ATARI BASIC

)
)
J
)
)
)
)
)
)
)
)
;
)
.
;
D
)

‘a

‘a a a W ‘s

a a

‘a

1‘ {.

‘> > 2 2 ' ' 'a 'a 'a

V VU v UV Vv LY

L &

BASIC
REFERENCE
MANUAL

A

ATARI”
(v

Every viicit hias been mage
067N ATAR LT sean
WHDTON NG AnC upUdal NG Gl SO,
CULECY OF Lantel idtetla ilier
Crssin™s

Temar el dctaetaley o ets e
WXL ke Conttuters Howener bed
Coang et Cware ATARL INC 5 un

CANDC At g sclams tan by for ¢

Operatiar oF e ATARI
cerstanly
the ac

s de

G0 Gl it
Qe

or

ange

1085 ATARL NC Al igrs resened
No recreguct 0 oF s manaa o ar Y ROTIDT oty
ot ATARILINC

2rts s GllCwod Wm0l speCiIc & e Corm ssien

ERROR CODES

ERROR
CODE

- s WO NOOOEWN

- O

135
136
137
138
139
140
141
142
143
144
145
146
147
160
161
162
163
164
165
166
167
168
169
170
171

For explanation of Error Messages see Appendix B.

ERROR CODE MESSAGE

Memory Insufficient

Value Error

Too Many Variables

String Length Error

Out of Data Error

Number greater than 32767

Input Statement Error

Array or String DIM Error

Argument Stack Overflow

Floating Point Overflow/
Underflow Error

Line Not Found

No Matching FOR Statement

Line Too Long Error

GOSUB or FOR Line Deleted

RETURN Error

Syntax Error

Invalid String Character

LOAD program Too Long

Device Number Larger

LOAD File Error

BREAK Abort

10CB

IOCB Write Only

Invalid Command

Device or File not Open

BAD IOCB Number

I0CB Read Only Error

EOF

Truncated Record

Device Timeout

Device NAK

Serial Bus

Cursor Out of Range

Serial Bus Data Frame Overrun

Serial Bus Data Frame Checksum Error

Device Done Error

Bad Screen Mode Error

Function Not Implemented

Insufficient RAM

Drive Number Error

Too many OPEN Files

Disk Full

Unrecoverable System Data 110 Error

File Number Mismatch

File Name Error

POINT Data Length Error

File Locked

Command Invalid

Directory Full

File Not Found

POINT Invalid

CQ@ Q@ P "7 9 %P NNK NN NN NNHAOBGNONNNNOONNNBD BB |

d UV U U U U U U YUUO U YUY WYWYW YU U YU YU YUY YUY U YUYV Y Y Y Vv e e

CONTENTS
PREFACE
GENERAL INFORMATION
1 Terminology 1
Special Notations Used In This Manual 4
Abbreviations Used In This Manual 5
Operating Modes 6
Special Function Keys 6
1200XL Keys and Indicators 7
1200XL Self Test 8
Arithmetic Operators 9
Logical Operators 9
Operator Precedence 10
Built-In Functions 10
Graphics 10
Sound and Games 10
Wraparound and Keyboard Rollover 1
Error Messages 11
COMMANDS
2 BYE 12
CONT 12
END 12
LET 13
LIST 13
NEW 14
REM 14
RUN 14
STOP 14
EDIT FEATURES
3 Screen Editing 15
Control (CTRL) Key 15
Shift Key 15
Double Key Functions 16
Cursor Control Keys 16
Keys Used With CTRL Key 16
Keys Used With Shift Key 16
Special Function Keys 16
Break Key 16
Escape Key 16
ATAR! 1200XL Key Functions 17

PROGRAM STATEMENTS

FOR/NEXT/STEP 18
GOSUB/RETURN 19
GOTO 21
[F/THEN 22
ON/GOSUB 24
ON/GOTO 24
POP 25
RESTORE 27
TRAP 28
INPUT/OUTPUT COMMANDS
input/Output Devices 29
CLOAD 30
CSAVE 30
DOS 31
ENTER 31
INPUT 31
LOAD 32
LPRINT 32
NOTE 33
OPEN/CLOSE 33
POINT 34
PRINT 34
PUT/GET 35
READ/DATA 35
SAVE 36
STATUS 36
X0 37
Chaining Programs 38
Modifying a BASIC Program on Disk 38
FUNCTION LIBRARY
Arithmetic Functions 40
ABS 40
CLOG 40
EXP 40
INT a4
LOG a1
RND 41
SGN 41
SQR a1
Trigonometric Functions 42
ATN 42
COSs 42
SIN 42
DEG/RAD 42

Q0 Qe NnNNO0OOON00N0000000000000000000D

4 QU U U O U U U U VU U U U UUUUUUUYU Y UU U UY U YUY LY L

Special Purpose Functions 42
ADR 42
FRE 42
PEEK 43
POKE 43
USR 43

STRINGS

7 ASC 45

CHR$ 45

LEN 46

STR$ 46

VAL 46

String manipulations 47

DIM 50

8 ARRAYS AND MATRICES
CLR 51

9 GRAPHICS MODES AND COMMANDS

GRAPHICS 52
Graphics Modes 52
Mode 0 53
Modes 1 and 2 54
Modes 3. 5. and 7 55
Modes 4 and 6 55
Mode 8 55
Mode 9. 10 and 11 55
COLOR 56
DRAWTO 56
LOCATE 56
PLOT 57
POSITION 57
PUT/GET 57
SETCOLOR 58
X1QO (Special Fill Application) 61
SOUND AND GAME CONTROLLERS
10 SOUND 66
PADDLE 68
PTRIG 69
STICK 69
STRIG 69

—

1 1 ADVANCED PROGRAMMING TECHNIQUES

Memory Conservation 70
Programming In Machine Language 71
APPENDIX A BASIC RESERVED WORDS 76
APPENDIX B ERROR MESSAGES 81
APPENDIX C ATASCIl CHARACTER SET WITH DECIMAL/
HEXADECIMAL LOCATIONS 84
APPENDIX D ATARI 400/800/1200XL MEMORY MAP 93
APPENDIX E DERIVED FUNCTIONS 96
APPENDIX F PRINTED VERSIONS OF CONTROL CHARACTERS 97
APPENDIX G GLOSSARY 98
APPENDIX H USER PROGRAMS 102
APPENDIX | MEMORY LOCATIONS 119
APPENDIX J TABLE OF MODES AND SCREEN FORMATS 121
INDEX 123

QOGN DHHHODDDBBIDDIDDDDPPDPDPPPPPOPPPP PP O

VAN VAR VR TVEN VAR VAN VAR VAR VERV ALV VEE VAL VEE VAR VAR A" R " AR VR VN FEE VAR VIRV IR 7 IRV IR J

«/

a’

a 3 e e

PREFACE

This manual is not intended to *'teach’” BASIC. It is a reference guide to the com-
mands, statements, functions, and special applications of ATARI® BASIC.

Many of the programs and partial programming examples used in this manual
are photostats of listings printed on an ATARI printer. Some of the special symbols
in the ATARI character set do not appear the same on the printer; e.g., the clear
screen symbol ' =" appears asa } "', The examples in the text were chosen
to illustrate a particular function—not necessarily ‘‘good’” programming tech-
niques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of ATARI BASIC. For instance, Section 9 contains
all the statements pertaining to the unique graphics capabilities of ATARI Home
Computers. The appendices include quick references to terms, error messages,
BASIC keywords. memory locations, and the ATASCII character set.

As there is no one specified application for the ATARI Home Computer System,
this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the ATARI computer system’s
capabilities.

This revision of the manual includes information on the ATARI 1200 XL Home
Computer and the GTIA graphic modes. The ATARI 400/800 Home Computers may
not contain all the features in this manual.

|

@ % WY WY WY LDV VDDV VYLDV VDV V VDV VYV VDV YD D D

GENERAL 1
INFORMATION

This section explains BASIC terminology, special notations, and abbreviations used
in this manual, and the special keys on the ATARI Home Computer keyboard. It
also points to other sections where BASIC commands deal with specific applica-
tions.

TERMINOLOGY

BASIC: Beginner's All-purpose Symbolic Instruction Code.

BASIC Keyword: Any reserved word “‘legal’” in the BASIC language. May be used
in a statement, as a command, or for any other purpose. (See Appendix A for a list
of all “‘reserved words’" or keywords in ATARI BASIC.)

BASIC Statement: Usually begins with a keyword, like LET, PRINT, or RUN.
Keywords are shown in heavy capital letters.

Command String: Multiple commands (or program statements) placed on the
same numbered line if statement numbers are used, or the same logical line if
direct mode is used. The commands must be separated by colons.

Constant: A constant is a value expressed as a number rather than represented
by a variable name. For example, in the statement X = 100, X is a variable and
100 is a constant. (See Variable.)

Expression: An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Expressions can be
either arithmetic, logical, or string.

Floating Point Number: A number containing an integer part, a decimal point, and
a fractional part. The total number of significant digits in a floating point number,
excluding the exponent, is nine.

GENERAL INFORMATION 1

b

Function: A function is a computation built into the computer so that it can be
called for by the user's program. A function is NOT a statement; it is part of an ex-
pression. It is really a subroutine used to compute a value which is then
“returned’’ to the main program when the subroutine returns. COS (Cosine), RND
(random), FRE (unused memory space), and INT (integer) are examples of func-
tions. In many cases the value is simply assigned to a variable (stored in a
variable) for later use. In other cases it may be printed out on the screen im-
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are:

10 PRINT RNDOO)D (print out the random
number returned)

T ¥=100+008 045 (add the value re-returned
to 100 and store the total
in variable X)

Logical Line: A logical line consists of one to three physical lines, and is ter-
minated either by the RETURN key or automatically when the maximum logical
line limit is reached. Each numbered line in a BASIC program consists of one
logical line when displayed on the screen. When entering a line which is longer
than one physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. If RETURN is
not entered, then both physical lines will be part of the same logical line.

Operator: Operators are used in expressions. Operators include addition (+), sub-
traction (—), multiplication (*), division (/), exponentiation (A), greater than (>),
less than (<), equal to (=), greater than or equal to (> =), less than or equal
to(< =) and not equal to (< >). The logical keywords AND, NOT and OR are
also operators. The + and — operators can also be used as unary operators; e.g.,
-3. Do not put more than one unary operator in a row; e.g., ——3, as the computer
may interpret it incorrectly.

Physical Line: One line of characters as displayed on a television screen.

String: A string is a group of characters enclosed in quotation marks.
““ABRACADABRA" is a string. So are ‘‘ATARI MAKES GREAT COMPUTERS”’ and
“123456789"'. A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the character $.
For example, the string ““ATARI COMPUTER' may be assigned to a variable called
A$ using (optional) LET like this:

TOLET &¢="8TaRT COMPUTER™ (note quotation marks)
20 AF="ATART COMPUTER" i)
(LET is optional; the
quotes are required.)

2 GENERAL INFORMATION

CQOOOOODDODDDDDDDBIDIIDIIIIIOIONNOIOIONONOOOINIIIDD

B Y W WY WY U U U UV YU YUY YUY YL Y YU Uy UV Y DY e e

5|

Quotation marks may not be used within a string. However, the closing quotation
can be omitted if it is the last character on a logical line. (See Section 7—
STRINGS).

Variable: A variable is the name for a numerical or other quantity, which may (or
may not) change. Variable names may be up to 120 characters long. However, a
variable name must start with an alphabetic letter, and may contain only capital let-
ters and numerical digits. Do not use a keyword as a variable name or as the first
part of a variable name as it is not interpreted correctly. Examples of storing a
value in a variable:

L0
ZUne
30
1
1

FS 'm &5
THISHO=59 , 00

40

a0

Note: LET is optional and may be omitted.

Variable Name Limit: ATARI BASIC limits the user to 128 variable names. To
bypass this problem, use individual elements of an array instead of having separate
variable names. BASIC keeps all references to a variable that has been deleted
from a program, and the name still remains in the variable name table.

If the screen displays an ERROR-4 (Too Many Variables) message, use the
following procedure to make room for new variable names:

LIST filespec
MEW
FHTER filespec

The LIST filespec writes the untokenized version of the program onto a disk or
cassette. NEW clears the program and the table areas. The program is then re-
entered, re-tokenized, and a new variable table is built. (The tokenized version is
Atari BASIC's internal format. The untokenized version is in ATASCII, which is the
version displayed on the screen).

Arrays and Array Variables: An array is a list of places where data can be filed
for future use. Each of these places is called an element, and the whole array or
any element is an array variable. For example, define “‘Array A" as having 6
elements. These elements are referred to by the use of subscripted variables such
as A(2), A(3), A(4), etc. A number can be stored in each element. This may be ac-
complished element by element (using the LET statement), or as a part of a
FOR/NEXT loop (see Chapter 8).

Note: Never leave blanks between the element number in parentheses and the
name of the array.

Correct Incorrect

A(23) A (23)

ARRAY(3) ARRAY (3)

X123(38) X123 (38)

GENERAL INFORMATION 3

SPECIAL NOTATIONS
USED IN THIS MANUAL

Line Format: In deferred mode, the format of a line in @ BASIC program includes
a line number (abbreviated to lineno) at the beginning of the line, followed by a
statement keyword, followed by the body of the statement and ending with a line
terminator command (RETURN key). In an actual program, the four elements
might look like this:

STATEMENT
Line Number Keyword Body Terminator
100 PRINT AIX * (Z+ 4.567) RETURN key

Several statements can be typed on the same line provided they are separated by
colons (). See IFITHEN in Section 4. In direct mode, the format is identical, except
that no line number is used, and the statement is processed immediately after the
RETURN key is pressed.

Bold Capital Letters: In this manual, denote keywords to be typed by the user in
upper case form exactly as they are printed in this text. Here are a few examples

PRINT INPUT LIST END GOTO GOSUB FOR NEXT |IF

Capital Letters: In this manual, are used to identify keys on the keyboard, such as
RETURN, SELECT, etc.

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables (var),
expressions (exp), and the like. The abbreviations used for these classes of items
are shown in Table 1-1.

Items in Brackets: Brackets, [], contain optional items which may be used, but
are not required. If the item enclosed in brackets is followed by three dots [,exp...],
it means that any number of expressions may be entered, but none are required.

Items stacked vertically in braces: Items stacked vertically in braces indicate
that any one of the stacked items may be used, but that only one at a time is per-
missible. In the example below, type either the GOTO or the GOSUB.

GOTO
GOSuB

Command abbreviations in headings: If a command or statement has an ab-
breviation associated with it, the abbreviation is placed following the full name of
the command in the heading; e.g., LET (L.).

100 ‘ l 2000

4 GENERAL INFORMATION

\mmmmmwnnaonn000000000000000000000'

TABLE 11

ABBREVIATIONS USED
IN THIS MANUAL

The following table explains the abbreviations used throughout this manual:

ABBREVIATIONS

AVAR

SVAR

MVAR

VAR
AOP
LOP
AEXP

LEXP

SEXP

EXP

LINENO

ADATA

FILESPEC

Arithmetic Variable: A location where a numeric value is stored. Variable
names may be from 1 to 120 alphanumeric characters, but must start with an
alphabetic character, and all characters must be unreversed and all alpha
characters must be upper case

String Variable: A location where a string of characters may be stored. The
same name rules as avar apply, except that the last character in the variable
name must be a $. String variables may be subscripted. See Section 7,
STRINGS.

Matrix Variable: Also called a Subscripted Variable. An element of an array or
matrix. The variable name for the array or matrix as a whole may be any legal
variable name such as A, X, Y, ZIP, or K. The subscripted variable (name for
the particular element) starts with the matrix variable, and then uses a number,
variable, or expression in parentheses immediately following the array or
matrix variable. For example, A(ROW), A(1), A(X + 1).

Variable: Any variable. May be MVAR, AVAR, or SVAR

Arithmetic operator. (+ — */ A)

Logical operator. (NOT AND OR)

Arithmetic Expression: Generally composed of a variable, function, constant,
or two arithmetic expressions separated by an arithmetic operator

Logical Expression: Generally composed of two arithmetic or string expres-
sions separated by a logical operator. Such an expression evaluates to either a
1 (logical true) or a O (logical false)

For example, the expression 1 < 2 evaluates to the value 1 (true) while the ex-
pression “LEMON" = “"ORANGE" evaluates to a zero (false) as the two
strings are not equal

String Expression: Can consist of a string variable, string literal (constant), or
a function that returns a string value

Any expression, whether sexp or aexp

Line Number: A constant that identifies a particular program line in a deferred
mode BASIC program. Must be any integer from O through 32767. Line
numbering determines the order of program execution.

ATASCII Data: Any ATASCII character excluding commas and carriage
returns. (See Appendix C.)

File Specification: A string expression that refers to a device such as the
keyboard or to a disk file. It contains information on the type of I/O device, its
number, a colon, an optional file name, and an optional filename extender

(See OPEN, Section 5))

Example filespec: "D1:NATALIE ED"

@ Y Y WY VWU U UV UV IV VWV VvvVVvVvVvVvwiVvViVvVivVvViVVIVVYVYVY @

GENERAL INFORMATION 5

‘

OPERATING MODES
Direct Mode: Uses no line numbers and executes instruction immediately after
RETURN key is pressed.

Deferred Mode: Uses line numbers and delays execution of instruction(s) until the
RUN command is entered.

Execute Mode: Sometimes called RUN mode. After RUN command is entered.
each program line is processed and executed.

Memo Pad Mode: A non-programmable mode that allows the user to experiment
with the keyboard or to leave messages on the screen. Nothing written while in
Memo Pad mode affects the RAM-resident program.

SPECIAL FUNCTION KEYS

V]

CAPS/LOWR

CAPS

ESC

BREAK

SYSTEM RESET

Reverse (Inverse) Video key, or “ATARI LOGO KEY''. This
key is used on the 400/800. Pressing this key causes the text
to be reversed on the screen (dark text on light background).
Press key a second time to return to normal text.

Reverse (Inverse) Video key. This key is used on the 1200XL.
Pressing this key causes the text to be reversed on the
screen (dark text on light background). Press key a second
time to return to normal text.

Lower Case key: Pressing this key on the 400/800 shifts the
screen characters from upper case (capitals) to lower case.
To restore the characters to upper case, press the SHIFT key
and the CAPS/LOWR key simultaneously.

Upper/Lower Case key: Pressing this key on the 1200XL
changes the screen characters from upper to lower or the
reverse each time it is pressed. The SHIFT key is not used.

Escape key: Pressing this key causes a command to be
entered into a program for later execution.

Example: To clear the screen, you would enter:
10 PRINT “ESC CTRL CLEAR”
and press RETURN.

Escape is also used in conjunction with other keys to print
special graphic control characters. See Appendix F for the
specific keys and their screen-character representations.

Break key: Pressing this key during program execution
causes execution to stop. Execution may be resumed by typ-
ing CONT followed by pressing RETURN.

System Reset key: Similar to BREAK in that pressing this
key stops program execution. Also returns the screen display
to Graphics mode 0, clears the screen, and returns margins
and other variables to their default values.

6 GENERAL INFORMATION

POV OOODDNAONDAOADAIDDADOOODOOOOONNIOIDY

SET-CLR-TAB

INSERT

DELETE BACK S

DELETE BACK S

CLEAR

RETURN

Tab key: Press SHIFT and the SET-CLR-TAB keys
simultaneously to set a tab. To clear a tab, press the CTRL
and SET-CLR-TAB keys simultaneously. Used alone, the
SET-CLR-TAB advances the cursor to the next tab position.
In Deferred mode, set and clear tabs by preceding the above
with a line number, the command PRINT, a quotation mark,
and press the ESC key.

Examples:
100 PRINT "“ESC SHIFT SET-CLR-TAB”
200 PRINT “ESC CTRL SET-CLR-TAB"

Default tab settings are placed at columns 7, 15, 23, 31, and
39. The leftmost screen position is column O, but entry begins
in column 2. A total of 38 columns (or character positions)
can be shown in one line on the screen.

Insert key: Press the SHIFT and INSERT keys simultane-
ously to insert a line. To insert a single character, press the
CTRL and INSERT keys simultaneously.

Delete key: Press the SHIFT and DELETE keys
simultaneously to delete a line. To delete a single character,
press CTRL and DELETE simultaneously.

Back Space key: Pressing this key replaces the character to
the left of the cursor with a space and moves cursor back
one space.

Clear key: Pressing this key while holding down the SHIFT or
CTRL key blanks the screen and puts the cursor in the upper
left corner.

Return key: Terminator to indicate an end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted
and added to a BASIC program RAM. An unnumbered line (in
Direct mode) is interpreted and executed immediately. Any
variables are placed in a variable table.

POWER-ON
INDICATOR
L1 INDICATOR
L2 INDICATOR

FUNCTION KEY F1

W R YWY WUWUUUWUUVWIUOUUVUOVUUYUDVIUYVYVYVIVIYVDIULVDTIUVTYVIYVDIYVIYVYVIVIVDVD YD

v

1200XL KEYS AND INDICATORS

The keys and indicators described in this section are for the 1200XL only.

This indicator is on when power to the computer is on.

The computer keyboard is disabled when this indicator is
on. Refer to function key F1.

The computer has the European character set enabled
when this indicator is on. Refer to function key F4.

This key moves the cursor up in one-line increments. It
repeats if held down. If used with the shift key, the cursor
moves to the upper left corner (also called “*home
position’’) of the screen. If used with the control key, it acts
as a toggle to enable or disable the keyboard. LED 1 is
lighted when the keyboard is disabled.

GENERAL INFORMATION 7

FUNCTION KEY F2 This key moves the cursor down in one-line increments. It
repeats if held down. If used with the shift key, the cursor
moves to the lower left corner of the screen. If used with
the control key, it acts as a toggle to enable or disable the
video presentation. When the video presentation is dis-
abled, the processing speed of the 1200XL is increased.

FUNCTION KEY F3 This key moves the cursor to the left in one-space in-
crements. It repeats if held down. If used with the shift key,
the cursor moves to the left side of the screen. If used with
the control key, it acts as a toggle to enable or disable the
key click sound.

FUNCTION KEY F4 This key moves the cursor to the right in one-space in-
crements. It repeats if held down. If used with the shift key,
the cursor moves to the right side of the screen. If used
with the control key, it allows the user to select either the
domestic or European character set. Each time the 1200XL
is powered up, the domestic character set is selected by
the operating system. When the European character set is
selected (by the user), LED 2 is lighted.

HELP KEY This key provides user access to additional information on

the operation currently in progress, if the programming for
that function has been implemented.

ATARI 1200XL SELF TEST

The self-test function allows the user to verify that the 1200XL is fully operational
To begin the test, remove any cartridge and turn off any disk drive. Press SYSTEM
RESET. A dynamic rainbow ATARI should appear on the screen. Press HELP to
view the self-test menu.

Use the SELECT key to pick any or all of the tests. The selection that is flashing
is the current selection. Press START to begin the test. The test cycles repeatedly
until either the HELP key or the SYSTEM RESET key is pressed. The HELP key
returns to the menu; the SYSTEM RESET key reboots the system and displays the
rainbow ATARI again.

The memory test displays two long bars in line. Each bar represents one of the
8K ROMs that contain the operating system. If a bar turns green, the correspond-
ing ROM is good:; if the bar turns red, the ROM is bad. Immediately below the ROM
test display, the RAM test is displayed in three segmented lines.

The RAM test displays a total of 48 color segments, each representing 1K of
RAM. As each 1K segment is tested it is shown in white, and if it is good it turns to
green. If a segment turns to red, the corresponding 1K of RAM is bad. As each
segment of RAM is tested, LED1 and LED2 are turned on alternately, providing a
test for them also.

The keyboard test displays a keyboard on the screen. As each key is pressed,
the “‘key'’ on the screen is shown in inverse video and a tone is generated.

The audio-visual test displays a musical staff containing six notes. The test
cycles through four “‘voices' of six notes each, generating a tone as each note is
displayed.

If the ALL TEST is selected, the 1200 cycles through the entire range of tests
continuously. The keyboard test is performed by the computer using a random
selection of 10 to 20 keys being tested on the screen.

8 GENERAL INFORMATION

lOﬁOQOOOﬂOO0000000000000000"000ﬂﬂf‘(‘

& & ¢ A U Y W W VU UVUU VU UULVLIUUUUUVUYVLVUYUUUYU UL LLLBVe

]
ARITHMETIC OPERATORS

The ATARI Home Computer System uses five arithmetic operators:

+ addition (also unary plus; e.g., +95)
subtraction (also unary minus; €.g.. —5)
multiplication

division

exponentiation

>~ »

LOGICAL OPERATORS

The logical operators consist of two types: unary and binary. The unary operator is
NOT. The binary operators are:

AND Logical AND
OR Logical OR

Examples:
10 TF &=1%F aWb T=0 THEMN Both expressions must be

FRIMT "GOoon" true before GOOD s
printed.

PR VR T I T S

el

1) both expressions true,

1f
A = + 1. otherwise
A = 0.

A0 G lCeL Y GR Cp-10) If either expression true,
A + 1. otherwise
A 0.

If expression is false,
A = + 1, otherwise
A =0

The rest of the binary operators are relational.

The first expression is less than the second expression.
The first expression is greater than the second.

The expressions are equal to each other.

The first expression is less than or equal to the second.
The first expression is greater than or equal to the second.
The two expressions are not equal to each other.

These operators are most frequently used in IF[THEN statements and logical
arithmetic.

AVAIL VA

v Hh

GENERAL INFORMATION 9

W

—

OPERATOR PRECEDENCE

Operations within the innermost set of parentheses are performed first and pro-
ceed out to the next level. When sets of parentheses are enclosed in another set,
they are said to be ‘‘nested.” Operations on the same nesting level are performed
in the following order:

Highest <., > =,<=,>=,<> Relational operators used in string expres-
precedence sions have same precedence and are per-
formed from left to right.
Unary minus.
Exponentiation.
Multiplication and division have the same
precedence level and are performed from
left to right.
+,— Addition and subtraction have the same
precedence level and are performed from
left to right.
<, >.,=, <=,> =,< > Relational operations in numeric expres-
sions have the same precedence level from
left to right.
NOT Unary operator
AND Logical AND
Lowest OR Logical OR
precedence

i oo |

BUILT-IN FUNCTIONS

The section titted FUNCTION LIBRARY explains the arithmetic and special func-
tions incorporated into ATARI BASIC.

GRAPHICS

ATARI graphics include 16 graphics modes for the ATARI 1200, and 12 graphics
modes for the ATARI 400 and 800 if the GTIA chip is installed, and 9 modes if the
CTIA chip is installed. The commands have been designed to allow maximum flex-
ibility in color choice and pattern variety. Section 9 explains each command and
gives examples of the many ways to use each.

