains the pitch values for the
common musical notes for three octaves of the musical scale.

DISTORTION is any even number from 0 to 14, which says
what kind of distortion should be applied to the tone this genera
tor produces. A value of 10 gives an almost pure tone, where any
other value gives varying degrees of distortion from a buzzing
sound to a hiss .

VOLUME is a number from 0 to 15 which says how loud this
generator should be. A value of zero effectively turns off the
generator. A value of 15 is very loud , with other values represent
ing sound levels in between. The ATARI BASIC Reference Man
ual cautions that if more than one sound generator is used , then
the total of all of the VOLUME values should not exceed 32. This
is to keep the system operating in a range where the tones pro
duced can be sent out correctly without unintentional distortion.
Try the following direct command:

SOUND 0, 121, 10, 8

This turns on sound generator O. The tone it produces is middle
C because the number 121 was selected for PITCH. The distor
tion is minimum (almost a pure tone) because the number 10 was
selected for DISTORTION . The volume value is 8, roughly a "nor
mal " volume level.

Use the Screen Editor cursor move controls to move the cursor
up to the sound line, and change the value of the volume from 8
to 6, then press ';J#uIJjm. Notice that the sound level de
creases. But also notice that the generator continues to run. This
allows you to set a value, then have the program do other things
with the sound still running .

Now move the cursor up again, this time change the sound
generator number to 1, and touch 'jJ3i.'JjW Now two different
generators are sending out the same note.

Now move the cursor up again, this time change the pitch

214 ATARI BASIC TUTORIAL

value to 144 and touch liJ3IiIJiJ~I. Now there are still two gener
ators, but this time they are playing different notes. You can ex
periment with many different combinations of PITCH, DISTORTION,
and VOLUME.

Here is a short program that will vary just the PITCH, so you
can hear what range of PITCH the computer can produce. Each
of the four sound generators is used for all possible pitches. All
four sound alike, so it doesn't matter which one you choose to
use or in which order.

5 REM SOUND STATEMENT TESTER
10 FOR N = 0 TO :3:REM N IS GENERATOR NUMBER
20 FOR M = 1 TO 255: REM M IS PITCH
30 D = 10 : REM D IS DISTORTION
40 V = 8: REM V IS VOLUME
50 SOUND N, M, D, V
60 NEXT M
70 NEXT N

REVIEW OF CHAPTER 8

1. ATARI BASIC allows the screen to show many different kinds
of displays. These displays are called by the ATARI BASIC state
ment GRAPHICS X, where X represents a number from 0 to 15
(ATARI 600XL, 800XL, 1200XL, 1400XL, 1450XLD) or 0 to 11
(ATARI 400/800). In addition, modes 1 through 8 can be pre
sented without a "text window" by adding 16 to the graphics
mode number (modes 17- 24).

2. ATARI BASIC can control the color produced on the screen
in various areas by the use of the statement SETCOLOR P,Q,R,
where P is the color register number, Q is the actual color num
ber, and R is the brightness of that color.

3. ATARI BASIC selects the color to be used to plot a point on
a graphics screen or a character on a character screen using the
COLOR statement. The value used with the COLOR statement,
for example:

COLOR Z

GETTING COLORFUL, GETTING NOISY 215

must be 0 through 255 for graphics 0, 1, 2, 17, and 18; 0 through
1 for the two-color modes 4, 6, 20, 22, and 8; 0 through 3 for the
four-color modes 3, 5, 7, 19, 21, and 23; and 0 through 15 for the
special modes 9, 10, and 11 .

4. The ATARI sound registers can be started using the ATARI
BASIC SOUND command as:

SOUND REGISTER,FITCH,DISTORTION, VOLUME

where the REGISTER numbers are 0 to 3, the PITCH can be 0 to
255, the DISTORTION can be even numbers from 0 to 14 with a
value of 10 giving little distortion, and the VOLUME can be 0 to
15 with 0 the softest and 15 the loudest.

