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Preface 

Many books have been written about 6502 assembly language. 
But this book is different in several important ways. Until now, 
there have been two main kinds of books about 6502 assembly 
language. There are generic books that make no mention of Atari 
computers, and there are reference books that are full of informa
tion about Atari computers, but are so technical that only experts 
can understand them. But there was a distinct shortage of books 
designed to teach Atari users who knew a little BASIC how to 
start programming in assembly language. 

This book was written to fill that void. It's written in English, not 
computerese. It's written for Atari users, not for professional 
programmers (though they might find it useful). Every major 
topic that it covers is illustrated with at least one (and often 
more) simple, informative, useful programs. This book is also 
unique in several other ways. It's the first assembly language 
guidebook that has been user-tested on Atari's new XL series 
computers (and every program in it will work on Atari's older 
computers, too). It's the first book to cover the operation of the 
OSS MAC/65 assembler, one of the most popular Atari assem
blers on the market, as well as the operation of the Atari Assem
bler Editor cartridge. And no matter what kind of computer or 
assembler you own, the book you're now reading is probably the 
easiest to understand assembly language textbook you'll ever 
own. In this book you'll find - for the first time between book 
covers - everything you'll need to know to start programming in 
Atari assembly language, and to start running your programs on 
an Atari computer system. Best of all, this book will have you 
writing assembly language programs before you know it, and by 
the time you finish, you'll be well on your way to becoming an 
expert assembly language programmer. 

All you'll need is this book, an Atari computer (any Atari com
puter), and a few other supplies. They are: 

• A machine language assembler and debugger. The programs 
in this book will work without any changes on either a MAC/65 
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assembler from Optimized Systems Software (OSS) of San 
Jose, CA, or the Atari Assembler Editor cartridge manufac
tured by Atari. If you own another kind of assembler, you can 
probably use it without too much difficulty, since there is a 
standard instruction set in 6502 assembly language. 

There are differences in assemblers, though, just as there are 
in the dialects of BASIC used by various BASIC interpreters. 
So if you do use an assembler other than the two that were 
used to write the programs in this book, you may have to make 
some alterations in the way the programs have been written, 
assembled, debugged, loaded, saved and run. And I don't 
recommend this unless you already know how to program in 
assembly language. 

Once you own this book and an assembler, you'll need only a few 
other items to start programming in Atari assembly language. 
These items are: 

• An Atari BASIC cartridge and BASIC Reference Manual. 
• An Atari or Atari-compatible 5% inch floppy disk drive (or, 

better still, two disk drives) . 
• An Atari or Atari-compatible line printer (any kind that works-

40-column or 80-column, thermal or impact, dot matrix or let
ter quality; it doesn't matter). 

As you learn more about assembly language, you may also want 
to buy more books about Atari computers and Atari assembly 
language programming. You'll find a few of the best books on 
both of those subjects listed in a short bibliography at the end of 
this volume. Good luck, and happy programming! 
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New York, NY 
February, 1984 



Introduction 

If your Atari doesn't understand you, maybe it's because you 
don't speak its language. Together, we're going to break that 
language barrier. This book will teach you how to write pro
grams in assembly language - the fastest running, most memory 
efficient of all programming languages. This book will also give 
you a good working knowledge of machine language, your com
puter's native tongue. It will enable you to create programs that 
would be impossible to write in BASIC or other less advanced 
languages. And it will prove to you that programming in assembly 
language is not nearly as difficult as you may have thought it 
would be. 

What's in store 

If you know BASIC- even a little BASIC - you can learn to pro
gram in assembly language; and once you know assembly lan
guage, you'll be able to do many other things, such as: 

• Write programs that will run 10 to 1000 times faster than 
programs written in BASIC. 

• Use up to 128 colors on your video screen simultaneously. 
• Custom design your own screen displays, mixing text and 

graphics in any way you like. 

You'll also be able to: 

• Create your own customized character sets. 
• Design animated screen displays using both player-missile 

graphics and character animation techniques. 
• Use both fine and coarse horizontal and vertical scrolling in 

your programs. 

And you'll even discover how to: 

• Create sound effects that are too complex to be programmed in 
BASIC. 
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• Use graphics modes that BASIC does not support . 
• Write programs that will boot from a disk and run auto

matically when you turn your computer on. 

In other words, once you learn how to program in assembly 
language, you'll be able to start writing programs using the same 
kinds of techniques that professional Atari programmers use. 
Many of those techniques are downright impossible without a 
knowledge of assembly language. Finally, and even more impor
tant, as you learn assembly language, you'll also be learning 
what makes computers tick. And that will make you a better pro
grammer in any language. 

Assembly Language Demystified 

This book has been carefully tailored to take the drudgery out 
of learning assembly language. It's packed with sample pro
grams and routines. It even contains a selection of interactive 
tutorial programs, written in Atari BASIC, that are especially 
designed to help you learn assembly language. 

Chapter 1 will introduce you to assembly language and explain 
the differences between assembly language and other pro
gramming languages. 

In Chapter 2 you'll start learning about bits, bytes and binary 
numbers; the building blocks that program designers use to 
create assembly language programs. You'll even find some 
easy to use BASIC programs that will automatically perform 
hexadecimal and binary conversions, and will help take the 
mystery out of hex and binary numbers. 

In Chapter 3 we'll start probing the mysteries of the 6502 mic
roprocessor chip, the heart (or, perhaps more accurately, the 
brain) of your Atari computer. 

In Chapter 4 you'll start writing assembly language pro
grams. And by the time you finish this book, you'll be well on 
your way to becoming an accomplished assembly language 
programmer. 
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Chapter One 

Introducing Assembly Language 

Start programming immediately in machine language! Turn on 
your Atari computer and type in this program. Then run it, type 
a few words, and you'll see something very interesting on your 
computer screen. 

BONUS PROGRAM NO.1 
"D:HEADSUP.BAS" 

10 REM ** "0: HEADSUP.BAS" ** 
20 REM ** A MACHINE LANGUAGE PROGRAM ** 
30 REM ** THAT YOU CAN RUN ** 
40 REM ** STANDING ON YOUR HEAD ** 
50 REM 
60 GRAPHICS 0:PRINT 
100 POKE 755,4 
110 OPEN # 1 ,4.0."K:" 
120GET#1.K 
130 PRINT CHR$[K); 
140 GOTO 120 

This is, of course, a BASIC program. Line 60 clears your com
puter screen with a GRAPHICS 0 command. Line 110 opens the 
Atari keyboard as an input device. Then, in lines 120 through 140, 
there is a loop that prints typed- in characters on your screen. But 
the most important line in this program, the line that makes it do 
what it's supposed to do, is line 100. The active ingredient of line 
100, the instruction POKE 755.4, is actually a machine language 
instruction. In fact, all POKE commands in BASIC are machine 
language instructions. When you use a POKE command in 
BASIC, what you're actually doing is storing a number in a 
specific memory location in your computer. And when you store a 
number in a specific memory location in your computer, what 
you're doing is using machine language. 
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Under the Hood of Your Atari 

Every computer has three main parts: a Central Processing Unit 
(CPU), memory (usually divided into two blocks called Random 
Access Memory [RAM) and Read Only Memory [ROM)), and 
Input/Output (I/O) devices. 

DATA BUS 

CPU RAM ROM 

MEMORY 

ADDRESS BUS 

Your Atari's main input device is its keyboard. Its main output 
device is its video monitor. Other I/O devices that an Atari com
puter can be connected to (or interfaced with) include telephone 
modems, graphics tablets, cassette data recorders, and disk drives. 
In a microcomputer, all of the functions of a central processing 
unit are contained in aMicroProcessor Unit (or MPU). Your Atari 
computer's MPU, as well as its CPU (Central Processing Unit), is 
a circuit using Large Scale Integration (LSI) called a 6502 micro
processor. 

The 6502 Family 

The 6502 microprocessor, your computer's command center, was 
developed by MOS Technology, Inc. Several companies are now 
licensed to manufacture 6502 chips, and a number of computer 
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manufacturers use the 6502 processor in their machines. The 
6502 chip and several updated models, such as the 6502A and the 
6510, are used not only in Atari computers, but also in personal 
computers manufactured by Apple, Commodore, and Ohio Scien
tific. That means, of course, that 6502 assembly language can 
also be used to program many different personal computers -
including the Apple II, Apple 11+, Apple lie and Apple III; all 
Ohio Scientific computers; the Commodore PET computer, and 
the Commodore 64. And that's not all; the principles used in 
Atari assembly language programming are universal; they're 
the same principles that assembly language programmers use, 
no matter what kind of computers they're writing programs for. 
Once you learn 6502 assembly language, it will be easy to learn to 
program other kinds of chips, such as the Z-80 chip used in Radio 
Shack and CPIM based computers, and even the powerful newer 
chips that are used in 16-bit microcomputers such as the IBM-PC. 

The Fountains of ROM 

Your computer has two kinds of memory: Random Access 
Memory (RAM) and Read Only Memory (ROM). ROM is your 
Atari's long-term memory. It was installed in your computer at 
the factory, and it's as permanent as your keyboard. Your com
puter's ROM is permanently etched into a certain group of chips, 
so it never gets erased, even when the power is turned off. For 
most home computer owners, that's a good thing. Without its 
ROM, your Atari wouldn't be an Atari. In fact, it wouldn't be 
much more than an expensive, high tech doorstop. The biggest 
block of memory in ROM is the block that holds your computer's 
Operating System, or as. Your Atari's operating system is what 
enables it to do all of those wonderful things that Ataris are sup
posed to do, such as accepting inputs from the keyboard, dis
playing characters on the screen, and so on. ROM is also what 
enables your computer to communicate with peripherals such as 
disk drives, cassette recorders, and telephone modems. If you 
own one of Atari's XL series of computers, your unit's ROM 
package also contains a number of added features, such as a 
built-in self-diagnostic system, a built-in foreign language char
acter set, and built-in BASIC. 
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RAM is Fleeting 

ROM, as you can imagine, was not built in a day. Your Atari's 
ROM package is the result of a lot of work by a lot of assembly 
language programmers. RAM, on the other hand, can be written 
by anybody - even you. RAM is your computer's main memory. 
It has a lot more memory cells than ROM does, but RAM, unlike 
ROM, is fleeting. The trouble with RAM is that it's erasable, or, 
as a computer engineer might put it, volatile. When you turn your 
computer on, the block of memory inside it that's reserved for 
RAM is as empty as a blank sheet of paper. And when you turn 
your computer off, anything you may have in RAM disappears. 
That's why most computer programs have to be loaded into RAM 
from mass storage devices such as cassette data recorders and 
disk drives. After you've written a program, you have to store it 
somewhere so it won't be erased when the power goes off and 
erases your RAM. 

Your computer's RAM, or main memory, can be visualized as a 
huge grid made up of thousands of compartments, or cells, some
thing like tiers upon tiers of post office boxes along a wall. Each 
cell in this vast memory matrix is called a memory location, and 
each memory location, like each box in a post office, has an 
individual and unique memory address. The analogy between 
computers and post office boxes doesn't end there. A computer 
program, like an expert postal worker putting mail in post office 
boxes, can get to any location in its memory about as quickly as it 
can get to any other. In other words, it can access any location in 
its memory at random. And that's why user-addressable memory 
in a computer is known as random access memory. 

Its "Letters" are Numbers 

Our post office analogy isn't absolutely perfect, however. A post 
office box can be stuffed full of letters, but each memory location 
in a computer's memory can hold only one number. And that 
number can represent only one of three things: 

1. The stored number itself; 
2. A code representing a typed character; or 
3. A machine language instruction. 
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What Next? 

When a computer goes to a memory location and finds a number, 
it must be told what to do with the number it finds. If the number 
equates to just a number, then the computer must be told why the 
number is there. If the number is a code representing a typed 
character, then the computer must be told how the character is to 
be used. And if the number is to be interpreted as a machine 
language instruction, the computer must be told that, too. 

Its Instructions are programs 

The instructions that computers are given so that they can find 
and interpret the numbers stored in their memories are called 
computer programs. People who write programs are, of course, 
called programmers. The languages that programs are written in 
are called programming languages. Of all the programming lan
guages assembly language is the most comprehensive. 

Running a Machine Language Program 

When your computer runs a program, the first thing it has to be 
told is where the program has been stored in its memory. Once it 
has that information, it can go to the memory address where the 
program begins and take a look at what's there. If the computer 
finds an instruction that it's programmed to understand, then it 
will carry out that instruction. The computer will then move on to 
the next address in its memory. After it follows the instruction it 
finds there, it will move on to the next address, and so on. The 
computer will repeat this process of carrying out an instruction 
and moving on to the next one until it reaches the end of whatever 
program has been stored in its memory. Then, unless it encounters 
an instruction to return to an address within the program or to 
jump to a new address, it will simply sit there, patiently waiting 
to receive another instruction. 

17 



computer Languages 

As you know, programs can be written in dozens of computer 
languages such as BASIC, COBOL, Pascal, LOGO, and so on. 
Languages like these are called high level languages, not because 
they're particularly esoteric or profound, but because they're 
written at too high a level for a computer to understand. A com
puter can actually understand only one language, machine lan
guage, which is written entirely in numbers. So before a computer 
can run a program written in a high level language, the program 
must somehow be translated into machine language. 

Programs written in high level languages are usually translated 
into machine language using software packages called inter
preters and compilers. An interpreter is a piece of software that 
can convert a program into machine language as it is being writ
ten. Your Atari BASIC interpreter is a high level language inter
preter. Interpreters can also be used to convert a few other high 
level languages, such as LOGO and Pilot, into machine language. 
A compiler is a software package designed to convert high level 
languages into machine language after they are written. COBOL, 
Pascal and most other high level languages are usually trans
lated into machine language with the help of compilers. 

Machine Language Assemblers 

Interpreters and compilers are not used in writing assembly 
language programs. Assembly language programs are almost 
always written with the aid of software packages called assem
blers. A number of other assemblers for Atari computers are avail
able, including Atari's very advanced Macro Assembler and Text 
Editor package. An assembler doesn't work like an interpreter, 
or like a compiler. That's because assembly language is not a 
high level language. One could say, in fact, that assembly lan
guage is not really a programming language at all. Actually, 
assembly language is nothing more than a notation system used 
for writing machine language programs using alphabetical sym
bols that human programmers can understand. 
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What we're trying to get across here is the fact that assembly 
language is totally different from every other programming 
language. When a high level language is translated into machine 
language by an interpreter or a compiler, one instruction in the 
original programming language can easily equate to dozens -
sometimes even hundreds - of machine language instructions. 
When you write a program in assembly language, however, 
every assembly language instruction that you use equates to just 
one machine lrmguage instruction with exactly the same meaning. 
In other words, there is an exact one-to-one relationship between 
assembly language instructions and machine language instruc
tions. Because of this one-to-one correspondence, machine lan
guage assemblers have a much easier job than interpreters and 
compilers have. 

Since assembly language programs (often called source code) 
can be converted directly into machine language programs (often 
known as object code), an assembler can just zip right along, 
turning source code listings into object code without having to 
struggle through any of the tortuous translation contortions 
that interpreters have to face each time they carry out their 
appointed rounds. Assemblers also have one other advantage 
over compilers. The programs that they produce tend to be more 
straightforward and less repetitious. Assembled programs are 
more memory efficient and run faster than interpreted and com
piled programs. 

The programmer's Plight 

Unfortunately, a price has to be paid for all of this efficiency and 
speed; and the individual who pays that price is, sadly enough, 
the assembly language programmer. Ironically, even though 
assembly language programs run much faster than programs 
written in high level languages, they require many more instruc
tions and take much longer to write. One widely quoted estimate 
is that it takes an expert programmer about ten times as long to 
write an assembly language program than it would take him (or 
her) to write the same program in a high level language such as 
BASIC, COBOL, or Pascal. On the other hand, assembly lan
guage programs run 10 to 1000 times faster than BASIC programs, 
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and can do things that BASIC programs can't do at any speed. So 
if you want to become an expert programmer, you really have no 
choice but to learn assembly language. 

How Machine Language Works 

Machine language, like every other computer language, is made 
up of instructions. As we have pointed out, however, every 
instruction used in machine language is a number. The numbers 
that computers understand are not the kind that we're accus
tomed to using. Computers think in binary numbers - numbers 
that are nothing but strings of ones and zeros. Here, for example, 
is part of an actual computer program written in binary numbers 
(the kind of numbers that a computer understands): 

00011000 
11011000 
10101001 
00000010 
01101001 
00000010 
10000101 
11001011 
01100000 

It doesn't take much imagination to see that you'd be in for quite 
a struggle if you had to write long programs, which typically con
tain thousands of instructions, in binary style machine language. 
With an assembler, however, the job of writing a machine lan
guage program is considerably easier. Here, for example, is the 
above program as it would appear if you wrote it in assembly 
language: 

CLC 
CLO 
LOA 
#02 
AOC 
#02 
STA 
$CB 
RTS 
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You may not understand all of that yet, but you'll have to admit 
that it at least looks more comprehensible. What this program 
does, by the way, is add 2 and 2. Then it stores the result of its 
calculation in a certain memory location in your computer -
specifically, memory address 203. Later on we'll come back to 
this program and take a closer look at it. Then you'll get a chance 
to see exactly how it works. First, though, we're going to go into a 
little more detail about assemblers and assembly language. 

Assembly Language and BASIC compared 

Assembly language is written using three-letter instructions 
called mnemonics. Some mnemonics are quite similar to BASIC 
instructions. One assembly language instruction that's much like 
a BASIC instruction is RTS, the last instruction in the sample 
routine we just looked at. RTS (written 0110 0000 in machine 
language) means "ReTurn from Subroutine." It's used much like 
the RETURN instruction in BASIC. There's also an assembly 
language mnemonic that's similar to BASIC's GOSUB instruc
tion. It's written JSR, and means "Jump to SuBroutine." Its 
equivalent in binary coded machine language is 0010 0000. 

Not all assembly language instructions bear such a close resem
blance to BASIC instructions, however. An assembly language 
instruction never tells a computer to do something as complex as 
draw a line or print a letter on a screen, for example. Instead, 
most assembly language mnemonics instruct computers to carry 
out very elementary tasks such as adding two numbers, compar
ing two pieces of data, or (as we have seen) jumping to a sub
routine. That's why it often takes vast numbers of assembly 
language instructions to equal just one or two words in a high 
level language. 

Source code and Object Code 
When you write an assembly language program, the listing that 
you produce is called source code, since it's the source from 
which a machine language program will be produced. Once you've 
written an assembly language program in source code, you can 
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run it through an assembler. The assembler will then convert it 
into object code, which is just another name for a machine 
language program produced by an assembler. 

The Speed and Efficiency of 
Machine Language 

Since assembly language instructions are so specific (you might 
even say primitive) it obviously takes lots of them to make up a 
complete program; many, many more instructions than it would 
take to write the same program in a high level language. Ironical
ly, machine language programs still take up less memory space 
than programs written in high level languages do. That's because 
when a program written in a high level language is interpreted or 
compiled into machine language, big blocks of machine code 
must be repeated every time they are used. But in a well-written 
assembly language program, a routine that's used over and over 
can be written just once, and then addressed as many times as 
needed with JSR, RTS, and similar commands. Many other kinds 
of techniques can also be used to conserve memory in assembly 
language programs. 
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Chapter TWO 

Bits, Bytes, and Binary 

A one or a zero might not mean much to you, but to a computer it 
means quite a bit. Binary numbers, as you may already know, are 
numbers made up solely of ones and zeros. And they're the only 
kind of numbers that a computer can understand. A computer, or 
at any rate, a digital computer, which is what your Atari is, has 
great difficulty conceiving of concepts in shades of gray. To a 
computer, a switch is on or it's off. An electrical signal is there or 
it isn't. Everything in a microcomputer's small mind is black or 
white, plus or minus, off or on. 

Call it what you like. It doesn't matter. It's male and female, 
Shiva and Shakti, yin and yang. Mathematicians sometimes call 
it Boolean algebra. Computer designers sometimes call it two
state logic. And programmers often refer to it as the binary sys
tem. In the binary system, the digit 1 symbolizes the positive, a 
current that's flowing, for instance, or a switch that's on. The 
digit 0 represents the negative, a current that's not flowing, or a 
switch that's off. But there is no digit for the number 2. The only 
way to represent the number 2 in binary is to take a 1, move it one 
space to the left, and follow it with a 0, like this: 10. That's right. 
In binary notation, "10" means 2, not 10, "11" means 3, "100" is 4, 
"101" is 5, and "110" is 6, and so on. 

penguin Math 

If binary numbers baffle you, a course in Penguin Math might 
help. Imagine you were a penguin, living on an ice floe. Now 
penguins don't have 10 fingers on each hand, as people do. 
Instead, they have two flippers. So if you were a penguin, and 
counted on your flippers like some people count on their fingers, 
you'd be able to count only to 2. If you were a very bright penguin, 
however, you might one day figure out how to use your flippers to 
count past 2. Suppose, for example, that you decided to equate a 
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raised right flipper to 1, and a raised left flipper to 2. Then you 
could let two raised/tippers be equal to 3. Now suppose you were 
an extraordinarily bright penguin, and devised a notation sys
tem to express in writing what you had done. You could use a 0 to 
represent an unraised flipper, and a 1 to represent a raised one. 
And then you could scratch these equations in the ice: 

penguin Numbers 

00=0 
01 = 1 
10= 2 
11 = 3 
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--1 -- 2 
--3 

Those, of course, are binary numbers. And what they show, in 
Penguin Math, is that you can express four values - 0 through 
3 - as a 2-bit (two-digit) binary number. Now let's suppose that 
you, as a penguin, wanted to learn to count past 3. Let's imagine 
that you looked down at your feet and noticed that you had two 
more flippers. Voila, bigger numbers! If you sat down on your ice 
floe so that you could raise both arms and both legs at the same 
time, you could count as follows: 

0000 = 0 
0001 = 1 
0010 = 2 

('J 0011 = 3 
0100 = 4 
0101 = 5 
0110 = 6 
0111 = 7 
1000 = 8 
1001 = 9 

. . . and so on. 
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If you continued counting like this you would eventually dis
cover that you could express 16 values, 0 through 15, using 4-bit 
numbers. There's just one more lesson in Penguin Math. Imagine 
that you, as a penguin, have gotten married to another penguin. 
And, using your skill with binary numbers, you have determined 
that you and your spouse have a total of eight flippers between 
you. If your spouse decided to cooperate with you in counting 
with flippers, the two of you could now sit on your ice and start a 
floe chart with numbers that looked like these: 

00000001 = 1 
00000010= 2 
00000011 = 3 
0000 0100 = 4 
0000 01 01 = 5 

If you and your spouse kept on counting in this fashion, using 8-
bit Penguin Math, you would eventually discover that by using 
eight flippers you could could count from 0 to 255, for a total of 
256 values. That completes our brief course in Penguin Math. 
What it has taught us is that it is possible to express 256 values, 
from 0 through 255, using 8-bit binary numbers. 

Bits, ByteS and Nybbles 

As was pointed out a few paragraphs back, when ones and zeros 
are used to express binary numbers, they are known as bits. A 
group of eight bits is called a byte. And a group of four bytes is 
called a nibble (sometimes spelled "nybble"). And a group of 16 
bits is called a word. Now we're going to take another look at a 
series of 8-bit bytes. Observe them closely, and you'll see that 
every binary number that ends in zero is twice as large as the pre
vious round number; or, in other words, is the square of the pre
vious round number: 

0000 0001 = 1 
00000010 = 2 
0000 01 00 = 4 
0000 1 000 = 8 
0001 0000 = 1 6 
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00100000 = 32 
01 00 0000 = 64 
1 000 0000 = 1 28 

Here are two more binary numbers that assembly language pro
grammers often find worth memorizing: 

11111111 = 255 
11111111 11111111 = 65,535 

The number 255 is worthy of note because it's the largest 8-bit 
number. The number 65,535 is the largest I6-bit number. Now 
the plot thickens. As we have mentioned, Atari computers are 
called 8-bit computers because they're built around an 8-bit mic
roprocessor, a computer processor chip that handles binary 
numbers up to eight places long, but no longer. Because of this 
limitation, your Atari can't perform calculations on numbers 
larger than 255, in fact it can't even perform a calculation with a 
result that's greater than 255! 