SOUND AND GAMES CONTROLLERS

The ATARI Home Computer is capable of emitting a large variety of sounds in-
cluding simulated explosions, electronic music, and *‘raspberries.”” Section 10
defines the commands for using the SOUND function and for controlling paddle,
joystick, and keyboard controllers.

10 GENERAL INFORMATION

R R EEEEEEEEEEE LR Y Y Y Y Y YT Y Y Y Y Y Y YSA

Y UV VU U U U U UPUUUUUUUUUUUULU LLOLLLLLULLLLVLGe

ce—
WRAPAROUND, KEYBOARD ROLLOVER, AND KEY REPEAT

The ATARI Home Computer System has screen wraparound thus allowing greater
flexibility. It also allows the user to type one key ahead. If the user presses and
holds any key, it begins repeating after 1/2 second.

ERROR MESSAGES

If a data entry error is made, the screen display shows the line reprinted preceded
by the message ERROR- and the offending character is highlighted. After correct-
ing the character in the original line, delete the line containing the ERROR- before
pressing RETURN. Appendix B contains a list of all the error messages and their
definitions.

If the error line contains deferred screen edit function keys, the error message
may become disoriented. Use the LIST command to edit error line.

GENERAL INFORMATION 11

2 COMMANDS

Whenever the cursor ([]) is displayed on the screen, the computer is ready to ac-
cept input. Type the command (in either Direct or Deferred mode), and press
RETURN. This section describes the commands used to clear computer memory
and other useful control commands. The commands explained in this section are
the following:

BYE NEW
CONT REM

END RUN

LET STOP
LIST

BYE (B)

Format: BYE
Example: BYE

If you have an ATARI 400/800 Home Computer, the BYE command exits BASIC
and puts the computer in Memo Pad mode. This allows the user to experiment with
the keyboard or to leave messages on the screen without disturbing any BASIC
program in memory. To return to BASIC, press SYSTEM RESET.

If you have an ATARI 1200XL Home Computer, the BYE command exits to the
power-up display, the rainbow ATARI symbol. At this time you can have the 1200XL
perform SELF-TEST by pressing the HELP key.

CONT (CON.)

Format: CONT
Example: CONT

Typing this command followed by a RETURN causes program execution to
resume. If a BREAK key is pressed, or a STOP, or END command is en-
countered, the program stops until CONT command is entered. Execution resumes
at the next sequential /ine number following the statement at which the program
stopped.

Note: If the statement at which the program is halted has other commands on the
same numbered line which were not executed at the time of the BREAK, STOP, or
END, they will not be executed. On CONT, execution resumes at the next
numbered line. A loop may be incorrectly executed if the program is halted before
the loop completes execution.

This command has no effect in a Deferred mode program.

12 COMMANDS

L NS S T T T T T T T T O T, T O T T, O, I L I I I R L L L O G

WUV UVWUWUWUWUWUWUWUYUWUYWYWUvVVWUvVUvVIUVIUVYVIVIVDVIVIVPFYWIWILDUIUUIUUIUYUIYDYLVUUUY S

END

Format: END
Example: 1000 END

This command terminates program execution and is used in Deferred mode. In
ATARI BASIC, an END is not required at the end of a program. When the end of
the program is reached, ATARI BASIC automatically closes all files and turns off
sounds (if any). END may also be used in Direct mode to close files and turn off
sounds.

LET (LE.)

Format: [LET] var = exp
Example: LET X = 3.142 * 16
LET X = 2

The keyword LET in the example above is optional in defining variables. It can just
as easily be left out of the statement. It is often used to set a variable name equal
to a value.

LIST (L.

Format: LIST [lineno [, lineno]]

LIST [filespec [,lineno [,lineno]]]
Examples: LIST

LIST 10

LIST 10,100

LIST ““P"",20,100

LIST “P

LIST “D:DEMO.LST"

This command causes the computer to display the source version of all lines cur-
rently in memory if the command is entered without line number(s), or to display a
specified line or lines. For example, LIST 10,100 displays lines 10 through 100 on
the screen. If the user has not typed the lines into the computer in numerical order,
a LIST will automatically place them in order.

Typing L."“P:"" will print the RAM-resident program on the printer.

LIST can be used in Deferred mode as part of an error trapping routine (See
TRAP in Section 4).

The LIST command is also used in recording programs on cassette tape. The
second format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified.

Example: LIST "C1”
1000 LIST “C1"

COMMANDS 13

NEW

Format: NEW
Example: NEW

This command erases the program stored in RAM. Therefore, before typing NEW,
either SAVE or CSAVE any programs to be recovered and used later. NEW clears
BASIC's internal symbol table so that no arrays (See Section 8) or strings (See Sec-
tion 7) are defined. Used in Direct mode.

REM (R. OR SPACE.)

Format: REM text

Examples: 10 REM ROUTINE TO CALCULATE X
10(SPACE). ROUTINE FOR DATA (‘‘SPACE’’ means one press of the
SPACE bar)

This command and the text following it are for the user’s information only. It is ig-
nored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line that occurs after a
REM statement is ignored.

RUN (RU))

Format: RUN [filespec]
Examples: RUN
RUN ““D:MENU"

This command causes the computer to begin executing a program. If no filespec is
specified, the current RAM-resident program begins execution. If a filespec is in-
cluded, the computer retrieves the specified, tokenized program from the specified
file and executes it.

All variables are set to zero and all open files and peripherals are closed. All
arrays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used, an error message is displayed if any error is detected
during execution and the program halts.

RUN can be used in Deferred mode.

Example: 10 PRINT “OVER AND OVER AGAIN."
20 RUN

Type RUN and press RETURN. To end, press BREAK.
To begin program execution at a point other than the first line number, type
GOTO followed by the specific line number, then press RETURN.

STOP (STO.)

Format: STOP
Example: 100 STOP

When the STOP command is executed in a program, BASIC displays the message
STOPPED AT LINE , terminates program execution, and returns to Direct
mode. The STOP command does not close files or turn off sounds, so the program
can be resumed by typing CONT and pressing the RETURN key.

14 COMMANDS

m

m»

P A A T e Wy

e e e m o P fg e e NEEP. M. s NP

AN T N . s s s

“ e

Y WOUWOUWUUwuUwuvwuUvwuvwuvwovwvwvwuvvwvwvvvvvvvvvvvvvyvvu

1 —

EDIT 3
FEATURES

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilities. These keys are used in con-
junction with the SHIFT or CTRL keys.

The following key functions are described in this section:

CTRL CTRL INSERT CTRL 1 CTRL F1 SHIFT F1
SHIFT CTRL DELETE CTRL2 CTRLF2 SHIFT F2
CTRL SHIFT INSERT CTRL3 CTRLF3 SHIFT F3
CTRL SHIFT DELETE BREAK CTRL F4 SHIFT F4
CTRL SHIFT CAPS/ILOWR ESC F1
CTRL F2

F3

F4

SCREEN EDITING

The keyboard and display are logically combined for a mode of operation known as
screen editing. Each time a change is completed on the screen, the RETURN key
must be pressed. Otherwise, the change is not made ta the program in RAM.

Example:
10 REM FRESS RETURN AFTER LINE EDIT
20 PFRINT SPRINT
30 FRINT "THIS IS LINE 1 OWN SCREEN."

To delete line 20 from the program, type the line number and press the RETURN
key. Merely deleting the line from the screen display does not delete it from the
program.

The screen and keyboard as /O devices are described in Section 5.

CTRL Control key. Striking this key in conjunction with the arrow
keys produces the cursor control functions that allow the
user to move the cursor anywhere on the screen without
changing any characters already on the screen. Other key
combinations control the setting and clearing of tabs,
halting and restarting program lists, and the graphics con-
trol symbols. Striking a key while holding the CTRL key will
produce the upper-left symbol on those keys having three
functions.

SHIFT Shift key: This key is used in conjunction with the numeric
keys to display the symbols shown on the upper half of
those keys. It is also used in conjunction with other keys to
insert and delete lines, return to a normal, upper case let-
ter display, and to display the function symbols above the
subtraction, equals, addition, and multiplication operators
as well as the brackets, [], and question mark,?.

EDIT FEATURES 15

DOUBLE-KEY FUNCTIONS

Cursor Control Keys

CTRL ¢ Moves cursor up one physical line without changing the
program or display.

CTRL — Moves cursor one space 1o the right without disturbing the
program or display

CTRL * Moves cursor down one physical line without changing the
program or display.

CTRL = Moves cursor one space 1o the ieft without disturbing the

program or display.

Like the other keys on the ATARI keyboard, holding the cursor control keys for
more than 1/2 second causes the keys to repeat

Keys Used With CTRL

CTRL INSERT Inserts one character space.

CTRL DELETE Deletes one character or space.

CTRL 1 Stops temporarily and restarts screen display without
"breaking out’ of the program.

CTRL 2 Rings buzzer.

CTRL 3 Indicates end-of-file.

Keys Used With SHIFT

SHIFT INSERT Inserts one physical line.

SHIFT DELETE Deletes one physical line.

SHIFT CAPS/LOWR Returns screen display to upper-case alphabetic
characters.

Special Function Keys

BREAK Stops program execution or program list, prints a
STOPPED AT LINE on the screen, and displays cursor.

ESC Allows commands normally used in Direct mode to be

placed in Deferred mode; e.g., in Direct mode,

CTRL CLEAR clears the screen display. To clear the
screen in Deferred mode, type the foliowing after the pro-
gram line number. Press ESC then press CTRL and
CLEAR together.

PRINT “"ESC CTRL CLEAR"

16 EDIT FEATURES

l'Q»Q,OOOQOOQﬁOOQOOOOOOO000000000004'-'!

(e

ATARI 1200XL KEY FUNCTIONS
Keys Used With CTRL

CTRL F1* Enables or disables keyboard.

CTRL F2 Enables or disables display.

CTRL F3 Enables or disables key click sound.

CTRL F4 Selects domestic or European character set.
Keys Used Alone

F1 Moves cursor up in one-line increments.

F2 Moves cursor down in one-line increments.

F3 Moves cursor to left in one-space increments.
F4 Moves cursor to right in one-space increments.
Keys Used With SHIFT

SHIFT F1 Moves cursor to upper left (home position) corner.
SHIFT F2 Moves cursor to lower left corner.

SHIFT F3 Moves cursor to left side of current line.
SHIFT F4 Moves cursor to right side of current line.

*Function Key

EDIT FEATURES 17

6 ¢ @6 ¢ € U U U U U U PV VUV VUV UV UUUYUYV YV UYUUYUU YUY UYUuYUuUYuuYeoe

4 PROGRAM

STATEMENTS

This section explains the commands associated with loops, conditional and uncon-
ditional branches, error traps, and subroutines and their retrieval. It also explains
the means of accessing data and the optional command used for defining
variables. The following commands are described in this section:

FOR, TO, STEP/NEXT IF/THEN POP
GOSUB/RETURN ON, GOSUB RESTORE
GOTO ON, GOTO TRAP

FOR (F.), TO, STEP/NEXT (N.)
Format: FOR avar = aexp1 TO aexp2 [STEP aexp3]

NEXT avar

Examples: FORX = 1 TO 10
NEXT X
FORY = 10 TO 20 STEP 2
NEXT Y
FOR INDEX = ZTO 100 * Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is ex-
ecuted. The loop variable (avar) is initialized to the value of aexp1. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers. If there is no STEP aexp3 command, the loop in-
crements by one. When the loop completes the limit as defined by aexp2, it stops
and the program proceeds to the statement immediately following the NEXT state-
ment; it may be on the same line or on the next sequential line.

All loops are executed at least once. Loops can be nested, one within another.
In this case, the innermost loop is completed before returning to the outer loop.
Figure 4-1 illustrates a nested loop program.

10 FOR X=1 TO 2

20 PRINT "OUTER LOOP"
30 0

410 242
al
&0
70
820
&0

TOSE STER 72

TNMER OO

Figure 4-1. Nested Loop Program

18 PROGRAM STATEMENTS

A _Na Y

o i N A WA A N AN s N s W s N s W s N N a N N a N N aAa N A A T A A AT AT 1L L

f T o S o T

)

UUUUUUUVVUUUUUUUUUUVUVUUUOOUUUUU\O\O

|

{5

in Figure 4-1, the outer loop will complete three passes (X = 1 to 3). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner joop must precede the
NEXT statement for the outer loop. In the example, the inner loop’s number of
passes is determined by the STEP statement (STEP 2). In this case, Z has been
defined as 0. then redefined as Z + 2. Using this data, the computer must com-
plete three passes through the inner loop before returning to the outer loop. The
aexp3 in the step statement could also have been defined as the numerical

value 2.
The program run is illustrated in Figure 4-2.

READY

SN

OUTER LGAOF
THHER LOOF
THMER LOOF
IHMER LOOP

OQUTER LOOF
THMER LLOOF
THMNER LOOF
THMER LOOF

QUTER LOOF
THMER LOOF
e R LOOEF
THMER LOOF

FEADY
Figure 4-2. Nested Loop Execution

The return address for the loops are placed in a special group of memory ad-
dresses referred 10 as a stack. The information is “‘pushed’ on the stack and
when used. the information is *'popped’ off the stack (see POP).

GOSUB (GOS.), RETURN (RET.)

Format: GOSUB lineno
lineno
RETURN
Example: 100 GOSUB 2000
2000 PRINT ""SUBROQUTINE"”
2010 RETURN

PROGRAM STATEMENTS 19

A subroutine* is a program or routine used to compute a certain value, etc. It is
generally used when an operation must be replaced several times within a program
sequence using the same or different values. This command allows the user to
‘‘call”” the subroutine, if necessary. The last line of the subroutine must contain a
RETURN statement. The RETURN statement goes back to the next logical state-
ment following the GOSUB statement.

Like the preceding FOR/NEXT command, the GOSUB/RETURN command se-
quence uses a stack for its return address. If the subroutine is not allowed to com-
plete normally; e.g., a GOTO lineno before a RETURN, the GOSUB address must
be “‘popped’’ off the stack (see POP) or it could cause future errors.

To prevent accidental triggering of a subroutine (which normally follows the main
program), place an END statement preceding the subroutine. Figure 4-3
demonstrates the use of subroutines.

10 ERINT % (Clear screen)
20 REM EXAMPLE USE QF GOSUEB/RETURN

30 X=100

40 GOSUE 1000

a0 :

&0 1000

00X

g0 GOSUER 1000
0 END

1000 Y=3xX
101D K=Y
s B T R0
1030 RETURM

Figure 4-3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three times
to compute and print out different values of X and Y. Figure 4-4 illustrates the
results of executing this program.

FeiIm

400 300
480 340
200 '
READY

Figure 4-4. GOSUB/RETURN Program Run

* Generally, a subroutine can do anything that can be done in a program. It is used to save memory and
program-entering time, and to make programs easier to read and debug

20 PROGRAM STATEMENTS

.- A DD DD DD DN DD PP

|

-~ ~ N

¢ @

5 B e WY WYL UUVGPVDWLWDLWIDWWWDWDIYDWIHDHU“DUHDIHRDIHDTIYTIYTYY Y e e

GOTO (G.)
Format: { GO TO} aexp
GOTO

Examples: 100 GOTO 50
500 GOTO (X + Y)

The GOTO command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target line number
or arbitrary expression. However, using anything other than a constant will make
renumbering the program difficult. If the target line number is non-existent, an error
results. Any GOTO statement that branches to a preceding line may result in an
“endless’’ loop. Statements following a GOTO statement will not be executed.
Note that a conditional branching statement (see IFITHEN) can be used to break
out of a GOTO loop. Figure 4-5 illustrates two uses of the GOTO command.

10 PRINT

SPRINT “ONE"
"THO"
"THREE"
"FOUR"

T "FIVE"

NTINE"
() SENE
90 GOTO 70

Figure 4-5. GOTO Program Listing

Upon execution, the numbers in the above listing will be listed first followed by the
three rows of symbols. The symbols listed on lines 70, 80, and 90 are ignored tem-
porarily while the program executes the GOTO 100 command. It proceeds with the
printing of the numbers *“SIX"" through “TEN'’", then executes the second GOTO
statement which transfers program control back to line 70. (This is just an exam-
ple. This program could be rewritten so that no GOTO statements were used.) The
results of the program run are shown in Figure 4-6.

PROGRAM STATEMENTS 21

RN

OME
TWN
THEEE
FOuR

AEVEM

ETEHT

NRDIRRIRIRD D R R R

Figure 4-6. GOTO Program Run

IFITHEN

Format: IF aexp THEN { lineno
statement [:statement..] }
Examples: IF X = 100 THEN 150
IF A$ = “ATARI" THEN 200
IF AA = 145 and BB = 1 THEN PRINT AA, BB
IFX = 100THEN X = 0

The IFITHEN statement is a conditional branch statement. This type of branch oc-
curs only if certain conditions are met. These conditions may be either arithmetic

or logical. If the aexp following the IF statement is true (non-zero), the program ex-

ecutes the THEN part of the statement. If, however, the aexp is false (a logical 0),
the rest of the statement is ignored and program control passes to the next
numbered line.

In the format, IF aexp THEN lineno, lineno must be a constant, not an expres-
sion and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be executed
if and only if the expression is true. Several IF statements may be nested on the
same line. For example:

POOTE ¥et YHER OTF Ys=3 THEW R=%1007T0 1060

The statements R = 9: GOTO 100 will be executed only if X = 5and Y = 3. The
statement IF Y = 3 will be executed if X = 5.
The program in Figures 4-7 and 4-8 demonstrates the IFITHEN statement.

22 PROGRAM STATEMENTS

R R TR T R R S W SR S S N S SRR SR W W WY, TR, W BN . W BN TG BNR

- o, N . e

ut.;Ouuvvvvvvuvuuuouubbbbb!‘%%‘

[V 2V 4

BOGRAPHICS Do oewon IF DEMQT

100 s UEMTER &M CINPUT &

20 TF dAesd THEN S0IREM MULTIFLE ST&ETEME
MTE HERE WILL NEVER BE EXECUTED!!

oo A TS MOT 1. EXECUTION CONHTINU
ES HERE WHEN THE EXPRESSION 18 FaLsey
40 TF @a=1 THER % §» ras=lviw UYES, TT X
S REALLY Lo IREM MULTIFLE STATEMENTS M
ERE WILL BE EXECUTED ONLY IF &=1!!
oo 3w "EXECUTION CONTINUES HERE TF A&
<HLOORCAFTER CYES, TT IS REMSLLY L7 I8
DISFLAYEDY

A0 GOTO 10

Figure 4-7. IF[THEN Program

TFDEMD
ERTER 473

&0 TE OMOT L, CUTION CONTIMUES HERE W
HEM THE BEXFRESSTOM TS5 FaLSE

HERE TF @il

: OR aF
REalLLY 17 T

EMNTER &71

YES, IT IH5 REALLY L.

EXECUTION CONTINUES HERE TF &<H1 0RO &F
TER YES, TT IS REALLY 17 I8 DISFLAYED

EMTER &7

Figure 4-8. IF/THEN Program Execution

v v

(entered 3)

(entered 1)

PROGRAM STATEMENTS 23

ON/GOSUB/RETURN ON/GOTO

Format: ON aexp { GOTO } lineno [lineno..]
GOSuUB

Examples: 100 ON X GOTO 200, 300, 400

100 ON A GOSUB 1000, 2000

100 ON SQR(X) GOTO 30, 10, 100
Note: GOSUB and GOTO may not be abbreviated.
These two statements are also conditional branch statements like the IFITHEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number, which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is 1, then program control passes
to the first lineno in the list following the GOSUB or GOTO. If the resulting number
is 2, program control passes to the second lineno in the list, and so on. If the
resulting number is O or is greater than the number of linenos in the list, the condi-
tions are not met and program control passes to the next statement which may or
may not be located on the same line. With ON/GOSUB, the selected subroutine is
executed and then control passes to the next statement. The program in Figures
4-9 and 4-10 demonstrates the ON/GOTO statement:

10 X=X+l

20 ON X GOTO 100,200,300,400,%00

G0 TF XD THEN FRINT "COMPLETE" SEMND
40 GOTO 10

S00END

100 FRINT "NOW WORKING &7 LINE 100"
110 GOTO Lo

200 FRINT "NOW WORKING AT LINE 2Z00¢
210 60T 1o

300 FRINT "NOW WORKING AT LINE 300"
310 GOTO 10

400 FRINT "NOW WORKING AT LINE 400"
410 GOTO 10

SO0 FRINT "NOW WORKING AT LINE S00¢
910 GOTO 10

Figure 4-9 ON/GOTO Program Listing

24 PROGRAM STATEMENTS

I e T T T e T R T I R e e e e e L L I . . . T . T . e

-,

uuvouuuuuvvvvvvvvvvooooooooooooulb(O\

When the program is executed, it looks like the following:

FelIm

NOW WORKING &T
MOW WOREING &T
MOW WOREING AT
NOW WORETNG AT
PpOW WORKING &7
COMPLETE

INE 100
T NE 200
LINE 300
LINE 400
SENES S0

READY

Figure 4-10 ON/GOTO Program Execution

POP

Format: POP
Example: 1000 POP

In the description of the FOR/NEXT statement, the stack was defined as a group
of memory addresses reserved for return addresses. The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers. If another GOSUB
is executed, that top location needs to be cleared. To prepare the stack for a new
GOSUB, use a POP to clear the data from the top location in the stack.

The POP command must be used according to the following rules:

1. It must be in the execution path of the program.
2. It must follow the execution of any GOSUB statement that is not brought back
to the main program by a RETURN statement.

The program in Figure 4-11 demonstrates the use of the POP command with a
GOSUB when the RETURN is not executed:

“THE
"T0

15T SUEROUTL

_.,

PROGRAM STATEMENTS 25

(

R IRY

Figure 4.11. GOSUB Statement With POP

26 PROGRAM STATEMENTS

e T T T T T T T T O T O . WO W W W, R W e YO o O s TN o N 2 TN 0 SN S JNNY SN

‘\

RESTORE (RES.)

Format: RESTORE [aexp]
Example: 100 RESTORE

The ATARI Home Computer System contains an internal “'pointer’” that keeps track
of the DATA statement item to be read next. Used without the optional aexp, the
RESTORE statement resets that pointer to the first data item in the program. Used
with the optional aexp, the RESTORE statement sets the pointer to the first data
item on the line specified by the value of the aexp. This statement permits
repetitive use of the same data. (Figure 4-12).

10 FOR M=l TO 2

20 READ A

30 RESTORE

40 READ B

G E R

HO OPRIMNT YTOTAL EQUALSY M
F0OMEXT N

g4 EMD

S0 DATH 30,19

Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line 60
will print TOTAL EQUALS 60, but on the second pass, A will equal 15 and B,
because of the RESTORE statement, will still equal 30. Therefore, the PRINT
statement in line 60 will display TOTAL EQUALS 45.

The RESTORE statement will not generate an error if the line number referenc-
ed does not exist. Instead it will RESTORE to the next larger line number in the
program. Care should be taken to update RESTORE statements when renumbering
a BASIC program.

PROGRAM STATEMENTS 27

-Juvuuuovvvvuvvvoovooooooooooo(&(b(o'&'b‘

L

TRAP (T))

Format: TRAP aexp
Example: 100 TRAP 120

The TRAP statement is used to direct the program to a specified line number if an
error is detected. Without a TRAP statement. the program stops executing when
an error is encountered and displays an error message on the screen.

The TRAP statement works on any error that may occur after it has been ex-
ecuted. but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command. This TRAP command may be placed at the
beginning of the section of code that handles input from the keyboard so that the
TRAP is reset after each error. PEEK(195) will give you an error message (see
Appendix B). 256*PEEK(187) + PEEK(186) will give you the number of the line
where the error occurred. The TRAP may be cleared by executing a TRAP state-
ment with an aexp whose value is from 32767 to 65535 (e.g.. 40000)

28 PROGRAM STATEMENTS

»

4 J

. W, M, W, 4y W, Wy M) W) TR T A T T 7 T T R, O, N, TR RNy N

,

- -

l‘)NUUU0000000000000009000000“09%00%

.]
INPUT/OUTPUT 5
COMMANDS AND DEVICES

This section describes the input/output devices and how data is moved between
them. The commands explained in this section are those that allow access to the
input/output devices. The input commands are those associated with getting data
into the RAM and the devices geared for accepting input. The output commands
are those associated with retrieving data from RAM and the devices geared for
generating output.

The commands described in this section are:

CLOAD INPUT OPEN/CLOSE READ/DATA

CSAVE LOAD POINT SAVE
DOS LPRINT PRINT STATUS
ENTER NOTE PUT/IGET XI10

INPUT/OUTPUT DEVICES

The hardware configuration of each of the following devices is illustrated in the in-
dividual manuals furnished with each. The Central Input/Output (CIO) subsystem
provides the user with a single interface to access all of the system peripheral
devices in a (largely) independent manner. This means there is a single entry point
and a device-independent calling sequence. Each device has a symbolic device
name used to identify it; e.g., K: for the keyboard. Each device must be opened
before access and each must be assigned to an Input/Output Control Block (IOCB).
From then on, the device is referred to by its IOCB number.

ATARI BASIC contains 8 blocks in RAM which identifies to the Operating System
the information it needs to perform an 1/0 operation. This information includes the
command, buffer length, buffer address, and two auxiliary control variables. ATARI
BASIC sets up the IOCBs, but the user must specify which IOCB to use. BASIC
reserves IOCB #0 for 1/O to the Screen Editor, therefore the user may not request
IOCB #0. The GRAPHICS statement (see Section 9) opens IOCB #6 for input and
output to the screen. (This is the graphics window S:). IOCB #7 is used by BASIC
for the LPRINT, CLOAD, and CSAVE commands. The IOCB number may also be
referred to as the device (or file) number. IOCBs 1 through 5 are used in opening
the other devices for input/output operations. If IOCB #7 is in use, it prevents
LPRINT or some of the other BASIC 1/O statements from being performed.

Keyboard: (K:) Input only device. The keyboard allows the user to read the con-
verted (ATASCII) keyboard data as each key is pressed.

Line Printer: (P:) Output only device. The line printer prints ATASCII characters, a
line at a time. It recognizes no control characters.

Program Recorder: (C:) Input and Output device. The recorder is a read/write
device which can be used as either, but never as both simultaneously. The
Cassette has two tracks for sound and program recording purposes. The audio
track cannot be recorded from the ATARI system, but may be played back through
the television speaker.

INPUT/OUTPUT COMMANDS 29

e -~

Disk Drives: (D1:, D2:, D3:, D4:) Input and Output devices. If 16K of RAM is in-
stalled, the ATARI can use from one to four disk drives. If only one disk drive is at-
tached, there is no need to add a number after the symbolic device code D. If D: is
used, with no drive number specified, the ATARI system defaults to drive 1.