REFERENCES

1. ATARI® BASIC Reference Manual. ATARI ®, Inc., Sunny
vale, CA, 1979.

2. Poole, Lon. Your ATARI® Computer. Osborne/McGraw-Hili ,
Berkeley, CA, 1982.

3. Chadwick, Ian . Mapping the ATARI®. COMPUTE! Books,
Greensboro, NC, 1983.

4. COMPUTE! Magazine. COMPUTE/'s First Book of ATAR/®'
COMPUTE! Books, Greensboro, NC, 1981 .

5. COMPUTE! Magazine. COMPUTE/'s Second Book of
AT ARI@ COMPUTE! Books, Greensboro , NC, 1982.

216

INDEX

A

Absolute cursor positioning, 151-
153

Absolute-value (ABS) function ,
60-61

Accumulators, 90
AND operator, 42, 48, 50
Arctangent (ATN) function, 64
Arithmetic operations , 44-47

addition, 45
division, 46
exponentiation, 47
multiplication, 46
operator precedence, 47-50
subtraction, 46

Array(s), 116-120, 134-136
index, 117-118
initializing, 134-135

ASC function, 87-88
ATARI Disk Operating System,

107-111
formatting a blank disk, 109-

111
linking programs on disk, 111-

114

ATASCII,67
key code conversion table,

locating, 167-168
AUTOREPEAT function, 15

B

Binary numbers, 187-193

C

Call, subroutine, structure of,
178-183

Character strings, 67-90
ASC function, 87-88
CHR$ function, 87-89
comparison features , 85-87
definition of, 67
LEN function , 75-78
saving space for, 68-70
STR$ function , 78-79
VAL function, 78-79

CLOAD command, 101
Color registers , 197-205
COLOR statement, 206-211

217

218 INDEX

Common logarithm (CLOG)
function, 62

Compound statements, 37-38
Computed GOTO, 52
Cosine (COS) function, 64
CSAVE command, 100-101
Cursor control, 13-16

absolute positioning, 151-153
from within a program, 145-

151

o
DATA statement, 134-141
Decimal-to-binary conversion ,

187-193
Deferred mode, 12
Degrees (DEG) function, 63
DIM statement, 68-70,116-117
Disk Operating System (DOS),

107 -111
formatting a blank disk, 109-

111
linking programs on disk, 111-

114
DRAWTO statement, 208-212

E

END statement, 25, 183
ENTER command, 104, 105

F

Flowchart, 93
Flow narrative, 95
FOR-NEXT loops, 121-134

nesting, 124-127

G

Game controllers Uoysticks),
156-164

GOSUB statement, 178-183
GOTO command, 25
Graphics capabilities, 195-212

true graphics, 205-212

IF-THEN statement, 31,40-44
Immediate commands, 12-13
Index, array, 117-118
INPUT statement, 35-37
Integer (INT) function, 52-54
Internal key code, 164-165

J

Joysticks, 1 56-1 64

Keyboard, 13
Key code

K

conversion table, ATASCII,
locating, 167-168

internal, 164-165
Keywords

ABS, 60-61
AND , 42, 48, 50
ASC,87-88
ATN,64
CHR$,87-89
CLOAD,101
CLOG, 62
COLOR, 206-211
COS, 64
CSAVE, 100-101
DATA, 134-141
DEG,63
DIM, 68-70, 116-117
DRAWTO, 208-212
END, 25,183
ENTER, 104, 105
EXP,63
FOR, 121-134
GOSUB, 178-183
GOTO,25
GRAPHICS (n), 195-212
IF, 31,40-44
INPUT, 35-37
INT, 52-54
LEN, 75-78
LIST, 23-25, 33, 103-105
LOAD, 103

Keywords-cont.
LOG, 62
NEW, 25
NEXT, 121-134
NOT, 48, 58
OR, 43, 48, 50
PEEK,154
PLOT, 207-211
POKE,154
POSITION,151-153
PRINT, 12
PRINT#6; , 199-205
RAD,63
READ, 136, 141
REM,54
RESTORE, 141
RETURN,179-183
RND,142-144
RUN, 12,23,106
SAVE,102-103
SETCOLOR, 199-204
SGN,58-59
SIN,63-64
SOUND, 212-214
SQR, 59-60
STEP, 122-124
STICK,156
STRIG, 156, 159, 163
STR$,78-79
THEN, 31,40-44
TRAP, 43-44, 98-99
use of, 58
VAL,78-79

L

Length (LEN) function , 75-78
Line length, 16-17

logical line, 17
physical line, 17

LIST command, 23-25 , 33, 103-
105

LOAD command, 103
Loops

FOR-NEXT, 121 -134
IF-THEN,121
nesting, 124-127

Math functions
ABS, 60-61
ATN,64
CLOG,62
COS, 64
DEG,63
EXP, 63
INT, 52-54
LOG,62
RAD, 63
SGN, 58-59
SIN, 63-64
SQR, 59-60