Obviously, this 8-bit limitation places severe restrictions on the 
ability of Atari computers to perform calculations on large num
bers. In effect, the 6502'sArithmetic Logic Unit (ALU) is like a 
calculator that can't handle a number larger than 255. There are 
ways to get around that limitation, of course, but it isn't easy. To 
work with numbers larger than 255, an 8-bit computer has to per
form a rather complex series of operations. If a number is greater 
than 255, an 8-bit computer has to break it down into 8-bit 
chunks, and perform each required calculation on each 8-bit 
number. Then the computer has to patch all of these 8-bit num
bers back together again. 

If the result of a calculation is more than eight bits long, things 
get even more complicated. That's because each memory location 
in an 8-bit computer, each cell in its Random Access Memory 
(RAM) as well as its Read Only Memory (ROM), is an 8-bit 
memory register. So if you want to store a number larger than 
255 in an 8-bit computer's memory, you have to break it up into 
two or more 8-bit numbers, and then store each of those numbers 
in a separate memory location. And then, if you ever want to use 
the original number again, you have to patch it back together 
from the 8-bit pieces it was split into. 
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a-bit Versus 16-bit computers 

Now that you know all that, you can understand why 16-bitcom
puters, such as the IBM Personal Computer and its many imi
tators, can run faster than 8-bit computers can. A 16-bit computer 
can handle binary numbers up to 16 bits long without doing any 
mathematical cutting and pasting, and can therefore process 
numbers ranging up to 65,535 in single chunks, a 16-bit word at a 
time. So 16-bit computers are considerably faster than 8-bit com
puters are, at least when they're dealing with large numbers. 16-
bit computers also have another advantage over 8-bit computers. 
They can keep track of much more data at one time than 8-bit 
computers can. And they can therefore be equipped with much 
larger memories. 

Your computer's Memory Map 

A computer's memory can be visualized as a huge grid contain
ing thousands of pigeonholes, or memory locations. In an Atari 
computer, each of those locations can hold one 8-bit number. 
Earlier, we spoke of an analogy between a computer's memory 
and tiers upon tiers of of post office boxes. Now we can extend 
that analogy a little further. 

As we've mentioned, each memory location in your computer has 
an individual and unique memory address. And each of these 
addresses is actually made up of two index numbers. The first of 
these numbers could be called the X axis of the location of the 
address on your computer's memory grid. The second number 
could be called the location's Y axis. By using this kind of X,Y 
coordinate system for locating addresses in its memory, your 
Atari computer can keep track of addresses that are up to 16 bits 
long, even though it's only an 8-bit computer. All it has to do is 
keep the X axis in one 8-bit register and the Y axis in another. So 
when you want your Atari to fetch a piece of data from its 
memory, all you have to do is provide it with the X axis and the Y 
axis of the address of the data. The computer can then imme
diately get the data you're looking for. 
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Your computer's Address Book 

But there's still a limit to the number of address locations that an 
8-bit computer can keep track of. Since 255 is the largest number 
that an 8-bit register can hold, the X axis of an address can range 
only from 0 to 255, a total of 256 numbers. The same limit applies 
to the Y axis. So unless certain fancy memory expansion tricks 
are used, the maximum memory capacity of an 8-bit computer is 
256 times 256, or 65,536; in other words, 64K. The reason for the 
odd number, incidentally, is that 64K equates to a binary number, 
not a decimal number. 64K is not equal to decimal 64 times decimal 
1,000, but is equivalent instead to the product of 64 and 1024. 
Those two numbers look like they were pulled out of a hat when 
they're written in decimal notation, but in binary they're both 
nice round numbers: 01000000 and 0100 0000 0000, respectively. 

What a Difference 8 Bits Make 

If a 16-bit computer kept track of the addresses in its memory the 
same wayan 8-bit computer does, by using the X axis and the Y 
axis of each location as reference points, then a 16-bit computer 
could address more than 4 million memory locations (65,536 cells 
by 65,536 cells). But 16-bit computers don't usually keep track of 
the addresses in their memories that way. In the IBM-PC for 
example, each memory location is assigned what amounts to a 
20-bit address. So an IBM-PC can address 1,048,576 address 
locations; not quite the 4 million plus locations that it could 
address with an X,Y matrix system, but still enough locations to 
hold more than a million bytes (a megabyte) of memory. 

Now you can understand what all of the fuss over 16-bit com
puters is all about. I6-bit computers can address more memory 
than 8-bit computers can, and can also process information faster. 
In addition, they're easier to program in assembly language than 
8-bit computers are, since they can digest chunks of data that are 
16 bits long. Since Atari computers are 8-bit computers, none of 
this talk about I6-bit computers is likely to help you much in your 
quest for knowledge about Atari assembly language. Fortunate
ly, however, a knowledge of Atari assembly language will help 
you a great deal if you ever decide to study a I6-bit assembly 
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language. If you can learn to juggle bits well enough to become a 
good Atari assembly language programmer, you'll probably find 
that 16-bit assembly language, which doesn't require any splic
ing together of 8-bit numbers, is a snap to learn. 

The Hexadecimal Number System 

What's the sum ofD plus F? Well, it's lC if you're working in hex
adecimal numbers. 

Hexadecimal numbers, as you may know if you've done much 
programming, are strange looking combinations of letters and 
numbers that are often used in assembly language programs. 
The hexadecimal notation system uses not only the digits 0 
through 9, but also the letters A through F. So weird looking let
ter and number combinations like FC3B, 4A5D and even ABCD 
are perfectly good numbers in the hexadecimal system. Hex 
numbers are often used by assembly language programmers 
because they're closely related to binary numbers. It's that close 
relationship that we're going to take a look at now. 

16-Finger Math 

Remember how we used Penguin Math to explain the concept of 
binary numbers? Well, if you can imagine that you lived in a 
society where everyone had 16 fingers instead of 10 fingers like 
us, or two flippers like a penguin, then you'll be able to grasp the 
concept of hexadecimal numbers quite easily. Binary numbers, 
as we have pointed out, have a base of 2. Decimal numbers, the 
kind we're used to, have a base of 10. And hexadecimal numbers 
have a base of 16. Hexadecimal numbers are used in assembly 
language programming because they're quite similar to binary 
numbers; which, as we pointed out in Chapter 1, are the kind of 
numbers that computers understand. At first glance it may be 
difficult to see how binary numbers and hexadecimal numbers 
have anything in common. But you can see very clearly how 
binary and hex numbers relate to each other simply by looking at 
this chart: 
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Decimal Hexadecimal Binary 

1 1 00000001 
2 2 00000010 
3 3 00000011 
4 4 00000100 
5 5 00000101 
6 6 00000110 
7 7 00000111 
8 8 00001000 
9 9 00001001 

10 A 00001010 
11 B 00001011 
12 C 00001100 
13 0 00001101 
14 E 00001110 
15 F 00001111 
16 10 00010000 

As you can see from this list, the decimal number 16 is written 
"10" in hex and "00010000" in binary, and is thus a round number 
in both systems. And the hexidecimal digit F, which comes just 
before hex 10 (orl6 in decimal), is written 00001111 in binary. As 
you become more familiar with the binary and hexadecimal sys
tems, you will begin to notice many other similarities between 
them. For example, the decimal number 255 (the largest 8-bit 
number) is 11111111 in binary and FF in hex. The decimal num
ber 65,535 (the highest memory address in a 64K computer) is 
written FFFF in hex and 1111111111111111 in binary. And so on. 
The point of all this is that it's much easier to convert back and 
forth between binary and hexadecimal numbers than it is to con
vert back and forth between binary and decimal numbers. 

1011 1000 binary 
B 8 hexadeci ma I 
184 decimal 

0010 1110 binary 
2 E hexadecimal 
46 decimal 
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1111 1100 binary 
F e hexadecimal 
252 decimal 

0001 1100 binary 
1 e hexadecimal 
28 decimal 

As you can see, a nybble (four bits) in binary notation always 
equates to one digit in hexadecimal notation. But there is no clear 
relationship between the length of a binary number and the 
length of the same number written in decimal notation. This 
same principle can be extended to binary, hexadecimal and 
decimal conversions of 16-bit numbers. For example: 

1111 
F 
64540 

1100 
e 

0001 
1 

1100 
e 

binary 
hexadecimal 
decimal 

Some Illustrative Programs 

N ow we'll look at some BASIC programs that perform opera
tions involving binary, decimal and hexadecimal numbers. Since 
all Atari computers are 8-bit computers (at this writing, any
way), the only way to store a 16-bit number in an Atari is to put it 
into two memory registers. And 6502 based computers use the 
odd (to some people) convention of storing 16-bit numbers with 
the lower (least significant) byte first and the higher (most signi
ficant) byte second. For example, if the hexadecimal number 
FCIC were stored in hexadecimal memory addresses 0600 and 
0601, Fe (most signficant byte) would be stored in address 0601, 
and Ie (theleast signficant byte) would be stored in address 0600. 
(In assembly language programs, incidentally, hexadecimal 
numbers are usually preceded with dollar signs so that they can 
be distinguished from decimal numbers. The hexadecimal ad
dresses 0600 and 0601, therefore, would ordinarily be written 
$0600 and $0601 in an assembly language program. 

Now let's suppose, just for illustration purposes, that you wanted 
to store a 16-bit number in two 8-byte addresses in your com-
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puter's RAM ($0600 and $0601 for example), while running a 
BASIC program. Since BASIC programs are written using 
ordinary decimal numbers, the first thing you'd have to do is con
vert the addresses you were going to be working with, $0600 and 
$0601, into decimal numbers. You could do that in a number of 
different ways. You could look up the decimal equivalents of 
$0600 and $0601 on a decimal/hexadecimal conversion chart. Or 
you could carry out the necessary conversions by hand. Or you 
could perform them with the help of a computer program. No 
matter how you managed to make the conversions, however, 
what you would wind up discovering is that the hexadecimal 
number $0600 is equal to the decimal number 1536, and that the 
hexadecimal number $0601 is equivalent to decimal 1537. Once 
you found this out, you could store the 16-bit value in $0600 and 
$0601 using the following BASIC routine (or some variation of 
the same theme): 

Routine for Storing a 16-Bit Number in RAM 

10 PRINT "TYPE A POSITIVE INTEGER" 
20 PRINT "RANGING FROM 0 TO 65,535" 
301NPUT X 
40 LET HIBYTE=INT[x/256) 
50 LET LOBYTE=X-HIBYTE*256 
60 POKE 1536,LOBYTE 
70 POKE 1537,HIBYTE 
B0 END 

Now let's assume that that you wanted to retrieve a 16-bit num
ber stored in your computer's RAM; for example, the number 
stored in memory addresses $0600 and $0601 in the above pro
gram. And let's suppose, once again, that you wanted to do that 
while you were running a BASIC program. Your BASIC routine 
might look something like this: 

Retrieving a 16-Bit Number from RAM 

10 LET X=PEEK[1537)*256+PEEK[1536) 
20 PRINT X 
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converting Binary Numbers to 
Decimal Numbers 

Since assembly language programmers work with three dif
ferent kinds of numbers, decimal, hexadecimal and binary num
bers, they often find it necessary to perform conversions between 
one number base and another. It isn't very difficult to convert a 
binary number to a decimal number. In a binary number, the bit 
farthest to the right represents 2 to the power O. The next bit to 
the left represents 2 to the power 1, the next represents 2 to the 
power 2, and so on. The digits in an 8-bit binary number are 
therefore numbered 0 to 7, starting from the rightmost digit. The 
rightmost bit - often referred to as the least significant bit, or 
LSB - represents 2 to the Oth power, or the number 1. And the 
leftmost bit - often called the most significant bit, or MSB - is 
equal to 2 to the 7th power, or 128. Here's a list of simple equations 
that illustrate what each bit in an 8-bit binary number means: 

Bit I2l = 2° = 1 

Bit 1 = 21 = 2 

Bit 2 = 22 = 4 

Bit 3 = 23 = 8 

Bit 4 = 24 = 16 

Bit 5 = 25 = 32 

Bit 6 = 26 = 64 

Bit 7 = 27 = 128 

Using the above chart, it's easy to convert any 8-bit binary num
ber into its decimal equivalent. Instead of writing the number 
down from left to right, write it instead in a vertical column, with 
bit 0 at the top of the column and bit 7 at the bottom. Then mul
tiply each bit in the binary number by the decimal number that it 
represents. Then add up the results of all of these multiplications. 
The total you get will be the decimal value of the binary number. 
Suppose, for example, that you wanted to convert the binary 
number 00101001 into a decimal number. Here's how you'd do it: 
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1 X 1 = 1 
OX 2= 0 
OX 4= 0 
1 X 8 = 8 
OX 16 = 0 
1 X 32 = 32 
OX 64 = 0 
Ox 128 = 0 

TOTAL = 41 

According to the results of this calculation, the binary number 
00101001 is equivalent to the decimal number 41. Look up either 
00101001 or 41 on a binary-to-decimal or decimal-to-binary con
version chart, and you'll see that the calculation was accurate. 
And this conversion technique will work with any other binary 
number. Now we'll go in the other direction, and convert a 
decimal number to a binary number. And here's how we'll do 
that: We'll divide the number by 2, and write down both the 
quotient and the remainder. Since we'll be dividing by 2, the 
quotient will be either a 1 orO. So we'll write down either a 1 or a o. 
Then we'll take the quotient we got, divide it by two, and write 
that quotient down. If there's a remainder (a 1 or aO), we'll write 
that down, too, right underneath the first remainder. When there 
are no more numbers left to divide, we'll write down all of the 
remainders we got, reading from the bottom to the top. What 
we'll have then, of course, is a binary number, a number made up 
of ones and zeros. And that number will be the binary equivalent 
of the decimal number we started out with. Now let's try this con
version technique on the decimal number 117: 

117/2 = 58 with a remainder of 1 
58/2 = 29 with a remainder of 0 
29/2 = 14 with a remainder of 1 
14/2 = 7 with a remainder of 0 
7/2 = 3 with a remainder of 1 
3/2 = 1 with a remainder of 1 
1/2 = 0 with a remainder of 1 

According to the results of this calculation, the binary equivalent 
ofthe decimal number 117 is 01110101. And this result, as a check 
of a decimal-to-binary conversion chart would confirm, is also 
accurate. 
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Binary-to-Hex and Hex-to-Binary 
Conversions 
It's easy to convert binary numbers to their decimal equivalents. 
Just use this chart: 

Hexadecimal 

C 
D 
E 
F 

Binary 

0100 
0101 
0110 

1100 
1101 
1110 
1111 

To convert a multiple digit hex number to binary, just string the 
hex digits together and convert each one separately. For exam
ple, the binary equivalent of the hexadecimal number CO is 1100 
0000. The binary equivalent of the hex number 8F2 is 1QOO 1111 
0010. The binary equivalent of the hex number 7 AlB is 01111010 
00011011. And so on. To convert binary numbers to hexadecimal 
numbers, just use the chart in reverse. The binary number 1101 
0110 1110 0101, for example, is equivalent to the hexadecimal 
number D6E5. 

Doing it the Easy way 

Even though it isn't difficult to convert binary numbers to hexa
decimal and vice versa, it is time consuming to do it by hand, and 
when you program in assembly language, you have to do a lot of 
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binary-to-decimal and decimal-to-binary converting. So there 
are a lot of BASIC programs around for converting numbers 
back and forth between the binary and decimal notation systems. 
And now I'm going to give two of them to you, absolutely free. 
Here's one for converting binary numbers to decimal numbers: 

converting Binary Numbers to Decimal Numbers 

10 DIM BN$(9),BIT(8),T$(1) 
20 GRAPHICS 0 
25? :? "BINARY-DECIMAL CONVERSION" 
30? :? "ENTER AN 8-BIT BINARY NUMBER:":? 

:INPUT BN$ 
35 IF LEN(BN$)< >B THEN 30 
40 FOR L=1 TO B 
50 T$=BN$(L) 
55 IF T$< >"0" AND T$< >"1" THEN 30 
60 BIT(L)=VAL(T$) 
70 NEXT L 
75 ANS=0 
80 M=256 
90 FOR X=1 TO B 
100 M=M/ 2:ANS=ANS+BIT(X)*M 
110 NEXT X 
140? "DECIMAL: "; ANS 
150 GOTO 30 

And here's a program for converting decimal numbers to binary 
numbers: 

converting Decimal Numbers to Binary Numbers 

10 DIM BIN$(8),TEMP$(8),R$(1) 
20 GRAPHICS 0 
30? :? "DECIMAL-BINARY CONVERSION" 
40? :? "ENTER A POSITIVE INTEGER (0 TO 

255) :":? :TRAP 40:INPUT NR 
50 IF NR-INTfNR]< > 0 THEN 40 
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601F NR>255 OR NR<0 THEN 40 
70 FOR L=1 TO 8 
80 Q=NR/ 2 
90 R=Q-INT[Q) 
100 IF R=0 THEN R$="0":GOTO 120 
110 R$="1" 
120 TEMP$[1 )=R$:TEMP$[2)=BIN$ 

:BIN$=TEMP$ 
130 NR=INT[Q) 
140 NEXT L 
150? "BINARY: "; BIN$ 
160 TRAP 40000 
170 GOTO 40 

Decimal/Hexadecimal Conversion 
Decimal!hexadecimal conversion is a complex process best done 
on a computer or a special calculator. Texas Instruments makes a 
calculator called the Programmer that can perform decimal! 
hexadecimal conversions in a flash, and can also add, subtract, 
multiply and divide both decimal and hexadecimal numbers. 
Many assembly language program designers use the TI Pro
grammer, or some similar calculator, and would have a hard time 
getting along without it. In case you can't get your hands on a 
programmer's calculator right away, here's an Atari BASIC pro
gram that will convert decimal numbers to hexadecimal numbers 
and vice versa. Another program is available on page H-18 of the 
BASIC Reference Manual that comes with the Atari BASIC 
cartridge. 

Dec-Hex and Hex-Dec Conversion program 

10 REM 
20 REM HEX TO DEC CONVERSION PROGRAM 
30 REM 
40 REM THE FAST WAY 
50 REM DON'T USE MATH 
60 REM 
70 DIM H$(40),A$[40) 
80 REM 
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90 PRINT 
100 PRINT 
110 PRINT 
120 PRINT "HEX TO DECIMAL CONVERSION" 
130 PRINT 
140 PRINT "H) HEX TO DEC" 
150 PRINT "D) DEC TO HEX" 
160 PRINT 
1801NPUT A$ 
190 IF A$="H" THEN 220 
200 IF A$="D" THEN 400 
210GOT0100 
220 REM 
230 REM CONVERT HEX TO DECIMAL 
240 REM 
250 PRINT "ENTER HEX NUMBER"; 
260 INPUT H$ 
270 REM 
2800=0 
290 S=1 :REM POSITIONAL MULTIPLIER 
295 REM GO THROUGH THE STRING 
300 FOR L=LEN[H$) TO 1 STEP-1 
310 A$=H$[L,L) 
320 REM 
330 REM CONVERT "0"-"F' TO 0-15 
340 N=ASC[A$)-48:IF N>9 THEN N=N-7 
345 IF N<0 OR N>15 THEN 90 
350D=D+N*S 
360 S=S*16 
370 NEXT L 
380 PRINT "HEX ";H$;" = DEC ";0 
390 GOTO 90 
400 REM 
410 REM CONVERT DECIMAL TO HEX 
420 REM 
430 PRINT "ENTER DECIMAL TO CONVERT' 
440 INPUT 0 
450 REM 
460 REM FIRST FIND THE HIGHEST DIGIT 
470 REM 
480 S=16 
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490 X=2 
500 IF S<D THEN X=X+1 :S=S*16:GOTO 500 
505 PRINT "DECIMAL ";0;" = HEX "; 
510T=D 
520 FOR L=X TO 1 STEP-1 
530 N=INT (TIS) 
540 PRINT CHR$(48+N+7*(N>9));:REM 

CONVERT DEC TO HEX 0-F 
550 T=T-N*S:S=S/16 
560 NEXT L 
570 PRINT 
580 GOTO 90 

That concludes our crash course into bits, bytes, and binary. This 
was an important chapter because it's a prerequisite to Chapter 
3, which in turn is a prerequisite to Chapter 4, where you'll get a 
chance to actually start writing some assembly language programs. 

something to Tide You Over 

Meanwhile, here's another BASIC program that might help you 
feel that you're getting through to your Atari. It uses an infinite 
loop to cycle through all of the colors and hues that your com
puter can generate, loading each of them in turn into the memory 
register that controls the border area of your video screen. In 
Chapter 9, Programming Bit by Bit, you'll learn how to do this 
same trick using assembly language. 

BONUS PROGRAM NO.2 
THE ATARI RAINBOW 

10 REM ** THE ATARI RAINBOW ** 
20 REM ** "D:RAINBOW.BAS" ** 
30 REM 
40 FOR L=2 TO 254 STEP 2:REM ALL VALID 

COLORS HAVE EVEN NUMBERS 
50 POKE 712.L:REM 712 IS ADDRESS OF 

BORDER AREA COLOR REGISTER 
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60 FOR WAIT=1 TO 10:NEXTWAIT:REM JUST 
A DELAY LOOP TO USE UP TIME 

70 NEXT L 
80 GOTO 40:REM AN INFINITE LOOP 

Type this program into your computer, run it, and watch the 
show! Then we'll continue on to Chapter 3. 
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Chapter Three 

Inside the 6502 

In this chapter we're going to get under the hood of your Atari 
computer and see how it works. Then you'll be able to find your 
way around inside your computer and at last start doing some 
assembly language programming. As we explained in Chapter 1, 
every computer has three main parts: a Central Processing Unit 
(CPU), memory (divided into RAM and ROM), and inpu t and out
put devices (such as keyboards, video monitors, cassette record
ers, and disk drives). In a microcomputer, all of the functions of a 
CPU are contained in a microprocessor unit (sometimes abbre
viated MPU). Your Atari's MPU is a 6502 microprocessor. 

DATA BUS 

N M 
v E 

INPUT! P S M 
OUTPUT C P P B X Y 0 

I R 
Z Y 
c 

ADDRESS BUS 

The 6502 microprocessor contains seven main parts: an Arith
metic Logical Unit (ALU) and six addressable registers. Data 
is moved around inside the 6502 chip and between the 6502 and 
other components in your computer over transmission lines called 
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1mses. There are two kinds of buses in an Atari computer: an 8-
bit data lYus and a I6-bit address 1ms. The data bus is used for 
passing 8-bit data and instruction bytes from one 6502 register to 
another, and also as for passing data and instructions back and 
forth between the 6502 and your computer's memory. The address 
bus is used to keep track of your computer's I6-bit memory 
addresses: the addresses that instructions and data are coming 
from, and the addresses that instructions and data are being 
sent to. 

The Arithmetic Logical Unit 

The most important component in your computer is the 6502 chip. 
And the most important part of the 6502 chip is its Arithmetic 
Logical Unit (ALU). Every time your computer performs a calcu
lation or a logical operation, the AL U is where all of the work is 
done. The ALU can actually perform only two kinds of calcula
tions: addition operations and subtraction operations. Division 
and multiplication problems can also be solved by the ALU, but 
only in the form of sequences of addition and subtraction opera
tions. The ALU can also compare values, by subtracting one 
value from the other, and then noting the results of the subtrac
tion operation. The 6502 chip's ALU has two inputs and one out
put. When two numbers are to be added, subtracted or compared, 
one of the numbers is fed into the ALU through one of its inputs, 
and the other number is fed in through the other input. The ALU 
then carries out the requested calculation, and puts the answer 
on a data bus so that it can be transported to wherever it's needed 
in the program. 

In diagrams of the 6502 chip, the AL U is often represented as a V
shaped hopper. The arms of the V are the ALU's inputs, and the 
bottom of the Vis the ALU's output. When a calculation or a logi
cal operation is to be carried out by the ALU, one piece of data 
and an operand (an addition or a subtraction) instruction are 
deposited into one of the ALU's inputs (one arm of the V). The 
other piece of data is deposited into the other input (the other arm 
of the V). When the calculation has been performed, its result is 
ejected through the ALU's output (the bottom of the V). 
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The Accumulator 

The ALU never works alone; it carries out all of its operations 
with the help of a 6502 register called the accumulator (abbre
viated "A"). When the AL U is called upon to add or subtract two 
numbers, one of the numbers is put on a data bus and then sent to 
one of the AL U' s inputs, along with an operand. The other num
ber is in the accumulator. When the bus carrying a number 
and an operand to the ALU discharges its cargo into the 
ALU, the accumulator puts the number it is holding on the data 
bus and sends that number to the AL U. When the ALU has carried 
out the requested calculation, it deposits the result ofthe calcula
tion in the accumulator. 