Screen Editor: (E:) Input and Output device. This device uses the keyboard and
display (see TV Monitor) to simulate a screen editing terminal. Writing to this
device causes data to appear on the display starting at the current cursor position.
Reading from this device activates the screen editing process and allows the user
to enter and edit data. Whenever the RETURN key is pressed, the entire logical
line within which the cursor resides is selected as the current record to be trans-
ferred by CIO to the user program. (See Section 9).

TV Monitor: (S:) Input and Output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the screen
addressing mechanism. Both text and graphics operations are supported. See Sec-
tion 9 for a complete description of the graphics modes.

Interface, RS-232: (R:) The RS-232 device enables the ATARI system to interface
with RS-232-compatible devices such as printers, terminals, and plotters. It con-
tains a parallel port to which the 80-column printer can be attached. If a printer is
attached to the parallel port, the R: is not required, and P: can be used as it is with
other printers.

CLOAD (CLOA)

Format: CLOAD
Examples: CLOAD
100 CLOAD

This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD, a buzzer sounds
to indicate that the PLAY button needs to be pressed followed by the RETURN
key. However, do not press PLAY until after the tape has been positioned. Specific
instructions for CLOADing a program are contained in the ATAR/ Program
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CHAINING PROGRAMS at the end of this section.

CSAVE (CS.)

Format: CSAVE
Examples: CSAVE
100 CSAVE
100 CS.

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version of the program. On enter-
ing CSAVE two buzzers sound to indicate that the PLAY and RECORD buttons
must be pressed followed by the RETURN key. Do not, however, press the buttons
until the tape has been positioned. It is faster to save a program using this com-
mand rather than a SAVE “C” (see SAVE) because short inter-record gaps

are used.

Notes: Tapes saved using the two commands, SAVE and CSAVE, are not
compatible.

30 INPUT/OUTPUT COMMANDS

T S T T W W N, W, T, W B, N W W W N W W L L L e N N N N L L L)

'

vavvvvvvvvvvwovvvvwvw00000000000‘0!&‘

55—
It may be necessary to enter an LPRINT (see LPRINT) before using CSAVE.
Otherwise, CSAVE may not work properly.

For specific instructions on how to connect and operate the hardware, cue the
tape, etc., see the ATARI Program Recorder Manual.

DOS (DO.)

Format: DOS
Example: DOS

The DOS command is used to go from BASIC to the Disk Operating System (DOS).
If the Disk Operating System has not been booted into memory, the computer will
go into Memo Pad mode (or power-on display in 1200XL) and the user must press
SYSTEM RESET to return to Direct mode. If the Disk Operating System has been
booted, the DOS Menu is displayed. To clear the DOS Menu from the screen,
press SYSTEM RESET. Control then passes to BASIC. Control can also be re-
turned to BASIC by selecting B (Run Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the ATARI DOS Manual.

ENTER (E)

Format: ENTER filespec
Examples: ENTER "“C
ENTER “D:DEMOPR.INS"

This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un-
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the old
and new programs. The ENTER statement is usually used in Direct mode.

INPUT (1)

Format: INPUT [#aexp { }] {2\\;::} [{:\\//:: }]

Examples: 100 INPUT X
100 INPUT N$
100 PRINT ““ENTER THE VALUE OF X'': INPUT X
110 INPUT X

This statement requests keyboard data from the user. In execution, the computer
displays a ? prompt when the program encounters an INPUT statement. It is
usually preceded by a PRINT statement that prompts the user as to the type of in-
formation being requested.

String variables are allowed only if they are not subscripted. Matrix variables are
not allowed.

INPUT/QUTPUT COMMANDS 31

L

The #aexp is optional and is used to specify the file or device number from
which the data is to be input (see Input/Output Devices). If no #aexp is specified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
RETURN, type the next string, RETURN, etc. Arithmetic numbers can be typed on
the same line separated by commas. A typical input program is shown in
Figure 5-1.

0 ? "ENTER 9 NUMBERS TO BE SUMMED"
200 FOR N=1 T0. 5

alb TNPUT ¥

A0 C=0+X

G0 NEXT N

60 7 "THE SUM OF THE NUMBERS IS "iC
70 EMD

Figure 5-1 Input Program Listing

When executing an INPUT from the screen, avoid moving the cursor away from
and then back to the same line; otherwise, the wrong data may be input.

If a string of 128-255 characters is INPUT, then RAM locations 1536-1664 will
be overwritten. This area is normally reserved for storage of programs or data. To
INPUT strings of more than 127 characters, use the GET command and store the
values into a string (see Section 5, OPEN/CLOSE and PUT/GET commands).

Note: The maximum number of characters that can be INPUT from the screen is
120. The maximum for other devices is 255.

LOAD (LO.)

Format: LOAD filespec
Example: LOAD “‘D1:JANINE.BRY"

This command is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token-
ized version of the program. When using only one disk drive, it is not necessary to
specify a number after the ‘D'’ because the default is disk drive #1.

LPRINT (LP.)

Format: LPRINT [exp] [{) } exp...]
Example: LPRINT “PROGRAM TO CALCULATE X"
T00'CPRINT X = 'y .7

This statement causes the computer to print data on the line printer rather than on
the screen. It can be used in either Direct or Deferred modes. It requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB #7.) To
print a program listing on the line printer, see LIST.

32 INPUT/OUTPUT COMMANDS

I M M MmN AN DDA

~ ™~

)
'slvuvuvwvo00000000000000000000000(0'0

X O

Note: An LPRINT command with a semicolon at the end causes various results
depending on the printer in use. To use the semicolon effectively, use the OPEN
statement for the printer, then write to the printer with a PRINT statement (see
OPEN/CLOSE and PRINT commands, Section 5).

NOTE (NO.)

Format: NOTE #aexp, avar, avar
Example: 100 NOTE #1, X, Y

This command is used to store the current disk sector number in the first avar and
the current byte number within the sector in the second avar. This is the current
read or write position in the specified file where the next byte to be read or written
is located. This NOTE command is used when writing data to a disk file (see
POINT). The information in the NOTE command can be written into a second file
which is then used as an index into the first file.

OPEN (0.), CLOSE (CL.)

Formats: OPEN #aexp,aexp1,aexp2, filespec
CLOSE #aexp

Examples: 100 OPEN #2.8,0,'D1:ATARI.BAS"”
100 A$ = “D1:ATARI.BAS"
110 OPEN #28,0,A%
150 CLOSE #2

Before a device can be accessed, it must be opened. This “‘opening’’ process
links a specific IOCB to the appropriate device handler, initializes any ClO-related
control variables, and passes any device-specific options to the device handler.
The parameters for the OPEN command are defined as follows:

Mandatory character that must be entered by the user.
aexp Reference IOCB or file number to same parameters for future use (as in
CLOSE command). Number may be 1 through 7.
aexp1 Code number to determine input or output operation.
Code 4 = input operation
8 = output operation
12 = input and output operation
6 = disk directory input operation (In this case, the filespec is
the search specification.)
9 = end-of-file append (output) operation. Append is also used

for a special screen editor input mode. This mode allows a
program to input the next line from E: without waiting for
the user to press RETURN.

aexp2 Device-dependent auxiliary code. An 83 in this parameter indicates
sideways printing on a printer (see appropriate manuals for control
codes).

filespec Specific file designation. Must be enclosed in quotation marks. The for-
mat for the filespec parameter is shown in Figure 5-2.

INPUT/OUTPUT COMMANDS 33

“D1:ATARI.BAS”
‘\.’-\/-\/\\’W
Device f y Y

Code

Device
Number
(optional)

Reguired
Colon

File name
(upto 8
characters-
must begin
with alphabetic
character)

Period required
as separator if
extender is used.

Extender
(optional)-
Includes

0-3 characters

Note: Filenames are not
used with the program
recorder.

Figure 5-2 Filename Breakdown

Note: Be sure to include the closing quotation marks on a filespec parameter,
especially when putting multiple statements on one line. For example.

OPEN #1, 4, 0, “D:TEST”:STOP will work, but
OPEN #1, 4, 0, “D:TEST:STOP will not function correctly.

The CLOSE command simply closes files that have been previously opened with
an OPEN command. Note in the example that the aexp following the mandatory
character must be the same as the aexp reference number in the OPEN state-
ment.

POINT (P.)

Format: POINT #aexp. avar, avar
Example: 100 POINT #2, AB

This command is used when reading a file into RAM or writing a file from RAM.
The first avar specifies the sector number and the second avar specifies the byte
within that sector where the next byte will be read or written. Essentially, it moves
a software-controlled pointer to the specified location in the file. This gives the user
“random’’ access to the data stored on a disk file. The POINT and NOTE com-
mands are discussed in more detail in the DOS Manual.

Note: To update a file, you must open it with a 12 in aexp1.

34 INPUT/OUTPUT COMMANDS

|_‘."."."i‘\"1"iﬂﬁﬁﬂﬂﬂﬂﬂﬁﬂﬁﬁﬂﬂﬂhﬂﬂﬂ000000r'"

00000000000000000000000000000“‘0“’0’0

(55—

PRINT (PR. or ?)

Format: PRINT [#aexp) [{ , }exp'"]
Examples: PRINT X, Y, Z, A$
100 PRINT ““THE VALUE OF X IS "X
100 PRINT “COMMAS"", “CAUSE", “COLUMN", “SPACING"
100 PRINT #3, AS
100 PRINT 2+ 3+ 4

A PRINT command can be used in either Direct or Deferred mode. In Direct
mode, this command prints whatever information is contained between the quota-
tion marks exactly as it appears. In the first example, PRINT X,Y,Z A3, the screen
will display the current values of X,Y,Z, and A$ as they appear in the RAM-resident
program. In the example, PRINT #3 A$, the #3 is the file specifier (may be any
number between 1 and 7) that controls to which device the value of A$ will be
printed. (See Input/Output Devices.)

A comma tabs every ten spaces. Several commas in a row cause several tab
jumps. A semicolon causes the next aexp or sexp to be placed immediately after
the preceding expression with no spacing. Therefore, in the second example a
space is placed before the ending quotation mark so the value of X will not be
placed immediately after the word “*IS™". If no comma or semicolon is used at the
end of a PRINT statement, then a RETURN is output and the next PRINT starts on
the following line.

However, if the last character to be printed (as in a string with quotation marks)
is a CTRL R or CTRL U, then the next PRINT begins at the end of the current line.
The PRINT command can be used as a one-line calculator in Direct mode, as
shown in the last example above. In this case the value is computed when the

RETURN key is pressed, and the value is printed on the next line.

Note: In rare circumstances data printed to a diskette may have part of the BASIC
program embedded in it. If this occurs, retry the operation.

PUT (PU.)/GET (GE.)

Format: PUT #aexp, aexp
GET #aexp, aexp
Examples: 100 PUT #6, ASC("'A")
200 GET #1,X

The PUT and GET are opposites. The PUT command outputs a single byte from
0-255 to the file specified by #aexp. (# is @ mandatory character in both these
commands). The GET command reads one byte from 0-255 (using #aexp to
designate the file, etc. on diskette or elsewhere) and then stores the byte in the
variable avar.

READ (REA.), DATA (D)

Format: READ var [, var..]
DATA adata [, adata...]
Examples: 100 READ AB,CDE
110 DATA 12,13,14,15,16
100 READ A$,B$,C$,D$ ES
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

INPUT/QUTPUT COMMANDS 35

These two commands are always used together and the DATA statement is always
used in Deferred mode'. The DATA statement can be located anywhere in the pro-
gram, but must contain as many pieces of data as there are defined in the READ
statement. Otherwise, an ‘‘out of data'’ error is displayed on the screen. Refer to
RESTORE command.

String variables used in READ statements must be dimensioned and cannot be
subscripted. (See STRINGS Section). Neither may array variables be used in a
READ statement.

The DATA statement holds a number of string data for access by the READ
statement. It cannot include arithmetical operations, functions, etc. Furthermore,
the data type in the DATA statement must match the variable type defined in the
corresponding READ statement. The program in Figure 5-3 totals a list of numbers
in a DATA statement:

10 FOR MN=1 TO 9

20 READ D

30 M=M+D

40 NEXT N

S0 PRINT "SUM TOTAL EQUALS i
&0 END

70 DATE 30,155,108, 17,87

Figure 5-3 Read/Data Program Listing
The program, when executed, will print the statement:
SUM TOTAL EQUALS 255.

SAVE (S.)

Format: SAVE filespec
Example: SAVE ""D1:YVONNE.PAT"

The SAVE command is similar to the CSAVE command except that the full file
name system can be used. The device code number is optional when using disk
drive #1, because the default is to disk drive #1. SAVE, like LOAD, uses long inter-
record gaps on the cassette (see CSAVE) and the tokenized form of the program.

STATUS (ST.)
Format: STATUS #aexp,avar
Example: 350 STATUS #1,Z

The STATUS command calls the STATUS routine for the specified device (aexp).
The routine checks the device for an error condition and stores the appropriate
status data in the specified variable (avar). Refer to Appendix B. An error code of 1
is stored if the device is in a ready state and no error condition is detected.

'A Direct mode READ will only read data if a DATA statement was executed in the program

36 INPUT/OUTPUT COMMANDS

e e e e T T T T T T T T, T, T, Y, W, T, T, Y O T U U TN U N) U) O) O Y)

-

-»> -

!vvduuvoooooooooouoooooooooeooowwb’o

S S
XI0 (X.)

Format: XI10 cmdno, #aexp, aexp1, aexp2, filespec
Example: XIO 18,#6,12,0,S:"”

The XIO command is a general input/output statement used for special operations.
One example is its use to fill an area on the screen between plotted points and
lines with a color (see Section 9). When a STATUS REQUEST operation is done on
an OPEN device, the aexp1 used in the STATUS REQUEST must be the same as
the IOCB number used in the OPEN statement for that device; e.g., if the OPEN
was OPEN #1,9,0,"D:TEMP.BAS'' then the STATUS REQUEST must be XIO
13.#1,9,0,'D:TEMP.BAS’'. The parameters for the XIO command are defined as
follows:

(cmdno = Number that stands for the particular command to be performed.)

XI0

cmdno OPERATION EXAMPLE COMMENTS

3 OPEN XIO 3,#1,40,'D:TEMP.BAS"” Same as BASIC OPEN
12 CLOSE XIO 12,#1,0,0,"D:" Same as BASIC CLOSE
13 STATUS REQUEST XIO 13,#1,4,0,'D:TEMP.BAS” See note below

17 DRAW LINE XIO 17.#6,12,0,"'S:" See Section 9

18 FILL XIO 18,#6,12,0,"'S:" See Section 9

32 RENAME FILE XIO 32,#1,0,0,"D:TEMP,CAROL" See note below

33 DELETE FILE XIO 33,#1,0,0,"D:TEMP.BAS”

35 LOCK FILE XIO 35,#1,0,0,D:TEMP.BAS"

36 UNLOCK FILE XIO 36,#1,0,0,'D:TEMP.BAS"”

254 FORMAT XI0 254,#1,0,0,"'D:"

aexp Device number (same as in OPEN). Most of the time it is ignored, but

must be preceded by #.

aexpl Two auxiliary control bytes. Their usage depends on the particular

aexp2 device and command. In most cases, they are unused and are set to O.
Aexp1 should be set to 12 for a DRAW LINE or a FILL operation to
allow color checking later in the program.

filespec String expression that specifies the device. Must be enclosed in quota-
tion marks. Although some commands, like FILL (Section 9), do not look
at the filespec, it must still be included in the statement. XIO commands
5,7,9, and 11, 37, and 38, should not be used, because they are
undefined and unpredictable errors might occur.

NOTE: When using the RENAME operation, the device code D: should only be
used once.
D:TEMP, CAROL is correct
D:TEMP,D:CAROL is incorrect

Status Request performs the same action as the BASIC STATUS but
does not return the error code in a variable. If an error condition is
detected, it stops the program and prints an error message. To prevent
the stopping of the program use a TRAP before using XIO 13. The only
advantage XIO 13 has over STATUS is that a specific file on a disk drive
can be checked by XIO 13 but not by STATUS.

INPUT/QUTPUT COMMANDS 37

§

CHAINING PROGRAMS

If a program requires more memory than is available, use the following steps to
string programs of less than the maximum memory available into one program.

1. Type in the first part of the program in the normal way.

2. The last line of the first part of the program should contain only the line
number and the command RUN''C:"

3. Cue the tape to the blank section. Write down the program counter number for

later RUN purposes. Press PLAY and RECORD buttons on the deck S0 that

both remain down.

Type SAVE"C:" and press the RETURN key.

When the beeping sound occurs, press RETURN again.

When the screen displays ‘‘READY’’, do not move tape. Type NEW and press

RETURN.

7. Repeat the above instructions for the second part of the program.

8. As the second part of the program is essentially a totally new program, it is
possible to re-use the line numbers used in the first part of the program.

9. If there is a third part of the program, make sure the last line of the second
part is a RUN"C:"" command.

To execute a ‘‘chained’’ program, use the following steps:

1. Cue the tape to the beginning of part 1 of the program.

2. Press PLAY button on the recorder.

3. Type RUN'C:"RETURN.

4. When the “‘beep’ sounds, press RETURN again.

The computer automatically loads the first part of the program, runs it, and sounds

a “'beep” to indicate when to hit the space bar or RETURN to trigger the tape

motor for the second LOAD/RUN. The loading takes a few seconds.

Note: A one-part program can be recorded and reloaded in the same way or

CSAVE and CLOAD can be used.

Note: Remember to boot DOS before typing in your program if you wish to store

the program on diskette.

DI

MODIFYING A BASIC PROGRAM ON DISK

The procedure for modifying an existing BASIC program stored on a diskette is
demonstrated in the following steps:

. Turn off ATARI console and insert BASIC cartridge.
. Connect disk drive and turn it on—without inserting diskette.
. Wait for Busy Light to go out and for the drive to stop. Open disk drive door.
. Insert diskette (with DOS) and close door.
- Turn on console. DOS should boot in and the screen show READY.
. To load program from disk, type
LOAD ‘‘D:filename.ext
. Modify program (or type in new program).
. To save program on disk, type
SAVE "'D:filename.ext
9. Always wait for the Busy light to go out before removing diskette.

OB WN =

[e ol]

38 INPUT/OUTPUT COMMANDS

OO AARARARARAARAARAARAARAR DA ARP O RDRP DR PPY

PYIEPY IEPY REPY RV RS SV SRV BT T Y Y Y B B BV R RV RV R T ER TEE R BRI AR AR U AR IR AR IR B B R

10. To get a Directory listing, leave the diskette in and type
DOS
Press RETURN, and the DOS Menu is displayed. Select command letter A,
type it, and press RETURN twice to list the directory on the screen: or type A
followed by pressing RETURN then type P: and press RETURN to list direc-
tory on the printer.

11. To return to BASIC, type B and press RETURN or press SYSTEM RESET.

INPUT/OUTPUT COMMANDS 39

o ——————————————— .
6 FUNCTION
LIBRARY

This section describes the arithmetic. trigonometric, and special purpose functions
incorporated into the ATAR!I BASIC. A function performs a computation and returns
the result (usually a number) for either a print-out or additional computational use.
Included in the trigonometric functions are two statements, radians (RAD) and
degrees (DEQG), that are frequently used with trigonometric functions. Each function
described in this section may be used in either Direct or Deferred mode. Multiple
functions are perfectly legal.

The following functions and statements are described in this section:

ABS ATN ADR
CLOG COs FRE
EXP SIN PEEK
INT DEG/RAD POKE
LOG USR
RND

SGN

SQR

ARITHMETIC FUNCTIONS

ABS

Format: ABS (aexp)
Example: 100 AB = ABS (- 190)

Returns the absolute value of a number without regard to whether it is positive or
negative. The returned value is always positive.

CLOG
Format: CLOG (aexp)
Example: 100C = CLOG(83)

Returns the logarithm to the base 10 of the variable or expression in parentheses.
CLOG(0) gives an error and CLOG(1) equals 0.

EXP

Format: EXP (aexp)

Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283). raised to the power specified
by the expression in parentheses. In the example given above, the number re-
turned is 20.0855365. In some cases, EXP is accurate only to six significant digits.

40 FUNCTION LIBRARY

AN A DS S TAARARAAAA AT AIABDAIBIBIIONNOOOOPONDIONS

["0000000000000000000000000000000‘0‘0

INT

Format: INT (aexp)

Examples: 100 | = INT(3.445) (3 would be stored in 1)
100 X = INT(-14.66778) (- 15 would be stored in X)

Returns the greatest integer less than or equal to the value of the expression. This
is true whether the expression evaluates to a positive or negative number. Thus, in
our first example above, | is used to store the number 3. In the second example, X
is used to store the number — 15 (the first whole number that is less than or equal
to —14.66778). This INT function should not be confused with the function used on
calculators that simply truncates (cuts off) all decimal places.

LOG
Format: LOG(aexp)
Example: 100 L=LOG(67.89/2.57)

Returns the natural logarithm of the number or expression in parentheses. LOG(0)
gives an error and LOG(1) equals O.

RND
Format: RND(aexp)
Example: 10 A= RND (0)

Returns a hardware-generated random number between 0 and 1, but never returns
1. The variable or expression in parentheses following RND is a dummy and has
no effect on the numbers returned. However, the dummy variable must be used.
Generally, the RND function is used in combination with other BASIC statements
or functions to return a number for games, decision making, and the like. The
following is a simple routine that returns a random number between 0 and 999.

10 X=RND(0)
20 RX=INT(1000*X)
30 PRINT RX

(0 is the dummy variable)

SGN

Format: SGN(aexp)
Example: 100 X = SGN(- 199) (— 1 would be returned)

Returns a — 1 if aexp evaluates to a negative number; a 0 if aexp evaluates to O,
or a 1 if aexp evaluates to a positive number.
SQR

Format: SQR(aexp)
Example: 100 PRINT SQR(100) (10 would be printed)

Returns the square root of the aexp which must be positive.

FUNCTION LIBRARY 41

TRIGONOMETRIC FUNCTIONS

ATN

Format: ATN(aexp)
Example: 100 X = ATN(65)

Returns the arctangent of the variable or expression in parentheses

cos

Format: COS(aexp)
Example: 100C = COS(X+Y+2)

Note: Presumes X. Y, Z previously defined!
Returns the trigonometric cosine of the expression in parentheses.

SIN

Format: SIN(aexp)
Example: 100 X = SIN(Y)

Note: Presumes Y previously defined.
Returns the trigonometric sine of the expression in parentheses.

DEG/RAD

Format: DEG
RAD

Example: 100 DEG
100 RAD

These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless DEG
is specified. Once the DEG statement has been executed. RAD must be used to
return to radians.

See Appendix E for the additional trigopnometric functions that can be derived.

SPECIAL PURPOSE FUNCTIONS

ADR

Format: ADR(svar)
Example: ADR(A$)

Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa-
tion to USR routines, etc. (See USR and Appendix D)

FRE

Format: FRE(aexp)
Examples: PRINT FRE (0)
100 IF FRE (0) < 1000 THEN PRINT "MEMORY CRITICAL"

This function returns the number of bytes of user RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

42 FUNCTION LIBRARY

_ﬁﬁﬂﬁﬁﬁﬁﬁﬁoaaaaaaomaaaommmnnnona(y.p'

P VWOV UVWVOVVIOVOVUVUVUVUVUUUUUUUUVUUYVUVYYUYY DI

PEEK

Format: PEEK(aexp)
Examples: 1000 IF PEEK(4000) = 255 THEN PRINT 255"
100 PRINT “'LEFT MARGIN IS""; PEEK (82)

Returns the contents of a specified memory address location (aexp). The address
specified must be an integer or an arithmetic expression that evaluates to an in-
teger between 0 and 65535 and represents the memory address in decimal nota-
tion (not hexadecimal). The number returned will also be a decimal integer with a
range from 0 to 255. This function allows the user to examine either RAM or ROM
locations. In the first example above, the PEEK is used to determine whether loca-
tion 4000 (decimal) contains the number 255. In the second example, the PEEK
function is used to examine the left margin.

POKE

Format: POKE aexp1, aexp2
Examples: POKE 82, 10
100 POKE 82, 20

Although this is not a function, it is included in this section because it is closely
associated with the PEEK function. The POKE command inserts data into the
memory location or modifies data already stored there. In the above format, aexp1
is the decimal address of the location to be poked and aexp?2 is the data to be
poked. Note that this number is a decimal number between 0 and 255. POKE can-
not be used to alter ROM locations. In gaining familiarity with this command it is
advisable to look at the memory location with a PEEK and write down the contents
of the location. Then, if the POKE doesn't work as anticipated, the original con-
tents can be poked into the location.

The above Direct mode example changes the left screen margin from its default
position of 2 to a new position of 10. In other words, the new margin will be 8
spaces to the right. To restore the margin to its normal default position, press
SYSTEM RESET.

USR

Format: USR (aexp1 [, aexp2] [, aexp3...])
Example: 100 RESULT = USR (ADD1,A*2)

This function returns the results of a machine-language subroutine. The first ex-
pression, aexp1, must be an integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed. The input arguments aexp2, aexp3, etc., are optional.
These should be arithmetic expressions within a decimal range of 0 through 65535.
A non-integer value may be used; however, it will be rounded to the nearest
integer.

These values will be converted from BASIC's Binary Coded Decimal (BCD)
floating point number format to a two-byte binary number, then pushed onto the
hardware stack, composed of a group of RAM memory locations under direct con-
trol of the 6502 microprocessor chip. Figure 6-1 illustrates the structure of the
hardware stack.

FUNCTION LIBRARY 43

Z|

- -

» -

T NN<X<XX

R,
R,

(Number of arguments on the stack-may be 0)
(High byte of argument X)
(Low byte of argument X)
(High byte of argument Y)
(Low byte of argument Y)
(High byte of argument Z)
(Low byte of argument 2Z)

(Low byte of return address)
(High byte of return address)

Figure 6-1. Hardware Stack Definition

Note: X is the argument following the address of the routine. Y is the second. Z is
the third. etc. There are N pairs of bytes.

See Section 11 for a description of the USR function in machine language pro-
gramming. Appendix D defines the bytes in RAM available for machine language
programming.

44 FJUNCTION L.BRARY

- A A e e TR AR AA A AA AR AAaAARAARAAONNONOHNT S

"0000000(’000000000000000000000(00(0’.

T

o oo
STRINGS 7

This section describes strings and the functions associated with string handling.
Each string must be dimensioned (see DIM statement, Section 8) and each string
variable must end with a $. A string itself is a group of characters “‘strung”
together. The individual characters may be letters, numbers, or symbols (including
the ATARI special keyboard symbols.) A substring is a part of a longer string and
any substring is accessible in ATARI BASIC if the string has been properly dimen-
sioned (see end of section). The characters in a string are indexed from 1 to the
current string length, which is less than or equal to the dimensioned length of the
string.