M

INDEX 219

Modular programming , 93

N

Natural logarithm (LOG) function,
62

Nesting loops, 124-127
NEW command, 25
NOT operator, 48, 58

o
Operator precedence, arithmetic

operations, 47-50
OR operator, 43, 48 , 50

P

PEEK statement, 154
Physical line, 16-17
PLOT statement, 207-211
POKE statement, 154
POSITION statement, 151-153
Powers of 2, 187-189
PRINT command, 12
PRINT#6; command, 199-205
Print-tab stops, 51
Programming, 20-26

definition of, 12
Program planning, 92-99
Program save and load, 99-114

CLOAD command, 101
CSAVE command, 100-101

220 INDEX

Program save and load-cont.
Disk Operating System (DOS),

107 -111
formatting a blank disk, 109-

111
linking programs on disk,

111-114
ENTER command, 104, 105
LIST command, 103-105
listing programs to tape or

disk, 103-1 05
LOAD command, 103
loading "named" files from

cassette or disk, 103
RUN command, 106
SAVE command, 102-103
saving "named" programs on

cassette, 101-103
saving "named" programs on

disk, 103
tokenized form, 99-100

Prompt, 36

R

Radians (RAD) function, 63
Random (RND) function, 142-

144
READ statement, 136, 141
REM statement, 54
RESTORE statement, 141
RETURN statement, 179-183
Round-off error, 52
RUN command, 12, 23, 106

S

SAVE command, 102-103
Scientific notation, 36
Screen Editor

accessing from within a
program, 145-151

character erase, 148-149
clear screen, 146
cursor down, 146-147
cursor left, 147

Screen Editor-cont.
accessing from

cu rsor right, 147
cursor up, 147

functions , 13-23
character delete , 19, 22
character insert, 19, 21
clear screen, 23
cursor down, 15
cursor left, 15
cursor right, 16
cursor up, 14
line delete, 18, 20
line insert, 18, 19

SETCOLOR command, 199-204
Sign (SGN) function, 58-59
Sine (SIN) function, 63-64
Sound capabilities, 212-214
Square-root (SQR) function, 59-

60
STICK function, 156
STRIG function, 156, 159, 163
Strings, character, 67-90

ASC function, 87-88
CHR$ function, 87-89
comparison features, 85-87
definition of, 67
LEN function, 75-78
saving space for, 68-70
STR$ function, 78-79
VAL function, 78-79

Subroutines, 177-193

T

TRAP statement, 43-44, 98-99
True graphics, 205-212

U

User input, maintaining control
of,164-175

V

VAL function, 78-79
Variables, 26-30

S~Ar~_~_&_NT._S __________________ __

ATARI® BASIC TUTORIAL

More Books
for

ATARI® Owners!

Leads you through the practical ins and outs of programming in ATARI BASIC, including
color graphics and sound, on all ATARI home computer systems. Uses short, workable
program elements that become more complex as your knowledge increases. Has many
self-documenting programs. By Robert A. Peck. 224 pages, 6 x 9, comb. ISBN
0-672-22066-0. © 1983.
Ask for No. 22066 $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR ATARI®,
Book 1
Thirty-eight fascinating and useful ATARI BASIC programs that run on ATARI 400, 800,
or 1200XL computers! Inc ludes 10 educational , 7 on business and investment, 6 for the
home, 6 using graphics and sound , a Tarot card reader, and 4 utilities. By Howard Beren·
bon. 184 pages, 8 V2 x 11 , comb. ISBN 0-672·22075-X © 1983.
Ask for No. 22075 $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR ATARI®,
Book 2
Another goldmine of ATARI BASIC programs you can key into ATARI400, 800, or 1200XL
computers ! Includes two dungeons as part of 11 educational programs; a monthly
budget , food analysis , and week ly calendar plus 8 more home applications; a series on
Money and Investment; 2 programs on ESP; and a Dungeon of Danger! By Howard
Berenbon. 264 pages, 8 1/2 x 11 , comb. ISBN 0-672-22092-X. © 1983.
Ask for No. 22092 $15.95

THE KIDS' COMPUTER IQ BOOK
Usable by the whole family as a booster in computer literacy! Offers a basic foundation
in computer science while it covers the hows and whys of today 's computers and forms
a good introduction to problem-solving and programming . By Eileen Buckholtz and Dr.
Joanne Settel. 152 pages, 5 V2 x 8 V2, sof t. ISBN 0-672-22082-2. © 1983.
Ask for No. 22082 $5.95

WHAT DO YOU DO AFTER YOU PLUG IT IN?
Complete tutorial covers mic rocomputer hardware, software, languages, operating
systems, data communicati ons, and more, foll owed by solutions to the practical pro
blems you ' ll meet while using them. By William Barden , Jr. 200 pages, 5 112 x 8 1/2, soft.
ISBN 0-672-22008-3. © 1983.
Ask for No. 22008 $10.95