An Example 

Suppose, for example, that you wanted your computer to add 2 
and 2, and then place the result of its calculation into a certain 
memory location. You could use an assembly language routine 
like this one: 

LOA #1212 
AOC #1212 
STA $CB 

The first instruction in this routine, "LDA," means "LoaD the 
Accumulator" (with the value that follows). In this case, that 
value is 2. The" #" sign in front of the 2 means that the 2 is to be 
interpreted as a literal number, not as the address of a memory 
location in your computer. 

The second instruction in the routine, ADC, means "ADd with 
Carry." In this addition problem there is no number to be carried, 
the" carry" part of the instruction has no effect here, and all the 
ADC instruction does is add 2 and 2. 

The third and last instruction in our routine, STA, means" STore 
the contents of the Accumulator" (in the memory address that 
follows). 
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As you can see, the memory address that follows the instruction 
STA is $CB, the hexadecimal equivalent of the decimal number 
203. Since there is no ":#=" sign in front of the hex number $CB, 
your assembler will not interpret $CB as a literal number. In
stead, $CB will be interpreted as a memory address, which is 
what a number has to be in assembly language if it is not a literal 
number. (Incidentally, if you did want your assembler to inter
pret $CB as a literal number, you would have to write it":#= $CB." 
When a":#=" symbol and a dollar sign both appear before a num
ber it is interpreted as a literal hexadecimal number.) If the third 
line of our sample routine read STA :#=$CB, however, that would 
be a syntax error. That's because STA (store the contents of 
the accumulator in ... ) is an instruction that has to be followed 
by a value that can be interpreted as a memory address, not by a 
literal number. 

Five Other Registers 

Besides the accumulator, the 6502 processor has five other regis
ters. They are the X Register, the Y Register, the Program 
Counter, the Stack Pointer, and the Processor Status 
Register. Here is a brief summation of the functions of each of 
these registers. 

The 6502's Other Registers 

• The X Register (abbreviated "X") is an 8-bit register that is 
often used for temporary storage of data during a program. 
But the X register has a special feature, too; it can be incre
mented and decremented with a pair of one-byte assembly 
language instructions (INX and DEX), and it is therefore 
often used as an index register, or counter, during loops and 
read/data-type instructions in programs . 

• The Y Register (abbreviated "Y') is also an 8-bit register, 
and can also be incremented and decremented with a pair of 
one-byte instructions (INY and DEY). So the Y register, like 
the X register, is used both for data storage and as a counter. 
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• ·The Program Counter (abbreviated "PC") is a pair of 8-bit 
registers that are used together as one 16-bit register. The two 
8-bit registers that are combined to make up the Program 
Counter are sometimes referred to as "Program Counter
Low (PCL)" and "Program Counter-High (PCH)". The pro
gram counter always contains the 16-bit memory address of 
the next instruction to be executed by the 6502 processor. 
When that instruction has been carried out, the address of the 
next instruction is loaded into the program counter. 

• The Stack Pointer (abbreviated "s" or "SP") is an 8-bit 
register that always contains the address of the top element in 
a block of RAM called the hardware stack. The hardware 
stack, usually referred to simply as "the stack," is a special 
segment of memory in which data is often stored temporarily 
during the execution of a program. We'll go into more detail 
about how the stack works later on. 

• The Processor Status Register (usually called simply the 
"status register," but abbreviated "P") is an 8-bit register 
that keeps track of the results of the results of operations that 
have been performed by the 6502 processor. 

The Processor status Register 
The Processor Status Register (P) is a little different from the 
other registers in the 6502 microprocessor. It isn't used for stor
ing ordinary 8-bit numbers, as the 6502's other registers are. 
Instead, this register's bits are flags that keep track of several 
kinds of important information. 

Four of the status register's bits are called status flags. They 
are the carry flag (C), the overflow flag (V), the negative 
flag (N), and the zero flag (Z). These four flags are used to keep 
track of the results of operations being carried out by the other 
registers inside the 6502 processor. Three of the P register's 
other bits, called condition flags, are used to determine whether 
certain conditions exist in a program. These three bits are the 
interrupt disable flag (1), the break flag (B), and the deci
mal mode flag (D). The eighth bit· in the status register is 
not used. 
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Layout of the Processor status Register 

The status register can be visualized as a rectangular box con
taining six square compartments. Each "compartment" in the 
box is actually a bit, and each bit is used as a flag. 

If a given bit is a "1" instead of a "0," then it is said to be a flag 
that is set. 

If a given bit is a "0" instead of a "1," then it is said to be a flag 
that is cleared. 

The bits in the 6502 status register, like the bits in all 8-bit regis
ters, are customarily numbered from 0 to 7. The rightmost bit is 
bit O. The leftmost bit is bit 7. 
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An Illustration of the Processor Status Register 
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Here's a complete list of the flags in the 6502's processor status 
register, and an explanation of what each one means. 

Bit 0 (The Rightmost Bit) 
The carry Flag (C) 

As we saw in Chapter 2, it isn't easy to do I6-bit arithmetic with 
an 8-bit chip like the 6502. When the 6502 chip is required to per
form an addition operation on a number greater than 255, or if the 
result of a calculation might be greater than 255, a program has 
to be written that will break each number down into 8-bit seg
ments for processing, and will then patch all of the numbers back 
together again. This kind of mathematical cutting and pasting, 
as you can probably imagine, involves a lot of carrying (if addi
tion problems are being performed) and borrowing (when the 
6502 is performing subtraction). The carry flag of the 6502 P 
register is the flag that keeps up with all of this carrying and 
borrowing. 

If an addition operation results in a carry, the carry flag is 
automatically set And if a subtraction operation requires a 
borrow, the carry flag keeps track of that too. Since the carry 
flag is almost constantly being set and cleared as a result of 
carries and borrows in addition and subtraction, it's always a 
good idea to clear it before an addition operation is to be carried 
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out, and to set it before a subtraction operation takes place. 
Otherwise, there's a chance that your calculations will be messed 
up by the leftover results of previous addition and subtraction 
operations. 

In addition to keeping track of carrying and borrowing opera
tions, the P register's carry flag is also used in operations involv
ing comparisons of values, and in certain shift and rotate 
operations to check, compare and manipulate specific bits in 
binary numbers. We'll discuss number comparisons and bit 
operations in later chapters. For now, it's more important to 
remember that the assembly language instruction to clear the P 
register's carry bit is CLC, which stands for "CLear Carry," and 
that the instruction to set the carry bit is SEC, which stands for 
"SEt Carry. " 

Bit 1 (The Second Bit from the Right) 
The zero Flag (z) 

When the resultof an arithmetical or logical operation is zero, the 
status register's zero flag is automatically set. Addition, subtrac
tion and logical operations can all result in changes in the status 
of the zero flag. If a memory location or an index register is dec
remented to zero, that will also result in a set zero flag. An ironic 
6502 convention is that when the result of an operation is zero, 
the zero flag is set to 1, and that when the result of an operation is 
not zero, the zero flag is cleared to O. It's important to understand 
this concept, since it would be easy to assume that the zero flag 
operates in just the opposite manner. There are no assembly 
language instructions to clear or set the zero flag. It's strictly a 
"read" bit, so instructions to write to it are not provided. 

Bit 2 (The Third Bit from the Right) 
The Interrupt Disable Flag (I) 

Some Atari programs contain interrupts; instructions that halt 
operations temporarily so that other operations can take place. 
Some interrupts are called maskable interrupts because you can 
prevent them from taking place by including "masking" instruc-
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tions in a program. Others are called nonmaskable because you 
can't stop them from taking place, no matter what you do. When 
you want to disable a maskable interrupt, you can do it with the P 
register's interrupt disable flag. When the flag is set, maskable 
interrupts are not permitted. When it is clear, they are allowed. 
The assembly language instruction to clear the interrupt flag is 
CLI. The instruction to set the interrupt flag is SEI. 

Bit 3 (The Fourth Bit from the Right) 
The Decimal Mode Flag (D) 

The 6502 processor normally operates in binary mode, using 
standard binary numbers of the type that were discussed in 
Chapter 2. But the 6502 can also operate in what is known as a 
binary coded decimal, or BCD mode. To put the 6502 into BCD 
mode, you have to set the decimal flag of the 6502 status register. 
BCD arithmetic is slower than plain binary arithmetic, and it also 
consumes more memory. But its results, unlike those of plain 
binary arithmetic, are always 100 percent accurate. Therefore it 
is often used in programs and routines in which accuracy is more 
important than speed or memory efficiency. 

One example of a program that uses BCD arithmetic is your Atari 
BASIC interpreter. In Atari BASIC all numbers are stored as 6-
byte BCD numbers, and all arithmetic is performed as BCD 
arithmetic. Because of this feature, Atari BASIC runs somewhat 
slowly. But its calculations yield accurate results. Another 
advantage of BCD numbers is that they're easier to convert into 
decimal numbers than plain binary numbers are. So BCD num
bers are sometimes used in programs that call for the instant dis
play of numbers on a video monitor as well. 

We'll discuss BCD at greater length in Chapter 10, Assembly 
Language Math. For now, it's sufficient to say that when the 
status register's decimal mode flag is set, the 6502 chip will per
form all of its arithmetic using BCD numbers. BCD arithmetic is 
rarely what you want when you use an Atari computer, so you'll 
usually want to make sure that the decimal flag is clear when 
your computer is doing arithmetic. The assembly language in
struction that clears the decimal flag is CLD. The instruction that 
sets the flag is SED. 
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Bit 4 (The Fifth Bit from the Right) 
The Break Flag (B) 

The break flag is set by a special assembly language instruction, 
BRK. Program designers often use the break instruction in 
assembly language programs during the debugging phase. When 
the instruction is used and the break flag is set, certain error flag
ging operations take place and control ofthe computer returns to 
the programmer. The break instruction is a highly complex, 
sophisticated debugging tool, and we won't go into much detail 
about it in this volume. But you can learn more about it in some of 
the advanced 6502 programming texts listed in the bibliography. 

Bit 5 (The Sixth Bit from the Right) 
[Unused Bit] 

For some reason, the micro programmers who designed the 6502 
status register left one bit unused. This is the one. 

Bit 6 (The Second Bit from the Left) 
The Overflow Flag (V) 

The overflow flag is used to detect an overflow from bit 6 (the 
next to rightmost bit) in a binary number. If you don't know what 
that means yet, don't be concerned about it; the overflow flag is 
used primarily in advanced 6502 arithmetic, specifically to keep 
track of changes in the plus and minus signs of signed numbers 
when signed binary arithmetic is being performed. As an Atari 
assembly language programmer, you'll rarely, if ever, have an 
occasion to use the overflow flag. Nevertheless, we'll discuss it at 
greater length in Chapter 10, Assembly Language Math. For 
now, all we'll add (just for the record) is that the assembly 
language instruction that clears the overflow flag is CLV. There 
is no instruction to set the flag. 
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Bit 7 (The Leftmost Bit) 
The Negative Flag 

The negative flag is set when the result of an operation is nega
tive, and cleared when the result of an operation is zero. It is often 
used in operations involving signed numbers, and it also has 
other uses that will be discussed in later chapters. There are no 
instructions to set or clear the negative flag. There is no need for 
any, since the flag is used for test purposes only. 

Your Big Chance 

Now that you know what goes on inside your computer's 6502 
processor, you're ready to write, and run, your first assembly 
language program. You will have a chance to do just that in the 
next chapter. But first, here's a chance to run another bonus pro
gram containing some machine language values that can be 
POKEd in from a BASIC program. This routine, Bonus Program 
No.3, will turn your computer keyboard into a musical keyboard. 
Type it and run it, and then we'll take a look at how it works. 

BON US PROGRAM NO.3 
"D:SOU N DOFF. BAS" 

10 REM "D:SOUNDOFF.BAS" 
20INKEY=35:FREQ=53760 
30 SOUND 0.0.0.0:GRAPHICS 0:0PEN # 1.4.0."K:" 
35 GET #1.K:IF K=32 THEN SOUND0.0.0.0:PRINT 

CHR$(K):GOTO INKEY:REM 32 IS A SPACE 
40 IF K<64 OR K>122 THEN GOTO INKEY:REM 

NOT A LETTER 
50 IF K>90 AND K<97 THEN GOTO INKEY:REM 

NOT A LETTER 
601F K>90THEN K=K-32:REM CHANGE LOWER 

CASE TO UPPER CASE 
70 TONE=K-64:IF TONE<1 OR TONE>7 THEN 

GOTO INKEY: REM NOT A.B.C.D.E.F OR G 
80 PRINT CHR$(K);:GOSUB 1000 
90 ON TONE GOTO 100.200.300.400.500.600.700 
100 POKE FREQ.145:GOTO INKEY:REM A 
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200 POKE FREQ.134:GOTO INKEY:REM B 
300 POKE FREQ.121 :GOTO INKEY:REM C 
400 POKE FREQ.108:GOTO INKEY:REM D 
500 POKE FREQ.96:GOTO INKEY:REM E 
600 POKE FREQ.91 :GOTO INKEY:REM F 
700 POKE FREQ.B1 :GOTO INKEY:REM G 
1000 SOUND 0.255.10.8:RETURN:REM SET UP 

AUDIO REGISTERS TO PLAY NOTES 

How it Works 

In lines 30 and 35 of this program the audio registers of your 
computer are cleared to zero and a loop is set up to print charac
ters on your screen. In lines 40 through 70 some checks are car
ried out to see if any characters that have been typed are valid 
notes, A, B, C, D, E, For G. If a character is typed in lower case, it 
is automatically converted to upper easel in line 60 to make the 
program work smoother. In the subroutine at line 1000 the audio 
registers in your computer are reset to play the notes A through G 
when the corresponding letters are typed, unless the character is 
a space. If the character is a space, all audio registers are turned 
off, a space is printed on the screen, and the computer is instructed 
to wait for the next typed character (that happens in line 35). 

The machine language instructions in the program are in lines 
100 through 700. In those lines a certain memory register in your 
computer (called FREQ in this program) is stuffed with a value 
that equates to a musical note. Each time that value changes, the 
note being played changes accordingly. This is a very simple pro
gram that doesn't even begin to explore the complex sound 
capabilities of Atari computers. Still, the ways in which it can be 
expanded are limited only by the user's own imagination. By 
making the program a little more complicated, you could add the 
capability of reproducing sharps and flats (with the control key, 
for example), and you could also add more octaves (for instance 
with the shift key, the numbers keys, or shift/control key com
binations). You could make the screen change colors as the notes 
change or you could save melodies in your computer's memory 
and save them on a disk and you might even be able to figure out 
a way to play chords! You could do all of those things in BASIC, if 
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you wished or, if you were more ambitious, you could move 
beyond BASIC and continue to learn more about how to put your 
Atari through its paces using assembly language. Which brings 
us to Chapter 4. Read on. 
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Chapter Four 

writing an Assembly Language 
program 

Here it is, at long last, the assembly language program we prom
ised you, a program you can type, assemble and execute without 
having to rely on any BASIC commands. The program was writ
ten on an old, battle-scarred Atari 800 computer, using an Atari 
Assembler Editor cartridge almost as ancient. But the program 
will run on any Atari computer and, like all of the programs in 
this book, it is totally compatible with both the Atari Assembler 
Editor cartridge and the newer and faster MAC/65 assembler 
manufactured by OSS (Optimized Systems Software, Inc., of San 
Jose, CA). 

With a few minor but critical revisions such as eliminating line 
numbers and changing the "*=$0600" directive in line 40 to 
"ORG$0600", this program, and all of the others in this book, can 
also be converted into programs that will work with the Atari 
Macro Assembler and Text Editor. But unless you're already an 
assembly language programmer, I strongly recommend that you 
type, assemble, debug and edit the programs in this book using 
an assembler more like the ones they were written on: the MAC/ 
65 assembler and the Atari Assembler Editor cartridge. 

Here's the program we'll be working with in this chapter. As you 
can see, it's a very simple program for adding 2 and 2. Let's take a 
close look at it, and see how it does what it's supposed to do. 

AN 8-BIT ADDITION PROGRAM 
(ADDNRS.SRC) 

10; 
20 ;ADDNRS.SRC 
30; 
40 *=$0600 
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50 ; 
60 CLD 
70 ADDNRS CLC 
80 LOA #2 
90 ADC #2 
100 STA $CB 
110 RTS 
120 .END 

Look closely at this program and you'll see that the numbers it's 
supposed to add, 2 and 2, are in lines 80 and 90. After the program 
adds 2 and 2, it stores the result of its calculation in memory address 
$CB (or203 in decimal notation). That happens in line 100. Some 
of the instructions in the program may look familiar; we've 
touched on most of them in the preceding chapters. But there are 
a few items in the program that are encountered here for the first 
time. These include the semicolons in the first few lines of the pro
gram, the "*=" directive in line 40, and the ".END" directive in 
line 120. 

spacing Out 

As you can see more clearly in the "explosion diagram" that 
follows, the program's source code listing is divided into four 
fields, or columns. If each field had a heading, and if the program 
listing weren't all jammed together, here's what you would see: 

AN 8-BIT ADDITION PROGRAM (ADDNRS.SRS) 
(Column-by-Column Listing) 

FIELD LINE OP 
NAMES NO. LABEL CODE OPERAND REMARKS 

10 
20 
30 
40 
50 
60 
70 

;ADDNRS.SRC 

*= 

ADDNRS CLD 
CLC 
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80 
90 
0100 
0110 
0120 

Only an Example 

LOA 
ADC 
STA 
RTS 
.END 

#2 
#2 
$C8 

The above listing is provided only as an illustration of what a 
source code listing would look like if its four fields; line num
bers, labels, op codes and remarks, were clearly separated into 
columns. Actually, no one writes source code listings this way. 

When you write a source code listing using MAC/65 or the Atari 
Assembler Editor cartridge, the usual way to do it is to type your 
fields in a format that is rather jammed together; crammed 
together so tightly, in fact, that the columns don't line up at all. 
Once you you get a little practice writing code in this format, 
though, it practically becomes second nature. 

These are the rules: 

Line Numbers 

When you write a source code listing using MAC/65 or the Atari 
Assembler Editor cartridge, each statement, or line, must be 
assigned a line number. The line numbers of the program are 
typed flush left, just as they are in BASIC programs. Line num
bers aren't really necessary in assembly language programs, and 
are not required by some assemblers. The Atari Macro Assembler 
and Text Editor package, for example, doesn't require the use of 
line numbers and won't assemble a program that includes them. 
But MAC/65 and the Atari Assembler Editor cartridge do use 
line numbers, so we'll use them too, at least for now. 

The line numbers in the first column of our addition program pro
gress in increments of 10, just like the numbers in a typical 
BASIC program. They don't have to be written that way, but, as 
is also the case in BASIC programs, they usually are. Line num
bers can range from ° through 65535. 
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Labels 

Labels, if they are used, occupy the second field in assembly 
language statements. Exactly one space, not two, must be left 
between a line number and any label that follows it. If you start a 
label two or more spaces after a line number, or if you use your 
tab key to get to your label field, you may cIo b ber your program. 
In assembly language programs, labels are used to identify the 
first lines of routines and subroutines. Our program for adding 2 
and 2, for example, is labeled ADDNRS in line 60. 

Since our program has a label, the program could be used as a 
subroutine in a longer program, and could easily be accessed by 
its label. Several kinds of assembly language instructions could 
be used to call it; for example, JSR ADDNRS (Jump to Sub
Routine at label ADDNRS), BCS ADDNRS (Branch on Carry 
Set to label ADDNRS), or JMP ADDNRS (JuMP to label 
ADDNRS). In the first example, ADDNRS would end with the 
RTS (ReTurn from Subroutine) instruction in line 110. RTS per
forms the same kind of job in assembly lanugage that the 
RETURN instruction performs in BASIC; it signals the end of a 
subroutine, and returns control back to the main body of the pro
gram. In the latter examples, a second branch or jump instruc
tion would be used to transfer control instead of the RTS. 

We'll discuss jumping, branching instructions, and subroutines 
at greater length in later chapters. For now, what's most impor
tant to remember is that when you type a source code listing on a 
MAC/65 assembler or Atari Assembler Editor cartridge, one 
space and only one space must be used to separate each label you 
use from its line number. A label can be as short as one character 
and as long as the length of a statement permits (106 characters 
minus the number of characters in the statement's line number). 
Most programmers use labels three to six characters long. 

operation Code Mnemonics 
An operation code (or op code) mnemonic is just a fancy name for 
an assembly language instruction. There are 56 op code mnemonics 
in the 6502 instruction set, and they are the only ones that can be 
used in Atari assembly language instructions. Op code mnemon-
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ics such as CLC, CLD, LDA, ADC, STA and RTS are typed in the 
op code field of assembly language source code listings. When 
you write a program using a MAC/65 or the Atari Assembler 
Editor, each op code mnemonic you use must start at least two 
spaces after a line number, or one space after a label. An op code 
mnemonic placed in the wrong field will not be flagged as an error 
when you type your program, but will be flagged as an error 
when your program is assembled. 

The op code field in a source code listing is also used for directives 
and pseudo ops; words and symbols that are entered into a pro
gram like mnemonics but are not actually members of the 6502 
instruction set. The asterisk in line 40 of our program is a direc
tive, and the" .END" statement in line 120 is a pseudo op. The "*,, 
directive is used to tell your computer where an assembly lan
guage program is to be stored in memory after it is assembled. 
The" .END" directive is used to tell the assembler where to stop 
assembling, and to end an assembly language program. 

Operands 
The operand field in a MAC/65 Atari Assembler program starts 
at least one space (or a tab) after an op code mnemonic. Operands 
are used to expand op code mnemonics into complete instruc
tions. Some mnemonics, such as CLC, CLD and RTS, do not 
require operands. Others, such as LDA, STA and ADC, do require 
operands. We'll be providing much more information about 
operands later on. 

comments 
Comments in assembly language programs are like remarks in 
BASIC programs; they don't affect a program in any way, but 
are used to explain programming procedures and to provide eye
saving space in program listings. There are two ways to write 
comments in source code listings written on the MAC/65 and the 
Atari Assembler Editor. One method is to put comments in the 
label field of a listing, preceded by semicolons. The other method 
is to put them in a special "Comments" field that occupies what's 
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left of each line following the instruction fields (the op code and 
operand fields). If you use the "Comments" field at the end of a 
line and don't have room there for the comment you want to write, 
you can continue your remarks on the next line by simply typing a 
space, a semicolon, and the rest of your comments. 

Examining the Program 

N ow that we've looked at our sample program field by field, let's 
examine it line by line. 

Lines 10 Through 30 

(Comments) 

Lines 10 through 30 are comments. Line 20 explains what the 
program does and lines 10 and 30 set off the explanatory line 
with white space. It's good programming practice to use remarks 
liberally in assembly language, as well as in most other program
ming languages, so we've used quite a few comments in the pro
grams in this volume. 

Line 40 

("*=" Directive) 

This is the origin line of our sample program. Every assembly 
language program must start with an origin line. As you may 
remember from Chapter 1, the first thing a computer does when it 
runs a machine language program is go to a predetermined 
memory location and see what it finds there. So when you write 
an assembly language program, the first thing you have to do is 
tell your computer where to start looking for the program in its 
memory. When your assembler encounters an origin directive, it 
will set the program counter of your computer's 6502 processor to 
the address given in the directive. The first instruction in the pro
gram will then be loaded into that memory location, and the rest 
of the program will follow in sequence. 
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The origin directive looks like a simple line to write, but deciding 
what number to put in this line can be a very tricky job, especially 
for the beginning assembly language programmer. There are 
many blocks of memory in your computer that you can't use for 
assembly language programs because they're reserved for other 
uses (for example, to hold your computer's operating system, 
disk operating system, BASIC interpreter, and so on). Even the 
assembler that you'll use to write this program takes up a block of 
memory space that is forbidden territory for you, at least until 
you become familiar with certain landmarks you can use to find 
your way through the jungle of your computer's memory. 

Until then, there does happen to be one small block of memory 
that's reserved, under ordinary circumstances, for just the kind 
of short, user-written assembly language programs that we're 
going to be working with in the next few chapters. The block of 
memory is called page 6 because it runs from memory address 
$0600 to $06FF (1536 to 1791 in decimal notation). Page 6 is only 
256 bytes long, but that's more than enough space for the pro
gram we're going to be working with in this chapter, and for the 
other programs that we're going to be working on for the next 
few chapters. Later on, as your programs grow longer, you'll 
learn how to move on to larger blocks of memory. Line 40 in our 
sample addition program tells your computer that the program 
you're going to write will start at memory address $0600 (1536 
in decimal notation). 