The string functions described in this section are:

ASC STRS CHR$S VAL LEN

ASC

Format: ASC(sexp)
Examples: 100 A = ASC(A$)

This function returns the ATASCII code number for the first character of the string
expression (sexp). This function can be used in either Direct or Deferred mode.
Figure 7-1 is a short program illustrating the ASC function.

10
20
30
410

—

DIM A% (3)

Figure 7-1. ASC Function Program

When executed, this program prints a 69 which is the ATASCII code for the letter
“E'". Note that when the string itself is used, it must be enclosed in quotation
marks.

CHR$

Format: CHRS (aexp)
Examples: 100 PRINT CHRS (65)
100 A$ = CHRS (65)

This character string function returns the character, in string format, represented
by the ATASCII code number in parentheses. Only one character is returned. In the
above examples, the letter A is returned. Using the ASC and CHRS$ functions, the
program in Figure 7-2 prints the upper case letters of the alphabet

STRINGS 45

|

N
e

i
N
L.

Figure 7-2. ASC and CHRS Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.
For example, A = CHR$(1) < CHR$(2) is not a valid operation.

LEN

Format: LEN (sexp)
Example: 100 PRINT LEN(A$)

This function returns the length in bytes of the designated string. This information

may then be printed or used later in a program. The length of a string variable is

simply the index for the character which is currently at the end of the string.

Strings have a length of O until characters have been stored in them. It is possible

to store into the middle of the string by using subscripting. However, the beginning

of the string will contain garbage unless something was stored there previously.
The routine in Figure 7-3 illustrates one use of the LEN function:

TH Sk 10)
START

Fa
oy g 1 \ . h
PRINT LENCGHRE)

Figure 7-3. LEN Function Example

The result of running the above program would be 5.

STR$S

Format: STRS$ (aexp)

Example: A$=STR$(65)

This string form number function returns the string form of the number in paren-
theses. The above example would return the actual number 65, but it would be
recognized by the computer as a string.

Note: There can only be one STR$ in a logical comparison. For example,
A=STR$(1) > STR$(2) is not valid and will not work correctly.

VAL

Format: VAL(sexp)

Example: 100 A= VAL(A$)

This function returns a number of the same value as the number stored as a string.
This is the opposite of a STR$ function. Using this function, the computer can
perform arithmetic operations on strings as shown in the example program in
Figure 7-4.

46 STRINGS

P A e N N, N 0 N N N N N N N A N A O

S DWWV OVVIVUVOVUVVVWVULVLVLILVIOIIDVIDVIDVIDVIYDVWIDVIVDVIVDVIVDVWIYDYIDPYDY 999w @ e

}

10 DIM E$(5)

20 E$="10000"

30 B=SOR (VAL (E$))

40 ? "THE SQUARE RODT OF "jE$}"IS"E

Figure 7-4. VAL Function Program

Upon execution, the screen displays THE SQUARE ROOT OF 10000 IS 100.

It is not possible to use the VAL function with a string that does not start with a
number, or that cannot be interpreted by the computer as a number. It can,
however, interpret floating point numbers; e.g., VAL(**1E9"") would return the
number 1000000000.

Only the numeric field will be translated, while the text will be ignored. For
example:

A$="5 SUM"
VAL(A$)=5

STRING MANIPULATIONS

Strings can be manipulated in a variety of ways. They can be split, concatenated,
rearranged, and sorted. The following paragraphs describe the different manipula-
tions.

STRING CONCATENATION

Concatenation means putting two or more strings together to form one large string.
Each string to be included in a larger string is called a substring. Each substring
must be dimensioned (see DIM). In ATARI BASIC, a substring can contain up to 99
characters (including spaces). After concatenation, the substrings can be stored in
another string variable, printed, or used in later sections of the program. Figure 7-5
is a sample program demonstrating string concatenation. In this program, A$, BS$,
and C$ are concatenated and placed in A$.

10 !

A DIESLUSSEDY

30 TEACHIMEG GUEGE"
40

&N

Figure 7-5. String Concatenation Example

STRINGS 47

STRING SPLITTING
The format of a subscript string variable is as follows:
svar(aexp1[,aexp2])

The svar is used to indicate the unsubscripted string variable name (with $).
aexp1 indicates the starting location of the substring and aexp2 (if used) indicates
the ending location of the substring. If no aexp?2 is specified, then the end of the
substring is the current end of the string. The starting location cannot be greater
than the current length of the string. The two example programs in Figure 7-6 il-
lustrate a split string with no end location indicated and a split string with an
ending location indicated.

LU DM eSS (5) 10
20 Se="aECDAE" 2 BasIc
BUGER INT S8 4072 an ;
40 END 40
Result is BCD#. Result is 80
(without ending location) (with ending location)

Figure 7-6. Split String Examples

STRING COMPARISONS AND SORTS

In string comparisons, the logical operators are used exactly the way they are with

numbers. The second program in Appendix H is a simple example of bubble sort.
In using logical operators, remember that each letter, number, and symbol is

assigned an ATASCII code number. A few general rules apply to these codes:

1. ATASCII codes for numbers are sized in order of the numbers’ real values and
are always lower than the codes for letters (see Appendix C).

2. Upper case letters have lower numerical values than the lower case letters. To
obtain the ATASCII code for a lower case letter if you know the upper case
value, add 32 to the upper case code.

Note: ATARI BASIC's memory management system moves strings around in
memory to make room for new statements. This causes the string address to vary
if a program is modified or Direct mode is used.

48 STRINGS

e e I T T T T T T T TG T, S, W, N, W T, T T U, U I, N, S SN SN o BN o DN BN, Y, AL SN 3

$ 0 0 O0VOVOVOVOVOVVOVLIOVLVIVLIUVLIUVLIUVLIULUUYYUYLUYLUYLLLYLLL e >

T
ARRAYS AND 8
MATRICES

An array is a one-dimensional list of numbers assigned to subscripted variables:
e.g.. Al0). A(1), A(2). Subscripts range from O to the dimensioned value. Figure 8-1
illustrates a 7-element array.

2

)
(1)
(2)
(3)

)
)
)

A
A
A
A4

A5
A6

Figure 8-1. Example of an Array

A matrix. in this context, is a two-dimensional table containing rows and columns,
Rows run horizontally and columns run vertically. Matrix elements are stored by
BASIC in row-major order. This means that all the elements of the first row are
stored first. followed by all the elements of the second row. etc. Figure 8-2
illustrates a 7 x 4 matrix.

Columns
M(Q.0) M(O.1) M(0.2) M(0.3)
M(1.0) M(1.1) M(1.2) M(1.3)
M(2.0) M(2.1) M(2.2) M(2.3)
g M(3.0) M(3.1) M(3.2) M(3.3)
c M(4 .0) M(4.1) M(4.2) M(4.3)
M(5.0) M(5.1) M(5.2) M(5.3)
M(6.0) M(6.1) M(6.2) M(6.3)

Figure 8-2. Example of a Matrix

This section describes the two commands associated with arrays. matrices, and
strings. and how to load both arrays and matrices. The commands In this section
are:
DIM
CLR

STRINGS <9

|
DIM (DI.)

Format: svar(aexp) ,.svar(aexp)
DiM { mvar(aexp[,aexp]) } [{ ,mvar(aexp[,aexp]) } :|

Examples: DIM A(100)
DIM M(6.3)
DIM B$(20) used with STRINGS

A DIM statement is used to reserve a certain number of locations in memory for a
string, array, or matrix. A character in a string takes one byte in memory and a
number in an array takes six bytes. The first example reserves 101 locations for an
array designated A. The second example reserves 7 rows by 4 columns for a two-
dimensional array (matrix) designated M. The third example reserves 20 bytes
designated B$. All strings, arrays, and matrices must be dimensioned. It is a
good habit to put all DIM statements at the beginning of the program. Notice in
Figure 8-1 that although the array is dimensioned as DIM A(6), there are actually
7 elements in the array because of the 0 element. Although Figure 8-2 is dimen-
sioned as DIM M(6.3). 28 locations are reserved.

Note: The ATARI Home Computer does not automatically initialize array or matrix
variables to 0 at the start of program execution. To initialize array or matrix
elements to 0, use the following program steps:

DM AC100)
FOR E=0 TO 100
ACE) =0
NEXT E

Arrays and matrices are ‘‘filled”” with data by using FOR/NEXT statements,
READ/DATA statements and INPUT commands. Figure 8-3 illustrates the
“puilding’’ of part of an array using the FOR/INEXT loop and Figure 8-4 builds an
array using the READ/DATA statements.

ACL00?

Figure 8-3. Use of FOR/NEXT to Build An Array

50 ARRAYS & MATRICES

\Q,qn,m..nnnnnqnnnnonnﬂnonnt‘lnnnnnn()(1('.'1

0 PV PV VUV VW UOWLVLIULVLUVIVIVLIVLIOLULLULUYLULULULUYLYUVLL OGS

Figure 8-4. Use of READ/DATA to Build An Array

Figure 8-5 shows an example of building a 6 x 3 matrix.

SRR SRy

Figure 8-5. Building A Matrix

Note that the words ROW and COLUMN are not BASIC commands. statements,
functions, or keywords. They are simply variable names used here 1o designate
which loop function is first. The program could just as easily have been written
with X and Y as the variable names.

Note: The command COM is identical to DIM and may be used in its place.

Note: Due to a discrepancy in boundary checking. arrays of up to 32766 by 32766
in size can be dimensioned. The programmer should size the array ahead of time
to ensure that there is enough RAM storage space.

CLR

Format: CLR

Example: 200 CLR

This command clears the memory of all previously dimensioned strings, arrays.
and matrices so the memory and variable names can be used for other purposes
If a matrix. string. or array is needed after a CLR command. it must be redimen-
sioned with a DIM command.

ARRAYS & MATRICES 5t

. __]
9 GRAPHICS MODES
AND COMMANDS

This section describes the ATARI BASIC commands and the different graphics
modes of the ATARI Home Computer. Using these commands, it is possible to
create graphics for graphic displays or games.

The commands to be described in this section are:

GRAPHICS LOCATE PUT/GET

COLOR PLOT SETCOLOR
DRAWTO POSITION XIO

The PUTIGET and XIO commands explained in this section are special applica-
tions of the same commands described in Section 5.

GRAPHICS (GR)

Format: GRAPHICS aexp
Examples: GRAPHICS 2
100 GRAPHICS 5+ 16
170 GRAPHICS 1+ 32+ 16
120 GRAPHICS 8
150 GRAPHICS 0
140 GRAPHICS 18

This command is used to select one of the graphics modes. The 1200XL provides
16 graphics modes; the 400/800 provide 12 graphics modes if the GTIA chip is in-
stalled and 9 if the CTIA chip is installed. Table 9-1 summarizes the modes and the
characteristics of each. The GRAPHICS command automatically opens the
screen, S:(the graphics window), as device #6. So when printing text in the text
window, it is not necessary to specify the device code. The aexp must be positive,
rounded to the nearest integer. Graphics mode O is a full-screen display while
modes 1 through 8 are split screen displays. To override the split-screen, add the
characters + 16 to the mode number (aexp) in the GRAPHICS command. Adding
32 prevents the GRAPHICS command from clearing the screen.

To return to graphics mode 0 in Direct mode, press SYSTEM RESET or type
GR.0 and press RETURN.

52 GRAPHICS MODES & COMMANDS

lgmmmmnnnhnnaannnannnnnnonnﬂnﬂqnﬂ('."

s’vuuuuuuuuouuuouuuooooooooeboouuuu‘

[

e
TABLE 9-1 TABLE OF MODES AND SCREEN FORMATS

SCREEN FORMAT

Rows— Rows— Number RAM Required
Graphics Mode Split Full of (Bytes)
Mode Type Columns Screen** Screen Colors Split Full
0 TEXT 40 — 24 1-1/2 992
1 TEXT 20 20 24 5 674 672
2 TEXT 20 10 12 5 424 420
8 GRAPHICS 40 20 24 4 434 432
4 GRAPHICS 80 40 48 2 694 696
5 GRAPHICS 80 40 48 4 1474 - 176
6 GRAPHICS 160 80 96 2 2174 2184
i GRAPHICS 160 80 96 4 4190 4200
8 GRAPHICS 320 160 192 1-1/2 8112 8138
9* GRAPHICS 80 — 192 1 8138
10* GRAPHICS 80 -— 192 9 8138
1 GRAPHICS 80 —_ 192 16 8138
NPt GRAPHICS 40 20 24 5 1164 " 11152
1 35S GRAPHICS 40 10 12 5 664 660
g GRAPHICS 160 160 192 2 4270 4296
1ot GRAPHICS 160 160 192 4 8112 ==8138

*GTIA Mode Only
* *Refer to Figure 9-1
***1200XL Only

GRAPHICS MODE 0

This mode is the 1-color, 2-luminance (brightness) default mode for the ATARI
Home Computer. It contains a 24 by 40 character screen matrix. The default
margin settings at 2 and 39 allow 38 characters per line. Margins may be changed
by poking LMARGN and RMARGN (82 and 83). See Appendix |. Some systems
have different margin default settings. The color of the characters is determined by
the background color. Only the luminance of the characters can be different. This
full-screen display has a blue display area bordered in black (unless the border is
specified to be another color). To display characters at a specified location, use
one of the following two methods.

Method 1.
lineno POSITION aexp1, aexp2 Puts cursor at location specified by aexp1 and
lineno PRINT sexp aexp2.

Method 2
lineno GR. 0 Specifies graphics mode.
lineno POKE 7521 Suppresses cursor.
lineno COLOR ASC(sexp) Specifies character to be printed.
lineno PLOT aexp1,aexp?2 Specifies where to print character.
lineno GOTO lineno Start loop to prevent READY from being

printed. (GOTO same lineno.)
Press BREAK to terminate loop.

GRAPHICS 0 is also used as a clear screen command either in Direct mode or
Deferred mode. It terminates any previously selected graphics mode and returns
the screen to the default mode (GRAPHICS 0).

GRAPHICS MODES & COMMANDS 53

]
GRAPHICS MODES 1 AND 2

As defined in Table 9-1, these two 5-color modes are Text modes. However, they
are both split-screen (see Figure 9-1) modes. Characters printed in Graphics mode
1 are twice the width of those printed in Graphics 0, but are the same height.
Characters printed in Graphics mode 2 are twice the width and height of those in
Graphics mode 0. In the split-screen mode, a PRINT command is used to display
characters in either the text window or the graphics window. To print characters in
the graphics window, specify device #6 after the PRINT command.

Example: 100 GR. 1
110 PRINT#6; "ATARI"

The default colors depend on the type of character input. Table 9-2 defines the
default color and color register used for each type.

TABLE 9-2 DEFAULT COLORS FOR SPECIFIC INPUT TYPES

Character Type Color Register Default Color

Upper case alphabetical 0 Orange
Lower case alphabetical 1 Light Green
Inverse upper case alphabetical 2 Dark Blue
Inverse lower case alphabetical 3 Red
Numbers and delimiters 0 Orange
Inverse numbers and delimiters 2 Dark Blue

Note: See SETCOLOR to change character colors.

Unless otherwise specified, all characters are displayed in upper case non-inverse
form. To print lower case letters and graphics characters, use a POKE 756,226. To
return to upper case, use POKE 756,224.

In Graphics modes 1 and 2, there is no inverse video, but it is possible to get all
of the characters in four different colors (see end of section).

(X=0)

(Y=0) .
X-coordinate (columns)

« + + Graphics Window
(graphics or text)

7
3
o
x
Q
=
=
1
[<]
o
9
>
9 1 E:
-+ Text Window
(4 lines)
- o |
border (size
depends on
individual

TV's overscan)

Figure 9-1. Split-Screen Display For Graphics Modes 1 and 2

54 GRAPHICS MODES & COMMANDS

ot Tt Tt Tt Tt Tt et Tt Tt et Tt Tt Yt et T Tt s s s I I N O N O O O) O) O)) O

1

S VUVULVDULVLUVUVUUVLLIVUVUVLUVUVLUVUVUUVUYUYUUVUUYUYUYYYY DG e

As shown in Figure 9-1, the X and Y coordinates start at O (upper left of screen).
The maximum values are the numbers of rows and columns minus 1 (see Table
9-1).

This split-screen configuration can be changed to a full screen display by adding
the characters + 16 to the mode number.

Example: GRAPHICS 1+ 16

GRAPHICS MODES 3, 5, AND 7

These three 4-color Graphics modes are also split-screen displays in their default
state, but may be changed to full screen by adding + 16 to the mode number.
Modes 3, 5, and 7 are alike except that modes 5 and 7 use more points (pixels) in
plotting, drawing, and positioning the cursor; the points are smaller, thereby giving
a much higher resolution.

GRAPHICS MODES 4 AND 6

These two 2-color Graphics modes are split-screen displays and can display in only
two colors while the other modes can display 4 and 5 colors. The advantage of a
two-color mode is that it requires less RAM space (see Table 9-1). Therefore, it is
used when only two colors are needed and RAM is getting crowded. These two
modes also have a higher resolution which means smaller points than Graphics
mode 3.

GRAPHICS MODE 8

This Graphics mode gives the highest resolution of all the modes. As it takes a lot
of RAM to obtain this kind of resolution, it can only accommodate a maximum of
one color and two different luminances.

GRAPHICS MODES 9, 10, AND 11

Use GRAPHICS to select one of the Graphics modes (9 through 11). GRAPHICS 9
through 11 are only available if your system has a GTIA chip. GRAPHICS 9 allows
you to have one playfield color with 16 luminances. GRAPHICS 10 can have nine
playfield colors with eight luminances. GRAPHICS 11 can have 16 colors with one
luminance.

GRAPHICS MODES & COMMANDS 55

!

COLOR (C)

Format: COLOR aexp
Examples: 110 COLOR ASC("'A")
110 COLOR 3

The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO commands
until the next COLOR statement is executed. The value must be positive and is
usually an integer from O through 4. Modes 9 through 11 use 4 bits, so the color
statement varies between 0 and 15. The actual color displayed depends on the
value in the color register, which corresponds to the data of 0, 1, 2, or 3 in the par-
ticular graphics mode being used. This may be determined by looking in Table 9-5,
which gives the default colors and the corresponding register numbers. Colors may
be changed by using SETCOLOR.

Note that when BASIC is first powered up, the color data is 0, and when a
GRAPHICS command (without + 32) is executed, all of the pixels are set to 0.
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed. Correct by doing a
COLOR 1 first.

DRAWTO (DR.)

Format: DRAWTO aexp1, aexp2
Example: 100 DRAWTO 10,8

This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexp1 and aexp2. The first expression
represents the X coordinate and the second represents the Y-coordinate (see
Figure 9-1). The color of the line is determined by the color command in effect at
the time.

LOCATE (LOC,)

Format: LOCATE aexp1, aexp2, var
Example: 150 LOCATE 12, 15, X

This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the color data at that pixel, and stores it in the
specified arithmetic variable. This gives a number from 0 to 255 for Graphics
modes 0 through 2; 0 or 1 for the 2-color graphics modes; and 0, 1, 2, or 3 for the
4-color modes. The two arithmetic expressions specify the X and Y coordinates of
the point. LOCATE is equivalent to:

POSITION aexp1, aexp2:GET #6,avar

Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified. This problem is avoided by reposi-
tioning the cursor and putting the data that was read, back into the pixel before do-
ing the PRINT. The program in Figure 9-2 illustrates the use of the LOCATE com-
mand.

56 GRAPHICS MODES & COMMANDS

m» ™

;S22 NANAAANDPCA DA AR AAE2AEAA A AP PP

S DVDOVOLVUVOVVLVLLVUVVULVLUVVIVLVVVIVVIYVYVVUUYULVU YUY Y DD

Figure 9-2. Example Program Using LOCATE

On execution, the program prints the data (1) determined by the COLOR statement
which was stored in pixel 12, 15.

PLOT (PL)

Format: PLOT aexp1, aexp2
Example: 100 PLOT 55

The PLOT command is used in Graphics modes 3 through 11 to display a point in
the graphics window. The aexp1 specifies the X-coordinate and the aexp?2 the
Y-coordinate. The color of the plotted point is determined by the last COLOR state-
ment executed. To change the color and luminance of the plotted point, use SET-
COLOR. Points that can be plotted on the screen are dependent on the Graphics
mode being used. The range of points begins at 0 and extends to one less than the
total number of rows (X-coordinate) or columns (Y-coordinate) shown in Table 9-1.

POSITION (POS.)

Format: POSITION aexp1, aexp2
Example: 100 POSITION 8, 12

The POSITION statement is used to place the cursor (invisible in graphics mode)
at a specified location on the screen. This statement usually precedes a PRINT
statement and can be used in all modes. Note that the cursor does not actually
move until an I/O command which involves the screen is issued.

PUT/GET (PU./GE.)

Formats: PUT #aexp, aexp
GET #aexp, avar
Examples: 100 PUT #6, ASC(*‘A")
200 GET #1, X

In graphics work, PUT is used to output data to the screen display. This statement
works hand-in-hand with the POSITION statement. After a PUT (or GET), the cur-
sor is moved to the next location on the screen. Doing a PUT to device #6 causes
the one-byte input (second aexp) to be displayed at the cursor position. The byte is
either an ATASCII code byte for a particular character (modes 0-2) or the color
data (modes 3-11).

GRAPHICS MODES & COMMANDS 57

5 —

GET is used to input the code byte of the character displayed at the cursor posi-
tion, into the specified arithmetic variable. (PRINT and INPUT may also be used.)
Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was examined to be modified. To avoid this problem, reposi-
tion the cursor and put the data that was read, back into the pixel before doing the
PRINT.

SETCOLOR (SE)

Format: SETCOLOR aexp1, aexp2, aexp3

Example: 100 SETCOLORO, 1, 4

This statement is used to choose the particular hue and luminance to be stored in
the specified color register. The parameters of the SETCOLOR statement are
defined below:

aexpl = Color register (0-4 depending on graphics mode)
aexp2 = Color hue number (0-15. See Table 9-3)
aexp3 = Color luminance (must be an even number between 0 and 14, the

higher the number the brighter the display. 14 is almost pure white.)
TABLE 9-3 THE ATARI HUE (SETCOLOR COMMAND) NUMBERS AND COLORS

COLORS SETCOLOR (aexp2) NUMBERS
GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED-ORANGE 3
PINK 4
RURPLE 5
PURPLE-BLUE 6
BLUE T4
BLUE 8
LIGHT BLUE 9
TURQUOISE 10
GREEN-BLUE 1
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15

Note: Colors vary with type and adjustment of TV or monitor used.

The ATARI display hardware contains five color registers, numbered from
0 through 4. The Operating System (OS) has five RAM locations (COLOR 0 through
COLOR 4, see Appendix I—Memory Locations) where it keeps track of the current
colors. The SETCOLOR statement is used to change the values in these RAM
locations. (The OS transfers these values to the hardware registers every television
frame.) The SETCOLOR statement requires a value from O to 4 to specify a color
register. The COLOR statement uses different numbers because it specifies data
which only indirectly corresponds to a color register. This can be confusing, so
careful experimentation and study of the various tables in this section is advised.
No SETCOLOR commands are needed if the default set of colors is used. The
purpose of the color registers and SETCOLOR statement is to specify the colors.

58 GRAPHICS MODES & COMMANDS

% ®

w

> » » > > > M TP MM P

” ™ P> »

LOVVVUVLUUVVLULUVLULLUVUVLLLULULULULUUUUUUUUUUUULLLS!

-]
TABLE 9-4 TABLE OF SETCOLOR “DEFAULT” COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color

0 2 8 ORANGE

1 12 10 GREEN

2 9 4 DARK BLUE
3 4 6 PINK OR RED
4 0 0 BLACK

“DEFAULT" occurs if no SETCOLOR statement is used.

Note: Colors may vary depending upon the television monitor type, condition, and adjust-
ment.

A program illustrating Graphics mode 3 and the commands explained so far in this
section is shown below:

sDRAWHTO 2,18

MMk GCONMEETERSS

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9-5). The SETCOLOR command loads color register 0 with hue 2
(orange) and a luminance of 8 (‘'‘normal’’). The next 4 lines plot the points to be
displayed. Line 80 prints the string expression ATARI HOME COMPUTERS in the
text window.

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it prints the ATARI logo in the graphics window and
the string expression in the text window as in Figure 9-3.

X-AXIS POINTS (COLUMNS)

0123456789 1011121314151617 18192021 222324252627 282930 313233 343536 37 38 39

- (GRAPHICS WINDOW)
DEVICE CODE 'S.*
Screen

(Graphics or Text)

6

e

9

10

'

12

13

1

15

16

"

18

7 (TEXT WINDOW)

j ATARI HOME COMPUTERS ‘

»uwwm o

Y-AXIS POINTS (ROWS)

Editor
DEVICE CODE “'E
(Text Only)

Figure 9-3. Atari Logo Program Execution

GRAPHICS MODES & COMMANDS 59

TABLE 9-5 MODE, SETCOLOR, COLOR TABLE
SETCOLOR DESCRIPTION
Default Mode or (aexp1) Color COLOR AND
Colors Condition Register No. (aexp) COMMENTS
0 COLOR data —
LIGHT BLUE MODE 0 and 1 actually Character
ALL TEXT determines luminance
WINDOWS character to (same color
(1 Color be plotted as background)
DARK BLUE 2 Luminances) 2 Background
3 —

BLACK 4 Border

ORANGE 0 COLOR data Character

LIGHT GREEN MODES 1 1 actually deter- Character

DARK BLUE and 2 mines character Character

RED 2 3 to be plotted Character

BLACK (Text Modes) 4 Background, Border

ORANGE 0 1 Graphics point

LIGHT GREEN MODES 3, 5, 1 2 Graphics point

DARK BLUE and 7 2 8 Graphics point

(Four-color 3 — =

BLACK Modes) 4 0 Graphics point
(background
default), Border

ORANGE MODES 4 0 1 Graphics point

and 6 1 — —
(Two-color 2 — —
Modes) 3 — —_

BLACK 4 0 Graphics point
(background
default), Border

0 s =

1 1 Graphics point
luminance
(same color
as background)

LIGHT BLUE MODE 8 2 0 Graphics point
(background
default)

DARK BLUE (1 Color 3 — —

BLACK 2 Luminances) 4 — Border

BLACK MODE 9 4 0-15 Graphics point—

(1 Color Color value deter-
16 Luminances) mines luminance

BLACK MODE 10 = 0 Background
(Color 0)

BLACK (9 Color) — 1 Graphics point

BLACK — 2 Graphics point

BLACK — 3 Graphics point

ORANGE 0 4 Graphics point

LIGHT GREEN 1 b Graphics point

DARK BLUE 2 6 Graphics point

RED 3 7 Graphics point

BLACK 4 8 Graphics point

BLACK MODE 11 4 0-15 Graphics point—

(16 Colors Color value
1 Luminance) determines hue

60 GRAPHICS MODES & COMMANDS

g.qo.nmnnonnnnnnnnnnnnonnnnnnnnnnnawl

POVOVLLVLLLVLLVLLVLVLLVLUVLULVLUUVLUVUUVUUVUIUUUUULUUUUULYULE

XI0 (X.) SPECIAL FILL APPLICATION

Format: X10 18, #aexp, aexp1, aexp2, filespec
Example: 100 XIO 18, #6, 12, 0, *'S:"

This special application of the XIO statement uses XIO 18 fills an area on the
screen between plotted points and lines with a non-zero color. A dummy variable
(0) is used for aexp2. Refer to XIO statement for further information.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).