HOWARD W. SAMS CRASH COURSE IN
MICROCOMPUTERS (2nd Edition)
An actual self-study course in one lay-flat volume, completely updated with new
chapters on 16-bit micros and BASIC programming , expanded coverage of applications
software, new photos, and more. Lets you learn about microcomputers and program
ming fast! No previous computer knowledge necessary. By Louis E. Frenzel, Jr. 320
pages, 8V2 x 11 , comb. ISBN 0-672-21985-9. © 1983.
Ask for No. 21985 $21.95

USER'S GUIDE TO MICROCOMPUTER BUZZWORDS
Handy quick-reference that provides an understanding of the basic terminology you
need to become "computer literate." Contains many illustrations. By David H. Dasen
brock. 112 pages, 5V2 x 8V2, soft. ISBN 0-672-22049-0. © 1983.
Ask for No. 22049 $9.95

HOW TO MAINTAIN AND SERVICE YOUR SMALL
COMPUTER
Shows you simple procedures you can use to sharply reduce problems and down
time with your Apple'" II, TRS-80®, or other small computer. Also shows you how to
diagnose what's wrong , find the faulty part, make simple repairs yourself, and deal with
the repair shop when professional servicing is necessary. By John G. Stephenson and
Bob Cahill. 208 pages, 8V2 x 11 , soft. ISBN 0-672-22016-4. © 1983.
Ask for No. 22016 $17.95

MEGABUCKS FROM YOUR MICROCOMPUTER
Shows you how to make money using your creative talents through your mIcrocom
puter, and includes details for doing your own writing , reviewing , and programming. By
Tim Knight. 80 pages , 8 V2 x 11 , soft. ISBN 0-672-22083-0. © 1983.
Ask for No. 22083 $3.95

ELECTRONICALLY SPEAKING: COMPUTER SPEECH
GENERATION
Learn to generate synthetic speech with a microcomputer. Includes techniques, a syn
thesizer overview, and adv ice on problems. By John P. Cater. 232 pages, 5V2 x 8V2 ,
soft. ISBN 0-672-21947-6. © 1983.
Ask for No. 21947 $14.95

USING COMPUTER INFORMATION SERVICES
Shows you how to use your microcomputer to communicate with the national computer
networks. Clearly explains what's available, how to retrieve it automatically, how to use
your computer as a powerful communications tool, and more. By Larry W. Sturtz and
Jeff Williams. 240 pages, 5V2 x 8V2, soft . ISBN 0-672-21997-2. © 1983. _
Ask for No. 21997 $12.95

These and other Sams Books and Software products are available from better retailers
worldwide, or directly from Sams. Call 800-428·SAMS or 317-298-5566 to order, or to get
the name of a Sams retailer near you . Ask for your free Sams Books and Software
Catalog!

Prices good in USA only . Prices and page counts subject to change without notice.

ATARI is a registered trademark of ATARI , Inc.

TO THE READER
Sams Computer books cover Fundamentals - Programming - Interfacing
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educators, business owners, personal com
puterists and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what
your needs and interests are by completing
the following:

1_ I need books on the following topics:

2. I have the following Sams titles:

3. My occupation is:

___ Scientist, Engineer

__ Personal computerist

__ Technician, Serviceman

__ Educator

__ D P Professional

__ Business owner

__ Computer store owner

__ Home hobbyist

__ Student Other _________ _

Name (print) ______________________ _

Address ________________________ ___

City State _____ Zip ____ _

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 22066

Computer Direct 312/ 382-5050

ATARI®
BASIC Tutorial
• Written specifically for owners and users of ATARI® Computer Systems.

• Guides the reader step by step through the ATARI BASIC language-from
the most elementary concepts to more advanced programming techniques.

• Follows a progressive format-each chapter builds on knowledge
acquired in previous chapters.

• Concentrates on a user-interactive approach in order to have the reader
working with the computer while progressing through the book.

• Enables users who have perhaps run games and prepackaged programs
on their machines to learn how to produce useful programs of their own.

• Contains numerous examples of debugged, self-documenting programs,
including programs to demonstrate the color graphics and sound
capabilities of the ATARI Computer Systems.

Computer Direct
We Love Our Customers
Box 1001, Barrington, IL 6001 0

	Cover
	Preface
	Contents
	Introduction
	Interacting with the Machine.
	Computers Compute
	Stringing Along
	Designing a Program
	Oulling Data out of Different Bags
	Menu Please
	Subroutines
	Getting Colorful, Getting Noisy
	Index