Line 50 

(Blank Line) 

This "Comment" line just separates the origin line from the other 
lines in our program. The white space looks nice, doesn't it? 

Line 60 
ADDNRS CLD 

(Label:ADDNRS) 
(Mnemonic:"Clear Decimal Mode") 
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ADDNRS: We've used the label field in this line to name our 
program ADDNRS. So if we ever decide to use our program as a 
routine or a subroutine in a larger program, it will have a name. 
Then we can address it by its name, if we wish, instead of by its 
memory location. It is usually good programming practice to give 
labels to important routines and subroutines. A label not only 
makes a routine easier to locate and use, it also serves as a remin
der of what the routine does (or, until your program is debugged, 
what it's supposed to do). 

CLD: We're using plain binary numbers in this program, not 
Binary Coded Decimal (BCD) numbers. So in this line we'll clear 
the decimal mode flag of the 6502 processor status register. The 
decimal flag need not be cleared before every arithmetical opera
tion in a program, but it's a good idea to clear it before thefirst 
addition or subtraction operation in a program, since it just may 
have been set during a previous program. 

Line 70 
CLC 

("CLear Carry") 

The status register's carry flag is affected by so many kinds of 
operations that it's considered good programming practice to 
clear this flag before every addition operation. It takes only one 
half a millionth of a second, and just one byte of RAM. Compared 
to the time and energy that debugging can cost, that's a bargain. 

Line 80 
LOA #2 

("LoaD Accumulator with the Number 2") 

This is a very straightforward instruction. The first step in an 
addition operation is always to load the accumulator with one of 
the numbers that is to be added. The" #" sign in front of the num
ber 2 means that it's a literal number, not an address. If the 
instruction were" LD A 2," then the accumulator wou ld be loaded 
with the contents of memory address 0002, not the number 2. 
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Line 90 
ADC #2 

("ADd with Carry the number 2 to the accumulator") 

This is also a straightforward instruction. "ADC #-2"means that 
the literal number 2 is to be added to the number that's in the 
accumulator; in this case, another 2. As we've mentioned, there is 
no 6502 assembly language instruction that means" add without 
carry." So the only way that an addition operation can be per
formed without a carry is to clear the status register's carry flag 
and then perform an "add with carry" operation. 

Line 100 
STA $CB 

("STore Accumulator in Memory Address $CB") 

This line completes our addition operation. It stores the contents 
of the accumulator in memory address $CB (decimal 203). Note 
that the symbol" #-" is not used before the operand (CB) in this 
instruction, since the operand in this case is a memory address, 
not a literal number. 

Line 110 
RTS 

("ReTurn from Subroutine") 

If the mnemonic RTS is used at the end of a subroutine, it works 
like the RETURN instruction in BASIC; it ends the subroutine 
and returns to the main body of a program, beginning at the line 
following the line in which the RTS instruction appears. But ifthe 
RTS is used at the end of the main body of a program, as it is here, 
it has a different function. Then, instead of passing control of the 
program to a different line, it terminates the whole program and 
returns control of the computer to the input device that was in 
control before the program began, usually a cartridge, an operat
ing system, a keyboard screen editor, or a machine language 
monitor. 
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line 120 
".END" Directive 

Just as the "*=" directive begins an assembly language pro
gram, the ".END" directive ends it. The .END directive tells the 
assembler to stop assembling, and that's exactly what the 
assembler does, even if there's more source code after the .END 
directive. The .END directive can therefore be used as a powerful 
debugging tool. You can put it wherever you want in a program 
you're debugging, and that's where the assembler will always 
stop assembling, until you remove the ".END" directive. When 
you've finished debugging your program you can use the .END 
directive to bring the routine neatly to an end. Before you can do 
that, of course, you must remove any leftover .END directives 
that may still be hanging around, that is, if you want your final 
program completely assembled. When debugging is complete 
and your program is finished, it should contain only one .END 
directive, where it belongs - at the very end of your program. 

Assembling an Assembly Language 
program 

OK. Are you ready to write and run your first assembly language 
program? Good. Then sit down at your computer, turn on your 
disk drive and your video monitor, and boot up your assembler (if 
it's on a disk), or slip your assembler cartridge (if that's the 
kind of assembler you've got) into the cartridge slot in your Atari. 
If you're using a MAC/65 assembler or an Atari Assembler 
Editor cartridge, your assembler will be ready to go when the 
word "EDIT", the assembly language equivalent to BASIC's 
"READY" prompt, appears on your video monitor. Ifthat doesn't 
happen, then check all of the connections on your computer com
ponents and repeat the start-up process. Until you get an "EDIT" 
prompt, you can't do any assembly language programming. 

When you have your assembler up and running you can put a 
blank, formatted disk into your disk drive. This disk should have 
a set of DOS files recorded on it so that your data disk will boot 
automatically when you turn your computer on, without any 
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need for a special master disk. If you put every program in this 
book on your data disk, you'll still have room for a set of DOS files, 
and they'll save you quite a bit of time. 

Entering Your Program 

When the "EDIT" prompt comes up on your screen, you can type 
the addition program (source code version) at the beginning of 
this chapter into your computer. As you type the program, be 
very careful about the spacing you use. MAC/65 and the Atari 
Assembler Editor cartridge are a bit fussy about spacing. In the 
lines that contain semicolons, remember that there should be 
only one space between the line number and the semicolon. In line 
40, however, there should be at least two spaces between the line 
number and the asterisk, since "*,, is a directive, and since direc
tives appear in the op code field of MAC/65 and Atari Assembler 
Editor programs. 

In line 60, there should be one space between the line number and 
the "ADDNRS" label, and one space between "ADDNRS" and 
the mnemonic "CLD." In lines 70 through 110 there should be at 
least two spaces between each line number and the op code that 
follows. And in line 120 there should be at least two spaces be
tween the line number and the " .END" directive. If you make a 
mistake while typing a line, you can move back and correct it, 
using the cursor control (arrow) keys on your keyboard. 

Listing Your program 

All right now. Mter you've typed your source listing of Program 
1 into your computer, type the word LIST and you should see a 
screen display that looks like this: 

EDIT 
LIST 

10; 
20 ;ADDNRS.SRC 
30; 
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40 *= $0600 
50; 
60 ADDNRS CLD 
70 CLC 
80 LOA #2 
90 ADC #2 
0100 STA $CB 
0110 RTS 
0120 .END 

EDIT 

If you have a printer you can now print your program out on 
paper. Just type: 

LIST #P: 

Easy enough, right? No sooner typed than done! Now, if your 
listing looks all right, you can save your program on a disk. Just 
make sure that a formatted disk (preferably a blank one) is in 
your disk drive and the ready light is on. Then type: 

LIST #D:ADDNRS.SRC 

The top red light on your disk drive should now go on, and the 
disk you're storing your program on should start to spin. When 
your disk drive's "busy" light goes off, your source code should 
be safely recorded on a disk under the file name # D:ADDNRS.SRC. 
We suggest you keep your ADDNRS.SRC source code in a safe 
place, since we'll be working some more with this program in 
later chapters. Right now, in fact, you can use that very source 
code to assemble your program. To do that, just keep your source 
code disk in your disk drive, keep your Assembler Editor car
tridge in your computer, and type the command ASM. As soon as 
you've done that, your computer should present you with a 
screen display that looks something like this: 

EDIT 
ASM 
PAGE 1 
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0000 

060008 
0601 18 
0602 A902 
06046902 
060685CB 
060860 
0609 

10; 
20 ;ADDNRS.SRC 
30; 
40 *= $0600 
50; 
60 ADDNRS CLD 
70 CLC 
80 LOA #2 
90 ADC #2 
0100 STA $CB 
0110 RTS 
0120 .END 

*** ASSEMBLY ERRORS: 0 
REE 

23202 BYTES F1 

PAGE 2 
SYMBOLS 

0600 ADDNRS 

EDIT 

If you've made any typing errors in your program, this is where 
you'll probably find out about them. If your assembler finds an 
error in a line, it will sound a beep and display an error message. 
It may not be able to spot every error you make, but when it does 
catch one, it will print an error number on your screen (just like a 
BASIC interpreter does), and you can find out what the number 
means by consulting your MAC/65 or Atari Assembler Editor 
user's manual. If your assembler finds any errors in your pro
gram you can now type LIST and go back and correct them. 
Then you can type ASM again and try once more to assemble 
your program. Once your object code listing has been printed out 
on your screen without any error messages, you'll know that your 
program has been assembled correctly; and that you have just 
written and assembled your first assembly language program! 

IThis depends on the version of DOS that you have. 
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A Difference Between Assemblers 
Now we've come to an important difference between the Atari 
Assembler Editor cartridge and the MAC/65 assembler. When 
you assemble a source code program using the Atari Assembler 
Editor cartridge, the object code generated by the assembly pro
cess is automatically entered into your computer's memory. When 
you assemble a program using the MAC/65 assembler, however, 
the object code is not automatically stored in memory unless you 
use a special directive. That directive is. OPT (for"OPTion"). The 
option directive is used in this format: 

05.0PT OBJ 

If you have a MAC/65 assembler, you can insert that line into 
your ADDNRS. SRC program, and the program will automatically 
be stored in RAM as it is assembled. 

what Next? 
Once you've stored a program in RAM, you can do just about any
thing with your program you like; run it, print it on paper, store it 
on a disk, or store it in your computer's memory. Before you do 
any of those things, however, it might be a good idea to take a 
closer look at the ADD.NRS program, the object code listing of 
the program in its final assembled form. In column 1 of your 
object code listing you'll see the memory addresses in which your 
addition will be stored after it has been loaded into your com
puter's memory. Column 2 is the actual object code listing of your 
program. It's this column that will show you, in hexadecimal 
notation, the actual machine code version of the program. This is 
what the numbers in column 2 mean: 

SOURCE CODE MACHINE CODE MEANING 

CLo 08 Clear status register's 
decimal mode flag 

CLC 18 Clear status regis-
ter's carry flag 

LOA #2 A902 Load accumulator 
with the number 2 
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SOURCE CODE MACHINE CODE MEANING 

ADC #2 6902 Add 2, with carry 
STA $CB 85CB Store result in memory 

address CB (decimal 
203) 

RTS 60 Return from 
subroutine 

Now, if you like, you can print your assembly listing outon paper. 
Simply type ASM, =If: P: and you'll get a hard copy listing of your 
assembled program. 

saving Your program 

You've now written, assembled and printed your first assembly 
language program. And that means that we're almost ready to 
end this programming session. But before you turn off your com
puter, it wouldn't be a bad idea to save the object code of our pro
gram on a disk. So let's do that right now. 

"LIST" or "SAVE"? 

A few paragraphs back you saved the source code of your addi
tion program with the command LIST. But to save the object 
code of an assembly language code, there are two other com
mands. One is SAVE. The other is BSA VE. If you're using a 
MAC/65 assembler, the command to use at this point to to save 
the object code version of ADDNRS is BSAVE. If you're using 
the Atari Assembler Editor, however, the command to use is 
SAVE. 

saving an Object Code program 

The SAVE and BSA VE commands are used in exactly the same 
way, however. Here's how it's done: First, type the command 
ASM, and your computer will assemble the source code of your 
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addition program. (If you've already done that, there's no harm 
in doing it again). N ext, look at column 1 of the object code listing 
on your screen and note the memory addresses that your pro
gram has been assembled into. The program should start at 
memory address $0600 and should end at memory address $0609. 
So this is the line to type if you have a MAC/65 assembler: 

BSAVE :#D :ADDNRS.OBJ < 0600,0609 

And this is the line to type if you have an Atari Assembler 
Editor cartridge: 

SAVE :#D:ADDNRS.OBJ< 0600,0609 

As soon as you type that line and hit your RETURN key, the 
"busy" light on your disk drive should light up, and your disk 
should start to spin. When the "busy" light goes off and your disk 
drive stops, the object code listing of our addition program should 
be safely stored on a disk under the file name:# D:ADDNRS.OBJ. 

Did it Work? 

Now let's check to see whether all of that LISTing and 
SA VEing worked. First type the word NEW and press the 
RETURN key to clear your computer's memory. Then type 
"ENTER:# D:ADDNRS.SRC." Your disk drive should spin, and 
the word EDIT should appear on your screen. Now, if you type 
the word LIST, the source code listing for the ADDNRS program 
should come right up on your video screen. Now, if your assem
bler is a MAC/65, type the line "BLOAD :# D:ADDNRS.OBJ," 
and hit the RETURN key. If you have an Atari Assembler Editor 
cartridge, type "LOAD :#D:ADDNRS.OBJ." Your disk drive 
should now load the object code of the ADDNRS program into 
your computer, and the word EDIT should appear once more. 
Then, if you type the command ASM again, the assembly code 
listing of the ADDNRS program should appear on your video 
screen. 
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Moving Along 

You've accomplished quite a bit in this chapter. You've written 
and assembled your first assembly language program and, hope
fully, you have a pretty good understanding of how it was all 
done. You've saved both your source code listing and your assem
bly code listing on a disk. If you have a printer, you've also printed 
out both listings on paper. And now, in Chapter 5, you're going to 
learn how to run an assembly language program. 
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Chapter Five 

Running an Assembly 
Language program 

There are several ways to execute a machine language program 
on an Atari computer system. For example, you can run a machine 
language program by: 

• Using a special debugging command (the "G" command) pro
vided by both the MAC/65 assembler and the Atari Assembler 
Editor cartridge. 

• Running the program using the Atari disk operating system 
(DOS) or (if you have a MAC/65 assembler) the OS/ A + 
operating system. 

• Using the AUTORUN. SYS utility of Atari DOS (or a 
STARTUP.EXC file if you're using the OS/ A + operating 
system). 

• Calling your machine language program from a BASIC 
program. 

In this chapter, we'll cover the first three of these methods of run
ning machine language programs. The fourth technique, calling 
assembly language programs from BASIC, will be covered in 
Chapter 8. First we'll discuss the technique for running a pro
gram with the "G" command offered by the MAC/65 assembler 
and the Atari Assembler Editor cartridge. 

Your Assembler's Built-in Monitor 

To use the "G" command, you'll need the help of a handy tool 
that's provided free with both the MAC/65 assembler and the 
Atari Assembler Editor cartridge. That tool is called a debug-
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ging utility. If you've just finished Chapter 4 and still have your 
computer turned on, you can start using your assembler's debug
ging facility in just a few moments, as soon as readers who've 
turned their computers off between chapters have had a chance 
to get their machines back into action again. 

If you've turned off your computer since the end of Chapter 4, 
please get it up and running again. You'll need your data disk in 
place and your assembler turned on. When the EDIT prompt 
appears on your video screen, you can load the source code listing 
of the program that you wrote in Chapter 4 into your computer's 
memory. Just type in the word "NEW", a good habit to get into 
when you want to load a program, just in case there may already 
be a program in memory. Then type 

ENTER #D:ADDNRS.SRC 

- just as you did when you loaded the ADDNRS.SRC program 
at the end of Chapter 4. When your disk drive stops spinning, you 
can check to see whether the program has been loaded correctly 
by simply typing the command: 

LIST 

You should then see the program listed on your screen. Now let's 
assemble the program. (Actually, if you did the exercises in 
Chapter 4, our ADDNRS program is already assembled, and 
stored your data disk in its assembled form. But the program is so 
short that it would take more time to load its object code into 
memory from a disk than it would take to assemble it again. So 
we're going to assemble it again right now.) If you're using a 
MAC/65 assembler, take a look at the source code listing of your 
program and make sure it contains the line 

05 .OPT OBJ 

- so that it will be loaded into your computer's memory as it is 
assembled. (If you're using an Atari Assembler Editor cartridge, 
line 5 should not be in your program! The .OPT directive means 
nothing to the Atari Assembler Editor cartridge, and will be 
flagged as an error!) 
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Once line 5 is either in your program or out of it, depending on 
what kind of assembler you have, you can assemble the ADDNRS 
program. To do this, simply type: 

ASM 

Your assembler will present you with an object code listing ofthe 
ADDNRS program. 

Then you can use the debugging facility built into your MAC/65 
or Atari assembler to debug your program and save it on a disk in 
its final form. The debugging facilities of the MAC/65 assembler 
and the Atari Assembler Editor are quite similar. But there are a 
few differences. 

using the MAC/65 Debugger 

The debugger built into the MAC/65 assembler is called BUG/65. 
To use it you must first make sure that your ADDNRS source 
code has been properly assembled using the" .OPT OBJ" direc
tive. Then, while your assembler is in its EDIT mode, type the 
command "CP". That will return you to your assembler's OS/ A + 
operating system. Now, in response to the OS/ A + prompt "Dl:", 
type "BUG65". Your disk drive should start spinning, and when 
it stops, the yellow bordered BUG/65 screen should be displayed 
on your computer monitor. 

using the Atari Assembler's Debugger 

If you're using an Atari Assembler Editor cartridge, putting 
your assembler into its DEBUG mode is even easier. Just type 

BUG 

- (not DEBUG), followed by a carriage return. This will present 
you with a screen display that says 

DEBUG 
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- and when that command appears on your screen, you can then 
debug assembly language programs using a whole host of 
commands. 

In this chapter, we'll be discussing only a few of the many capa
bilities of your assembler's debugging package. Your assem
bler's debugger is a very special kind of software package. With 
it, you can PEEK into your computer's memory registers, and 
display the contents of those registers in many different ways. 
You can even run programs using your assembler's debugger, 
which can alert you to many kinds of programming errors, both 
while the program is running and after it has run. 

using Your Debugging package 

We're now going to show you how the monitor built into your 
assembler can help you examine the contents of your Atari's 
RAM. Then you'll get a chance to run a machine language pro
gram using your assembler's built-in monitor. 

Listing the Contents of Memory 
Locations 

As we've pointed out, all of the capabilities of your assembler's 
built-in monitor are accessible from the assembler's DEBUG 
mode. When you're in DEBUG mode, for example, you can take a 
look at the contents of any memory locations you like by using the 
instruction "D," which stands for "display memory." The "D" 
command is similar to the PEEK command in BASIC. By using 
the "D" command, you can peek into your Atari's memory regis
ters and see what their contents are. To use the "D" command, all 
you have to tell your assembler is what memory locations you 
want it to peer into. If you type a "D" followed by a memory 
address (expressed as a hex number, of course), you'll get an 
on screen listing of the requested location and the next seven 
locations that follow it If you have assembled your ADDNRS 
source code listing, you can take a look at how your monitor's "D" 
command works right now. Simply type 

0600 

78 



- and you should see a screen display that looks something 
like this: 

060008 18 A9 02 69 02 85 CB 

(If you have a MAC/65 assembler, there'll be a few extra charac
ters after the letters "CB". Don't pay attention to them, they're 
the printed forms of characters that could be represented by the 
numbers in this line under certain circumstances, but mean nothing 
in the context of what we're doing right now.) The rest of that 
line, as you can see by glancing at one of the object code listings 
we've created in other exercises, is nothing but a stripped-down 
machine code listing of the first eight bytes of your ADD NRS. OBJ 
program. You can also use your monitor's "D" command to look 
at more than eight consecutive locations in your computer's 
memory. Just type two addresses after the" D", using the format 

05000500F 

- if you have a MAC/65 assembler, and the format 

05000,500F 

- if you have an Atari Assembler Editor cartridge. 

Your assembler's debugger will then provide you with a list ofthe 
contents of all registers from the first address listed to the second 
address. To see how the "D" command works when you use it 
optional second parameter, just type: 

006000608 
(or 00600,0608 if you have an Atari Assembler) 

You should get a listing something like this (with some extra 
symbols tacked on if your assembler is a MAC/65): 

06000818A902690285CB 
06086000 

That, of course, is a disassembled listing of your complete addi
tion program, all the way down to its last mnemonic, the RTS 
instruction. 
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The Atari Assembler Editor's 'L' Command 

The Atari Assembler Editor is also equipped with an "L" (List 
Memory With Disassembly) command. (The MAC/65 assembler 
also has an "L" command, but it's entirely different. The MAC's 
"L" command is used for locating hexadecimal strings.) But the 
Atari assembler's "L" command can be used to display dis
assembled listings of machine language programs. The Atari 
Assembler Editor's "L" command is similar to the "D" com
mand, but there are some differences. The Atari "L" command, 
like the "D" command, can be used with either one or two 
addresses. When you use one address, "L" will list the contents of 
20 consecutive memory locations in your computer (not just the 
contents of eight locations, as the "D" command does). 

Whether you use that optional second address or not, "L" will 
disassemble the machine code at the addresses it lists; alongside 
each hex number listed, it will also list the assembly language 
instruction that the number equates to, if any. To get a look at 
how the Atari "L" command works, type the following on an 
Atari Assembler. 

L0600.0608 

If you try to enter that line on a MAC/65 assembler, you'll get 
nothing but an angry beep and a "COMMAND ERROR!" 
message. But if have an Atari assembler, this is what you 
should see: 

0600 08 CLO 
0601 18 CLC 
0602 A902 LOA #$02 
0604 6902 AOC #$02 
0606 85 CB STA $CB 
0608 60 RTS 

This is a listing of the actual contents of memory addresses $0600 
through $0608 of your computer, after your ADDNRS.SRC 
source code listing has been assembled and stored in RAM. By 
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merely looking at this listing, you can see that your program has 
been assembled and loaded into RAM correctly, and is now just 
sitting in RAM and waiting to be run. Now we've come to a 
debugging command that can actually be used to run a program, 
the "G" (for "Go," or "Execute") command. 

GOIIV, G 

Fortunately, the " G" command can be used on both the MAC/65 
assembler and the Atari Assembler Editor cartridge. By using 
the "G" command, you can instruct your computer to execute 
machine language code that begins at any specified memory 
location. If you have an Atari Assembler Editor cartridge, it's 
very easy to use the "G" command. While your assembler is in its 
DEBUG mode, just type the letter G, immediately followed by the 
memory address at which a program or routine starts. Your com
puter will then run the program or routine that starts at the 
specified address. If you're using an Atari Assembler Editor, you 
can use the "G" command to run your ADDNRS program right 
now. Just type 

G0600 

The program should then run. 

If you have a MAC/65 assembler, the "G" command is a little 
more powerful and, in this case, requires an additional parameter. 
When you use the MAC's "G" command, you can (and in this 
instance should) use both an initial address and a termination (or 
"breakpoint") address for the routine you want to run. And when 
you type your programs breakpoint parameter, you must flag it 
with the prefix " @". For example, here's how to use the "G" com
mand to execute the ADDNRS program using the MAC/65 
debugger: 

G 0600@0608 

A number of other ways in which the "G" command can be used 
are listed in the MAC/65 and BUG/65 user's manual. 
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NO Bells and Whistles 

If your ADDNRS program runs without any hitches using the 
MAC/65 or Atari "G" command, you won't see much action on 
your computer screen. The program will just quietly do its job, 
which is adding 2 and 2, and then, quick as a wink, it will return 
control of your computer to you. At that point, what you'll see on 
the screen is a display of your Atari's internal registers. If you 
have an Atari Assembler Editor, your screen display will look 
like this: 

A=1C X=00 Y=00 P=30 8=04 

If you have a MAC/65 assembler, the display will be a little more 
complicated. It will look more like this: 

A X Y 8P NV_BDIZC PC 
04 00 00 00 0 0 1 00000 0608 

IN8TR 
RT8 

Both of the above displays have the same general function. Both 
tell us that your program has finished running and has left some 
values in five of the 6502 chip's status registers: the accumulator, 
the X register, the Y register, and processor status register, and 
the stack pointer. The line displayed by the MAC/65 debugger 
also lists the address that was in your computer's program counter 
(PC) when the program reached its breakpoint. The last item in 
the line tells what the instruction (INSTR) at that address was. 

All of this information can be useful in some debugging applica
tions, since it's sometimes helpful to know what condition the 
6502 chip has been left in after a program has been run. But it 
doesn't mean a great deal to us right now, since our addition pro
gram has finished running and we don't really care what the 
6502's registers now contain. What's more important to us at the 
moment is whether or not our program did the job it was sup
posed to do. The only way we can find that out is to look and see 
whether the program did what we instructed it to do, namely, 
whether it added 2 and 2, and stored the result of that calculation 
in memory address $CB. 