2. DRAWTO upper right corner (point 2). This outlines the right edge of the area to
be filled.

. DRAWTO upper left corner (point 3).

. POSITION cursor at lower left corner (point 4).

. POKE address 765 with the fill color data (1, 2, or 3).

This method is used to fill each horizontal line from top to bottom of the

specified area. The fill starts at the left and proceeds across the line to the right

until it reaches a pixel which contains non-zero data (will wraparound if

necessary). This means that fill cannot be used to change an area which has

been filled in with a non-zero value, as the fill will stop. The fill command will go

into an infinite loop if a fill with zero (0) data is attempted on a line which has no

non-zero pixels. BREAK or SYSTEM RESET can be used to stop the fill if this

happens.

The program in Figure 9-4 creates a shape and fills it with a data (color) of 3. Note
that the XIO command draws in the lines at the left and bottom of the figure.

o O0bh W

Figure 9-4. Example “FILL” Program

XIO (X.) DRAW LINE APPLICATION

Format: XI0 17, #aexp, aexp1, aexp2, filespec
Example: 130 XIO 17, #6, 12, 0, "'S:"”

This application of the XIO statement uses XIO 17 and draws a line on the screen
between the last point plotted and the current position of the (invisible) graphics
cursor (moved by the POSITION command) in the current color.

GRAPHICS MODES & COMMANDS 61

100 GRAPHICS 5: COLOR 2

110 PLOT 5.5

120 POSITION 10.10

130 XIO 17, #6, 12, 0."'S:”
The above program draws a line from 5,5 to 10.10 in COLOR 2. Lines 120 and 130
could be replaced by

120 DRAWTO 10,10

TABLE 9-6 INTERNAL CHARACTER SET

Column 1 Column 2
CHR # CHR # CHR # CHR
0 Space 16 0 32 @ 48 P
1 ! 17 1 33 A 49 Q
2 v 18 2 34 B 50 R
3 # 19 3 35 C 51 S
4 $ 20 4 36 D 52 T
5 e 21 5 37 E 53 U
6 & 22 6 38 F 54 v
7 ' 23 7 39 G 55 w
8 (24 8 40 H 56 X
9) 25 9 41 | 57 Y
10 * 26 : 42 J 58 z
11 + 27 : 43 K 59 [
12 . 28 < 44 L 60 AN
13 — 29 = 45 M 61]
14 . 30 > 46 N 62 A
15 / 31 ? 47 0 63 —

62 GRAPHICS MODES & COMMANDS

et et e e N B T I T WV W S . W I S N . B L I B, TP, R I SR B 2N I I I A 2

UUUUU000000000000000000“0000010(0(0'01

t
L

(N

Assigning Colors To Characters In Text Modes 1 and 2

This procedure describes the method of assigning colors to the ATARI character
set. First, look up the character number in Table 9-6. Then, see Table 9-7 to get the
conversion of that number required to assign a color register to it.

Assign SETCOLOR 0 to lower case "1’ in mode 2 whose color is
determined by register O.

1. In Table 9-6, find the column and number for *'r’’ (114-column 4).

Example:

Column 3 Column 4
CHR # CHR # CHR # CHR
64 0 80 B 96 o 112 p
65 ﬂ 81 n 97 a 113 q
66 '] 82 a 98 b 114 r
67 83 99 c 115 s
68 e] 84 U 100 d 116 1
69 a 85 B 101 e 117 u
70 86 [' 102 f 118 v
71 87 ﬂ 103 g 119 W
72 B 88 a 104 h 120 X
73 B 89 E' 105 i 121 y
74 90 c 106 i 122 z
75 n 91 ® B 107 k 123 D
76 92 ® 108 124
77 a 3 © @R |09 m 125 O
78 B 94 © 110 n 126 @ ‘
79 B 95 © 111 o 127 © '.

1. 1n mode 0 these characters must be preceded with an escape, CHR$(27), 10 be printed

GRAPHICS MODES & COMMANDS 63

e ...
TABLE 9-7 CHARACTER/COLOR ASSIGNMENT

Column 1 Column 2 Column 3 Column 4
Conversion Conversion Conversion Conversion

MODE O 2SETCOLOR 2 #+32 #+ 32 #—64 NONE
POKE 756,224 POKE 756,226

MODE 1 SETCOLOR 0 #+32 #+32 #-32 #-32

OR SETCOLOR 1 NONE #+ 64 #— 64 NONE

MODE 2 SETCOLOR 2 #4160 #+ 160 # +96 #-96
SETCOLOR 3 #+128 #+192 #+ 64 # +28

2. Luminance controlled by SETCOLOR 1, 0, LUM

2. Using Table 9-7, locate column 4. Conversion is the character number minus 32
(114 — 32 = 82).

3. POKE the Character Base Address (CHBAS) with 226 to specify lower case let-
ters or special graphics characters, e.g.,
POKE 756,226
or
CHBAS = 756
POKE CHBAS, 226

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS

with 224.

4. A PRINT statement using the converted number (82) assigns the lower case ‘‘r'’
to SETCOLOR 0 in mode 2 (see Table 9-5).

Graphic Control Characters

These characters are produced when the CTRL key is pressed with the ap-
propriate alphabetic keys. These characters can be used to draw design, pictures,
etc., in mode 0 and in modes 1 and 2 if CHBAS is changed.

COLOR ASSIGNMENT IN THE GTIA MODES 9, 10, and 11:

The GTIA modes 9, 10 and 11 handle colors differently than modes 0 through 8.
The following procedures describe how to use modes 9, 10, and 11.

Mode 9: In this mode, one color with 16 luminances is available. First,
choose a hue from Table 9-3 and assign it with the SETCOLOR com-
mand. Only SETCOLOR register 4 is used and the luminance must be
set to zero; e.g.,

100 SETCOLOR 4, HUE, 0 (where HUE is the hue to be assigned)

Then, use the COLOR statement to choose luminances from 0
through 15. 0 is almost black and 15 is almost white.

Mode 10: Nine colors with nine different luminances are available. The nine col-

ors are chosen by using COLOR 0 through 8. These colors are as-
signed by use of POKE and SETCOLOR.

COLOR POKE SETCOLOR
location register

0 704 -

1 705 ==

2 706 -—

3 707 -—-

4 708 0

5 709 1

6 710 2

64 GRAPHICS MODES & COMMANDS

m » >

g

7 S Ny N N N S BN S B R N e R e R R S A A

»

0D > > > > > PP

e YV UV OUYU UV YUY OYIOUOELOUWUWULULLULWUYLLLYLLLOL

o

Mode 11:

COLOR POKE SETCOLOR (continued)
location register

7 711 3

8 712 4

COLORs 4 through 8 can be assigned by using SETCOLOR in the
normal manner. All COLORs can be assigned by POKEing to the
locations given above.

16 colors, all with the same luminance, are available. The luminance
is assigned by SETCOLOR. Only SETCOLOR register 4 is used with
the hue number of zero, e.g.,

100 SETCOLOR 4,0,LUM (where lum is the luminance chosen)

The colors are chosen by COLORs 0 to 15. The COLOR numbers are
the same as those given in Tabie 9-3.

GRAPHICS MODES & COMMANDS 65

. __]
1 O SOUNDS AND GAME
CONTROLLERS

This section describes the statement used to generate musical notes and sounds
through the audio system of the television monitor. Up to four different sounds can
be ‘‘played’’ simultaneously creating harmony. This SOUND statement can also be
used to simulate explosions, whistles, and other interesting sound effects. The
other commands described in this section deal with the functions used to
manipulate the keyboard, joystick, and paddle controllers. These functions allow
these controllers to be plugged in and used in BASIC programs for games, etc.
The command and functions covered in this section are:

SOUND PADDLE STICK STRIG PTRIG

SOUND (SO.)

Format: SOUND aexp1, aexp2, aexp3, aexp4
Example: 100 SOUND 2, 204, 10, 12

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program encounters
another SOUND statement with the same aexp1 or an END statement. This com-
mand can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

aexp! = Voice. Can be 0-3, but each voice requires a separate SOUND state-
ment.

aexp2 = Pitch. Can be any number between 0-255. The larger the number, the
lower the pitch. Table 10-1 defines the pitch numbers for the various
musical notes ranging from two octaves above middle C to one octave
below middle C.

aexp3 = Distortion. Can be even numbers between 0-14. Used in creating sound
effects. A 10 is used to create a ‘‘pure’’ tone whereas a 12 gives an in-
teresting buzzer sound. The following program combines the 10 and 12
sounds:

10 X 1

20X = X+27X

30 IF X < 10 THEN GOTO 20
35 SOUND 2, 100, 10, 8

40Y =0

S50RYE =Y 82 20y

60 SOUND 2, 100, 12, 8
70IFY < 10 THEN GOTO 50
80 GOTO 10

The rest of the numbers are used for other special effects, noise genera-
tion, and experimental use.

66 SOUND AND GAME CONTROLLERS

A O A am A AN SN A P A e A A MY MDD DO DO O™

e VOV VWUV UUUVUV LUV UUIUVUS UYWLV YVLVILYIEULVUYWLY Dewoe

[

aexpd = Volume control. Can be between 0 and 15. Using a 1 creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered normal. If
more than 1 sound statement is being used, the total volume should not
exceed 32. This creates an unpleasant “'clipped’” tone. A value of O turns

off the sound of the specified voice.

Using the note values in Table 10-1, the program in Figure 10-1 demonstrates

how to write a program that will “‘play’’ the C scale.

TABLE 101 TABLE OF PITCH VALUES FOR THE MUSICAL NOTES

HIGH C
NOTES B
A#orBop

A
G#or Ab
G
F#orGb
F
E
D# or E
D
C#orDp
C
B
A# or B
A
G#orAbp
G
F#orG b
F
E
D#oOrE»
D
C#orDp
MIDDLE C C
8
A#torBp
A
G#HorAp
G
F#Gorb
F

LOW NOTES E
D#ortEp
D
C#orDop
C

29

204

230
243

SOUND AND GAME CONTROLLERS 67

10 i~
20 IF &=2%54 N END
30 . SOUND 0,6,10,10

40 FOR W=1 TO 400 $NEXT W
50 FRINT A
40 GOTO 10

70

@0 :

81590 . 96,108 5121

90 DATA 128,144,162,182,193,

’

Figure 10-1. Musical Scale Program

Note that the DATA statement in line 90 ends with 256, which is outside of the
designated range. The 256 is used as an end-of-data marker.

GAME CONTROLLER FUNCTIONS

Figure 10-2 is an illustration of controllers used with the ATARI Home Computers.
The controllers can be attached directly to the ATARI Home Computer or to exter-
nal mechanical devices so that outside events can be fed directly to the computer
for processing and control purposes.

Figure 10-2. Game Controllers

PADDLE

Format: PADDLE(aexp)
Example: PRINT PADDLE(3)

This function returns the status of a particular numbered controller. The paddle
controllers (aexp) are numbered 0-7 from left to right for the ATARI 800 and 400, and
0-3 for the ATARI 1200. This function can be used with other functions or commands
to “"cause’’ further actions like sound, graphics controls, etc. for example, the state-
ment IF PADDLE (3) © 14 THEN PRINT “PADDLE ACTIVE.” Note that the PAD-
DLE function returns a number between 1 and 228, with the number increasing in
size as the knob on the controller is rotated counterclockwise (turned to the left).

68 SOUND AND GAME CONTROLLERS

A R R e e N e R N N N LY T Y Y Y Y Yy Yy Yy s

|

.S Vv W U UW UU U U U U IIYPPUUWEUWUYUYTUYVLUYVIUYDYVUYUIULLLLWBLO

{5 ——

PTRIG

Format: PTRIG(aexp)

Example: 100 IF PTRIG(4)=0 THEN PRINT ""MISSILES FIRED!'"

The PTRIG function returns a status of 0 if the trigger button of the designated con-
troller is pressed. Otherwise, it returns a value of 1. The aexp must be a number
between 0 and 7 for the ATARI 800 and 400. and 0-3 for the ATARI 1200 as it
designates the controller.

STICK

Format: STICK(aexp)
Example: 100 PRINT STICK(3)

This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The joystick controllers are numbered from (left to
right) 0-3 for the ATARI 800 and 400, and 0-1 for the ATARI 1200 and 400.

Controller 1 = STICK(0)
Controller 2 = STICK(1)
Controller 3 = STICK(2)

(

Controller 4 = STICK(3)

Figure 10-3 shows the numbers that are returned when the joystick controller is
moved in any direction.

13
Figure 10-3. Joystick Controller Movement

STRIG

Format: STRIG(aexp)
Example: 100 IF STRIG(3)=0 THEN PRINT "FIRE TORPEDO"

The STRIG function works the same way as the PTRIG function. it is used with the

joystick. The aexp for the ATARI 800 and 400 must be 0-3. and the aexp for the ATARI

1200 must be 0-1.

SOUND AND GAME CONTROLLERS 69

—
1 1 ADVANCED PROGRAMMING
TECHNIQUES

This section includes hints on increasing programming efficiency, conserving
memory, and combining machine language programs with ATARI BASIC programs.
This section does not include an instruction set for the 6502 microprocessor chip
nor does it give instructions on programming in machine language. An additional
purchase of the ATARI Assembler Editor cartridge and a careful study of the ATARI
Assembler Editor Manual are strongly recommended.

MEMORY CONSERVATION

These hints give ways of conserving memory. Some of these methods make pro-
grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations.

1. In many small computers, eliminating blank spaces between words and
characters as they are typed into the keyboard will save memory. This is not
true of the ATARI Home Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (just as in typing on a con-
ventional typewriter) between successive keywords and between keywords and
variable names. Here is an example:

10 IF A = 5 THEN PRINT A

Note the space between IF and A and between THEN and PRINT. In most
cases, a statement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true. Use conventional spacing.

2. Each new line number represents the beginning of what is called a new ‘‘logical
line’’. Each logical line takes 6 bytes of ‘“‘overhead’’, whether it is used to full
capacity or not. Adding an additional BASIC statement by using a colon (;) to
separate each pair of statements on the same line takes only 3 bytes.

If you need to save memory, this program:

can be entered on one line:
10 Xa=X+13Y=Y+13Z=X+Y IFRINT Z:1GOTO 10

This consolidation saves 12 bytes.

70 ADVANCED PROGRAMMING TECHNIQUES

AP NPOPPRPARAPPRANRRARPARAARAARAARAAAAOO OO0

® VWV VWP IV UUVUUULDULVULULULUVLUVUVIUVIVVUYUYUYYYYBLL S

3. Variables and constants should be ‘‘managed’’ for savings, too. Each time a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new variable
requires 8 bytes plus the length of the variable name (in characters). But each
time it is used after being defined, it takes only 1 byte, regardless of its length.
Thus, if a constant (such as 3.14159) is used more than once or twice in a pro-
gram, it should be defined as a variable, and the variable name used throughout
the program. For example:

ORI =3 1 4155
Al TAaREASOES ARG RO E SLE T SR
S SQUARED (TIMES G EL

4. Literal strings require 2 bytes overhead and 1 byte for each character (including
all spaces) in the string.

5. String variables take 9 bytes each plus the length of the variable name (in-
cluding spaces) plus the space eaten up by the DIM statement plus the size of
the string itself (1 byte per character, including spaces) when it is defined. Ob-
viously, the use of string variables is very costly in terms of RAM.

6. Definition of a new matrix requires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of columns).
Thus, a 25 row by 4 column matrix would require 15 + approximately 3 (for
variable name) + approximately 10 (for the DIM statement) + 6 times 100 (the
matrix size), or about 630 bytes.

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to remove
remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times. On the other hand, a
subroutine that is only called once takes extra bytes for the GOSUB and
RETURN statements.

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer.
However, removing unnecessary parentheses and relying on operator
precedence will save a few bytes.

PROGRAMMING IN MACHINE LANGUAGE

Machine language is written entirely in binary code. The ATARI Home Computer
contains a 6502 microprocessor and it is possible to call 6502 machine code
subroutines from BASIC using the USR function. Short routines may then be
entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac-
cumulator (PLA) instruction to remove the number (N) of input arguments off the
stack. If this number is not 0, then all of the input arguments must be popped off
the stack also using PLA. (See Figure 6-1).

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) instruc-
tion. The BASIC interpreter will convert the 2-byte binary number stored in loca-
tions 212 and 213 into an integer between 0 and 65535 in floating-point format to
obtain the value returned by the USR function.

ADVANCED PROGRAMMING TECHNIQUES 71

The ADR function may be used to pass data that is stored in arrays or strings to
a subroutine in machine language. Use the ADR function to get the address of the
array or string, and then use this address as one of the USR input arguments.

The program in Figure 11-1, Hexcode Loader, provides the means of entering
hexadecimal codes, converting each hexadecimal number to decimal, and storing
the decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)

1. To use this program, first enter it. After entering it, save this program on disk or

cassette for future use.
SRARH gt

M S ORI G DR 3 ; i P

iy DUTFUTS 11 '“;x. YOCIMATA 1nIL
AT LINE NUMEER

i ﬂEh USER CTHEN TRLAL 3 B0 FRIN

TED OUTEUT, LINE, HITS “RETURN, AND

40 REM BN REST OF BEASIC FPROGERAM IN

CLUDTING LS STAHTEMENT

20 DIM AlS s HEXSC5H)

A0 REM In PH19FUHULR1,J1HRL DT

FOON=QL? ; EODE < TREALAST ()

NE "18 1IN, ot

SO A R

IR R

100 FOR

1t dis

HE X% (.

120

130

140

150

Ta8 Ik e THEN GOTO 70

170 REM PRINTOUT DATA LINE AT L300

180 GRAFPHICS ODIPRINT "1500 DATA "3

190 C=0

20 0ECECEL

Z10 IF A(C)I=99% THEN PRINT “999VI6T0F

ZZADEERTNT A (L) jidgiie

230 ACCY=0

GOTO 200

SH0FRINT "FUT CORRECT NUMEER OF HEX E

YTES IN LINE 270" I8TOF TREM TRAF LINE

2860 REM MWF“FFUTIUN MO UL E

2720 GL RES EY T E S

(CODE

”HF‘ l”nfll”iT

LM MN=Ye2I60T0 140
) w‘“” THEMN MN=MNY1&+VALC
) L1320

f“'V'HP“t'I B0 EASE L ata 1]

MEC=0+]1

72 ADVANCED PROGRAMMING TECHNIQUES

DD DD DODODDHDDODDDDODOODOODOOOOOODOOOOOOOHOHOOODOHOHODOO O

O WV VUV VOV IOPIOPOOPOIPODPOPOIIDIDVVIVDVIVDIWIVYYY YD

2800 TRAF 250:iDIM ESCL),E(INT(BYTES/Z6) +

I=1 TO BYTES
ALIF A THEN GOTO 320
ADRCES)+T, A

I

330 REM BASIC FORTION OF USER’S FROGRA
M FOLLOWS !

Figure 11-1. Hexcode Loader Input Program

2. Now add the BASIC language part of your program starting at line 340 in-
cluding the USR function that calls the machine language subroutine. (See ex-
ample below.)

3. Count the total number of hex codes to be entered and enter this number on
line 270 when requested. If another number is already entered, simply replace
It

4. Run the program and enter the hexadecimal codes of the machine level
subroutine pressing RETURN after each entry. After the last entry, type DONE
and press RETURN.

5. Now the DATA line (1500) dispiays on the screen. It will not be entered into the
program until the cursor is moved to the DATA line and RETURN is pressed.

6. Add a program line 5 GOTO 270 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by using
CSAVE or SAVE. It is important to do this before executing the part of the pro-
gram containing the USR call. A mistake in a machine language routine may
cause the system to crash. If the system does hang up, press SYSTEM RESET.
If the system doesn’t respond, turn power off and on again, reload the program,
and correct it.

Note: This method only works with relocatable machine language routines.

The following two sample programs can each be entered into the Hexcode Loader
program. The first program prints NOTHING IS MOVING while the machine pro-
gram changes the colors. Use inverse video for lines 380 and 390. The second
sample program displays a BASIC graphics design, then changes colors.

(N1t {
Mas Lt
HOVINGY

NOTHING

NOTHTNG

notihing 1s moving'

g20° FOR LiGOTO 410

After entering this program, check that line 270 reads:
270 CLR:BYTES = 21

Type RUN and press RETURN.

ADVANCED PROGRAMMING TECHNIQUES 73

Now enter the hexadecimal codes as shown column by column.

68 2
A2 E8
0 EO
AC 3
C4 90
2 F5
BD 8C
c5 C7
2 2
90 60
C4
BYTES = 21

When completed, type DONE and press RETURN. Now place the cursor after the
last entry (999) on the DATA line and press RETURN.
Now run the program by typing GOTO 270 and pressing RETURN, or add line 5
has been added, type RUN and press RETURN. Press BREAK to stop program.
The second program, which follows, should be entered in place of the NOTHING
IS MOVING program. Be sure to check the BYTES = count in line 270.
Delete line 5. Follow steps 2 through 6.

AT A0

Type RUN and press RETURN.
Enter the hexadecimal codes for this program column by column.

68 2

A2 E8
0 EO
AC 2

C4 90
2 F5
BD 8C

74 ADVANCED PROGRAMMING TECHNIQUES

m SN A A NN ANARAAAAAAAALAAMDNDOTOIDOD PP

ovoi'u4.0¢vd'«v«\|rw«v0««vwwu«w.nwuwmdomuooouuuu%1

€51 "C6

2 2
960

C4

BYTES = 21

When completed, type DONE and press RETURN. Now place the cursor after the
last entry (999) on the DATA line and press RETURN.
Now run the program by typing GOTO 270 and pressing RETURN, or add line
5 GOTO 270 and type RUN and press RETURN. Press BREAK to stop the pro-
gram. To use the Hexcode loader for other programs, be sure to delete line 5.
Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. It is included here for the information of the user.

Assembler Subroutine to Rotate Colors

Address Object Line Label Mnemonic Data
Code No.
0100 Routine to rotate
COLOR data
0110 From one register to
another.
0120 4 colors are rotated.
0130
0140 Operating system
address
02C4 0150 COLOR 0 = $02C4
02C5 0160 COLOR 1 = $02C5
02C6 0170 COLOR 2 = $02C6
02C7 0175 COLOR 3 = $02C7
0180
0190 *= $6000 Machine program
starting address*
6000 68 0200 PLA Pop stack
(See Chapter 4)
6001 A200 0210 LDX #0 Zero the X register
6003 ACC402 0220 LDY COLORO Save COLOR 0
6006 BDC502 0230 LOOP LDA COLOR1,X
6009 9DC402 0240 STA COLORO,X
600C E8 0250 INX Increment the X
register (add one)
600D EOO3 0260 CPX #3 Compare contents of
X register with 3
600F 90F5 0270 BCC LOOP Loop if X register
contents are
less than 3
6011 8CC702 0280 STY COLORS Save COLOR 0 in
COLOR 3
6014 60 0290 RTS Return from machine
level subroutine
Assembler This Portion is Source Information Programmer Enters
Prints This Using ATARI Assembler Editor Cartridge

Indicates data (source)
* Routine is relocatable
$ Indicates a hexadecimal number

Figure 11-2. Assembler Subroutine To Rotate Colors

ADVANCED PROGRAMMING TECHNIQUES 75

- ————
AA""END'X ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note: The period is mandatory after all abbreviated keywords.

RESERVED BRIEF SUMMARY

WORD: ABBREVIATION: OF BASIC STATEMENT

ABS Function returns absolute value (unsigned) of
the variable or expression.

ADR Function returns memory address of a string.

AND Logical operator: Expression is true only if both
subexpressions joined by AND are true.

ASC String function returns the numeric value of a
single string character.

ATN Function returns the arctangent of a number or
expression in radians or degrees.

BYE B. Exit from BASIC and return to the resident
operating system or console processor.

CLOAD CLOA. Loads data from Program Recorder into RAM.

CHRS$ String function returns a single string byte

equivalent to a numeric value between 0 and
255 in ATASCII code.

CLOG Function returns the base 10 logarithm of an
expression.

CLOSE CL. I/O statement used to close a file at the conclu-
sion of 1/0O operations.

CLR The opposite of DIM: Undimensions all strings
and arrays.

COLOR C. Chooses color register to be used in color
graphics work.

CONT CON. Continue. Causes a program to restart execu-

tion on the next line following use of the
BREAK key or encountering a STOP.

cos Function returns the cosine of the variable or
expression (degrees or radians).

CSAVE Outputs data from RAM to the Program
Recorder for tape storage.

DATA D. Part of READ/DATA combination. Used to iden-

tify the succeeding items (which must be
separated by commas) as individual data items.

76 APPENDIX A

O DO OODDDODODDODDODOODDOODOOOODDOOOOODOONOOOOONNE®®

LV VLV OOVOVOVOVVOVUUUUUUUUUUUULLUULLGG

o O o

RESERVED
WORD:

DEG

DIM

DOS

DRAWTO

END

ENTER

EXP

FOR

FRE

GET

Gosus

GOTO

GRAPHICS

IF

INPUT

INT

LEN

ABBREVIATION:
DE.

DL.

DO.

DR.

GE.

GOs.

GR.

BRIEF SUMMARY
OF BASIC STATEMENT

Statement DEG tells computer to perform trigo-
nometric functions in degrees instead of
radians. (Default in radians.)

Reserves the specified amount of memory for
matrix, array, or string. All string variables,
arrays, matrices must be dimensioned with a
DIM statement.

Reserved word for disk operators. Causes the
menu to be displayed. (See DOS Manual.)

Draws a straight line between a plotted point
and specified point.

Stops program execution; closes files; turns off
sounds. Program may be restarted using
CONT. (Note: END may be used more than
once in a program.)

|/0 command used to store data or programs in
untokenized (source) form.

Function returns e (2.7182818) raised to the
specified power.

Used with NEXT to establish FOR/NEXT loops.
Introduces the range that the loop variable will
operate in during the execution of loop.