While your assembler is in its "debug" mode, you can easily 
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PEEK inside memory address $CB and see if the sum of2 and 2 is 
stored there. Simply type: 

DCB 

You should see one or two lines something like these on your 
video screen (again, with a few minor and not especially signifi
cant differences if our assembler is a MAC/65): 

00CB 04 00000000 
0000007900 

Success! The number 4, the sum of 2 and 2, is indeed stored in 
memory address $CB! 

saving a Machine Language Program 

Back in Chapter 4, you learned how to save both source code list
ings and object code listings of assembly language programs. In 
Atari assembly language, source code listings are loaded into 
memory using the ENTER command, and are saved to disk using 
the LIST command. If you have a MAC/65 assembler, you can 
also load source code into memory using command LOAD, and 
you can save source code listings to disk using the command 
SAVE. When you use a MAC/65 assembler, ENTER and LIST 
are used to save and load source code programs in their "un
tokenized," or unabbreviated form, LOAD and SAVE are used to 
load and save source code listings in their "tokenized," or abbre
viated, form. This is the same system used for loading and saving 
programs written in Atari BASIC. 

If you have an Atari Assembler Editor cartridge, the commands 
LOAD and SA VE are used for a completely different purpose. In 
programs written with the Atari Assembler editor, the LOAD 
and SAVE commmands are reserved for loading and saving 
object code, so they can't be used at all for loading and saving 
source code listings. Object code listings are loaded into memory 
using the commands LOAD (with the Atari Assembler) or BLOAD 
(with MAC/65), and are saved to disk using the commands SAVE 
(with the Atari cartridge) or BSA VE (with MAC/65). Source code 
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programs must be loaded into memory and saved to disk while 
your assembler is active and in its edit mode. But object code pro
grams can be loaded and saved in two different ways. 

You can load and save object code programs while your assem
bler is active and in its edit mode. You can also load and store 
object code programs using either the Atari or OS/ A + disk 
operating systems. To save an object code program using the 
Atari DOS menu, all you have to do is select Menu Option K, the 
"Binary Load" command. To save an object code program using 
the OS/ A + operating system, the correct format is: 

[01 :]SAVE ADDNRS.OBJ 0600 060B 

I know this is all quite confusing, but at least you have this chapter 
to guide you, which is more than I had when I was trying to learn 
Atari assembly language! 

writing programs That Will Run When 
Loaded 

You can use both the Atari DOS menu and the OS/ A + operating 
system to save machine language programs in such a way that 
they will automatically run as soon as they have been loaded into 
your computer's memory. When you select option "K" on the 
Atari DOS menu, your computer responds with this prompt: 

SAVE - GIVE FILE, START, END, INIT, RUN 

If you wish, you can respond to this prompt by typing only two 
addresses: START and END. But the prompt also allows you to 
use two more addresses: IN IT and RUN. These two addresses 
are optional parameters. When you save a program without 
using these parameters, the program you save will load, but not 
run when you retrieve it from a disk. To run a program that has 
been saved without using the INIT or RUN parameters, a special 
"execute" command must be used: either Option M (RUN AT 
ADDRESS) on the Atari DOS menu or certain special commands 
(such as the "G" command) that are available on various assem
blers, debuggers, and operating systems. 

84 



If you like, you can use Atari DOS to save an object code program 
in such a way that it will automatically run when it is loaded into 
memory. In fact, if you wish, you can even save an object code 
program in such a way that it will run as soon as a disk on which it 
is stored is booted. To flag an object code program so that it will 
automatically run when it's loaded into memory, you can save it 
from DOS using the IN IT parameter, the RUN parameter, or 
both. The IN IT and RUN parameters do slightly different things 
so, not surprisingly, they are used for slightly different purposes. 

When you use INIT, your program will start running at its INIT 
address as soon as that address is loaded into memory. When you 
use the RUN parameter, your program will start running at that 
address, but not until the entire program has been loaded into 
memory. The INIT parameter is usually used for running short 
routines within a program while the program is being loaded. For 
example, converting text strings from one kind of character code 
to another, so that the conversions will all be complete by the time 
the program runs. The RUN parameter is used to run the entire 
program after it has been loaded into memory. 

using the Run parameter 

This is how you would store the ADDNRS.OBJ program with an 
Atari Assembler Editor cartridge using the RUN parameter but 
not the INIT parameter: 

AD D N AS. 0 BJ.0600.0608,,0600 

Notice the two commas between the numbers 0608 and 0600 in 
this example. They mean that the INIT instruction has been left 
blank, and thus has not been used. If it had been used, it would be 
the third number typed, right between the commas. Instead, the 
line has been typed using this format: 

ADDNAS.OBJ.STAAT.END" AUN 

The program will therefore run automatically, beginning at $0600 
(the address entered under the RUN parameter), as soon as the 
entire program is loaded into memory. If you saved your program 
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using this format, and then loaded the program into your com
puter's memory, it would start loading at address $0600 and 
would stop loading at address $0608. It would then start running 
at address $0600. 

using the 'I N IT' parameter 
The "INIT" parameter of the Atari Assembler Editor's Binary 
Load command can be used either by itself or in conjunction with 
the "RUN" parameter. You can use the "INIT" command as 
many times as you like in a program, for each portion of the pro
gram that you want to run as it is being assembled. The "RUN" 
command may be used only once, to run the entire program. 
Detailed instructions for using the RUN and IN IT commands 
can be found in your Atari Disk Operating System II Reference 
Manual. For our purposes, all you really need to know right now 
is that you can save object code programs in such a way that 
they'll run after they are loaded by using the optional "RUN" 
parameter of the binary load command. 

Running Machine Language programs 
using OS/A+ 
OS/ A + doesn't provide any INIT or LOAD parameters for run
ning machine language programs because it doesn't require any. 
To run a machine language program using OS/ A +, all you have 
to do is use the "RUN" command. To use the OS/ A "RUN" com
mand, just respond to the "Dl:" prompt by typing the word 
RUN, followed by the starting address of the program you want 
to run. For example: 

[01:] RUN 0600 

The binary file stored at that address will then run. 

writing Self-booting Programs 
Have you ever wanted to write a program that will boot itself and 
then run itself automatically, as soon as you turn your computer 
on? Well, you can do that very easily, if you know how to use 
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assembly language! All you have to do is save the program 
using the AUTORUN.SYS utility built into Atari DOS (or the 
STARTUP.EXC utility provided by OS/ A +, which we will dis
cuss in a moment). Use either of these utilities, and your program 
will run automatically each time the disk it is saved on is booted, 
just like a piece of professionally written software! 

TWO Ways to do It 

There are a number of ways to use Atari's AUTORUN.SYS. One 
way simply is to save your program as a self-booting program, 
using the INIT parameter, the RUN parameter or both, under 
the file name A UTORUN. SYS. Another way is to take a program 
that you've saved as an automatically running program, and sim
ply change its name to AUTORUN.SYS. Here's how to change 
the name of a file to AUTORUN.SYS using the Atari Assembler 
Editor cartridge. First, make sure that the program you want to 
convert is already a self-running program. In other words, make 
sure that it was saved using either the RUN or INIT parameter, 
or both. Then call up your DOS menu and type "E" for RENAME 
FILE. You should then see this prompt: 

RENAME - GIVE OLD NAME, NEW 

In response to this prompt, type: 

ADDNRS.OBJ,AUTORUN.SYS 

That's all there is to it! From now on, each time you boot the disk 
that Program 1 is on, the program will run automatically (you can 
use your Assembler Editor cartridge's monitor, if you like, to 
assure yourself that it's true). 

using the OS/A+ STARTUP.EXC utility 

The STARTUP.EXC utility provided by OS/ A + is very similar to 
the AUTORUN.SYS offered by Atari DOS. To use the OS/A+ 
STARTUP.EXC utility, just boot OS/A+ and then replace your 
OS/ A + master disk with a data disk on which the object code of 
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your ADDNRS program is stored. When your data disk is in 
place, respond to the OS/ A + "Dl:" prompt by typing: 

TYPE E: 01 :STARTUP.EXC 

This is the line you should then see on your screen: 

01: TYPE E: 01 :STARTUP.EXC 

When you type this line, be sure to use the exact spacing that we 
used in these examples. In particular, make sure that there's a 
space between "E:" and "Dl:STARTUP.EXC." OS/A+, like the 
MAC assembler and the Atari Assembler Editor, is ratherfussy 
about spacing. When you're sure you've typed the line correctly, 
hit your RETURN key and your computer screen will go blank 
for a moment. When the lights come back on, you'll see a blank 
screen with a cursor in the upper left- hand corner. When the 
blank screen and cursor appear, simply type the word "LOAD", 
followed by the name of the file that you want to convert into a 
self-booting file. For example: 

LOAD AOONRS.OBJ 

Next, type the word "RUN", followed by the address (in hex
adecimal notation) at which the first instruction in your program 
is located. For example: 

RUN 0600 

At this point, these two lines should be all you see on your 
screen: 

LOAD AOONRS.OBJ 
RUN 0600 

Now type RETURN, followed by [CONTROL] 3 (which is typed, 
of course, by pressing the CONTROL key and the "3" key simul
taneously). When you've done that, your data disk should start to 
spin. When it stops, the ADDNRS.OBJ program should be stored 
on your disk as a self-booting file. When you've finished creating 
your STARTUP.EXC file, you can check to see if it's really on 
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your disk by typing the command "DIR" to get a disk directory. 
Then, ifthe STARTUP.EXC file is there, you can check to see if it 
works by turning your computer off and then turning it on again. 
When your computer is up and running again, load your debugger 
into memory by typing the command BUG65. Then you can use 
your debugger's "D" command to check memory registers $600 
to $608 to see if your program loaded, and memory register $CB 
to see if it executed properly. 

calling Machine Language programs 
from BASIC 

You can also run machine language programs by calling them 
from BASIC programs. But it's a complex process, requiring an 
understanding of some fairly sophisticated programming tech
niques. So we're going to save our explanation of calling machine 
language programs from BASIC for Chapter 8, which will be 
completely dedicated to mixing assembly language and BASIC 
programs. 
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Chapter Six 

The Right Address 

We've covered a lot of ground in the first five chapters of this 
book. You now have a pretty good idea of how your computer 
works, and you know what goes on inside your Atari's 6502 chip 
when a program is running. You now know the principles of the 
binary and hexadecimal number systems, and you know how to 
write, debug, load and save assembly language programs. But 
we've really just begun to explore the capabilities of6502 assem
bly language. 

The 6502 processor in your Atari computer is an incredibly ver
satile device. It has only seven registers, and it understands only 
56 instructions. But with those limited facilities, it can do some 
amazing things. One reason the 6502 chip is so versatile is because 
it can access the memory locations in a computer in 13 different 
ways. In other words, the 6502 processor has 13 different address
ing nwdes. In the world of assembly language, an addressing 
nwde is a technique for locating and using information stored in a 
computer's memory. 

In the programs presented in this book so far, we've used three 
addressing modes: implicit addressing, immediate addressing, 
and zero page addressing. In this chapter, we'll be examining all 
three of those addressing modes, along with the ten others that 
are available. 

Every 6502 instruction must be using one of the addressing 
modes. Not one instruction is capable of using all of the address
ing modes, and no addressing mode can be used by all the in
structions. The instruction tells the processor what to do and the 
addressing mode tells the processor what to do it with. On the 
followiIlg page is a complete list of addressing modes and the for
mat of the operation so you can tell what mode you are using. 
These formats are standard for the6502 microchip so they should 
be understood by most 6502 assemblers. 
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The 6502's Addressing Modes 

The 13 addressing modes of the 6502 processor are: 

ADDRESSING MODE 

1. Implicit (Implied)* 
2. Accumulator 
3. Immediate* 
4. Absolute 
5. Zero Page* 
6. Relative 
7. Absolute Indexed,X 
8. Absolute Indexed, Y 
9. Zero Page, X 

10. Zero Page, Y 
11. Indexed Indirect 
12. Indirect Indexed 
13. Indirect 

"ADDNRS.SRC" Revisited 

FORMAT 

RTS 
ASLA 
LDA#2 
LDA$5000 
STA$CB 
BCC LABEL 
LDA$5000,X 
LDA$5000,Y 
LDA$CB,X 
STX$CB,Y 
LDA ($BO,X) 
LDA ($BO),Y 
JMP ($5000) 

The three instructions marked by * asterisks are the ones we've 
used in this book so far. All three appear in "ADDNRS.SRC," the 
8-bit addition program introduced a few chapters back, which 
we'll take another look at now: 

THE "ADDNRS" SOURCE PROGRAM 

1121 ; 
2121 ;8-8IT ADDITION PROGRAM 
3121 ; 
4121 *=$1216121121 
5121 ; 
6121 ADDNRS CLD ;IMPLIED ADDRESS 
7121 CLC ;IMPLIED ADDRESS 
8121 LOA #1212 ;IMMEDIATE ADDRESS 
9121 ADC #1212 ;IMMEDIATE ADDRESS 
1121121 STA $CB ;ZERO PAGE ADDRESS 
11121 RTS ;IMPLIED ADDRESS 
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In this example, the three address modes used in the program are 
identified in the comments column. Let's look now at each of 
these three address modes. 

Implicit (or Implied) Addressing 
(Lines 60, 70 and 110) 

Format: CLD, CLC, RTS, etc. 

When you use implicit addressing, all you have to type is a three 
letter assembly language instruction; implicit addressing does 
not require (in fact does not allow) the use of an operand. 

The instruction in an implied address is thus similar to an in
transitive verb in English; it has no object The address it refers 
to (if it refers to an address at all) is not specified, but merely 
implied by the the mnemonic itself. So no operand is required or 
allowed in implicit addressing. Op code mnemonics that can be 
used in the implicit addressing mode are BRK, CLC, CLD, CLI, 
CLV, DEX, DEY, INX, INY, NOP, PHA, PHP, PLA, PLP, RTI, 
RTS, SEC, SED, SEI, TAX, TAY, TSX, TXA, TXS, and TYA. 

Immediate Addressing 
(Lines 80 and 90) 

Format: LDA #02, ADC #02, etc. 

When immediate addressing is used in an assembly language 
instruction, the operand that follows the op code mnemonic is a 
literal number, not the address of a memory location. So in a 
statement that uses immediate addressing, a" #" sign, the sym
bol for a literal number, always appears in front of the operand. 
When an immediate address is used in an assembly language 
statement, the assembler does not have to peek into a memory 
location to find a value. Instead, the value itself is stuffed directly 
into the accumulator. Then whatever operation the statement 
calls for can be immediately performed. Instructions that can be 
used in the immediate address mode are ADC, AND, CMP, CPX, 
CPY, EOR, LDA, LDX, LDY, ORA and SBC. 
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Zero page Addressing 
(Line 100) 

Format: STA $CB,etc. 

It isn't difficult to distinguish between a statement that uses 
immediate addressing and one that uses zero page addressing. In 
a statement that uses zero page addressing, the operand always 
consists of just one byte, a number ranging from $00 to $FF. And 
that number equates to an address in a block of RAM called 
page zero. 

The" #" symbol is not used in zero page addressing because the 
operand in a statement that employs zero page addressing is 
always a memory location, never a literal number. So the opera
tion called for in the statement is performed on the contents of the 
specified memory location, not on the operand itself. Zero page 
addresses use one-byte operands because that's all they need. As 
we just said, the memory locations they refer to are in a block of 
your computer's memory that's called, logically enough, page 
zero. And to address a memory location on page zero, a one-byte 
operand is all that's necessary. 

Specifically, the memory block in your computer known as page 
zero extends from memory address $00 through memory address 
$FF. You could just as easily (and just as correctly) say that page 
zero extends $0000 to $OOFF. But it isn't really necessary to use 
those extra pairs of zeros when you want to refer to a zero page 
address. When you follow an assembly language instruction with 
a one-byte address, your computer knows that the address is on 
page zero. Since zero page addresses use memory saving one
byte operands, page zero is the high rent district in your Atari's 
RAM; it's such a desirable piece of real estate, in fact, that the 
people who designed your computer took most of it for them
selves. Most of page zero is used up by your computer's operating 
system and other essential routines, and not much space has 
been left there for user written programs. 

Later on in this book, in a chapter dedicated to memory manage
ment, we'll discuss the memory space available on page zero in 
more detail. For now, the most important fact to remember about 
page zero is that it's an address mode that uses a memory 
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address on page zero as a one-byte operand. Instructions that 
can be used with zero page addressing are ADC, AND, ASL, BIT, 
CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, 
ROL, ROR, SBC, STA, STX, and STY. 

New Addressing Modes 

Now we'll describe the five 6502 address modes we haven't 
covered so far: 

Accumulator Addressing 
Format: ASL A 

The accumulator addressing mode is used to perform an opera
tion on a value stored in the 6502 processor's accumulator. The 
command ASL A, for example, is used to shift each bit in the 
accumulator by one bit position, with the leftmost bit (bit 7) drop
ping into the carry bit of the processor status (P) register. Other 
instructions that can be used in the accumulator addressing 
mode are LSR, ROL, and ROR. 

Absolute Addressing 
Format: STA $5000 

Absolute addressing is similar to zero page addressing. In a state
ment that uses absolute addressing, the operand is a memory 
location, not a literal number. The operation called for in an 
absolute address statement is always performed on the value 
stored in the specififed memory location, not on the operand 
itself. The difference between an absolute address and a zero 
page address that an absolute address statement doesn't have to 
be on page zero; it can be anywhere in free RAM. So an absolute 
address statement requires a two-byte operand, not a one-byte 
operand, which is all that a zero page address requires. 

This is what our ADDNRS.SRC program would look like if 
absolute addressing, instead of zero page addressing, were used: 
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10 

The "ADDNRS" Source Program 
(with absolute addressing in line 100) 

20 ;8-8IT ADDITION PROGRAM 
30 ; 
40 *=$0600 
50 ; 
60 ADDNRS CLD ;IMPLIED ADDRESS 
70 CLC ;IMPLIED ADDRESS 
80 LOA #02 ;IMMEDIATE ADDRESS 
90 ADC #02 ; IMMEDIATE ADDRESS 
100 STA $5000 ;ABSOLUTE ADDRESS 
110 RTS ;IMPLIED ADDRESS 

The only change that has been made in this program is the one in 
line 100. The operand in that line is now a two-byte operand, and 
that change makes the program one byte longer. But now the 
address in nne100 no longer has to beon page zero. Nowitcan be 
the address of any free byte in RAM. 

Mnemonics that can be used in the absolute addressing mode are 
ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, 
JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, 
and STY. 

Relative Addressing 
Format: BCC NEXT 

Relative addressing is an address mode used for a technique 
called conditional branching, a method for instructing a program 
to jump to a given routine under certain specific conditions. 
There are eight conditional branching instructions, or relative 
address mnemonics, in 6502 assembly language. All eight begin 
with "B," which stands for "branch to." Examples of the con
ditional branching instructions that use relative addressing are: 

BCC (Branch to a specified address if the Carry flag is Clear.) 

BCS (Branch to a specified address if the Carry flag is Set.) 
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BEQ (Branch to a specified address if the Zero flag is Set.) 

BNE (Branch to a specified address if the Zero flag is Clear.) 

All eight of the conditional branching instructions will be de
scribed later on in this book in a chapter devoted to looping 
and branching. 

What Comparison Instructions do 
The eight conditional branching mnemonics are often used with 
three other instructions called comparison instructions. Typical
ly, a comparison instruction is used to compare two values with 
each other, and a conditional branch instruction is then used to 
determine what should be done if the comparison turns out in a 
certain way. The three comparison instructions are: 

CMP (" compare the number in the accumulator with ... ") 
CPX ("compare the value in the X register with ... ") 
Cpy ("compare the value in the Y register with .. . ") 

Conditional branching instructions can also follow arithmetic or 
logical operations, and various kinds of testing of bits and bytes. 
Usually, a branch instruction causes a program to branch off to a 
specified address if certain conditions are met or not met A 
branch might be made, for example, if one number is larger than 
another, if two numbers are equal, or if a certain operation 
results in a positive, negative, or zero value. 

An Example of Conditional Branching 

Here's an example of an assembly language routine that uses 
conditional branching: 

AN a-BIT ADDITION PROGRAM WITH ERROR 
CHECKING 

10 
20 ;8-BIT ADDITION WITH ERROR CHECKING 
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30 
40 *=$0600 
50 
60 A0088TS CLO 
70 CLC 
80 LOA $5000 
90 AOC $5001 
100 BCS ERROR 
110 STA $5002 
120 RTS 
130 ERROR RTS 

This is an 8-bit addition program with a simple error checking 
utility built-in. It adds two 8-bit values, using absolute address
ing. If this calculation results in a 16-bit value (a number larger 
than 255), there will be an overflow error in addition, and the 
carry bit of the processor status register will be set. If the carry 
bit is not set, then the sum of the values in $5000 and $5001 will be 
stored in $5002. If the carry bit is set, however, this condition will 
be detected in line 100, and the program will branch to the line 
labeled ERROR - line 130. At line 100, you could begin any kind 
of routine you wanted to: you might choose, for example, to write 
a routine that would print an error message on the screen. In this 
sample program, however, an error results only in an RTS 
instruction. 

Absolute Indexed Addressing 
Format: LDA $0500,X or LDA $0500,Y 

An indexed address, like a relative address, is calculated by using 
an offset. But in an indexed address, the offset is determined by 
the current content of the 6502's X register or Y register. A state
ment containing an indexed address can be written using either 
of these formats: 

LOA $5000,X 
or 
LOA $5000,Y 

98 



How Absolute Indexed Addressing Works 

When indexed addressing is used in an assembly language state
ment , the contents of either the X register or the Y register 
(depending upon which index register is being used) are added to 
the address given in the instruction to determine the final 
address. Here's an example of a routine that makes use of 
indexed addressing. The routine is designed to move byte by byte 
through a string of ATASCII (Atari ASCII) characters, storing 
the string in a text buffer. When the string has been stored in the 
buffer, the routine will end. The text to be moved is labeled 
TEXT, and the buffer to be filled with text is labeled TXTBUF. 
The starting address of TXTBUF, and the ATASCII code num
ber for a carriage return are defined in a symbol table that pre
cedes the program. 

Routine for Moving a Block of Text 
(An Example of Indexed Addressing) 

10 ; 
20 ;ROUTINE FOR MOVING A BLOCK OF TEXT 
30 ; 
40 TXTB U F=$5000 
50 EOL=$9B 
70 ; 
80 *=$600 
90 ; 
100 TEXT .BYTE $54,$41 ,$4B.$45.$20.$40.$45. 

$20 
110 .BYTE $54.$4F.$20.$59.$4F.$55,$52,$20 
120 .BYTE $4C.$45.$41.$44.$45.$52.$21 ,$9B 
130 ; 
140 OATMOV 
150 
160 LOX #0 
170 LOOP LOA TEXT.X 
180 STA TXTBUF.X 
190 CMP #EOL 
200 BEQ FINI 
210 INX 
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220 JMP LOOP 
230 FINI RTS 
250 .END 

Testing for a Carriage Return 

When the program begins, we know that the string ends with a 
carriage return (ATASCII $9B), as strings often do in Atari pro
grams. As the program proceeds through the string, it tests each 
character to see whether it is a carriage return or not. If the 
character is not a carriage return, the program moves on to the 
next character. If the character is a carriage return, that means 
there are no more characters in the string, and the routine ends. 

Zero page, x Addressing 
Format: LDA $CB,X 

Zero page,x addressing is used just like absolute indexed, x ad
dressing. However, the address used in the zero page,x addressing 
mode must (logically enough) be located on page zero. Instruc
tions that can be used in the zero page,x addressing mode are 
ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA, 
ROL, ROR, SBC, STA, and STY. 

Zero page, Y Addressing 
Format: STX $CB,Y 

Zero page, y addressing works just like zero page,x addressing, 
but can be used with only two mnemonics: LDX and STX. If it 
weren't for the zero page, y addressing mode, it wouldn't be pos
sible to use absolute indexed addressing with the instructions 
LDX and STX - that's the only reason that this addressing 
mode exists at all. 

Indirect Addressing 

There are two subcategories of indexed addressing: indexed 
indirect addressing, and indirect indexed addressing. Both in
dexed indirect addressing and indirect indexed addressing are 
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used primarily to look up data stored in tables. If you think the 
names of the two addressing modes are confusing, you're not the 
first one with that complaint. I never could keep them sorted out 
myself until I dreamed up a little memory trick to help eliminate 
the confusion. 

Here's the trick: Indexed indirect addressing, which has an "x" in 
the first word of its name, is an addressing mode that makes use 
of the 6502 chip's X register. Indirect indexed addressing, which 
doesn't have an "x" in the first word of its name, uses the 6502' s Y 
register. Now we'll look at each of your Atari's two indirect 
addressing modes, beginning with indexed indirect addressing. 

Indexed Indirect Addressing 
Format: ADC ($CO,X) 

Indexed indirect addressing works in several steps. First, the con
tents of the X register are added to a zero page address - not to 
the contents of the address, but to the address itself. The result of 
this calculation must always be another zero page address. When 
this second address has been calculated, the value that it con
tains, together with the contents of the next address, make up a 
third address. That third address is (at last) the address that will 
finally be interpreted as the operand of the statement in question. 

An Example of Indexed Indirect 
Addressing 

An example might help clarify this process. 

Let's suppose that memory address $BO in your computer held 
the number $00, that memory address $B1 held the number $06, 
and that the X register held the number o. Here are those equates 
in an easier to read form: 

$80 = #$00 
$81 = #$06 

x = #$00 
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Now let's suppose you were running a program that contained 
the indexed indirect instruction LDA ($BO,X). If all of those con
ditions existed when your computer encountered the instruction 
LDA ($BO,X), your computer would add the contents of the X 
register (a 0) to the number $BO. The sum of $BO and 0 would, of 
course, be $BO. So your computer would go to memory address 
$BO and $Bl. It would find the number $00 in memory address 
$BO, and the number $06 in address $Bl. 

Since 6502 based computers store 16-bit numbers in reverse 
order, low byte first, your computer would interpret the number 
found in $BO and $B1 as $0600. So it would load the accumulator 
with the number $0600, the 16-bit value stored in $BO and $Bl. 
Now let's imagine that when your computer encountered the 
statement LDA ($BO,X), 6502's X register held the number 04, 
instead of the number 00. Here is a chart illustrating those 
values, plus a few more equates that we'll be using shortly: 

$80 = #$00 
$81 = #$06 
$82 = #$98 
$83 = #$FF 
$84 = #$FC 
$85 = #$1 C 

x = #$04 

If these conditions existed when your computer encountered the 
instruction LDA ($BO,X), your computer would add the number 
$04 (the value in the X register) to the number $BO, and would 
then go to memory addresses $B4 and $B5. In those two addresses, 
it would find the final address (low byte first, of course) of the 
data it was looking for, in this case, $lCFC. 

A Rarely Used Mode 

Indexed indirect addressing is not used in many assembly lan
guage programs. When it is used, its purpose is to locate a 16-bit 
address stored in a table of addresses stored on page zero. Since 
space on page zero is so hard to find, it's not very likely that you'll 
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ever be able to store many data tables there. So it's not too likely 
that you'll ever find much use for indexed indirect addressing. 

Indirect Indexed Addressing 
Format: ADC ($CO),Y 

Indirect indexed addressing is not nearly as rare as indexed 
indirect addressing. In fact, it is quite often used in assembly 
language programs. Indirect indexed addressing uses the Y 
register (never the X register) as an offset to calculate the base 
address of the start of a table. The starting address of the table 
has to be stored on page zero, but the table itself doesn't have to 
be. When an assembler encounters an indirect indexed address 
in a program, the first thing it does is peek into the page zero 
address that is enclosed in the parentheses that precede the "Y." 
The 16-bitvalue stored in that address and the following address 
are then added to the contents of the Y register. The value that 
results is a 16-bit address, the address the statement is looking for. 

An Example of Indirect Indexed 
Addressing 

Here's an example of indirect indexed addressing: 

Your computer is running a program and comes to the instruc
tion ADC ($BO),Y. It then looks into memory address $BO and 
$Bl. In $BO, it finds the number $00. In $B1, it finds the number 
$50. And the Y register contains a 4. Here is a chart that illus
trates those conditions: 

$80 = #$00 
$81 = #$50 

Y = #$04 

If these states existed when your computer encountered the 
instruction ADC ($BO), Y, then your computer would combine the 
numbers $00 and $50, and would come up (in the 6502 chip's 
peculiar low byte first fashion) with the address $5000. It would 
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then add the contents of the Y register (4 in this case) to the 
number $5000, and would wind up with a total of $5004. That 
number, $5004, would be the final value of the operand ($BO),Y. 
So the contents of the accumulator would be added to whatever 
number was stored in memory address $5004. 

Once you understand indirect indexed addressing, it can become 
a very valuable tool in assembly language programming. Only 
one address, the starting address of a table, has to be stored on 
page zero, where space is always scarce. Yet that address, added 
to the contents of the Y register, can be used as a pointer to locate 
any other address in your computers memory. As you become 
more familiar with assembly language, you'll have many oppor
tunities to see how indirect addressing works. You'll find a few 
examples of the technique in programs in this book, and you'll 
run across many more examples in other assembly language 
programs. 

Indirect Addressing 
Format: JMP ($5000) 

In 6502 assembly language, un indexed indirect addressing can 
be used with only one mnemonic: JMP. One example of unin
dexed indirect addressing is the instruction JMP ($5000), which 
means, "Jump to the memory location stored in memory ad
dresses $5000 and $5001." 

The 'LIFO' concept 

The stack is what programmers sometimes call a" LIFO" (last in, 
first out) block of memory. It works like a spring loaded stack of 
plates in a diner; when you put a number in the memory location 
on top of the stack, it covers up the number that was previously 
on top. So the number on top of the stack must be removed before 
the number under it, which was previously on top, can be accessed. 
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How 6502 uses the Stack 
The 6502 processor often uses the stack for temporary data 
storage during the operation of a program. When a program 
jumps to a subroutine, for example, the 6502 chip takes the 
memory address that the program will later have to return to, 
and pushes that address onto the top of the the stack. Then, when 
the subroutine ends with an RTS instruction, the return address 
is pulled from the top of the stack and loaded into the 6502' s pro
gram counter. Then the program can return to the proper ad
dress, and normal processing can resume. The stack is also used 
quite often in user written programs. Here is an example of a 
routine that makes use of the stack. You may recognize it as a 
variation on the 8-bit addition program that we've been using. 

1AN ADDITION ROUTINE THAT MAKES USE OF 
THE STACK 

10 ; 
20 ;STACKADD 
30 
40 *=$0600 
50 ; 
60 ;WHEN THIS PROGRAM BEGINS, TWO 
70 ;8-BIT NUMBERS ARE ON THE STACK 
80 ; 
90 STKADD 
100 CLD 
105 CLC 
110 PLA 
120 STA $B0 
130 PLA 
140 ADC $B0 
150 STA $C0 
160 RTS 
170 .END 

This program is a simple, straightforward addition routine that 
shows how easy and convenient it can be to use the stack in 
assembly language programs. In line 110, a value is pulled from 
the stack and stored in the accumulator. Then in line 120, the 

1 Don't try to run this program until you understand the stack and 
how to prevent the program from crashing. 
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value is stored in memory address $BO. In lines 130 and 140, 
another value is pulled from the stack, and added to the value 
now stored in $BO. The result of this calculation is then stored in 
$CO, and the routine ends. That's only one short example of many 
ways in which the stack can be used. 

You'll find other ways to use the stack in later chapters of this 
volume. If you take care to manage the stack properly, in other 
words, if you clear the stack after each use, it can be a very power
ful programming tool. But, if you mess up the stack while you're 
using it, you're surely bound for trouble! 

Mnemonics that make use of the stack are: 

PHA ("push the contents of the accumulator onto the 
stack") 

PLA ("pull the top value off the stack and deposit it in the 
accumulator") 

PHP ("push the contents of the P register onto the stack") 

PLP ("pull the top value off the stack and deposit it into 
the P register") 

JSR ("put the current PC on the stack and jump to 
address") 

RTS ("pull the return address off the stack and put it in 
the PC and increment it by one." This will cause 
execution to continue where it left off.) 

The PHP and PLP operations are often included in assembly 
language subroutines so that the contents ofthe P register won't 
be wiped out during subroutines. When you jump to a subroutine 
that may change the status of the P register, it's always a good 
idea to start the subroutine by pushing the contents of the P 
register onto the stack. Then, just before the subroutine ends, 
you can restore the P register's previous state with a PHP in
struction. That way, the P register's contents won't be destroyed 
during the course of the subroutine. 
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Chapter Seven 
Looping Around 

and Branching Out 

Now we're going to start having some fun with Atari assembly 
language. In this chapter, you'll learn how to print messages on 
the screen, how to encode and decode ATASCII (Atari ASCIn 
characters, and how to perform other neat tricks in assembly 
language. We're going to accomplish these feats with some 
advanced assembly language programming techniques that we 
haven't tried out so far, along with some new variations on 
techniques covered in earlier chapters. These are some of the pro
gramming techniques we're going to cover in this chapter: 

• Using the assembly language .BYTE directive. 
• Incrementing and decrementing the X and Y registers. 
• Using comparison and branching instructions together. 
• Advanced looping and branching. 
• Writing relocatable assembly language instructions. 

Before we get started, though, I'm going to pull a very sneaky 
trick. I'm going to ask you to type up and store on a disk a pro
gram that you haven't yet been introduced to. You probably 
won't understand it unless you've had previous experience in 
assembly language programming. I'm asking you to type this 
program -because it contains a couple of subroutines that are 
needed to run two other programs, programs that will be intro
duced and explained in this chapter. The program you may not 
understand is one that will be explained in Chapter 12, I/O 
and You. 

TWO Good Reasons 
There are two rather sophisticated but extremely useful sub
routines in this program. One is a routine that will open your 
screen as an output device and put your Atari into its screen edit-
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disk, you'll already have that job done the next time you encounter 
them, in I/O and You. So I hope you'll look ahead to greener pas
tures in the last chapter of this book, and not be too angry at me 
for asking you to type this program now. 

PROGRAM FOR PRINTING ON THE SCREEN 

10; 
20 .TITLE "PRNTSC ROUTINE" 
30 .PAGE "ROUTINES FOR PRINTING ON THE 

SCREEN" 
40; 
50 *=$5000 
60; 
70 BUFLEN=23 
80; 
100 EOL=$98 
105 ; 
1100PEN=$03 
1200WRIT=$08 
130 PUTCHR=$08 
135 ; 
14010CB2=$20 
170ICCOM=$342 
180ICBAL=$344 
190ICBAH=$345 
200ICBLL=$348 
210ICBLH=$349 
220ICAX1=$34A 
230ICAX2=$34B 
235 ; 
240 CIOV=$E456 
250; 
260 SCRNAM .BYTE "E:",EOL 
270 ; 
280 OSCR ;OPEN SCREEN ROUTINE 
290 LOX =#= IOCB2 
300 LOA =#=OPEN 
310 STA ICCOM,X 
320; 
330 LOA =#=SCRNAM&255 
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340 STA ICBAL,X 
350 LOA #SCRNAM/ 256 
360 STA ICBAH,X 
370; 
3B0 LOA #OWRIT 
390 STA ICAX1 ,X 
400 LOA #0 
410 STAICAX2,X 
420 JSR CIOV 
430 ; 
440 LoA#PUTCHR 
450 STA ICCOM,X 
460; 
470 LOA #TXTBUF&255 
4B0 STA ICBAL,X 
490 LOA #TXTBUF/ 256 
500 STA ICBAH,X 
510 RTS 
520 ; 
530 PRNT 
540 LOX # IOCB2 
550 LOA # BUFLEN&255 
560 STA ICBLL,X 
570 LOA # BUFLEN/ 256 
580 STA ICBLH,X 
590 JSR CIOV 
600 RTS 
610; 
620 TXTBUF=* 
630; 
640 *= *+BUFLEN 
650; 
660 .ENo 

Now Save It! 

When you have this program typed, you can assemble its object 
code and save it on a disk under the filename PRNTSC.OBJ. Then 
there's one other program 1'd like for you to type and assemble. 
It's the one we' ll be working with for the rest of this chapter. 
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THE VISITOR 

10 ; 
20 ;THE VISITOR 
30; 
35 TXTBUF=$5041 
400PNSCR=$5003 
50 PRNTLN=$5031 
70; 
B0 *=$600 
90; 
100 TEXT .BYTE $54,$41 ,$4B,$45,$20,$40,$45, 

$20 
110 .BYTE $54,$4F,$20,$59,$4F,$55,$52,$20 
120 .BYTE $4C,$45,$41 ,$44,$45,$52,$21 
130; 
140 VIZTOR 
150; 
160 LOX #0 
170 LOOP LOA TEXT,X 
180 STA TXTBUF,X 
190 INX 
200 CPX #23 
210 BNE LOOP 
220 JSR OPNSCR 
230 JSR PRNTLN 
240 INFIN JMP IN FIN 

This program is called (for reasons you'll soon discover) The 
Visitor. It's a program that's designed to print a cryptic message 
on your video screen. 

Running 'The Visitor' 

When you've finished typing The Visitor, you can run it im
mediately. Just assemble it, and then load the object code of the 
PRNTSC program into your computer. Then you can run The 
Visitor either by putting your computer into its DEBUG mode 
and typing G617, or by getting into DOS mode and running The 
Visitor with a DOS command. When you've finished trying out 
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The Visitor program, it wouldn't be a bad idea to save it, too, on a 
disk. The suggested file name for the program is VISITOR.SRC. 
After you've run and saved the program, you'll know exactly 
what it does. So now we can explain how it does what it has done. 
We'll start with an explanation of the assembly language . BYTE 
directive, which you' ll see in lines 100 to 120. 

The .BYTE Directive 

The .BYTE directive is sometimes called a pseudo operation 
code, or pseudo op, because it appears in the op code column of 
assembly language source code listing but is not actually a part 
of the 6502 assembly language instruction set. Instead, it's a 
specialized directive designed that can be used with some assem
blers, but not with others. For example, .BYTE works with both 
the MAC/65 assembler and the Atari Assembler Editor, but does 
not work with the Atari Macro Assembler and Text Editor. When 
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you write a program with the Atari Macro Assembler and Text 
Editor, you have to use the letters DB in place of the .BYTE direc
tive. Other pseudo ops also differ from assembler to assembler. 
There are no generally accepted standards for writing pseudo op 
directives, so pseudo op codes designed for one assembler often 
won't work with another. 

What the .BYTE Directive Does 

When the .BYTE directive is used in a program created with the 
MAC/65 assembler or the Atari Assembler Editor, the bytes that 
follow the directive are assembled into consecutive locations in 
RAM. In the program called The Visitor, the bytes that follow the 
label TEXT are ATASCII (Atari ASCII) codes for a series of 
text characters. 

Looping the LOOp 

As we explained in Chapter 6, the X and Y registers in the 6502 
chip can be progressively incremented and decremented during 
loops in a program. In the Visitor program, the X register is 
incremented from ° to 23 during a loop in which characters in a 
text string are read. The characters that to be read are written as 
ATASCII codes in lines 100 through 120 of the program. In line 
160, the statement LDX #0 is used to load the X register with a 
zero. Then, in line 170, the loop begins. 

Incrementing the X Register 

The first statement in the loop is LDA TEXT,X. Each time the 
loop cycles, this statement will use indexed addressing to load 
the accumulator with an ATASCII code for a text character. 
Then, in line 180, the indexed addressing mode will be used 
again, this time to store the character in a text buffer. When the 
loop ends, all of the characters in the text buffer will be printed on 
the screen. The first time the program hits line 170, there will be a ° in the X register (since a ° has just been loaded into the X regis
ter in the previous line). So the first time the program encounters 
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the statement LDA TEXT,x, it loads the accumulator with the hexa
decimal number $54 - what programmers sometimes call the 
"Oth" byte after the label TEXT. (There's no need for a" =#=" sym
bol in front of the number $54, incidentially, since numbers that 
follow the .BYTE directive are always interpreted by the MACI 
65 assembler and the Atari Assembler Editor as literal numbers.) 

Incrementing and Decrementing the x 
and Y Registers 

Now let's move on to line 190. The mnemonic you see there -
INX - means "increment the X register." Since the X register 
currently holds a 0, this instruction will now increment that ° to a 
1. Next, in line 200, we see the instruction CPX =#= 23. That means 
"compare the value in the X register to the literal number 23." 
The reason we want this comparison to be performed is so we can 
determine whether 23 characters have been printed on the 
screen yet. There are 23 characters in the text string that we're 
printing, and when we've printed all of them, we'll want to print a 
carriage return and end our program. 

Comparing values in Assembly Language 

There are three comparison instructions in 6502 assembly lan
guage: CMP, CPX, and CPY. CMP means "compare to a value in 
the accumulator." When the instruction CMP is used, followed by 
an operand, the value expressed by the operand is subtracted 
from the value in the accumulator. This subtraction operation is 
not performed to determine the exact difference between these 
two values, but merely to test whether or not they are equal, and 
if they are not equal, to determine which one is larger than the 
other. If the value in the accumulator is equal to the tested value, 
the zero (Z) flag of the processor status (P) register will be set to 
1. If the value in the accumulator is not equal to the tested value, 
the Z flag will be left in a cleared state. 

If the value in the accumulator is less than the tested value, then 
the carry (C) flag of the P register will be left in a clear state. And 
if the value in the accumulator is greater than or equal to the tested 
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value, then the Z flag will be set to 1 and the carry flag will also be 
set. CPX and CPY work exactly like CMP, except that they are 
used to compare values with the contents of the X and Y regis
ters. They have the same effects that CMP has on the status flags 
of the P register. 

using Comparison and Branching 
Instructions Together 

The three comparison instructions in Atari assembly language 
are usually used in conjunction with eight other assembly lan
guage instructions - the eight conditional branching instruc
tions that we mentioned in Chapter 6. The sample program that 
we have called The Visitor contains a conditional branching 
instruction in line 210. That instruction is BNE LOOP, which 
means" branch to the statement labeled LOOP if the zero flag (of 
the processor status register) is set." This instruction uses what 
can be a confusing convention of the 6502 chip. In the 6502's 
processor status register, the zero flag is set (equals 1) if the 
result of an operation that has just been performed is 0. And the 
zero flag is cleared (equals 0) if the result of an operation that has 
just been performed is not zero. 

It Really Doesn't Matter 

This is all quite academic, however, as far as the result of the 
statement BNE LOOP is concerned. When your computer en
counters line 210, it will keep branching back to line 170 (the line 
labeled LOOP) as long as the value of the X register has not yet 
been decremented to zero. Once the value of the X register has 
been decremented to zero, the statement BNE LOOP in line 210 
will be ignored, and the program will move on to line 220, the next 
line. In line 220, the program will jump to the subroutine 
OPNSCR - which currently resides in RAM beginning at mem
ory address $5041, provided the object code for both PRNTSC 
and VISITOR have been loaded into your computer and are 
ready to run. 

114 



Conditional Branching Instructions 

As we pointed out in the previous chapter, there are eight con
ditional branching instructions in 6502 assembly language. They 
all begin with the letter B, and they're also called relative address
ing, or branching instructions. These eight instructions, and 
their meanings, are: 

Bee - Branch if the carry (C) flag of the processor status (P) 
register is clear. (If the carry flag is set, the operation will 
have no effect) 

Bes - Branch if the carry (C) flag is set. (If the carry flag is clear, 
the operation will have no effect.) 

BEQ - Branch if the result of an operation is zero (if the zero [Z] 
flag is set). 

B M I - Branch on minus (if an operation results in a set negative 
[N] flag. 

BNE - Branch if not equal to zero (if the zero [Z] flag isn't 
set). 

BPL - Branch on plus (if an operation results in a cleared nega
tive [N] flag). 

Bve - Branch if the overflow (V) flag is clear. 

BVS - Branch if overflow (V) flag is set. 

How Conditional Branching Instructions 
are Used 

To use a conditional branching instruction in 6502 assembly 
language, the usual method is to load the X or Y register with a 
zero or some other value, and then to load the A register (or a 
memory register) with a value to be used for a comparison. After 
that is done, a conditional branching instruction is used to tell the 
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computer what P register flags to test, and what to do if these 
tests succeed or fail. This all sounds very complicated - and it is. 
But once you understand the general concept of conditional 
branching, you can use a simple table for writing conditional 
branching instructions. Here's one such table. 

TO TEST FOR: 

A = VALUE 
A <> VALUE 
A >= VALUE 
'A> VALUE 
A < VALUE 
A = (ADDR) 
A < > (ADDRJ 
A >= (ADDRJ 
A> (ADDRJ 
A < (ADDRJ 
X= VALUE 
X< > VALUE 
X >= VALUE 
X> VALUE 
X < VALUE 
X = (ADDRJ 
X < > (ADDRJ 
X >= (ADDRJ 
X> (ADDRJ 
X < (ADDRJ 
y= VALUE 
Y< > VALUE 
Y >= VALUE 
Y> VALUE 
Y < VALUE 
Y = (ADDRJ 
Y < > (ADDRJ 
Y >= (ADDRJ 
Y> (ADDRJ 
Y < (ADDRJ 

DO THIS: 

CMP #VALUE 
CMP #VALUE 
CMP #VALUE 
CMP #VALUE 
CMP #VALUE 
CMP $ADDR 
CMP $ADDR 
CMP $ADDR 
CMP $ADDR 
CMP $ADDR 
CPX #VALUE 
CPX #VALUE 
CPX #VALUE 
CPX #VALUE 
CPX #VALUE 
CPX $ADDR 
CPX $ADDR 
CPX $ADDR 
CPX $ADDR 
CPX $ADDR 
CPY #VALUE 
CPY #VALUE 
CPY #VALUE 
CPY #VALUE 
CPY #VALUE 
CPY $ADDR 
CPY $ADDR 
CPY $ADDR 
CPY $ADDR 
CPY $ADDR 
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AND THEN THIS: 

BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 
BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 
BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 
BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 
BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 
BEQ 
BNE 
BCS 
BEQ and then BCS 
BCC 



Assembly Language LOOpS 

In 6502 assembly language, comparison instructions and con
ditional branch instructions are usually used together. In the 
sample program called The Visitor, the comparison instruction 
CPX and the branch instruction BNE are used together in a loop 
controlled by the incrementation of a value in the X register. 
Each time the loop in the program goes through a cycle, the value 
in the X register is progressively incremented or decremented. 
And each time the program comes to line 200, the value in the X 
register is compared to the literal number 23. When that number 
is reached, the loop ends. The program will therefore keep loop
ing back to line 170 until 23 characters have been printed on the 
screen. Then, in lines 220 and 230, it will open your computer's 
screen - clearing it in the process - and will print the string 
that has been transferred into the text buffer on the screen. 
Finally, at line 240, the program will go into what's known as an 
infinite loop - cycling back to the same JMP instruction over and 
over again, and doing nothing else until you push the break key or 
in some other way halt the program. 

Why use a Buffer? 

Before we move on to our next topic - improving The Visitor pro
gram - it might be worthwhile to answer a question that mayor 
may not have occurred to you. The question is: Why use a text 
buffer? Why not just print the text in lines 100 to 120 directly onto 
the screen, without moving it first into a buffer and then out 
again? 

Here is the answer to that question: Text can be loaded into a buf
fer in many ways: from a keyboard or from a telephone modem, 
for example, as well as being loaded in as data directly from a 
program. And, once a string is in a buffer, it can be removed from 
the buffer injust as many different ways. Another advantage of a 
text buffer is that you can load it into RAM, note its address, and 
use it from then on whenever you like. A buffer can therefore 
serve as a central repository for text strings, which will then be 
accessible with great ease and in many different ways. 
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Improving the Visitor Program 

Now we're ready to make some improvements in the program 
called The Visitor. Not that the program doesn't work; it does, 
but it has certain limitations. And some of those limitations could 
be removed quite easily - as they have been in this new pro
gram, which I've called Response. 

Response is quite similar to The Visitor - but, as you will soon 
see, significantly better in several ways: 
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RESPONSE 

10; 
20 ;RESPONSE 
30; 
40 TXTBUF=$5041 
500PNSCR=$5003 
60 PRNTLN=$5031 
70; 
80 EOL=$9B 
90; 
100 *=$650 
110 ; 
120 TEXT .BYTE "I AM the leader, you fool!",EOL 
130; 
140 RSPONS 
150; 
160 LOX #0 
170 LOOP 
180 LOA TEXT,X 
190 STA TXTBUF,X 
200 CMP #$9B 
210 BEQ FINI 
220 INX 
230 JMP LOOP 
240 FINI 
250 JSR OPNSCR 
260 JSR PRNTLN 
270lNFIN 
280 JMP INFIN 

If you want to run the Response program - and I hope you do
you can type it into your computer's memory right now. Since it 
calls the same subroutines that its predecessor did, you can 
assemble it and run it as soon as it's typed, provided you still have 
the program called PRNTSC is loaded into RAM. 