Function returns the amount of remaining user
memory (in bytes).

Used mostly with disk operations to input a
single byte of data.

Branch to a subroutine beginning at the
specified line number.

Unconditional branch to a specified line
number.

Specifies which of the graphics modes is to be
used. GR.0 may be used to clear screen.

Used to cause conditional branching or to ex-
ecute another statement on the same line (only
if the first expression is true).

Causes computer to ask for input from
keyboard. Execution continues only when
RETURN key is pressed after inputting data.

Function returns the next lowest whole integer
below the specified value. Rounding is always
downward, even when number is negative.

String function returns the length of the
specified string in bytes or characters (1 byte
contains 1 character).

APPENDIX A 77

RESERVED
WORD:

LET

LIST
LOAD
LOCATE

LOG

LPRINT

NEW
NEXT

NOT

NOTE

ON

OPEN

OR

PADDLE

PEEK

PLOT

POINT
POKE

POP

POSITION

78 APPENDIX A

ABBREVIATION:
LE.

LO.
LOC.

LP.

PL.

POK.

POS.

BRIEF SUMMARY
OF BASIC STATEMENT

Assigns a value to a specific variable name.
LET is optional in ATARI BASIC, and may be
simply omitted.

Display or otherwise output the program list.
Input from disk, etc. into the computer.
Graphics: Stores, in a specified variable, the
value that controls a specified graphics point.
Function returns the natural logarithm of a
number.

Command to line printer to print the specified
message.

Erases all contents of user RAM.

Causes a FOR/NEXT loop to terminate or con-
tinue depending on the particular variables or

expressions. All loops are executed at least
once.

A ““1'" is returned only if the expression is NOT
true. If it is true, a *'0"" is returned.

See DOS/FMS Manual...used only in disk opera-

tions.

Used with GOTO or GOSUB for branching pur-

poses. Multiple branches to different line
numbers are possible depending on the value
of the ON variable or expression.

Opens the specified file for input or output
operations.

Logical operator used between two expres-
sions. If either one is true, a ‘1"’ is evaluated.
A 0" results only if both are false.

Function returns position of the paddle game
controller.

Function returns decimal form of contents of
specified memory location (RAM or ROM).

Causes a single point to be plotted at the XY
location specified.

See DOS/FMS Manual...used only in disk operations.
Insert the specified byte into the specified

memory location. May be used only with RAM.
Don’t try to POKE ROM or you'll get an error.

Removes the loop variable from the GOSUB
stack. Used when departure from the loop is
made in other than normal manner.

Sets the cursor to the specified screen
position.

l'a005000000000Ooaoooonooonoonnnnoom,-‘

e VUV VWO OUUUUVULVUVUVUVLUUVUUUUUUUUULULLULULLLS

5O

RESERVED

WORD: ABBREVIATION:
PRINT PR.or ?

PTRIG

PUT PU.

RAD

READ REA.

REM R. or (SPACE).

RESTORE RES.
RETURN RET.

RND
RUN RU.
SAVE S.

SETCOLOR SE.

SGN

SIN

SOUND SO.

SQR

STATUS ST.

STEP

STICK

BRIEF SUMMARY
OF BASIC STATEMENT

|/0 command causes output from the computer
to the specified output device.

Function returns status of the trigger button on
paddle game controllers.

Causes output of a single byte of data from the
computer to the specified device.

Specifies that information is in radians rather
than degrees when using the trigonometric
functions. Default is to RAD. (See DEG.)

Read the next items in the DATA list and
assign to specified variables.

Remarks. This statement does nothing, but
comments may be printed within the program
list for future reference by the programmer.
Statements on a line that starts with REM are
not executed.

Allows DATA to be read more than once.

RETURN from subroutine to the statement im-
mediately following the one in which GOSUB
appeared.

Function returns a random number between O
and 1, but never 1.

Execute the program. Sets normal variables to
0, undims arrays and string.

I/0 statement causes data or program to be
recorded on disk under filespec provided with
SAVE.

Store hue and luminance color data in a par-
ticular color register.

Function returns + 1 if value is positive, 0 if
zero, — 1 if negative.

Function returns trigonometric sine of given
value (DEG or RAD).

Controls register, sound pitch, distortion, and
volume of a tone or note.

Function returns the square root of the
specified value.

Calls status routine for specified device.

Used with FOR/NEXT. Determines increment
to be skipped between each pair of loop
variable values.

Function returns position of stick game
controller.

APPENDIX A 79

RESERVED BRIEF SUMMARY
WORD: ABBREVIATION: OF BASIC STATEMENT
STRIG Function returns 1 if stick trigger button not

pressed, O if pressed.

STOP STO. Causes execution to stop, but does not close
files or turn off sounds.

STR$ Function returns a character string equal to
numeric value given. For example: STR$(65)
returns 65 as a string.

THEN Used with IF statement. If expression is true,
the THEN statements are executed. If the ex-
pression is false, control passes to next line.

TO Used with FOR as in “FOR X = 1 TO 10",
Separates the loop range expressions.

TRAP T. Takes control of program in case of an INPUT
error and directs execution to a specified line
number.

USR Function returns results of a machine-language
subroutine.

VAL Function returns the equivalent numeric value
of a string.

XI10 X. General /O statement used with disk opera-
tions (see DOS/FMS Manual) and in graphics
work (Fill).

80 APPENDIX

I'shﬂﬂﬁﬁﬁﬂﬁﬂﬁn00000000000000000»mm.s,-|

ovvvoaoooccuuooowouoouoovvooooguwo

—

ERROR APPENDIX B
MESSAGES

ERROR
CODE NO.

10

1

12

13

14

15

16

ERROR CODE MESSAGE

Memory insufficient to store the statement or the new variable
name or to DIM a new string variable.

Value Error: A value expected to be a positive integer is negative, a
value expected to be within a specific range is not.

Too Many Variables: A maximum of 128 different variable names is
allowed. (See Variable Name Limit.)

String Length Error: Attempted to store beyond the DIMensioned
string length.

Out of Data Error: READ statement requires more data items than
supplied by DATA statement(s).

Number greater than 32767: Value is not a positive integer or is
greater than 32767.

Input Statement Error: Attempted to INPUT a non-numeric value
into a numeric variable.

Array or String DIM Error: DIM size is greater than 32767 or an
array/matrix reference is out of the range of the dimensioned size, or
the array/matrix or string has been already DIMensioned, or a
reference has been made to an undimensioned array or string.

Argument Stack Overflow: There are too many GOSUBs or too
large an expression.

Floating Point Overflow/Underflow Error: Attempted to divide by
zero or refer to a number larger than 1 x 10% or smaller than
TR0 — 2

Line Not Found: A GOSUB, GOTO, or THEN referenced a non-
existent line number.

No Matching FOR Statement: A NEXT was encountered without a
previous FOR or nested FOR/NEXT statements do not match prop-
erly. (Error is reported at the NEXT statement, not at FOR).

Line Too Long Error: The statement is too complex or t00 long for
BASIC to handle.

GOSUB or FOR Line Deleted: A NEXT or RETURN statement was
encountered and the corresponding FOR or GOSUB has been
deleted since the last RUN.

RETURN Error: A RETURN was encountered without a matching
GOSUB.

APPENDIX B 81

ERROR

CODE NO. ERROR CODE MESSAGE

17 Garbage Error: Execution of ‘‘garbage’ (bad RAM bits) was attemp-
ted. This error code may indicate a hardware problem, but may also
be the result of faulty use of POKE. Try typing NEW or powering
down, then re-enter the program without any POKE commands.

18 Invalid String Character: String does not start with a valid
character, or string in VAL statement is not a numeric string.

Note: The following are INPUT/OUTPUT errors that result during the
use of disk drives, printers, or other accessory devices. Further
information is provided with the auxiliary hardware.

19 LOAD program Too Long: Insufficient memory remains to complete
LOAD.

20 Device Number Larger than 7 or Equal to 0.

21 LOAD File Error: Attempted to LOAD a non-LOAD file.

128 BREAK Abort: User hit BREAK key during 1/0 operation.

129 I0CB' already open.

130 Nonexistent Device specified.

131 I0CB Write Only. READ command to a write-only device (Printer).

132 Invalid Command: The command is invalid for this device.

133 Device or File not Open: No OPEN specified for the device.

134 Bad IOCB Number: Illegal device number.

135 I0CB Read Only Error: WRITE command to a read-only device.

136 EOF: End of File read has been reached. (NOTE: This message may
occur when using cassette files.)

137 Truncated Record: Attempt to read a record longer than 256
characters.

138 Device Timeout. Device doesn’t respond.

139 Device NAK: Garbage at serial port or bad disk drive.

140 Serial bus input framing error.

141 Cursor out of range for particular mode.

142 Serial bus data frame overrun.

143 Serial bus data frame checksum error.

144 Device done error (invalid ‘‘done’’ byte): Attempt to write on a write-
protected diskette or a bad sector.

145 BAD screen mode error.

146 Function not implemented in handler.

147 Insufficient RAM for operating selected graphics mode.

160 Drive number error.

161 Too many OPEN files (no sector buffer available).

'|OCB refers to Input/Output Control Block.

82 APPENDIX B

® PPN OO DO D000 OO

600000C‘UOOOU000000000000000000ooowl

—

ERROR
CODE NO.

162
163
164
165
166
167
168
169
170
171

ERROR CODE MESSAGE

Disk full (no free sectors).

Unrecoverable system data 1/O error.
File number mismatch: Links on disk are messed up.
File name error.

POINT data length error.

File locked.

Command invalid (special operation code).
Directory full (64 files).

File not found.

POINT invalid.

APPENDIX B 83

_l ¢ d 4 d ¢ ¢V 4 ¢ ¢ e & e ¢ ¢ 4 a a& 6 & & & 4 a4 & @ @ e ¢ U U U U U

] M@o
CE v@o‘va‘v. o] o] O 3 <O 3 — >} 0] C Q @ ©
SS %, %
< %
< > BB QOQ0000D80LO0®
- 3
(]
S |~
% o - o ™ <t [To) © r~ © o
R ,vQ V.WOO Q w uw — — — — — - — — — —
<L %’
L ,
C va\,.voo ™ <t [7s) O ~ © o o - [™ < Vel
0@00 — — — — — — — ~N [qY] N o~ N N
¢,
1%
(N
QO 7 © > iz w (&3 le] © _ W _ > © O
OQ%
2°
&,
%, q o o
w D@ 8 0 0008800080
%
x %,
o %
Zz @0?@00 o — o~ ™ < w © ~ © o < © O
w +;
a %)
o x
< =}
%, 9 o
xv\oooo o — o ™ < w © ~ @ o 2 - = W
ovo 3

000000OOOOOOGOQGOOQOOOOQOOOOOO000'0‘

32

33

34

35

36

37

38

39

40

41

20

21

22

23

24

25

26

27

28

29

Space

%

48

49

50

51

52

53

54

55

56

57

30

31

32

33

34

35

36

37

38

39

APPENDIX C 85

@ @ VW VU U UV UOUOUUUUVUUUOVUUUVUYUUYVUVIULIYULULULLLYLYE e
4.
&
ANCH
@QOSN
«.&vo
&,
,N\o 2 x >
v%v - X | = z O o O oo n - o] >
%
»v&
/-
%)
,vov,voo
;T/V%.U
)
Soom%o
&,
&
e»wov
QOQv.v
4,0
¢, »
%
v«.v - .. v I A o ® < o o o w w 0] T _
%
%,
\@o@

aA
4B
4c
4D
4E
aF
50
51
52
53
54
55
56
57
58
59

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

3A
38
3C
3D
3E
3F
40
41

42
43
44
45
46
47
48
49

58
59
60
70
71
72
73

61
62
63
64
65
66
67
68
69
86 APPENDIX C

— x _ IS c o a o - » — > > 2 x >
< m Q @) w Te o — o ™ < n © ~ © o
© © %) © © © ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
— w (e} o —
8 S 8 3 =4 b o 2 z el © ~ ® - & &
%
NEN
7 -
N
Q%0
>
%,
«Ova‘ N — / —_ < | o @© o o © ® - o = —
V@Q
%,
\%\Q
0%, < m O a) w w o - o ™ <) © ~ © o
5%, ©) D T3] 0 o) © © © © © © o © © ©
', O
4
VY,,V o — o [a2] < D
2.5, o - o ™ <) © ~ © o o) o o o o o
20, @ o o o o o o o o o - - - - = -
%
(o4
Q0O OEDDODDOODOODEOOELOEECGELOLOEDD OO

APPENDIX C 87

A
©
v
©
©
<©

<

©

L 4

A 4

v

b 4

L 4

<@

L

L 4

v Vv

<

v

<

<

L4

<

<

- &

<4

! &

B

' e

e

e

.

© N >
>
2 3 >
o0} O © @© 1023
& 3
2 N
4, | ire)
[4p] s F«hl.v |
()] 3 ROu
1o 9 |
% | 4
N 8 1
\vv&xo&\o | 7 M
a‘\mv wm M
w 6<AI'
awv @) |
.A,uvm‘ 8 M 1
v\vo 8 3 |
<
® wh |
%, s M 1 1
\ o
vaVQVM-fOOpU o M pod
’ o S W
@©
® 3 7 m
| mw © A
\o,voo 5 8 W 8
o
4 w M(lu
[32] 3
® 4 |
A N
™
| 1 o 3
éh«ove . | |
ow‘o %5 | | 1 1
Q\Nv W |
4. N T/l_ 1|
v@v 7 8 1
% < 7 |
[qV]
/ < o 6 |
| N
\o,vQVoVOOO ~ % |
. I8
[s2] N
(o] mM
p/ ovo 8
V\G@QOG

¢ 3
<
1450, ©
>
%% x
OQ\»x\O z
> ¢
Q,v <
%
o)
%,
s,
4.
&)
%,
%,
%)
m (@) w w (@] — W ™ < [T} © ~ [} [e)]
@om.voo 2 < g < < < @ ® @ @ @ ® @ @ @ @
O
— N o I Yol
2 ~ N 2 N 2 2 ~ 2 2 m o © © o ©

&
&
(EOL)
PRETuRN
+
+
{_
+

4.
(]
%,
%,
o,vo ,VO < m Q @] w w o — o ™ < 0 o) ~ [ee] [e))
%0 © > & 3 3 > < < < < < < < < < <
%
Y — o <t Vo) © M~ [o0] [0)]
R@WOOO > B et 5 B B 3 © RS @ © © © © © ©
% - — puld - - - - - - - - - Pt
(4

QOO DNADOHOAOOADLHDOOOOOOOOODODO OV PPFSP

' 4 4 e
4 4 a4 4 a4 a

' e

4 e

- @

- @

%
NCH
%%
(o7}
%%
2
&
o,.«ov
va\
(v} rr m
V wl
* 5 8 8 4 &
o, 5 8
&0
0

D1
D2
D3
D4
D5
D6
D7
D8
D9

o ™ < Yo} © ~ © o o - o~ ™ < I} ~
©
o o o o o o = — — - - — —
-
N o~ o~ o~
(Y] [N o
o~ o~
N N
N
o o
~ ~
~ o~
a@
sﬂxv_on
uo‘OaYW
Q‘\V (v]
>
Q0. [o]
Vo, < [o1] O @] L w. @} o [o0] < 7o) © ~ «©
F Ou [a1] m (®] (@] O O
(@] (@) (@)
V (4 O O (@]
[sa]
‘ aa] s8] m
é« (% @] @ @ [} [} (o)) » (o)} o (o] [0)} (o)) o o
CNCI o~ N
2 s
e pedd 2
2 2 2
s
% o past 2
O — —
/4 (o))
(74

90 APPENDIX C

v [e)]
\ T @ Q
%% | |
2s | |
S w
Av & o N
/\Q | | 9
V‘Q 0 F 8 |
x - s 8 3
o 2 v i 5 w |
)) i 4 4 2
v\v . . 3 4 |
(o) < @ | | |
Yo, < | | |
03@00 9 O M_ 2
% 8 3 m
2 8 g g 2
S g 8 37
& (qV]
N
A
1,50, | |
%, | |
%% | |
e,w W i 8
a@ o 3 &
«0 | | 3
Vw‘ 0 E 2 3
() F E 1 | 2
%5] m_ D - |
| - § & & g
%, ; . 7 2 |
(5} < @ | 2 |
VoY, & | | |
0&7 00 4 2 2
\ § § & ¢
N N
2 8§ § &
[o o] @ S
««oooo 2
o

1
APPENDIX C 9

&

5 & S5

A <&
o S ¥ ¥
°® A, ‘o

250 FA 253
251 FB 254
252 FC 255

FF

(Buzzer)

(Delete
character)

(Insert
character)

See Appendix H for a user program that performs decimal/hexadecimal con-

version.
Notes:

1. ATASCII stands for *ATARI ASCII'". Letters and numbers have the same values
as those in ASCII, but some of the special characters are different.

2. Except as shown, characters from 128-255 are reverse coltors of 1 to 127,
3. Add 32 to upper case code to get lower case code for same letter.

4. To get ATASCII code, tell computer (direct mode) to PRINT ASC (*
Fill blank with letter, character, or number of code. Must use the quotes'

5. The normal display keycaps are shown as white symbols on a black background:;
the inverse keycap symbols are shown as black on a white background.

92 APPENDIX C

—)

LB B /B N T T, I, B, B, I, B, N B, B N . R, B R R O . S

S VUVLOVLOLOLOVLOVLOVUUVUVUVUUUUUUUUUUUUUUULUUULLEGD

v
HOME COMPUTER APPENDIX D
MEMORY MAP

ATARI 400/800

ADDRESS CONTENTS
Decimal Hexadecimal
65535 FFFF OPERATING SYSTEM ROM
57344 EOOO
57343 DFFF FLOATING POINT ROM
55296 D800
55295 D7FF HARDWARE REGISTERS
53248 D000
53247 CFFF NOT USED
49152 C000
49151 BFFF CARTRIDGE SLOT A
40960 A000 (may be RAM if no A or B cartridge)
40959 9FFF CARTRIDGE SLOT B
32768 8000 (may be RAM if no B cartridge)
RAMTOP (MSB)
32767 7FFF (7FFF if 32K system)

DISPLAY DATA (size varies)
DISPLAY LIST (size varies

31755 708 7COB if 32K system) (GRAPHICS 0) 5=rmros
FREE RAM
(size varies) <~—{ BASIC MEMTOP]

BASIC program, butfers. tables. run-time stack.

10880 ABO 2A80 it DOS
2A8 (it DOS, may vary) OS5 MEMLO
BASIC LOMEM |

10879 2ATF DISK OPERATING SYSTEM (2A7F-700)

9856 2680 DISK 1/0 BUFFERS (current DOS)

9855 267F DISK OPERATING SYSTEM RAM (current DOS)
4864 1300

APPENDIX D 83

e ———— .

ADDRESS CONTENTS
Decimal Hexadecimal
4863 12FF FILE MANAGEMENT SYSTEM RAM (current DOS)
1792 700
1791 6FF FREE RAM
1536 600
1685 5EF FLOATING POINT (used by BASIC)
1406 57E
1405 57D BASIC CARTRIDGE
11162 480
1151 47F OPERATING SYSTEM RAM (47F-200)
1021 3ED CASSETTE BUFFER
1020 SEG RESERVED
1000 SE8
999 SE7 PRINTER BUFFER
960 3C0
959 3BF IOCB's
832 340
831 33F MISCELLANEOUS OS VARIABLES
512 200
511 == HARDWARE STACK
256 100
255 EE PAGE ZERO
212 D4 FLOATING POINT (used by BASIC)
2001 D8 BASIC or CARTRIDGE PROGRAM
210 D2
209 D1 FREE BASIC RAM
208 DO
207 CF FREE BASIC AND ASSEMBLER RAM
203 CB
202 CA FREE ASSEMBLER RAM BASIC
176 B0 ZERO PAGE
128 80 ASSEMBLER ZERO PAGE
127 7F OPERATING SYSTEM RAM
0 0

As the addresses for the top of RAM, OS, and BASIC and the ends of OS and
BASIC vary according to the amount of memory, these addresses are indicated by
pointers. The pointer addresses for each are defined in Appendix |.

94 APPENDIX D

.
(3
.
S
“
&
.
.
.
&
.
&
e
e
¢
e
S
e
S
S
&
S
¢
¢
¢
¢
¢
¢
¢
¢
&
S
S
¢

9
—
9 ATARI 1200XL
S ADDRESS CONTENTS
- Decima! Hexadecimal
65535 FFFF OPERATING SYSTEM ROM (or RAM if OS ROM
S 55296 D800 is disabied) See Note 1.
55295 D7FF 0OS ROM self-test code can only be accessed during
Q 53248 D000 self test. Space shared with 1/O (PIA, POKEY. ANTIC,
GTIA) See Note 3.
° 53247 CFFF 0OS ROM (or RAM if OS ROM is disabled) See Note 1.
49152 C000
49151 BFFF CARTRIDGE INTERFACE ROM
40960 A00O (may be RAM if no cartridge)
40959 9FFF CARTRIDGE INTERFACE ROM
32768 8000 {(may be RAM if no cartridge)
32767 7FFF RAM SPACE
22528 5800
22527 57FF RAM (unless in self-test mode)
20480 5000 See Note 2.
20479 4AFFF RAM SPACE
0000 0000
Notes:

®OWY VOO O UV PP PRIPIPOPPIOPESVLVOVLVLVLLUVLY

1. Disable OS ROM by writing a 0 to PBO of PIA.

2 Self-test OS ROM code accessed at hex address 5000 (if PBO set to 0) during
self test. RAM between 5000 and 57FF cannot be accessed.

3. PIA. POKEY, ANTIC, GTIA registers used as in Atari 400/800 Home Computer.

APPENDIX D 95

E APPENDIX

DERIVED
FUNCTIONS

Derived Functions

Secant
Cosecant
Inverse Sine
Inverse Cosine
Inverse Secant

Inverse Cosecant

Inverse Cotangent
Hyperbolic Sine

Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

Notes:

Derived Functions in Terms of ATARI Functions

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)

ARCSIN(X) = ATN(X/SQR(-X*X + 1))

ARCCOS(X) = -ATN(X/SQR(-X*X + 1) + CONSTANT)
ARSEC(X) = ATN(SQR(X*X-1)) + (SGN(X-1)
*CONSTANT)

ARCCSC(X) = ATN(1/SQR(X*X-1)) + (SGN(X-1)
*CONSTANT)

ARCCOT(X) = ATN(X) + CONSTANT

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X) + EXP(-X))/2

TANH(X) = -EXP(-X)(EXP(X) + EXP(-X))*2 + 1
SECH(X) = 2/(EXP(X) + EXP(-X))

CSCH(X) = 2/(EXP()-EXP(-X))

COTH(X) = EXP(-X)(EXP(X)-EXP(-X))*2 + 1
ARCSINH(X) = LOG(X + SQR(X*X + 1))
ARCCOSH(X) = LOG(X + SQR(X*X-1))
ARCTANH(X) = LOG((1 + X)/(1-X))/2

ARCSECH(X) = LOG((SQR(-X*X + 1) + 1)/X)
ARCCSCH(X) = LOG((SGN(X) SOR(X X+ 1)+ 1)/X)
ARCCOTH(X) = LOG((X + 1)/(X-1))/2

1. 1f in RAD (default) mode, CONSTANT = 1.57079633
If in DEG mode, CONSTANT = 90.

2. In this chart, the variable X in parentheses represents the value or expression
to be evaluated by the derived function. Obviously, any variable name is per-
missible, as long as it represents the number or expression to be evaluated.

96 APPENDIX E

(»

OO0 DOOOO OO PP PP AP AP AP PP P

8 00 OO B 8 O UV VWOV WOV VIVY VUV U VLUV UVLLEYe e

]
PRINTED VERSIONS APPENDIX F
OF CONTROL CHARACTERS

The cursor and screen control characters can be placed in a string in a program
or used as a Direct mode statement by pressing the ESC key before entering the
character from the keyboard. This causes the special symbols which are shown
below to be displayed. (Refer to Section 1 -ESC Key.)

SEE THIS

PRESS PRESS

(314 €SC

a n
R
[
L]
- &

©
2
m
/24
(7]
Op
r4
o

hl
o
m
[7]
72
I
o
[y
el
b}
m
"
n

(@]
x

000000

@

s

0808800 800000
effoeoe oocoEs
Al e]=+]wal EFERXEI

APPENDIX F 97

G APPENDIX

GLOSSARY

Alphanumeric:

Array:

ATASCI!I:

BASIC:

Binary:

Bit:

Branch:

Bug:
Byte:

Central Processing
Unit (CPU):

Code:

Command:

98 APPENDIX G

The alphabetic letters A-Z, and the numbers 0-9. (No
punctuation marks or graphics symbols).

A list of numerical values stored in a series of memory
locations preceded by a DIM statement. May be referred to
by use of an array variable, and its individual elements are
referred to by subscripted variable names.

Stands for ATARI American Standard Code for Information
Interchange.

High level programming language. Acronym for Beginner’s
All-purpose Symbolic Instruction Code. BASIC is always
written using all capital letters. Developed by Mssrs.
Kemeny and Kurtz at Dartmouth College in 1963.

A number system using the base two. Thus the only possi-
ble digits are 0 and 1, which may be used in a computer to
represent true and false, on and off, etc.

Short for Binary Digit. A bit can be thought of as represent-
ing true or false, whether a circuit is on or off, or any other
type of two-possibility concept. A bit is the smallest unit of
data with which a computer can work.

ATARI BASIC executes a program in order of line numbers.
This execution sequence can be altered by the program-
mer, and the program can be told to skip over a certain
number of lines or return to a line earlier in the program.
This contrived change in execution sequence is called
“branching’’.

A mistake or error usually in the program or ‘‘software’’.

Usually eight bits (enough to represent the decimal number
255 or 11111111 in binary notation). A byte of data can be
used to represent an ATASCII character or a number in the
range of 0 to 255.

In microcomputers such as the ATARI systems, these are
also called microprocessors or MPU. At one time, the CPU
was that portion of any computer that controlled the
memory and peripherals. Now the CPU or MPU is usually
found on a single integrated circuit or “‘chip’’ (ATARI uses
a 6502 microprocessor chip).

Instructions written in a language understood by a
computer.

An instruction to the computer that is executed immediate-
ly. A good example is the BASIC command RUN. (See
Statement.)

-m m .

m

D PO DDA

PYEPURPURPURPUIPURPURPURET JIT I JET T R BV IRV IRV BV BNV RV BNV BV RV RV BNV IV JN7 JR7 BV 7 7 Q7 B AN <

]

Computer:

Concatenation:
Control Characters:

CRT:

Cursor:

Data:
Debug:

Default:

Digital:

Diskette:

DOS:
Editing:
Execute:
Expression:
Format:

Hard Copy:
Hardware:

Any device that can receive and then follow instructions to
manipulate information. Both the instructions and the infor-
mation may be varied from moment to moment. The
distinction between a computer and a programmable
calculator lies in the computer’s ability to manipulate text
as well as numbers. Most calculators can only handle
numbers.