To run the Response program, you can either call your debugger 
program and use a G command, or go into DOS mode and use a 
DOS command. Whichever mode you decide to use, you should 
be able to run the program using a run address of $066B, 
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provided that you've typed it and assembled it in accordance 
with the suggestions that I've provided. Even if you've followed 
the instructions, though, you'll still encounter one small problem. 
Only the first 23 characters of the string "I AM the leader, you 
foo!!" will print out on your computer screen. That's because the 
text buffer that we created in the program PRNTSC is only 23 
characters long. 

That flaw is easy to remedy. But before we fix it, it might be a 
good idea to save Response on a disk, in both its source code and 
object code versions. The program's suggested file names are 
RESPONSE.SRC and RESPONSE.OBJ. 

Fixing the PRNTSC program 

N ow we're ready to lengthen the text buffer used in the PRNTSC 
program, so that it will print its complete message on your com
puter screen. To lengthen the print buffer, just put your assem
bler into its editor mode and load the program's source code into 
your computer's memory. Then you can change line 70 from 
BUFLEN=23 to BUFLEN=40. When you've made this change, 
you can save the amended source code under the file name 
PRNTSC.SR2, assemble the program, and save the object code 
under the name PRNTSC.OB2 (to distinguish it from PRNTSC.SRC 
and PRNTSC.OBJ, you original PRNTSC programs). 

When you've saved your PRNTSC.SR2 and PRNTSC.OB2 pro
grams, you can reload the Response program and run it with 
PRNTSC. OB2 instead of PRNTSC. OBJ. This time you should see 
the full string that the Response program calls for on your video 
screen - but, unfortunately, you'll now notice something else 
wrong. After the line, "I AM the leader, you fool!" you'll see a line 
of little hearts. How did they get there? I'll answer that question 
in just a moment. But first, let's take a look at some of the dif
ferences between the program called The Visitor and the one 
called Response. 
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A Better Routine 

From a technical point of view, the Response program is better 
than The Visitor - for several reasons. The most obvious dif
ference between the two programs is the way they handle text 
strings. In the program called The Visitor, we used a text string 
made up of ATASCII codes. In Response, we've used a string 
made up of actual characters. That made the program much 
easier to write - and it makes it much easier to read, too. 

Another important difference between our newest program and 
its predecessor is the way the loop is written. In the program 
called The Visitor, the loop counted the number of characters 
that had been printed on the screen, and ended when the count 
hit 23. Now that's a perfectly good system - for printing text 
strings that are 23 characters long. Unfortunately, it isn't so 
great for printing strings of other lengths. So it isn't a very ver
satile routine for printing characters on a screen. 

Testing for a carriage Return 

The Response program is much more versatile than The Visitor 
because is can print strings of almost any length on a screen. 
That's because it doesn't keep track of the number of characters 
it has printed by maintaining a running count of how many let
ters have been printed on the screen. Instead, each time the pro
gram encounters a character, its tests the character to see 
whether its value is $9B - the ATASCII code for a carriage 
return, or end of line (EOL) character. If the character is not an 
EOL, the computer prints it on the screen and goes on to the next 
character in the string. If the character is an EOL, the EOL is 
printed on the screen and the routine ends. And that's that -
except those pesky little hearts that we encountered when we ran 
the Response program. Now we'll take another look at those 
hearts, and see what we can do about them. 
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A string of Hearts 

The hearts are there because the text buffer we have set up for 
our Visitor and Response message is now 40 characters long -
longer than either of our messages are. And the part of the buffer 
that's left over is filled with zeros, as empty memory locations in a 
computer usually are. Then why the hearts? Well, in the ATASCII 
character code that your Atari uses, a zero does not equate to a 
space; instead, it equates to a heart-shaped graphics character. 
The ASCII code for a space is $20, or 32 in decimal notation. Just 
look at the ASCII character string in The Visitor and Response 
programs, and you'll see that the spaces in the message "TAKE 
ME TO YOUR LEADER!" are indeed represented by the value $20. 

It is possible, of course, to print messages on your Atari's screen 
without strings of hearts appearing after them. What you have to 
do to keep the hearts from appearing is clear your text buffer -
or, more accurately, stuff it with spaces - before a program 
runs. 

Clearing a Text Buffer 

Here's a short routine that will clear a text buffer - or any block 
of memory - and will stuff it with spaces, zeros, or any other 
value you choose. By incorporating this routine into our Visitor 
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and Response programs, you can replace the zeros in your 
on screen messages with ASCII spaces, and can therefore make 
spaces appear as spaces, rather than as hearts, on your computer 
screen. As you continue to work with assembly language, you'll 
find that memory clearing routines such as this one can come in 
very handy in many different kinds of programs. Word processors, 
telecommunications programs, and many other kinds of software 
packages make extensive use of routines that can clear values 
from blocks of memory and replace them with other values. 

PROGRAM TO CLEAR A BLOCK OF MEMORY 

1300 FILL 
131121 LOA#FILLCH 
132121 LOX #BUFLEN 
133121 START 
134121 OEX 
135121 STA TXTBUF,X 
136121 BNE START 
137121 RTS 

This program is quite straightforward. Using indirect address
ing and an X register countdown, it will fill each memory address 
in a text buffer (TXTBUF) with a designated fill character 
(FILLCR). Then the program ends. This routine will work with 
any 8-bit fill character, and with any buffer length (BUFLEN) up 
to 255 characters. Later on in this book, you'll find some 16-bit 
routines that can stuff values into longer blocks of RAM. You can 
use this routine by incorporating it into both your Visitor pro
gram and your Response program. Let's append it to both of 
those programs now, starting with The Visitor. With your assem
bler in its editing mode, load The Visitor from a disk and add 
these lines to it: 

55 BUFLEN = 4121 
6121 FILLCH = $2121 

15121 JSR FILL 

13121121 FILL 
131121 LOA#FILLCH 
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1320 LOX #BUFLEN 
1330 START 
1340 OEX 
1350 STA TXTBUF,X 
1360 BNE START 
1370 RTS 

When these changes have been made, your VISITOR.SRC pro
gram should look like this: 

THE VISITOR 

10; 
20 ;THE VISITOR 
30; 
35 TXTBUF = $5041 
40 OPNSCR = $5003 
50 PRNTLN = $5031 
55 BUFLEN = 40 
60 FILLCH = $20 
70; 
80 *=$600 
90; 
100 TEXT .BYTE $54,$41 ,$4B,$45,$20,$40,$45, 

$20 
110 .BYTE $54,$4F,$20,$59,$4F,$55,$52,$20 
120 .BYTE $4C,$45,$41 ,$44,$45,$52,$21 
130; 
140 VIZTOR 
150 JSR FILL 
160 LOX #0 
170 LOOP LOA TEXT,X 
180 STA TXTBUF,X 
190 INX 
200 CPX #23 
210 BNE LOOP 
220 JSR OPNSCR 
230 JSR PRNTLN 
240 INFIN JMP INFIN 
1300 FILL 
1310 LOA#FILLCH 
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1320 LOX # BUFLEN 
1330 START 
1340 OEX 
1350 STA TXTBUF,X 
1360 BNE START 
1370 RTS 

When your program looks just like that, you can save it on a disk 
in its improved version. Then you can make exactly the same 
kinds of changes in your Response program, and resave that pro
gram, too. When you've finished with the Response program, it 
should look something like this: 

RESPONSE 

10; 
20 ;RESPONSE 
30; 
40 TXTBUF = $5041 
50 OPNSCR = $5003 
60 PRNTLN = $5031 
65 BUFLEN = 40 
70 FILLCH = $20 
75 ; 
80 EOL = $9B 
90; 
100 *=$650 
110 ; 
120 TEXT ,BYTE " I AM the leader, you fool!",EOL 
130; 
140 RSPONS 
150; 
160 LOX#0 
170 LOOP 
180 LOA TEXT,X 
190 STA TXTBUF,X 
200 CMP #$9B 
210 BEQ FINI 
220 INX 
230 JMP LOOP 
240 FINI 
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250 JSR OPNSCR 
260 JSR PRNTLN 
2701NFIN 
280 JMP INFIN 
1300 FILL 
1310 LOA # FILLCH 
1320 LOX#BUFLEN 
1330 START 
1340 DEX 
1350 STA TXTBUF,X 
1360 BNE START 
1370 RTS 

Doing It 

When you have both of these improved programs safely stored on 
a disk - in both their source code and object code versions - you 
can run them and see that all of our difficulties with our text buf
fers have now been resolved. And that brings us to our next chap
ter, in which you will learn how to call assembly language routines 
from BASIC programs. 
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Chapter Eight 

calling Assembly Language 
programs from BASIC 

Sometimes it's hard to decide whether to write a program in 
BASIC or in assembly language. But it isn't always necessary to 
make that choice. In many cases, you can combine the simplicity 
of BASIC with the speed and versatility of assembly language by 
simply writing assembly language routines that can be called 
from BASIC. In this chapter, that's what you'll be learning to 
do. 

The first two programs we'll be working with are the ones that 
were introduced in Chapter 7: the programs called The Visitor 
and Response. Before we can call these two programs from 
BASIC, however, we'll have to make a couple of changes in the 
way the two programs are written. First we'll have to delete the 
infinite loop at the end of each program, and replace it with an 
RTS instruction, so that each program will return to BASIC 
when it's done instead of looping around endlessly. We'll also 
have to add a PLA instruction at the beginning of each program 
so that the programs won't mess up the stack when they're called 
from BASIC. Later on in this chapter, we'll explain exactly why 
these PLA instructions are needed. If you've just finished Chap
ter 7, and still have your computer on, you can load The Visitor 
and Response programs into your computer and make the 
necessary changes in them now. 

starting with The Visitor 

Let's start with the program called The Visitor. With your assem
bler active and in its EDIT mode, load the source code of The 
Visitor into your computer and type LIST. This is what you 
should see: 
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THE VISITOR 

10 ; 
20 ;THE VISITOR 
30; 
35 TXTBUF=$5041 
400PNSCR=$5003 
50 PRNTLN=$5031 
55 BUFLEN=40 
60 FILLCH=$20 
70; 
80 *=$600 
90; 
100 TEXT ,BYTE $54,$41 ,$4B,$45,$20,$40,$45, 

$20 
110 ,BYTE $54,$4F,$20,$59,$4F,$55,$52,$20 
120 ,BYTE $4C,$45,$41 ,$44,$45,$52,$21 
130; 
140 VIZTOR 
150 JSR FILL 
160 LOX #0 
170 LOOP LOA TEXT,X 
180 STA TXTBUF,X 
190 INX 
200 CPX #23 
210 BNE LOOP 
220 JSR OPNSCR 
230 JSR PRNTLN 
2401NFIN JMP INFIN 
1300 FILL 
1310 LOA # FILLCH 
1320 LOX #BUFLEN 
1330 START 
1340 OEX 
1350 STA TXTBUF,X 
1360 8NE START 
1370 RTS 

Now you can amend the program so it can be called from BASIC. 
First, insert a line containing a PLA instruction by typing 

145 PLA 
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Then change the infinite loop in line 240 to an RTS instruction 
by typing 

240 RTS 

When that's done, I suggest that you change the name of the pro
gram to VISITOR.SR2 to distinguish it from the original pro
gram. To do that, just type 

20 ;VISITOR.SR2 

and hit the carriage return. 

All DOne 

When you've made all of those line changes in the VISITOR.SRC 
program, type LIST again and here's what you should see: 

THE VISITOR 

10; 
20 ;VISITOR.SR2 
30; 
35 TXTBUF=$5041 
400PNSCR=$5003 
50 PRNTLN=$5031 
55 BUFLEN=40 
60 FILLCH=$20 
70; 
80 *=$600 
90; 
100 TEXT .BYTE $54,$41 ,$4B,$45,$20,$40,$45, 

$20 
110 .BYTE $54,$4F,$20,$59,$4F,$55,$52,$20 
120 . BYTE $4C,$45,$41 ,$44,$45,$52,$21 
130; 
140 VIZTOR 
145 PLA 
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150 JSR FILL 
160 LOX #0 
170 LOOP LOA TEXT,X 
180 STA TXTBUF,X 
190 INX 
200 CPX #23 
210 BNE LOOP 
220 JSR OPNSCR 
230 JSR PRNTLN 
240 RTS 
1300 FILL 
1310 LOA #FILLCH 
1320 LOX#BUFLEN 
1330 START 
1340 OEX 
1350 STA TXTBUF,X 
1360 BNE START 
1370 RTS 

Saving your Amended Program 

When you've made all of the necessary changes in your Visitor 
program, you can save it on a disk once again - in both its source 
code and obj ect code versions - under the file names VISITOR. SR2 
and VISITOR.OB2. Then you'll be ready to amend the other pro
gram introduced in Chapter 7 - Response - so that it, too, can 
be called from BASIC. 

Amending Response 

To fix up RESPONSE.SRC so that it is accessible from BASIC, 
just load its source code into your computer and make the same 
three kinds of line changes that you made in your Visitor pro
gram. When you've made the necessary changes, this is how Re
sponse should look: 
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RESPONSE 

10; 
20 ;RESPONSE.SR2 
30; 
40 TXTBUF=$5041 
500PNSCR=$5003 
60 PRNTLN=$5031 
65 BUFLEN=40 
70 FILLCH=$20 
75 ; 
80 EOL=$9B 
90; 
100 *=$650 
110 ; 
120 TEXT .BYTE "I AM the leader, you fool!",EOL 
130 ; 
140 RSPONS 
145 PLA 
150 JSR FILL 
160 LOX #0 
170 LOOP 
180 LOA TEXT,X 
190 STA TXTBUF,X 
200 CMP #$9B 
210 BEQ FINI 
220 INX 
230 JMP LOOP 
240 FINI 
250 JSR OPNSCR 
260 JSR PR NTLN 
270 RTS 
1300 FILL 
1310 LOA # FILLCH 
1320 LOX#BUFLEN 
1330 START 
1340 OEX 
1350 STA TXTBUF,X 
1360 BNE START 
1370 RTS 
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Doing It 

When you've made the necessary changes in the Response pro
gram, you can save it in its new version under the file names 
RESPONSE.SR2 and RESPONSE.OB2. Then we'll be ready to 
call both The Visitor program and the Response program from 
BASIC. To do that, you'll need a BASIC cartridge for your com
puter if it's an Atari 400, 800 or 1200XL. (You won't need a 
BASIC cartridge if you have a late model Atari, since the newer 
Atari models have BASIC built- in.) Anyway, when you have your 
computer up and running again, in BASIC now, and with your 
data disk in your disk drive, the first thing you'll have to do is call 
up the Atari DOS menu. When your BASIC interpreter's 
READY prompt appears, type the command DOS. Then, when 
the DOS menu appears, select menu option L (BINARY LOAD) 
and load VISITOR.OB2, RESPONSE.OB2 and PRNTSC.OB2 
into your computer's memory. 

When you have all three programs loaded, type B to return con
trol of your computer to your BASIC interpreter. Then, when 
your BASIC interpreter's READY prompt appears on your 
screen, you can type in this BASIC command: 

X=USR(1559) 

If you've typed and assembled your VISITOR.SR2 program just 
the way we did, and if its object code is now stored in your com
puter's memory, then it should run as soon as you type X= 
USR(1559) and hit a carriage return, since its starting address is 
$0617, or 1559 in decimal notation. 

Similarly, you can run RESPONSE.OB2 by simply typing 

X=USR(1643) 

and hitting your carriage return. 

Now that you've called two programs from BASIC, we're ready 
to talk about how you did it: specifically, how the Atari BASIC 
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USR function works, and how it's used in assembly language 
programming. 

The USR Function 

Machine language programs, as we have just observed, are 
called from BASIC with a special function called a USR state
ment. The USR function can be written in two ways: either with 
or without one or more optional arguments. A call that does not 
include arguments is written using the format we used to call our 
Visitor and Response programs: 

X=USR(1643) 

When a call is written using this format, the number in parentheses 
equates to the starting address (expressed as a decimal number) 
ofthe machine language program being called. When the machine 
language program ends, control of the computer will be returned 
to BASIC. If a program is running when the USR function is used, 
the program will resume at the first instruction following the 
USR fuction when control is returned to BASIC. 

Works Like" GOS U 8" 

In this respect, a USR statement works just like an ordinary 
GOSUB instruction. Like a subroutine written in BASIC, a 
machine language program called from BASIC must end with a 
return instruction. In BASIC, the return instruction is, logically 
enough, RETURN. In assembly language, the return instruction 
is RTS, which stands for "ReTurn from Subroutine." A call, in 
which arguments are used, looks like this 

X=USR[1536,AOR[A$),AOR[B$)) 

or like this: 

X=USR[1536,X,Y) 
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When arguments are used in a USR function, each argument can 
be any value that equates to a 16-bit number. Machine language 
operations can be performed on the values referred to in the 
arguments, and the results of those operations can be passed 
back to BASIC when the machine language operations are com
pleted. In this way, operations that take place at machine language 
speed can be used in BASIC programs. Whether arguments are 
used in a USR function or not, the machine language program 
called by the USR function can also return a 16-bit value to 
BASIC when it passes control back to a BASIC program. 

Returning to BASIC 

To return a value to BASIC when a machine language program 
has ended, all you have to do is store the value that is to be returned 
in two special8-bit memory locations before control is returned 
to BASIC. Those two locations are $D4 and $D5 (212 and 213 in 
decimal notation). When a value to be returned to BASIC is 
stored in these two locations, it should be stored with the low byte 
in $D4 and the high byte in $D5. When control returns to BASIC, 
the 16-bit value in those two locations will automatically be con
verted into a decimal value ranging from 0 to 65535. Then that 
value will be returned to BASIC as the value of the variable in the 
USR statement, for example, the "X" in X=USR(1536,X,y). 

How the USR Function Works 

When a BASIC program enounters a USR statement, the memory 
address of the current instruction in the BASIC program being 
run is placed on top ofthe hardware stack. Next an 8-bit number, 
the number of arguments that appear in the USR statement, is 
pushed onto the stack. If there are no arguments in the USR 
statement, then a zero is placed on top of the stack. When a USR 
statement calls a machine language subroutine, the machine 
language subroutine's return address is always covered up on 
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the stack by another number and therefore, even if that number 
is a zero, it must be cleared from the stack before control can be 
returned to BASIC. 

Clearing the stack 
And that is why the first mnemonic in most machine language 
programs designed to be called from BASIC is a" clear the stack" 
instruction: PLA. 

More stack Operations 
If arguments are included in a USR function, then more opera
tions involving the stack take place when a machine language 
program is called. Before the number of arguments is placed on 
the stack, the arguments themselves are pushed onto the stack. 
Then, when the machine language program begins, the argu
ments can be removed from the stack and processed by the 
machine language program in whatever way the programmer 
wishes. Finally, when the machine language program ends and 
control of the computer is passed back to BASIC, the results of 
any machine language operations that may have been carried 
out using the arguments in the USR statement can be stored in 
memory addresses $D4 and $D5. The values that have been 
stored in this pair of locations can then be returned to BASIC as 
the value of the variable in the original USR statement. 

A Sample Program 
That may sound like a mouthful, but another sample program 
that you can type into your computer and call from BASIC right 
now should clarify what we're getting at. Type the following pro
gram in your computer. 

A 16-BIT ADDITION PROGRAM 

10 
20 NUM1 =$CB 
30 NUM2=$CE 
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40 SUM=$D4 
50 ; 
60 *=$0600 
70 ; 
90 
100 
105 
110 
120 
130 
140 
150 
160 
170 
180 ; 
190 
210 
220 
230 
240 
250 
260 
270 

CLD 
PLA ;CLEAR =#= OF ARGS. FROM ACC. 
PLA 
STA NUM1 +1 ;HIGH BYTE OF 1 ST ARG. 
PLA 
STA NUM1 ;LOW BYTE OF 1 ST ARG. 
PLA 
STA NUM2 +1 ;HIGH BYTE OF 2ND ARG. 
PLA 
STA NUM2 ;LOW BYTE OF 2ND ARG. 

CLC 
LOA NUM1 ;LOW BYTE OF NUM1 
ADC NUM2 ;LOW BYTE OF NUM2 
STA SUM ;LOW BYTE OF SUM 
LOA NUM1+1 ;HIGH BYTE OF NUM1 
ADC NUM2+1 ;HIGH BYTE OF NUM2 
STA SUM+1 ;HIGH BYTE OF SUM 
RTS 

When you've finished typing the program, you can assemble it 
and save it in both its source code and object code versions. The 
suggested file names for the listings are "ADD16B.SRC" and 
"ADD16B.OBJ". 

An Adding Machine program 
When you have your programs saved, you can remove your 
assembler from your computer, and type in this BASIC program: 

THE WORLD'S MOST EXPENSIVE ADDING 
MACHINE 

10 GRAPHICS 0:PRINT:PRINT "WORLD'S MOST 
EXPENSIVE ADDING MACHINE" 

20 PRINT: PRINT "X=" ; 
30 INPUT X 
40 PRINT "Y="; 
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50 INPUT Y 
60 SUM=USR(1536,X,Y) 
70 PRINT "X+Y=";SUM 
80 PRINT 
90 GOTO 20 

When you have finished typing in the program, you can save it 
under the file name "ADD16B.BAS". That will complete our 
preparations for calling our newest addition program from BASIC. 
You can now call your ADD16B.OBJ from BASIC the same way 
you called your Response program. Just call up your DOS menu 
and load the binary file ADDI6B.OBJ. Type "B" to get back into 
your BASIC editing mode, load your ADD16B.BAS file, and type 
"RUN". You can then start using "The World's Most Expensive 
Adding Machine." 

As you can see by running a few numbers through your new add
ing machine, it can perform 16-bit addition. Although we haven't 
covered 16-bit addition in this book yet, you can probably figure 
out how the program works with very little trouble. 

First, in lines 20 through 40, the program reserves memory space 
for three 16-bit numbers, two numbers that are added, and their 
sum. The two numbers to be added are labeled NUM1 and NUM2, 
and the address where their sum will be store is labeled SUM. In 
line 100, the program clears the hardware stack with a PLA 
instruction. That gets rid of the 8-bit "number of arguments" 
value that our BASIC program has placed on top of the stack. 
Then, in lines 105 through 170, the program removes two 16-bit 
arguments from the stack - the 16-bit numbers that have been 
included in the USR statement in our BASIC program. These are 
the two numbers to be added, and our machine language pro
gram now places them in the two pairs of 8-bit memory locations 
that have been labeled NUMI and NUM2. 

The Heart of the program 

N ow we've come to the main part of our assembly language pro
gram. In line 200, the program clears the carry flag, as every good 
addition program should. Then the actual addition begins. 

137 



The program adds the low bytes of NUMI and NUM2, and stores 
the result of this calculation into the low byte of SUM. It then adds 
the high bytes of NUMI and NUM2 (along with a carry, if there is 
one) and stores the result of this calculation into the high byte 
of SUM. 

That's all there is to it. As it turns out, and this is no accident, the 
memory addresses that have been reserved for the the value 
SUM are $D4 and $D5, the two special memory locations that are 
always returned to BASIC as the value of the variable in a USR 
command. That's quite a mouthful, but it really isn't hard to 
understand. What it means is that our machine language pro
gram has now solved the equation it was presented with when we 
handed it the USR instruction in our BASIC program. That USR 
statement, as you may remember, looked like this: 

SUM=USR(1536,X,Y) 

the values have now been assigned to a ll of its variables. 

The "X" and "Y" in the equations were assigned values when you 
typed them in during the BASIC part of the program. Then, when 
control of your computer was transferred to machine language, 
the values of X and Y were converted to 8-bit numbers and 
pushed onto the hardware stack. In the machine language pro
gram which you wrote, the values of X and Y were pulled from the 
stack. They were then stored in two pairs of 8-bit memory loca
tions (labeled NUMI and NUM2, to avoid any confusion with the 
6502'sX and Y registers). Next, thevalues of X and Y(nowcalled 
NUMI and NUM2) were added. Their sum was stored in $D4 and 
$D5. When control was returned to BASIC, your BASIC inter
preter converted the values in $D4 and $D5 into a 16-bit value 
and assigned that value to the the BASIC variable SUM, the vari
able used in the USR statement that called the machine language 
program. Then, as instructed in the BASIC program you wrote, 
your BASIC interpreter printed the value stored in the BASIC 
variable sum on your video screen. 