The process of joining two or more strings together to form
one longer string.

Characters produced by holding down the key labeled
CTRL while simultaneously pressing another key.

Abbreviation for ‘‘cathode ray tube’’ (the tube used in a TV
set). In practice, this is often used to describe the televi-
sion receiver used to display computer output. Also called
a ‘‘monitor.”’

A square displayed on the TV monitor that shows where
the next typed character will be displayed.

Information of any kind.

The process of locating and correcting mistakes and errors
in a program.

A mode or condition ‘‘assumed’’ by the computer until it is
told to do something else. For example, it will *‘default’ to
screen and keyboard unless told to use other /O devices.

Information that can be represented by a collection of bits.
Virtually all modern computers, especially microcomputers,
use the digital approach.

A small disk. A record/playback medium like tape, but
made in the shape of a flat disk that is placed inside a stiff
envelope for protection. The advantage of the disk over
cassette or other tape for memory storage is that access
to any part of the disk is virtually immediate. The ATARI
Home Computer System can control up to 4 diskette drive
peripherals simultaneously. In this manual, disk and
diskette are used interchangeably.

Abbreviation for ‘‘disk operating system’’. The software or
programs which facilitate use of a disk-drive system. DOS
is pronounced either ‘‘dee oh ess’’ or ‘'doss."”

Making corrections or changes in a program or data.

To do what a command or program specifies. To RUN a
program or portion thereof.

A combination of variables, numbers, and operators (like
+, —, etc.) that can be evaluated to a single quantity. The
quantity may be a string or a number.

To specify the form in which something is to appear.
Printed output as opposed to temporary TV monitor display.

The physical apparatus and electronics that make up a
computer.

APPENDIX G 99

Increment:

Initialize:

Input:

Interactive:
Interface:
10CB

110:

K:

Keyword:

Language:
Memory:

Menu:

Microcomputer:

Monitor:
Null String:
Os:

Output:
Parallel:

Peripheral:
Pixel:

Precedence:

100 APPENDIX G

Increase in value (usually) by adding one. Used for count-
ing (as in counting the number of repetitions through a
loop).

Set to an initial or starting value. In ATARI BASIC, all non-
array variables are initialized to zero when the command
RUN is given. Array and string elements are not initialized.

Information transfer to the computer. Output is information
transfer away from the computer. In this manual, input and
output are always in relation to the computer.

A system that responds quickly to the user, usually within a
second or two. All home computer systems are interactive.

The electronics used to allow two devices to communicate.

Input/Output Control Block. A block of data in RAM that
tells the Operating System the information it needs to know
for an I/O operation.

Short for input/output, I/O devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.

Stands for “'kilo’" meaning ‘‘times 1000"". Thus 1 KByte is
(approximately) 1000 bytes. (Actually 1024 bytes.) Also, the
device type code for the Keyboard.

A word that has meaning as an instruction or command in
a computer language, and thus must not be used as a
variable name or at the beginning of a variable name.

A set of conventions specifying how to tell a computer
what to do.

The part of a computer (usually RAM or ROM) that stores
data or information.

A list of options from which the user may choose.

A computer based on a microprocessor chip; ATARI uses
the 6502.

The television receiver used to display computer output.
A string consisting of no characters whatever.

Abbreviation for Operating System. This is actually a collec-

tion of programs to aid the user in controlling the com-
puter. Pronounced ‘‘oh ess’’.

See input and /0.

Two or more things happening simultaneously. A parallel in-
terface, for example, controls a number of distinct elec-
trical signals at the same time. Opposite of serial.

An |/O device. See /0.

Picture Element. One point on the screen display. Size
depends on graphics mode being used.

Rules that determine the priority in which operations are
conducted, especially with regard to the arithmetical/logical
operators.

%

Yt

|

O WYY EYO WO I PP VODIPVDPI VPO EP VPPV YY DY a0

Program:

Prompt:

RAM:

Random Number
Generator:

Reserved Word:
ROM:

Save:
Screen:
Serial:

Software:
Special Character:

Statement:

String:

Subroutine:

Variable:

Window:

A sequence of instructions that describes a process. A pro-
gram must be in the language that the particular computer
can understand.

A symbol that appears on the monitor screen that indicates
the computer is ready to accept keyboard input. In ATARI
BASIC, this takes the form of the word ““READY"". A ““?"" is
also used to prompt a user to enter (input) information or
take other appropriate action.

Random Access Memory. The main memory in most com-
puters. RAM is used to store both programs and data.

May be hardware (as is ATARI's) or a program that pro-
vides a number whose value is difficult to predict. Used
primarily for decision-making in game programs, etc.

See Keyword.

Read Only Memory. In this type of solid-state electronic
memory, information is stored by the manufacturer and it
cannot be changed by the user. Programs such as the
BASIC interpreter and other cartridges used with the ATARI
systems use ROM.

To copy a program or data into some location other than
RAM (for example, diskette or tape).

The TV screen. In ATARI BASIC, a particular I/O device
code “‘S:"

The opposite of parallel. Things happening only one at a
time in sequence. Example: A serial interface.

As opposed to Hardware. Refers to programs and data.

A character that can be displayed by a computer but is
neither a letter nor a numeral. The ATARI graphics symbols
are special characters. So are punctuation marks, etc.

An instruction to the computer. See also Command. While
all commands may be considered statements, all
statements are certainly not commands. A statement con-
tains a line number (deferred mode), a keyword, the value
to be operated on, and is terminated by pressing the
RETURN key.

A sequence of letters, numerals, and other characters.
May be stored in a string variable. The string variable's
name must end with a $.

A part of a program than can be executed by a special
statement (GOSUB) in BASIC: This effectively gives a
single statement the power of a whole program. The
subroutine is a very powerful construct.

A variable may be thought of as a box in which a value
may be stored. Such values are typically numbers and
strings.

A portion of the TV display devoted to a specific purpose
such as for graphics or text.

APPENDIX G 101

H APPENDIX USER
PROGRAMS

This appendix contains programs and routines that demonstrate the diverse
capabilities of the ATARI Home Computer System. Included in this appendix is a
Decimal/Hexadecimal program for those users who write programs that require
this type of conversion.

CHECKBOOK BALANCER

This is one of the *‘traditional’’ programs that every beginning computerist
writes. It allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits.

10 DIM A$(30),
(30),MEG3H(30) , ¥
6%(30)
20 OUTSTAND:0

30 GRAFHICS 037 $7 "CHECKEOOK EBALANCER
40 7 "YOU MAY MAKE CORRECTIONS AT ANY

TIME BY ENTERING A NEGATIVE DOLLAR VAL
UE, "

50 MSG1%="0LD
60 MSGRS="0LD
70 MEGR$="OLD
a0 oLt
90 3

100 =
110 TRAF 110

£ FROM YOUR
120 TRAF 12037 “ENT
E FROM YOUR BANK §
130 TRAF 40000

140 GOTO 170

150 CLOSE #157? "FRINTER IS NOT OFERATI
ONAL"

160 ? "PLEASE CHECK CONNECTORS"

170 PERM=0

180 2 "WOULD YOU LIKE A& FRINTOUT";3INF
Ut A%

190 IF LENCA$)=0 THEN 180

200 IF A$CL,1)="N" THEN 270

210 IF A%$(1,1)<>"Y" THEN 180

220 TRAF 150

ME i"ﬂ'“ ¢ INF UI l..-n--:L

102 APPENDIX H

&
[
é
.
€
€
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
e
é
e
e
e
é
e
¢
¢
¢
¢
¢
c
e
¢
€
¢
'3

BOVVOVOVOVOVOVLVLOIVIIPIIIIVIVBUVDOUODOUVUYVULULUUVUGDAD

PREM TEST FRINTER

UYOUR BEGINMNING B&LANMOE IS

SHENT BEGIMNING B

ONENOES TS

”lixu

thﬁU1qu
g B G

PN

@)

PR 48

’;:I 11" " |:f; "

; (i)

S ng L IRl A
? (&) sMSh &Y

b S e

pEt ez DONE

INFUT NIIF N1 OR N7 THEN 270
370 TRAF 40000
300 ON N GOSUER 460,300,540 ,580,5620,750

EalaNGE TS "IA
1040

STHTEMENT BALANCE X
2 1 Ul

STAHNDING CHECKS-DEFOSITS=
4 f & iif]lli " DIGOSUE 1040

G E PERM THEN LFRINT

o100 270

440 REM NEW DEFOSIT OR INTEREST JUST C
REDITED

@8 REM OLD CHEC
A&E0 MEGEF=MEGLEIG
470 OQUTSTAND=QUTE
460 RETURM

490 REM OLD DEFOSIT NOT CREDITED
G000 MEGE=MEGEEICOBUE 1080

D10 QUTETAND=0UTETAND-AMOUNT

BEO RETURM

w3l REM OLD CHECHK JUST CLEARED
MOGE=MBGEEIGOBUE 1080

Eal=Eal -aMOUNT

RETURMN

REM OLD DEFOSIT JUST CREDITED
MOGHF=MEGAEIGOSUE 1080
Eal=Bal+aMOUNT

S5TTLL OUTETANMOING
1080
TEMDHSMOUNT

I
{
F

APPENDIX H 103

GERVICE CHARGE JU

1080
1HH|NI

(L, QUTSTANDING'

HOAEI=0 THEN &40

L L) s NS S)

EAAOUNT

BN L ERINT CHE CHRMHA ST G b

4 S P NS
J

HD=0UTSTAND .
ENLFPRINT ”l! P C R S el

ORGINTEREST WJUST C

HL 1080
Sl OURES L+ AMOUNT

770072 "HAS YOUR: NEW DEROGIET BEENCCREDL

[LD”’“lNIHT ﬁi

780 THEN 770
790 T : SUYOTHEN 830
BOO BAL=EAL+ANOUNT
TF THEN LFRINT “"DEFOSIT HAS B
EDTTED"

ABCL, 100NN THEN 770
340 OUTSTAND=0UTSTAND-AMOUNT
850 TF FERN THEN LERINT "DEPOSIT HAS N
0T BEEN CREDITED"
860 RETURN
870 REM DONE
880 7 "EANK B
CHECKS-DEP(
R CHECKEOOK
890 DIF=Y
900 IF

SLANCE MINUG (OUTSTANDING
i) ,HU LD NOW EQUAL YOU

WL CEEL-OUTETAND)

il leN ORI

910 ? "IS $"iBAL3" THE ENDING EALANCE
ON YOUR BANE STATEMENMT"§ SINFUT A%

IO TF LEMOA®)=0 THEN 910

@30 IF As{l,1)="Y" THEN 7 "CONGRATULAT

104 APPENDIX H

R

- T M T T T TR DD DD DD

QD OVOVOOVOOVOVUVUOUUVUUUVUUVUUUUULOLUOLULULULULULLLOLD S

TOMS: YOUR CHECHKEDOR BaladCEs ! IENDG
940 GOTO 970

eun TF DIFE-0 THEN % "YOUR CHECEEQOOR 10
Tal TS5 $Ui0TF QUER YOUR BAHKS TOTalk
"IGEOTN Y70

QAN P UYOUR CHECHEOOR TOTaL TG $7i-bIF
PUOUNMDER YOUR BaM’ s TOTal

70 7 UWOULD YOU LIKE TO MakE CORRECTE
NG SINFUT A%

a0 IF LEMOagI=0 THEN 970

GO TF A%l =" THEN END

L0000 TF @l 120y THEN 270

1010 7 YO Cadd ENTER & MEGHTIVE DOLLA
Fo VELUE TO MaiE & CORRECTIONY

1020 RETURN

1020 FREM 886 PRINT ROUTINE

Lo40 MOGES " LAMOUNT

1050 IF PERM THEMN LPFRINT MHEGEH:TH" FaAMOU
MT

1060 RETURN

1070 REM MSG PRINT/INFUT ROUTINE

1080 TRAF 108087 "ENTER ABOURT FOR "M
GEESTINFUT AMOUNT

1096 TRar 40000

L1008 TF FERM OTHEN LPRINT MOGH: 4" Fan0uU
MNT

L1110 RETURN

APPENDIX H 105

ll-I-II.l-III-lIl-IlIII--I-IIIII-I-III.--III

BUBBLE SORT

This program uses the string comparison operator ** < ="' that orders strings ac-

cording to the ATASCII values of the various characters. Since ATARI BASIC does

not have arrays of strings, all the strings used in this program are actually sub-

strings of one large string. A bubble sort, though relatively slow if there are a Iot of

items to be stored, is easy to write, fairly short, and simpler to understand than

more complex sorts.

10 DIM EBs(1)

20 GRAFHICS 087? 32 “"STRING SORT" ¢ 7

30 TRAF 3012 192 “ENTER MEXTMUM STRING

LENGTH" $INFUT SLENIS EML=SGLEN~1

40 IF SLEMN<L O INTOSLEN)Y <=SLEN THEN 7
"PFLEASE ENTER A FOSTTIVE INTEGER =03

GOTO 230

90 TRAF S0:? :7? “"ENTER MAXTHMUM NUMEBEFR

OF ENTRIES"

A0 P "CENTRIES THAT ARE SHORTER THAEN T

HE MAXTMUM ARE FADDED WITH BLANKS) "

Z0 INFUT ENTRIES

80 TF ENTRITE OF INT(ENTRIES) <:ENTRI

ES THEN ? "PLEASE ENTER A FOSTITIVE INT

EGRER =11 GOTONS0

S0 TRAF 40000

100 DIM ﬁ$(SLEN*ENTHIES);TEMP$(SLEN)

110 ? 17?2 "ENTER STRINGS OME AT & TIME"

120 7 "ENTER EMPTY STRING WHEN DONE (J

UST HIT RETURN)"

130 % 17?2 "PLEASE STAND BY WHILE THE ST

RINGS ARE BEING CLEARED 4"

140 FOR I=1 TOQO SLENXENTR1562Q(I,I)“

MINEXT T

150 S iase

160 I:=1

170 FOR J=1 TO ENTRIES

LG 0 SOERYRIGS § ey st TN T TEMF

190 IF LENC(TEMF$)=0 THEN ENTRIES=J-1106G

aTa 230

200 ASCT, T+SLENL) =TEMF¢

210 T=T+8LEN

220 NEXT J

230 7 1?7 17 "PLEASE STAND BY WHILE THE
STRINGS ARE BEING S R s

240 GOSUE 400:REM CALL SORT ROUTINE

2w 7 17

106 APPENDIX H

- S S U Sl s s

[

BVOUOOVUOVIDIIIIIIDIOUBEVLIOUUVDLDLOLOLOLULULLLLLLYS

260 T=1

270 OFOR E=1 TO ENMTRIES

2RO e U IAECL, THELENLY

290 T=T+8UEN

300 MEXT K

AL0 TRAF 31037 37 UHOULD YOU LIKE & PR
TINTOUTY STINFUT B

320 TF BECL,10="Y" THEN 340

330 END

340 Tl iLPRINT SFOR K=1 T0O ENTRIES

250 LFRINT "EU " " aE L, THSLENLDY

340 T=T+8LEMINEXT KIEND

370 REM STRING BUBBLE SO0RT ROUTINE

360 REM INFUT A%, SLEN,ENTRIES

390 REM TEMFS MUST HAVE & DIMENSION OF
SLEN

400 MAX=DLEMK CENTRIES-1)Y+1

410 FOR T=1 TO MAX STEF SLEN

420 DONE=1

430 FOR K=1 TO MaX-T-SLENL STEF SLEN
440 HKOSLENT=RAGLEML SHOLEN=K+BLENIKSLENS
LEML=HELEN+SLEM]

450 TF A% CH, KELENL)Y Ta=dd (HELEN ; KELENSLE
N1)Y THEN GOTO 480

4460 DOME=0

470 TEMPE=Aa4 (K, ROLENL) $A% (K, KSLENL) =A%
(KELEN, KSLENSLENL) $4% (KSLEN, KELENSLENL
YuTEMFS

480 NEXT K

490 TF DONE THEN RETURNM

G000 NEXT I

5310 RETURN

APPENDIX H 107

LIGHT SHOW

This program demonstrates another aspect of ATARI graphics. It uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video (use
the ATARI logo key).

L0 FOR ST=1 TO 8IGRAFHICS 7
ZUNE I EAs7e o]

a0 7 P " ATART LIGHT SHOW M
400 SETCOLOR 2,252

a0 SETCOLOR 1,2%8T,81C0L0R 2
&0 FOR DR=0 TO 80 STERF 87T

70 FLOT 0,05DRAWTO 159 ,DR

80 NEXT DR

0 FOR DR=159 TO 0 STEF ~8T
100 FLOT 0,03DRAWTO DR,79
110 NEXT DR

120 FOR N=1 TO 3500 INEXT N
130 NEXT 8TIGOTO 10

UNITED STATES FLAG

This program involves switching colors to set up the stripes. It uses graphics mode
7 plus 16 so that the display appears as a full-screen. Note the correspondence of
the COLOR statements with the SETCOLOR statements. For fun and experimenta-

tion purposes, add a SOUND statement and use a READ/DATA combination to add
“The Star Spangled Banner' after line 400. (Refer to Section 10.)

10 REM DRAW THE UNITED STATES FLAG

20 REM HIGH RESOLUTION 4-COLOR GRAFHIC
8y MO TEXT WINDOW

30 GRAFHICS 7+14&

40 REM SETCOLOR 0 RELATES TO COLOR 1

o8}

w0 SETCOLOR 0,4,4iRED=1
60 REM SETCOLOR 1 RELATES
70 SETCOLOR 1,0,14WHITE=2
80 REM SETCOLOR 2 RELATES TO COLOR 3
20 BLUE=3IREM DEFAULTS TO EBLUE

100 REM DRAW 13 RED AND WHITE STRIFES
110 C=RED

120 FOR I=0 TQ 12

130 COLOR C

140 REM EACH STRIFE HAS SEVERAL HORIZO

IO COLOR 2

it

108 APPENDIX

NODDDDDDADDDDDADDEPPPEPIOOOPLOPOPOCPPP P B

'g00ooooooouuouoouuuuaouaouououauuw\

s

NTAL LINES

150 FOR J=0 TO &

160 FLOT 0,Ix7+J

170 DRAWTO 1359,1T%7+d
180 NEXT J

190 REM SWITCH COLORS

200 C=C+13IF CrWHITE THEN C=RED
20 NEXT L

220 REM DRAW BLUE RECTANGLE

0" COLOR " RBLUE

240 FOR I=0 TO 48

S50 VRPLIOT L0y

60 DRAWTO 79,1

170 NEXT I

00 REM DRAKW 9 ROWS OF WHITE STARS
*90 COLOR WHITE

00 K=0IREM START WITH ROW OF & STARS
310 FOR X=0 TO @

[0 Y=AeTRD

330 FOR J=0 TO 4:REM 5 STARS IN A ROW
B40 A=H4%+JK1A4G05UE 480

et NEXT J

360 IF Ka=0 THEN K=03G60T0Q 400

A70 REM ADD &TH STAR EVERY OTHER LINE
380 X=US+S5x141606UE 480
390
400
410 REM IF KEY HIT THEN STOF

BEEIF PEEK(764)=255 THEN 4Z4

430 REM OFPEN TEXT WINDOW WITHOUT CLEAR
ING SCREEN

440 GRAFHICS 7+32
450 REM CHAMNGE COLOFR
460 ’"["Tl OLOR 0,4 w‘%M:L.“H,UI O 10,14
470 END

480

I MY Y OB
g ™3OS ~‘,

’“J

1 8Tak CENTERED AT XY
4510 A TDRAWTO X+l Y

G500 R RO TSN S Yt

G310 LIFeN
20 TO ADD A& MUSTIC ROUTINE, INSERT
it G] L4005 AND APPEND

G980 REM THE [T ROUTINE STATEMENTS A
BB HES "REN STATEMENT .,

APPENDIX H 109

L

SEAGULL OVER OCEAN

This program combines graphics and sounds. The sounds are not
but simulate the roar of the ocean and the gull's “‘tweet’’. The graphics symbols
used to simulate the gull could not be printed on the line printer. Enter the follow-

ing characters in line 20.
201BIRDSE=1 V=i

To get these symbols, use CTRL G, CTRL F, CTRL R, CTRL R.

10 DIM BIRDSE (&)
20 BIRDS=""IFLAC=LIROW=103C0L=10

30 GRARPHICS 1{FOKE 7%56,226:iFOKE 752,1

40 SETCOLOR 0,0,0:SETCUOLLOR 1,8,14
50 FPRINT #&63" Lhe ocesn
HO R=TNTRNDOD =1L
70 FOSTTION 17170 T=0 TO 10
80 SOUND 0,T,8,4:FOR A=1 TO 50
@0 NEXT ALIF RMDC0Y<0.8 THEN 150
100 PITCH“INTKL”U(()*D)QJ

L0y FORCD=17 10 5

120 VOLUME=TNTRNDCOY®1L0)

130 SOUND 1,PITCH+D,10,VOLUME
140 NEXT [-2‘“(“]14[‘ ;00,0
1350 GOSUEB 270
L&D NEXT TIFQR T=10 7O 0 STERF -1
170 SOUND 0,T,8,4F0R A=1 TO %50
180 NEXT &3IF RNDC0OY<0.8 THEN 240
190 FPITOH=INTIRNDCOY®S)+10
?00 FOR D=1 TO %5

: VOLUME=TNT(RND (0 %10
SOUND 1, PITCH-D, 10, VOLUME

A0 NEXT DISOUND 1,0,0,0
240 FOR H=1 TO 10:iMNEXT H
250 GOSUER 270
260 NEXT TIiGQTO 60
270 GOSUE 320
280 POSITION COL;ROW
290 PRINT #&1BIRD$FLAG, FLAGH1)

300 FLAG=FLAG+ZITF FLAG=S THEN FLAG

310 RETURN

320 IF RNDCO)Y>0.,%5 THEN RETURN

B30 FOSTTION COL,ROW

S0 ERINTEEES Sl Sl

30 A=INT(RNDCOIX3) 1

3460 B=INTORNDCDI®RE) -1

370 ROW=ROW+AITF ROW=0 THEN ROW=1

110 APPENDIX H

sl

“pure’’ sounds,

P “ N =~

B O B & = B O B B B A Ao B A A S o A A Fa A F AN A 2N 2D A

1

D VOV OUOVOOVOOVOLUOVVOVVVOVUYUU GO YUY PVWYWIYVVUYVI

—
380 TF ROW=20 THEN ROW=19:C0L=COL+E

290 TF COL=0 THEN COL=1

400 TF COL>18 THEN COL=18

410 RETURN

VIDEO GRAFFITTI

This program requires a Joystick Controller for each player. Each joystick has one
color associated with it. By maneuvering the joystick, different patterns are created
on the screen. Note the use of the STICK and STRIG commands.

10 GRAPHICS 0O

S0 7 "UIDEDQ GRAFFITIY

20 REM X&Y ARRAYS HOLD COORDINATES

40 REM FOR UF TO 4 PLAYER FOSTTIONS

50 REM COLR ARRAY HOLDS COLORS

60 DIM A$1),X(3),Y(3),COLR(I)

70 ? "USE JOYSTICKS TO DRAW FICTURESY

80 7 "PRESS BUTTONS TO CHANGE COLORS®
90 7 "INITIAL COLORGDY

g 7 “JOYSTICK 1 18 ReDY

FD (P2 "JOYSTICK 2 IS HHITE"

0 P "JO0YSTICK 318 'BLUE"

130 ? "JOYSTICK 4 IS BLACK-BACKGROUND"
140 7 "BELACHK LOCATION I8 INDICATED EY
BRIEF FLASH OF RED"

150 ? "IN GRAFHICS 8,JO0YSTICKS 1 AND 3
ARE WHITE &Nk 4 IS5 BLUEY

160 ? "HOW MANY PLAYERS (1-4)"}

170 INFUT A$iIF LENCGAE)=0 THEN A®="1"
180 JOYMAX=VAL{(AE) -1

190 TF JOYMAX<0 OR JOYMAXE=4 THEN 160

200 ? “"GRAFHICS3(40X24),5(80X48)"

T P N7(140X96),0R B(320X192)"3

220 INFUT A$IIF LENCA$)=0 THEN A$="3"

230 A=VAHL{AS)

240 IF A=3 THEM XMAX=40:YMaX=Z41G60TO 2
?a

250 IF A=%5 THEN AMAX=80IYMAX=48160TO Z

.0

260 IF A=7 THEN XMAX=1803YMAX=9616OTO

290

270 IF A=8 THEN XMAX=320iYMAX=192:6G0TO
290

280 GOTO 147 1REM A NOT VALID

APPENDIX H 111

290 CRAFHICES A+lé

300 FOR T=0 TO JOYMAXIX{I)=XMAX/Z2+T Y (
Tra=YMAX/Z+TINEXT TIREM START HNEAR CENT
ERSOESSEREEN

310 IF Axz8 THEN 350

220 FOR X=0 TO ZICOLROII=1INEXT I

230 SETCOLOR 1,9,14 REM LT, BLUE

340 GOTO 3860

350 FOR I=0 TO ZICOLROXY=T+1INEXT I

360 SETCOLOR 0,4,6REM RED

370 SETCOLOR 140,14¢REM WHITE

380 COLRC3)Y=0

G2 UmEORE J=01 00 8

400 FOR I=0 TO JOYMAXIREM CHECK JOYSTI

%10 REM CHECH TRIGGER

4 00 flEe STTRIEG G- M E Nt 20

430 IF &8 THEN 460

440 COLR(ID)I=COLRCI+1ITF COLRCXY=2 THE
NOCOLRECDY =0 REM THO COLOR MODE

fe0 (GO 47.0

440 COLRCD =COLRCII+1ITF COLRCI) ==4 TH
EN COLRCID=0IREM FOUR COLOR MODE

4700 TF Q0 THEN COLOR COLRCDIGOTO S00
480 IF COLRCIY=0 THEN COLOR 13IGOTO S00
490 COLOR 0IREM BLINK CURRENT SQUARE O
MoAND OFF

A S LB PR ¢ @ 15 5 (1))

D10 JOYIN=G8TICK{I) IREM READ JOYSTICK
GE0 TR JOYIM=19 THEM &901REM NO MOVEME
NT

520 COLOR COLRCI)Y SREH MAKE SURE COLOR
I8 0w

s (R IS G Ea Bl A€)

G990 TF JOYINEE THEN 400

G40 XD =X (0 4L IREM MOVE RIGHT

G700 REM OIF O OUT OF RANMGE THEN WRAFAROUN
D

GEO0TF XD F=HMaX THEN X(I)=0

590 GOTO f?.

HO0 TF JOYINE==12 THEN 630

H10 V‘I“\‘T) -1 $REM MOVE LEFT

H&20 TF X(I)<0 THEN X(I)=XMAX-1

H30 TF JOYIN-=ES AND JOYINGES AND JOYIN
213 THEN &40

112 APPENDIX H

MDD DDA

OVOOVNONVNORIIRIRIIPIDPIPIPEIBDOAIPDPOILIODLLODIANN

HA0 YD =Y DI+ ITF YOI F=YMAX THEN Y(I

Y=0IREM MOVE DOWN

&G0 GOTO &80

A(O TFOJOYIN==d AND JOYIN<=10 AND JOYX
el EN 630

£70 G =YL By =0 S EE Y (L) <0 THEN Y (I y=YM

AX-1LPREM MOVE UF

680 FLOT X(I),Y (D)

HP0 NEXT I

200 NEXT dJ

710 GOTO 390

KEYBOARD CONTROLLER

This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further 1/0, hit SYSTEM RESET or POKE PACTL,60.
If this program is to be loaded from disk, use LOAD, not RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this light
goes out, otherwise the disk will continue to spin.

L0 GRAEHICS 0 G
20 TEEYBEOARD CONTROLLER DEMO"

20 DIM ROW(3),T$(13), BUTTONS (1)

40 GOSUE 100

50 FOR CNT=1 TO 4

60 FOSITION 2,CNTXZ+557 “"CONTROLLER #"
PENT

70 NEXT CNT

80 FOR CNT=1 TO 43GOSUE 1703FOSITION 1
G ONTHONT+517? BUTTONS INEXT CNT

90 GOTO 80

100 REM *x SET UF FOR CONTROLLERSXX

110 FORTA=540163FORTE=S54017 IFACTL=5401
8IFECTL=54019

120 POKE FACTL,48:F0KE FORTA, 255 FOKE
FACTL, 52 FOKE FORTA,221

130 FOKE FECTL,48:F0KE FORTE,25%3FOKE
FECTL, 52 FOKE FORTE, 221

140 ROWCO) =238 RO =221 SROW(2) =187
OW(3) =119

150 Id=" 1234546789K0%"

160 RETURN

170 REM **RETURN BUTTONS WITH CHARACTE
ROFOR BUTTON WHICH HAS BEEN FRESSED ON
CONTROLLER CNT(1-4)%x

180 REM XxNOTE: & 1 IS RETURNED IF NO

APPENDIX H 113

—

CONTROLLER TS CONNECTEDXX

190 REM xxéa SFACE IS RETURNED IF THE ©
ONTROLLER IS CONNECTED BUT NO KEY HAS

BEEEN PRESSEDXX

200 FORT=FORTAIIF CNT>Z THEN FORT=FORT
(&

210 Pl

220 FAQ=CNT+HONT -2

230 FOR J=0 TO 3

240 POKE PORT,ROWCDD

200 FOR T=1 TO LOINEXT I

260 TF FADDLEC(FA0+1) =10 THEN P=deJsd+?
tGOTO 300

270 TF PADDLEFAOY 210 THEN P=Jd+Jd+J+3306
TG 300

<80 TF STRIGICNT~1)=0 THEN FaJ+Jd+J+416
Q1o 300

SO0 NEXT J

00 BEUTTONS=TE P,)

310 RETURN

TYPE-A-TUNE

This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.

KEY MUSICAL VALUE
INSERT B

CLEAR Bb (or A#)
0 A

Ab (or G#
G

F# (or Gb)
F

E

Eb (or D#)
D

Db (or C#)
C

= NWbLOO~N®O

10 DIM PITCHCLZ) , TUNE C12) sCOLOR 1

20 GRAPHICS 0317 &7 "TYPE-A-TUNE"

30T LR UPRESS KEYS 1-9,0,4,% TO FRODU
CE MOTES"

40 P URELEASE ONE KEY BEFORE PRESSING
THE MEXT"

114 APPENDIX H

B B e B e R R K R N EEEE N EE N YN E NN EEEXEWS

1

I

000000000000000000000000000000000

[S

—

maop POTHERWISE THERE HMAY BE A& DELAYY
&0 FOR ¥=1 TO 12tREAD ATPITCHOO =ATNEX
T X
T FOR X=1 TO LETREAD A $TURE GO =8 ENEXT
X
a0 OFPEN $1,4,0, K"
o0 LDOHR=-1
IﬂU ﬁﬁ’E[hi;é@)iTF f=2%0 THEM 100

ten TF plfw}i THEM 150
130 =
130
UP“

:

LﬁiIF TUME GOsd THEN B0
p L0, EIEOTO 150

”(Phhh(hﬁ7?5)/4)3IF CLAE =TT

¥ 1040

140 A4, TETIGOUND 0,0,0,030LDUHRS
l"[f‘lq ﬁlUL

171”3 YT

¥ 1">,'.I.""s.
DT

[R il g
poadtT el

IU’:, L9 ;y.l\)\.) 17 J;.l

-
».

L

.............

" ; e s & 7 I3 5 y \')" Gt r a0

To play “‘Mary Had A Little Lamb’ press the following keys:
53,1.3,555 333 5818 531,355 5533531

COMPUTER BLUES

This program generates random musical notes to “write”” some very interesting
melodies for the programmed bass.

10 GRAFHICS 1

20 7 "EASS TEMFO--SELECT & NUMBER."
30 0% C(FASTEST TEMPO=1)"
A0 FTR=1ITHNOT=1 8 CHORD=
S0 FRINT "PRESS RETURRY

&0 TINFUT TEMFO

70 GRAFHICS 2+1461G0OSUE 630
80 DIM BASE(I, %)

0 DIM LOWD

100 DIM LINEC(LS)

110 DIM JAMC3,7)

L20 FOR X=1 T0 3

APPENDIX H 115

T

130
140
190
140
170
180
190
T X
200
210
220
230
240
250
260
270
260
? 'I 8 r]
Jﬂﬂ
310
3E0
2an
240
JE0
340
370
380
360
400
410
420
430
,q ’.: n
4E0
440
170
480
490
500
510

| 3
A4
B
59

G360

FOR Y=1 T0O 4

READ ATEASE (X, Y)=p

MEXT Y

MEXT %

FOR X=1 TO JIREAD AILAWOO =0
MNEXT X

FOR X=1 TO LSIREAD ANILINE(X)Y=a1

FOR X=1 T0O 3

FOR Y=1 TO 7

READ S1JOMOL, V=@ iNEXT Y INEXT
GOSUE 370

Tt

GOsUR Z70

GOTO Z230

FEM PROCESS HIGH STUFF

TF ORNMDCOY0 85 THEN RETURN
TFORNDCOYCO .S THEM 320
MT=NT 1

TF NTEZ THEN MNT=7

GOTO 3540

HTw=MNT-1

TFONTL THEN NT==]

SOUND 2, JaMCCHORD ,NTY , L0, NT®Z
RETURN

g 1 F EOCESS BASE STUFF

TF B&GS=1 THEHM “f\..[]

(5 f]l'F'“ Ukl

S0 TEMEO THEN 420

G E=] TEOUR=0

SOUND 0, LOW{CHORD)Y ;10,4

GOUND 1, BASE (CHORD , THNOT» ;10,4

FETURM

SOUMD 0,0,0,0

SOUND 1,0,0,0
BEOUR=EOUR+1

TF BEQUR-=T THEN 560
BEOUR=0IES55=0
THMOT=THNOT + 1

IF THMNOT-:0 THEM 540
THMOT=1

P R=RTHR L

IF PTR=L7 THEN FTR=1
CHORD=LINECFTR)
FETLERM

116 APPENDIX H

X

\'.ﬂ')nnhﬂQOOOl)ﬁononoonnnnnnnnnnnnnnnl

1

0 VOV VUV OV OOV U VUV VYOV UVUVYUUVUYILIYIYYVYYVISYVDDa

O a—

S0 D{’]qu LO&,L%‘*;‘."‘&);L“’}QyL"l lUu),lUZ,l
08,108,946,91,96

560 DATA 243,182, 162

'\'?0 |)|’1f|‘4 [\\l.y[919"'\92\5:«};2)}lylol,ly(.}ly;‘yl
yl

600 DATA 60,%50,47,42,40,33,29

610 DATA 60,50,45,42,40,33,29

620 DATA 81,68,64,57,53,45,40

&30 FRINT #61FRINT #5PRINT #6

HA40 PRINT #6353 COMPUTER BLUES"

S50 FRINT #&IFRINT #6

660 RETURN

DECIMAL/HEXADECIMAL CONVERSION PROGRAM

This program can be typed in and used to convert hexadecimal numbers to
decimal numbers and vice versa.

10 DIM A%dY) ,ADECL)

20 GRAFHICS 037 7 "HEX CONVERSION"
30 ? “ENTER/D/FOR DEC TO HEX CONVERT"
40 P "ENTERH/FOR HEX TO DEC CONVERT"
S0OLNFUT A%

&0 TF LENCAS)=0 THEN 30

70 TF @Eg=UHY O THEN 300

BONTE ASIH-"DY THEN 30

0 TRAF 90

100 ? "ENTER A DECIMAL NUMBER"

oS UDECT™ § SINEUT N

120 TIF N0 OF Me=1E+10 OR N<=INTOND TH
En GOTO 100

140 TEMP=NIN=TINT{N/1é

LS50 TEMP=TEMF-NXL1&

160 IF TEMP<10 THEN A%(I, L) =8TR$ (TEMF)
FGOTO 180

170 A% (L, D) =CHR$ (TEMP-10+ASC("A")
180 IF N<H0 THEN I=I-13GOTO 140

B0 ? "HEX: "3A$(I,?)!7? (GOTO 110
300 TRAF 300

310 ? :? "ENTER A HEX NUMBER"

320 ? "HEXI"§IINFUT A$IN=0

30 TF LENGA$)=0 THEMN 300

340 FOR T=1 TO LEMN(A%$)

30 ADE=A% (I, 1) IIF AD$E-"0" THEN 300

APPENDIX H 117

340
370
380
390
400
A0 NEXT
49007 "DE

118 APPENDIX H

ltl [) ;F. ::, 1) |::' 1"

IRETRE S R R e R W e ik R R W A IS

Sy oA

1

I
[“‘i’ 1o
v & 3

THEH GOTO

PLEOTO

THEM 200

THEM 300

~

)
HE U

FLOTO

ag0
10

320

» W B »

»

w»

I B B B U R K e e e N e NN N N N NN

|

-

MEMORY
LOCATIONS

APPENDIX I

LABEL
APPMHI
RTCLOK

SOUNDR

RMARGIN
ROWCRS
COLCRS
OLDROW
OLDCOL

RAMTOP
LOMEM
MEMTOP
STOPLN

ERRSAV
PTABW
FRO

RADFLG
LPENH
LPENV
TXTROW
TXTCOL
COLORO
COLOR1
COLOR2

VOVOVOVOVLOLOVLOVLOVLOVLOVLVLVLOLOVLOVVLOVLIOVIVIVVIUVYVULYVLYVLULLLY

LMARGIN,

DECIMAL
LOCATION

14,15
18,19,20

65
THlL
82,83

84
85,86
90
91,92
93

106

128,129
144,145
186,187

195
201
212,213

251
564
565
656
657,658
708
709
710

*Future product.

HEXADECIMAL
LOCATION

D.E
12,13,14

41

52,53

54
55,56
5A
5B
5C

6A
80,81
90,91
BA,BB

C3
C9
D4,D5

FB

234

235

290
291,292
2C4
2C5
2C6

Note: Many of these locations are of primary interest to expert programmers and
are included here as a convenience. The labels given are used by ATARI program-
mers to make programs more readable.

COMMENTS AND DESCRIPTION
Highest location used by BASIC (LSB, MSB)

TV frame counter (1/60 sec.) (LSB, NSB,
MSB). Time in seconds = (PEEK(18) +
PEEK (19)*256 + PEEK(20)*256*256)/60

Noisy I/O Flag (0 = quiet)
Attract Mode Flag (128 = Attract mode)
Left, Right Margin (Defaults 2, 39)

Current cursor row (graphics window).
Current cursor column (graphics window).
Previous cursor row (graphics window).
Previous cursor column (graphics window).

Data under cursor (graphics window unless
mode 0).

Actual top of memory (number of pages).
BASIC low memory pointer.
BASIC top of memory pointer.

Line number at which STOP or TRAP
occurred (2-byte binary number).

Error number.
Print tab width (defaults to 10)

Low and high bytes of value to be returned
to BASIC from USR function.

RAD/DEG flag (0 = radians, 6 = degrees).
Light Pen* Horizontal value.

Light Pen* Vertical value.

Cursor row (text window)

Cursor column (text window)

Color Register 0

Color Register 1

Color Register 2

APPENDIX | 119

—

LABEL
COLOR3
COLOR4
MEMTOP

MEMLO
CRSINH
CHACT

CHBAS

ATACHR

CH

FILDAT
DSPFLG
SSFLAG

HATABS
10CB

CONSOL

PORTA
PORTB
PACTL

PBCTL
SKCTL

SAVMSC

SDLIST

POKMSC

DECIMAL
LOCATION

il
212
741,742

743,744
752
755

756

763
764

765
766
767

794

832
1664-1791
53279

54016
54017

54018

54019
53775

88,89
123,184
182

560,561
580
694
53770

16/53774

120 APPENDIX |

HEXADECIMAL
LOCATION

2C7
2C8
2E5,2E6

2E7,2E8
2F0
2F3

2F4

2FB
2FC

2FD
2FE
2FF

31A

340
680-6FE
DO1F

D300
D301
D302

D303
D20F

58,59

230,231

COMMENTS AND DESCRIPTIONS
Color Register 3
Color Register 4

OS top of available user memory pointer
(LSB, MSB)

OS low memory pointer
Cursor inhibit (0 = cursor on, 1 = cursor off)

Character mode register (4 = vertical
reflect; 2 = normal; 1 = blank)

Character base register (defaults to 224)
(224 = upper case, 226 = lower case
characters)

Last ATASCII character.

Last keyboard key pressed; internal code:
(255 clears character).

Fill data for graphics Fill (XIO).

Display Flag (1 = display control character).

Start/Stop flag for paging (0 = normal listing)
Set by CTRL 1.

Handler address table (3 bytes/handler)
I/0 control blocks (16 bytes/IOCB)
Spare RAM

Console switches (bit 2 = Option;
bit 1 = Select; bit 0 = Start. POKE 53279,
0 before reading. 0 = switch pressed.)

PIA Port A Controller Jack 1/O ports.
PIA Port B Initialized to hex 3C.

Port A Control Register (on Program
Recorder 52 = ON, 60 = OFF).

Port B control register.

Serial Port control register. Bit 2 =0 (last key

still pressed).

Points to screen data area.
ReadAdata pointer (line #).
Read (displacement in line).

Display list pointer.

Coldstart flag.

Inverse video (128 = on, 0 = off)
Random # between 0 and 255.

Poke both w/64 to disable BREAK key
(reenabled when entering new graphics
mode).

m >

»

-

|

CVOVOVOVOOVOVOVOVOVOVUVIVLIVLIVVIUVIUVIUVUVUVUVULVULVLULVVWUWVOV e e

]
J APPENDIX TABLE OF MODES
AND SCREEN FORMATS

TABLE 91 TABLE OF MODES AND SCREEN FORMATS
SCREEN FORMAT

Rows— Rows— Number RAM Required

Graphics Mode Split Full of (Bytes)
Mode Type Columns Screen** Screen Colors Split Full
0 " TEXT 40 — 24 1-1/2 992
1 TEXT 20 20 24 5 674 672
2 TEXT 20 10 12 5 424 420
3 GRAPHICS 40 20 24 4 434 432
4 GRAPHICS 80 40 48 2 694 696
5 GRAPHICS 80 40 48 4 1174 1176
6 GRAPHICS 160 80 96 2 2174 2184
7 GRAPHICS 160 80 96 4 4190 4200
8 GRAPHICS 320 160 192 1172 8112 8138
9* GRAPHICS 80 — 192 1 8138
10* GRAPHICS 80 — 192 9 8138
11 GRAPHICS 80 — 192 16 8138
12*** GRAPHICS 40 20 24 5 1154 1152
13+ GRAPHICS 40 10 12 5 664 660
14*** GRAPHICS 160 160 192 2 4270 4296
15+ GRAPHICS 160 160 192 4 8112 8138

*GTIA Mode Only
* *Refer to Figure 9-1
***1200XL Only

APPENDIX J 121

!

b

()

9PV OVOVOV00VVLVLOVVLLVLLUVLUVIULVIOLIUVIUVIOLUVIUVUYVYVUVIYVYW

INDEX

A

Abbreviations, 4-5
Commands in headings, 4

ABS, 40

adata, 5

ADR, 42, 76

aexp, 4

aop, 4

Array, 3-4 49

ASC, 45

ATN, 42

Audio track of cassette, 29

avar, 45

B
BASIC, 1
Blanks (see Spaces)
Booting DOS, 31
Braces, 4
Brackets, 4
Branching,
Conditional Statements, 22
Unconditional Statements,
21
Brightness (see Luminance)
Bubble Sort Program, H-5
Buzzer, 16
Deferred Mode, F-1
Direct Mode, 16
BYE, 12

Cc
C-Scale Program, 67
Central Input/output
Subsystem, 29
Character
Assigning Color to, 63
ATASCII, C-1 through C-8
Display at specified
locations, 53, 54
Set, internal, 62
Sizes in Text modes, 53
Chaining Programs, 38
CHRS, 45
CIO (see Central Input/output
Subsystem)
CLEAR key, 7
Clear Screen,
Deferred mode, 7, 16, 53
Direct mode, 6, 53
CLOAD, 30
CLOG, 40

CLOSE, 33
CLR, 51
Codes,

Device, 29-30
Colons, 4, 70
COLOR, 53
Color

Assigning, 63

Changing, 58

Default, 54, 59

Registers, 58
COM (see DIM)
cmdno, 37
Comma, 32-33
Command Strings, 1
Commands

BYE, 12

CONT, 12

END, 13

LET, 18

EIST 113

NEW, 13

REM, 13

RUN, 13

STOPR, 18
Concatenation, String, 47
Conservation,

Memory, 70
Constant, 2
CONT, 12
Control Key, 15-17
Controllers,

Game, 68
COS, 42
CSAVE, 30
Cursor, 12

Graphics, 56

Inhibit, 53

D
Default
colors, 53
disk drive, 30, 36
margins in Mode 0, 53
tab settings, 7
Deferred mode, 7
DEG, 42
Devices, 29-30
Delete line, 16
DIM, 50
Direct mode, 6

(

Disk Drive
Default number, 30, 36
Requirements (see ATARI
DOS Manual)
Disk file
Modification of BASIC
program, 38
Display, split-screen override,
52, 54
Distortion, 66
DOS, 31
Double-Key Functions, 16
DRAWTO, 55

E

Editing, screen, 15

Editor, Screen, 30

ENP..12, 13

End of file, 20

Enter, 31

Error messages, B-1 through
B-3, 11

Escape key, 6
with Control Graphics

Symbols, F-1

EXP, 40

exp, 9

Exponentiation symbol, 9

Expression, 1
Arithmetic (see aexp)
Logical (see lexp)
String (see sexp)

F
filename, breakdown, 34
filespec, 5
Usage, 33, 34
Fill (XI0), 61
FOR/NEXT, 18
building arrays and matrices,
51
with STEP, 18
without STEP, 18
FRE, 35
Function, 2
Arithmetic
ABS, 40
CLOG, 40
EXP, 40
INT, 41
LOG, 41

INDEX 123

L

RND, 41

SGN, 41

SQR, 41
Built-in, 9
Derived, E-1
Library, 40
Special Purpose, 42

ADR, 42

FRE, 42

PEEK, 43

POKE, 43

USR, 43
Trigonometric, 42
ATN, 42

COS, 42

DEG, 42

RAD, 42

SIN, 42

G
Game controllers
Joystick, 68
Paddle, 68
Video Graffitti program, H-12
through H-13
Game controller commands
PADDLE, 68
PTRIG, 69
STICK, 69
STRIG, 69
GET 35 67
GOSUB/RETURN, 19, 24, 26
GOTO, 21
with conditional branching,
21
GRAPHICS, 52
Graphics
Modes, 52
Statements, 56
COLOR, 56
PIAWTO, 56
GET, 57
GRAPHICS, 56
LOCATE, 56
PLOT, 57
POSITION, 57
PUT, 657
SETCOLOR, 58
XIO (Fill), 61
Graphics Control Characters,
65

H
Harmony, 66

Hexcode Loader program,
72-73

|
If/then, 22
INPUT, 31
Input/Output Commands, 29
CLOAD, 30
CLOSE, 33-34
CSAVE, 30
DATA, 35
DOS, 31
ENTER, 31
GET, 35
INPUT, 31
LOAD, 32
LPRINT, 32
NOTE, 33
OPEN, 33
POINT, 34
PRINT, 4, 6
PUT 85
READ, 85
SAVE, 36
STATUS, 36
XIO, 37
Input/Output Devices
Disk Drives (D:), 30
Keyboard (K:), 29
Line Printer (L:) 29
Program Recorder (C:), 29
RS-232 Interface (R:) 30
Screen Editor (E:), 30
TV Monitor (S:), 30
INT, 41
Internal pointer
for DATA, 27
Input/Output Control Block,
29
Inverse Key, 5
Invisible graphics cursor, 56
IOCB (see Input/Output
Control Block)

J
Joystick Controller, 68

K

Keyboard (K:), 29

Keys

Special Function

ATARI, 6
BACKSPACE, 7
BREAK, 6
CAPS, 6
CAPS/LOWER, 6
CLEAR, 7
DELETE ST
ESCAPE, 6

INSERT, 7
RETURN, 7
SYSTEM RESET, 6
TAB, 7
Editing
CTRL (Control) Key, 15
SHIFT key, 15
Cursor Control 16
Down arrow, 16
Left arrow, 16
Right arrow, 16
Up arrow, 16
Keywords
BASIC, A-1 through A-5

L
LEN, 46
EET.12.4 13
Letters
Capital (upper case), 4
Lower case, 4
lexp, 5
Light Show Program, H-8
Line
Format, 4
Logical, 2
Numbers, 4
Physical, 2
lineno, 5
LIST, 13
LOAD, 32
Load program from cassette
tape, 30
LOCATE, 56
LOG, 41
Loops
Endless, 20
Nested, 18
lop, 5
LPRINT, 33
before CSAVE, 31
Luminance, 60

M
Mandatory # symbol, 33
Margins

Changing, 43

Default in mode 0, 54
Matrix, 49-51

Variable, 4
Memory Map, D-1
Modes, graphics, 54, 55
Modes, operating

Deferred, 6

Direct, 6

Execute, 6

P R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYrY YWY oUYYrYyYrers

AR R R R I N Y Y Yy Yy Y yYYYYXxXyYxYxYxYxx s

Memo Pad, 6, 31
Modes, text, 54

Override split-screen, 54
Multiple commands (see

Command Strings)

mvar, 4

N

NEW, 14
Notations
floating point, 47
in manual, 3

Note, 33

(o]

ON/GOSUB, 24

ON/GOTO, 24

OPEN, 33-34

Operating Modes, 6

Operators, 2
Arithmetic, 9, 10
Binary, 9, 10
Logical, 9
Relational, 9
Unary, 9

Output devices, 29-30
Oversized programs (see
Chaining Programs)

P
Paddle Controller, 68
Parentheses,
Usage, 10, 71
PEEK, 43
Peripheral devices (see
Input/Output Devices)
Pitch
Definition, 66
Values, 66
Pixel, 57
Size in modes, 56
PLA, 71
BEOJ 57
POINT, 34
POKE, 43
POP, 25, 26
POSITION, 57
Precedence, operator, 8
PRINT, 33, 35
Printer listing, 13
Program continuation, 14
Programs,
Machine language, 71
User, Appendix H
BUI, 85, 57

Q
Question mark as prompt, 31
Quotation marks, 2

RAD, 42

RAM (Random Access
Memory), 29

Random Access to disk file,
34

READ, 35
Direct mode, 36

REM, 14

RESTORE, 27

RETURN Key, 6

Return, Abnormal (see POP)

Rollover,
Keyboard, 11

RND, 41

RS-232(R:), 29

RTS, 63

RUN, 1

S

SAVE, 36

Save programs on cassette
tape, 30

Screen Display (see TV
Monitor)

Screen Edit, 15

Screen Editor (E:), 30

Seagull Over Ocean
Program, H-11

Self Test, 8

Semicolon, 28

SETCOLOR, 60

sexp, 5

SGN, 41

Shift Key, 15-17

SIN, 42

SOUND, 60
terminating, 60

Spaces, 70

Special Function Keys, 16
SQR, 41
Stack, 19
GOSUB, 19
Hardware, 43
loop addresses, 19, 24
POP. 25
Statement,
Program, 18
FOR, 18
GOSUB, 19, 24, 26
GOTO, 21

IF, 22
ON/GOSUB, 24
ON/GOTO, 24
POP, 25
RESTORE, 27
RETURN, 19, 24
STEP, 18
THEN, 22
10,18
TRAP, 28
STATUS, 36
STEP, 18
STOP, 14
String
Comparison, 48
Concatenation, 47
Dimensioning, 45
Functions
ASC, 45
CHRS, 45
LEN, 46
STR$, 46
VAL, 46
Manipulation, 47
Sort, 48
Splitting, 47
Variable, 4
STR$, 46
Subroutine
Definition, 20
GOSUB, 19, 24, 26
Usage, 24
svar, 4

T

Terminology, 1

Text modes, 54

Text Modes Characters
Program, H-7

Tokenized version, 3, 30

Tone, clipped. 66

Trigonometric, 47

TRAP, 28

Type-A-Tune Program, H-15

u
Untokenized version, 3
USR, 43

v
VAL, 46
var, 4
Variable, 2
avoiding name limit, 2
Video Graffitti Program, H-12

Volume control, 66
Voice, 66

w

Window
Graphics, 54
Text. 54

Wraparound, 11

X

X-coordinate. 54
X0, 37

X10 Drawline, 61
X10 (Fill). 61

Y
Y-coordinate. 54

b4
Zero

as Dummy Variable, 38. 42

N N EE BN N

P P P P

» P P >

»

» »

«P D> D> D D D D D D D DB B B B DD P DD

CO OO ODOOOBONHOOOBOOUY O 0000w P DDE &
I—/—,’F ;”h‘o

©

v
i

PRINTED IN U.S.A
C061456 REV. A BX4211

ATARI
A Warner Communications Company Q

b
c
[
(7]
-]
@
2
£
=2
o
2
S
€
~
S
<
)