This was quite a complex series of operations, as most sequences 
of machine language operations are. Unfortunately, we still 
haven't written a very useful assembly language addition pro-
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gram. While the adding machine we have just created may be a 
very expensive, it isn't a very useful one in real world applica
tions. It can add 16-bit numbers and print out 16-bit results. 
That's a definite improvement over the 8-bit addition program 
we created a few chapters back, but it still has some serious 
deficiencies. It can't handle numbers or results that are longer 
than 16 bits. Itcan't work with fioatingpoint decimal numbers, or 
with signed numbers. If you type in a number that's too big for it 
to handle, it won't let you know, it will simply "roll over" past zero 
and add numbers without any carrying, and give incorrect 
results. 

Obviously, we have not yet managed to write an addition pro
gram that will work as well as a good addition program should. 
We haven't even looked at any su btraction, multiplication or divi
sion programs. Very shortly, though, we shall. We'll also be dis
cussing many other topics including signed numbers, BCD 
numbers, bit manipulations and more in Chapter 10, Assembly 
Language Math. Before we get to Chapter 10, however, there's 
another bit of ground to cover in Programming Bit by Bit, the 
topic of Chapter 9. 
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Chapter Nine 

programming Bit by Bit 

In the world of computer programming, being able to perform 
operations on single binary bits is somewhat akin to being able to 
perform microsurgery. If you can test bits, shift bits and generally 
manipulate bits skillfully, you're a real D.A.P. (Doctor of Assem
bly Language Programming). Nonetheless, bit manipulation, 
like most facets of assembly language programming, is not nearly 
as difficult as it appears at first glance. An understanding of a 
few basic principles will remove much of the mystery from bit
shifting, bit-testing, and other single bit operations in assembly 
language. We've already touched on many of the concepts you'll 
need to know to become an expert bit surgeon. 
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For example, consider what you've already learned about using 
the carry bit of the 6502 processor status register. Using the 
carry bit is one of the most important bit manipulation techniques 
in 6502 assembly language. You've already had some experience 
in using the carry bit in addition programs. In this chapter, you'll 
have an opportunity to teach your computer how to perform some 
new tricks using the carry bit of its 6502 processor status (P) 
register. 

using the carry Bit in Bit-Shifting 
operations 

As we have pointed out a number of times now, the 6502 micro
processor in your Atari computer is an 8-bit chip; it cannot per
form operations on numbers larger than 255 without putting 
them through some fairly tortuous contortions. In order to process 
numbers that are larger than 255, the 6502 must split them up 
into 8-bit chunks, and then perform the requested operations on 
each piece of a number. Then each number that has been ripped 
apart must be put back together and made whole again. Once 
you're familiar with how this is done, it isn't nearly as difficult as 
it sounds. In fact the electronic scissors that are used in all of this 
electronic cutting and pasting are actually contained in one tiny 
bit, the carry bit in the 6502's processor status (P) register. 

Four Bit-Shifting Instructions 

You've seen how carry operations work in several programs in 
this book. But in order to get a clearer look at how the carry works 
in 6502 arithmetic, it would be useful to examine four very spe
cialized machine language instructions: ASL (Arithmetic Shift 
Left), LSR (Logical Shift Right), ROL (ROtate Left), and ROR 
(ROtate Right). These four instructions are used very exten
sively in 6502 assembly language. We'll look at them one at a 
time, starting with the ASL (Arithmetic Shift Left) instruction. 
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ASL (Arithmetic Shift Left) 

As we pointed out back in our chapter on binary arithmetic, every 
round number in binary notation is equal to the square of the pre
ceding round binary number. In other words, 10000000 ($80) is 
double the number 0100 0000 ($40), which is double the number 
00100000 ($20), which is double the number 0001 0000 ($10), and 
so on. It is therefore extremely easy to multiply a binary number 
by 2. All you have to do is shift every bit in the number left one 
space, and place a zero in the bit that has been emptied by this 
shift, bit 0, or the rightmost bit of the number. If the leftmost bit, 
bit 7, of the number to be doubled is a 1, then provision must be 
made for a carry. The entire operation we have just described, 
shifting a byte left with a carry, can be performed by a single 
instruction in 6502 assembly language. That instruction is ASL, 
which stands for "Arithmetic Shift Left." Here's an illustration 
of how the ASL instruction works: 

ACCUMULATOR 

r----17161514131211 10 1 ~0 
@] 

As you can see from this illustration, the instruction ASL moves 
each bit in an 8-bit number one space to the left, each bit except 
Bit 7. Bit 7 drops into the carry bit of the processor status (P) 
register. The ASL instruction is used for many purposes in 6502 
assembly language. You could use it as an easy way of doubling 
a number. 

10 ; 
20 *=$0600 
30 
40 LOA #$40; REM 01000000 
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50 ASL A ;SHIFT VALUE IN ACCUMULATOR 
TO LEFT 

60 STA $CB 
70 .END 

If you run this program, and then use your debugger's "D" (dis
play) command to examine the contents of memory address $CB, 
you'll see that the number $40 (0100 0000) has been doubled to 
$80 (1000 0000) before being stored in memory address $CB. 

packing Data Using ASL 

AnotherusefortheASL instruction is to "pack" data, and thus to 
increase a computers effective memory capacity. To get an idea 
of how data packing works, suppose you had a series of 4-byte 
values stored in a block of memory in your computer. These 
values could be ASCII characters, BCD numbers, (more about 
those later) or any other kind of 4-bit values. Using the ASL 
instruction, you could pack two such values into every byte of the 
block of memory in which they were stored. You could thus store 
the values in half the memory space that they had previously 
occupied in their unpacked form. Here is a routine you could use 
in a loop to pack each byte of data: 

10; 
20 ;PROGRAM FOR PACKING DATA 
30; 
40 *=$0600 
50; 
60 NYB1=$C0 
70 NYB2=$C1 
B0 PKDBYT=$C2 
90; 
100 
110 
120 
130 
140; 
150 
160 
170 

LOA #$04 
STA NYB1 
LOA #$06 
STA NYB2 

CLC 
LOA NYB1 
ASLA 
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180 ASLA 
190 ASL A 
200 ASL A 
210 ADC NYB2 
220 STA PKDBYT 
230 .END 

How the Routine Works 
This routine will load a 4-bit value into the accumulator, shift 
that value to the high nybble in the accumulator, and then use the 
instruction ADC to place another 4-bit value in the low nybble of 
the accumulator. The accumulator is thus "packed" with two 4-
bit values, and those two values are then stored in a single 8-byte 
memory register. 

Testing the Results 

Type the program into your computer, and you can then use 
MAC/65 or Atari debugger's G (GOTO) command to run it Then, 
if it executes correctly, you can use your debugger's "D" (display) 
command to see exactly what has been done. With your assem
bler in its DEBUG mode, type "DCO" and you should see this 
line: 

00C0 04 06 46 00 00 00 00 00 

As you can see from this line, the program has stored the number 
$04 in memory address $CO, and $06 in memory address $Cl. 
Both ofthesevalues have been packed into memory address $Cl. 
It doesn't take much imagination to see how this technique can 
double your computer's capacity to store 4-bit numbers in 8-bit 
memory locations. 

Unpacking Data 

It wouldn't do any good to pack data if it couldn't later 
be unpacked. It so happens that data packed using ASL can be 
unpacked using a complementary instruction, LSR (Logical Shift 
Right). We'll discuss the LSR instruction later on in this chapter. 
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Loading a Color Register Using ASL 

In Atari assembly language, the ASL command can also be used 
to control the colors on the screen. Here's how that's done. In an 
Atari computer the colors you can use in screen graphics are 
stored in five color registers. Tables listing the colors and lumi
nance values that can be stored in these registers are printed in 
Part 9 of theA tari BASIC R eference Manual. The upper nybble of 
each Atari color register holds a hue value, which is the same 
number as the second parameter used in the SETCOLOR com
mand in Atari BASIC. Bits 1, 2 and 3 in each color register hold 
the luminance value of the color, the same number as the third 
parameter in the BASIC SETCOLOR command. It doesn't mat
ter what bit 0 is in a color register, since that bit is not used. By 
using the instruction ASL, you can easily control the onscreen 
colors in an Atari assembly language program. 

How it's Done 

Color Register 2 holds the background color in Graphics 0, the 
standard Atari text mode. Suppose you wanted to load this regis
ter with its standard color, which is light blue. In your Atari, the 
memory address of Color Register 2 is $2C6. The Atari code num
ber for blue is 9, and the code number for the luminance of the 
light blue used in the Graphics 0 screen display is 4. The ASL 
command could therefore be used to store light blue in Color 
Register 2 in the following manner: 

10 
20 ;SETCLR PROGRAM 
30 
40 *=$0600 
50 
60 
70 
80 
90 
100 
110 
120 

CLC 
CLO 
LOA #$09 ;REM LIGHT BLUE 
ASLA 

ASLA 
ASLA 
ASLA 
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130 STA $2C6 ;REM COLOR REGISTER 2 
140 LOA #$04 ;HUE NO.4 
150 ASLA 
160 AoC $2C6 
170 STA $2C6 
180 .END 

As you can see, this program loads Color Register 2 (address 
$2C6) with Color # $09, Luminance # $04, the shade of light blue 
that Atari uses for the background of its standard Graphics 0 
screen. If you assemble the program and run it, these are the 
values that will wind up in each bit of Color Register 2 (memory 
address $2C6) in your computer. 

Bit No. 

Contents 

• Bit 0 is not used. 

COLOR REGISTER 2 
(memorv address $2C6) 

7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 * 

Color Lum. 
[$(9) [$(4) 

Testing the program 

Type the program and execute it, you can then use the "D" com
mand of your MAC/65 or Atari debugger to see if it worked. 
When you type "D2C6" take a look at the contents of Color Regis
ter 2, your display line should tell you that memory address $2C6 
(Color Register 2) contains the value $98. Convert the hex num
ber$98 to a binary number, and you'll see that it equals 10011000, 
the exact binary number illustrated above in our bit-by-bit 
breakdown of Color Register 2. This same technique could also be 
used, to load any other register with any other color and lumi
nance in an assembly language program. All you'd have to do is 
substitute a few variables for literal numbers. Here's one way the 
program could be rewritten to make it more versatile: 
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A BETIER PROGRAM FOR SETIING COLORS 

10 ; 
20 ;SETCLR PROGRAM 
30 ; 
40 CLRNR=$C0 ;COLOR NUMBER 
50 HUENR=$C1 ;HUE NUMBER 
60 CLREG=$2C6 ;COLOR REGISTER N R. 
70 ; 
B0 *=$0600 
90 ; 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 

LOA #$09 ;LlGHT BLUE 
STA CLRNR 
LOA #$04 ;HUE #4 
STA HUENR 

CLC 
CLO 
LOA CLRNR 
ASLA 
ASLA 
ASLA 
ASLA 
STA CLREG 
LOA HUENR 
ASLA 
AOC CLREG 
STA CLREG 
.ENO 

This is actually two programs in one. In lines 100 to 130, you can 
stuff values you want to use into variables that represent a color, 
a luminance, and a color register. Then the main body of the pro
gram, lines 150 through 260, can be used to load any color and 
luminance values into any color register. So why not try it? 
Change the variables we used in lines 40 through 60, run the pro
gram a few times, and watch the colors on your screen change! 
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An Easier way 
You can also change the screen colors generated by your Atari 
without going to the trouble of using a lot of ASL commands. If 
you wish, you can perform all of the necessary ASL operations in 
your head, before writing the program. For example, if you mul
tiply one of Atari's color numbers by $10 (or 16 in decimal nota
tion), you'll get the same result that you would if you performed 
four ASL operations on the number. Multiply $09 by $10, and 
you'll get $90, the same number you'd get by performing four 
ASL operations on the number $09. Similarly, you can perform 
one ASL operation on a binary number by simply multiplying it 
by2 (or, if you prefer, by $02). Perform oneASL operation on the 
number $04 (binary 0100), and you get $08 (binary 1000); the 
same number you'd get if you multiplied $04 by 2. If you wanted 
to write an easier SETCLR program, you could do it this way: 

AN EASIER SETCLR PROGRAM 

10 
20 ;AN EASIER SETCLR PROGRAM 
30 
40 CLRNR=$C0 ;COLOR NUMBER 
50 HUENR=$C1 ;HUE NUMBER 
60 CLREG=$2C6 ;COLOR REGISTER NO. 
70 
80 *=$0600 
90 
100 
110 
120 
130 
140 
150 
160 
170 
220 
230 
250 
260 
270 

LOA #$90 ;COLOR NO. 09 TIMES $10 
STA CLRNR 
LOA #$08 ;HUE NO. 04 TIMES 2 
STA HUENR 

CLC 
CLO 
LOA CLRNR 
STA CLREG 
LOA HUENR 
AOC CLREG 
STA CLREG 
.ENO 
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By adding a couple of loops to a program like this, plus an infinite 
loop at the end, it would be possible to stuff a color register with a 
constantly changing rainbow of colors. You could then make the 
Atari computer cycle over and over again through all of its screen 
colors, not stopping until someone hit the BREAK or SYSTEM 
RESET key, or turned off the machine or pulled the plug. Here's 
a program that will do just that. It will loop endlessly through all 
of the colors and hue combinations that your Atari can generate, 
displaying each of them in turn on the border area around your 
computer screen. (If the program looks familiar, that's because it 
is. As promised, it's an assembly language version ofthe BASIC 
color rotation program that was presented back in Chapter 2.) 
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THE ATARI RAINBOW 

10 ; 
20 ;RAINBOW.SRC 
30 ; 
40 COLRBK=$2C8 ;THE GRAPHICS 0 BORDER COLOR 

REGISTER 
50 TMPCLR=$C0;A PLACE TO STORE COLORS 

TEMPORARILY 
60 ; 
70 *=$0600 
80 ; 
90 START LOA #$FE ;MAX COLOR VALUE 
100 STA TMPCLR 
110 ; 
120 NEWCLR LOA TMPCLR 
130 STA COLRBK 
140 ; 
150 LOX #$FF 
160 LOOPA ;JUST A DELAY LOOP 
170 ; 
180 LOY #$30 
190 LOOPB ;ANOTHER DELAY LOOP 
200 DEY 
210 BNE LOOPB 
220 ; 
230 DEX 
240 BNE LOOPA 
250 ; 
260 DEC TMPCLR ;DECREMENT TMPCLR 
270 DEC TMPCLR ;SUBTRACT 2 FOR NEXT COLOR 
280 BNE NEWCLR ;IF NOT ZERO, CHANGE COLORS 

AGAIN 
290 ; 
300 JMP START ;ALL COLORS DISPLAYED - NOW 

DO 'EM ALL AGAIN 
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LSR (Logical Shift Right) 

The instruction LSR (Logical Shift Right) is the exact opposite of 
the instruction ASL, as you can see from this illustration: 

An Illustration of the "LSR" Mnemonic 

Accumulator 

0-17161514131211IOI~ 

[§J 

How the LSR Instruction Works 

LSR, like ASL, works on whatever binary number is in the 6502's 
accumulator. But it will shift each bit in the number one position 
to the right. Bit 7 of the new number, left empty by the LSR 
instruction, will be filled in with a zero. The LSB (Least Signifi
cant Bit) will be dumped into the carry flag of the P register. The 
LSR instruction can be used to divide any even 8-bit number by 2, 
as follows: 

DIVIDING A NUMBER BY 2 WITH THE "LSR" 
INSTRUCTION 

10 ; 
20 ;DIVIDING BY 2 USING LSR 
30 ; 
40 VALUE1 =$C0 
50 VALUE2=$C1 
60 
70 *=$0600 
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80 ; 
90 LOA #6 
100 STA VALUE1 
110 
120 
130 
140 
150 

LOA VALUE1 
LSR A 
STA VALUE2 
.ENO 

This routine can also be used for another purpose. If you run it, 
and then check the carry flag, you can tell whether the number in 
VAL DEI is odd or even. If the routine leaves the carry bit clear, 
the number that was just divided is odd. If the carry bit is set, the 
value is even! 

Next is a program you can type, execute, and check using your 
debugger to see whether a number is even or odd. If the program 
leaves the number $FF in memory address $C2, labeled FLGADR, 
then the number divided by 2 in line 160 is odd. If the program 
leaves a 0 in FLGADR, then the number that was divided is 
even: 

10 
20 ;000 OR EVEN? 
30 ; 
40 VALUE1 =$C0 
50 VALUE2=$C1 
60 FLGAOR=$C2 
70 
80 *=$0600 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 

LOA #7 ;(000) 
STA VALUE1 
LOA #0 
STA FLGAOR ;CLEARING FLGAOR 

LOA VALUE1 
LSR A ;PERFORM THE DIVISION 
STA VALUE2 ;OONE 

190 8CS FLAG 
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200 RTS ;END ROUTINE IF CARRY CLEAR ... 
210 
220 FLAG 
230 LOA #$FF ;OTHERWISE, SET FLAG . . . 
240 STA FLGADR 
250 RTS; . . . AND END THE PROGRAM 

unpacking Data 

As we've mentioned, you can also use LSR to unpack data that 
has been packed using ASL. But to unpack data, you also have to 
use another type of assembly language function, called a logical 
operator. We'll discuss logical operators and present a sample 
routine for unpacking data later in this chapter. Meanwhile, let's 
take a look at two more bit-shifting operators: ROL (which 
stands for "ROtate Left") and ROR (which means "ROtate 
Right"). 

ROL (Rotate Left) and ROR (Rotate Right) 

The instructions ROL (rotate left) and ROR (rotate right) are 
also used to shift bits in binary numbers. But they don't make use 
of the carry bit. Instead, they work this way: 

The ROL ("Rotate Left") Instruction 

ACCUMULATOR 
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The ROR (" Rotate Right") Instruction 

ACCUMULATOR 

How "ROLli and "ROR" Work 

As you can see, ROL and ROR work much like ASL and LSR, 
except that the carry bit is shifted into the end bit left empty by 
the rotation instead of a zero. ROL, like ASL, shifts the contents 
of a byte one place to the left. But ROL does not place a zero into 
bit o. Instead, it moves the carry bit into bit 0 of the number being 
shifted, which has been left empty by the shift rotation, and 
places bit7 into the carry bit. ROR works just like ROL, butin the 
opposite direction. It moves each bit of a byte right one position, 
placing the carry bit into bit 7 and bit 0 into the carry bit. 

The Logical operators 

Before we move on to conventional binary arithmetic, let's take a 
brief glance at four important assembly language mnemonics 
called logical operators. These instructions are AND (" and"), 
ORA (" or"), EOR ("exclusive or"), and BIT ("bit") . The four 
6502 logical operators look very mysterious at first glance. But, 
in typical assembly language fashion, they lose much of their 
mystery (and most of their scare value) once you understand how 
they work. 

AND, ORA, EOR and BIT are all used to compare values. But 
they work differently from the comparison operators CMP, CPX 
and CPY. The instructions CMP, CPX and CPY all yield very 
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general results. All they can determine is whether two values are 
equal and, if the values aren't equal, which one is larger than the 
other. AND, ORA, EOR and BIT are much more specific instruc
tions. They're used to compare single bits of numbers, and hence 
have all sorts of uses. 

Boolean Logic 
The four logical operators in assembly language use principles of 
a mathematical science called Boolean logic. In Boolean logic, the 
binary numbers 0 and 1 are used not to express values, but to 
indicate whether a statement is true or false. If a statement is 
proved true, its value in Boolean logic is said to be 1. If it is false, 
its value is said to be O. In 6502 assembly language, the operator 
AND has the same meaning that the word" and" has in English. 
If one bit AND another bit have a value of 1, and are thus "true," 
then the AND operator also yields a value of 1. But if any other 
condition exists, if one bit is true and the other is false, or if both 
bits are false, then the AND operator returns a result of 0, or 
false. 

The results of logical operators are often illustrated with dia
grams called truth tables. Here's a truth table for the AND 
operator: 

o 
AND0 

o 

Truth Table for "AND" 

o 
AND 1 

o 

1 
AND 0 

o 

1 
AND 1 

1 

In 6502 assembly language, the AND instruction is often used in 
an operation called bit masking. The purpose of bit masking is to 
clear or set specific bits of a number. The AND operator can be 
used, for example, to clear any number of bits by placing a zero in 
each bit that is to be cleared. This is how that kind of bit masking 
operation could work: 

10127 LOA $AA ;BINARY 112710 1010 
110 AND $F0 ;BINARY 1111 0000 
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If your computer encountered this routine in a program, the 
following AND operation would take place: 

1010 1010 (contents of accumulator) 
AND 1111 0000 

1010 0000 (new value in accumulator) 

As you can see, this operation would clear the low nybble of $AA 
to $0 (with a result of $AO). The same technique would work with 
any other 8-bit number. No matter what the number being passed 
through the mask 1111 0000 might be, its lower nybble would 
always be cleared to $0, and its upper nybble would always 
emerge from the AND operation unchanged. 

unpacking Data using the "AND" operator 

The AND operator, together with the bit-shifting instruction 
LSR, can be used to unpack data that was packed using the 
instruction ASL. Here is a sample routine for unpacking data. 

10 ; 
20 ;UNPACKING DATA 
30 ; 
40 PKDBYT=$C0 
50 LONYB=$C1 
60 HINYB=$C2 
70 ; 
80 *=$0600 
90 ; 
100 
110 
120 
130 
140 
150 
160 
165 
170 
180 

LOA #$45 ;OR ANYTHING ELSE 
STA PKD8YT 
LOA #0 ;CLEAR LONYB AND HINYB 
STA LONYB 
STA HINYB 

LOA PKDBYT 
PHA ;SAVE IT ON THE STACK 
AND #$0F ;BINARY 00001111 
STA LONYB 
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190 PLA; PULL PKDBYT OFF THE STACK 
200 LSR A 
210 LSR A 
220 LSR A 
230 LSR A 
240 STA HINYB 
250 RTS 

The "ORA" Operator 
When the instruction ORA ("or") is used to compare a pair of 
bits, the result of the comparison is 1 (true) if the value of either 
bit is 1. Here is the truth table for ORA: 

Truth Table for "ORA" 

o 
ORA 0 

o 

o 
ORA 1 

1 

1 
ORA 0 

1 

1 
ORA 1 

1 

ORA is also used in bit masking operations. Here is an example of 
a masking routine using ORA: 

LOA #VALUE 
ORA $0F 
STA DEST 

Suppose that the number in VALUE were $22 (binaryOOl000l0). 
The following is the masking operation that would then take place. 

0010 0010 (in accumulator) 
ORA 00001111 

0010 1111 (new value in accumulator) 

The" EOR" operator 
The instruction EOR (" exclusive or") will return a true value (1) 
if one, and only one, of the bits in the pair being tested is a 1. The 
following turth table is for the EOR operator. 
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Truth Table for" EOR" 

121 
EOR 0 

121 

121 
EOR 1 

1 

1 
EOR el 

1 

1 
EOR 1 

121 

The EOR instruction is often used for comparing bytes to determine 
if they are identical, since if any bit in two bytes is different, the 
result of a comparison will be non-zero. Here is an illustration 
of that comparison. 

Example 1 Example 2 

1011 0110 
EOR 1011 0110 But: EOR 

00000000 

1011 0110 
1011 0111 

00000001 

In Example 1, the bytes being compared are identical, so the 
result of the comparison is zero. In Example2, one bitis different, 
so the result of the comparison is non-zero. The EOR operator is 
also used to complement values. If an 8-bit value is used with 
$FF, every bit in it that's a 1 will be complemented to a 0, and 
every bit that's a 0 will be complemented to a l. 

1110 0101 (in accumulator) 
EOR 11111111 

00011010 (new value in accumulator) 

Still another useful characteristic of the EOR instruction is that 
when it is performed twice on a number using the same operand, 
the number will be first be changed to another number, and then 
restored to its original value. This is shown in the following 
example. 

11100101 (in accumulator) 
EOR 01010011 

1011 0110 (new value in accumulator) 
EOR 01010011 (same operand as above) 

11100101 (original value in accumulator restored) 
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This capability of the EOR instruction is often used in high 
resolution graphics to put one image over another without de
stroying the one underneath. (Yes, that's how its done!) 

The" B IT" operator 

That brings us to the BIT operator, an instruction even more 
esoteric than AND, ORA, or EOR. The BIT instruction is used to 
determine the state of a specific bit - or specific bits - of a 
binary value stored in memory. When the BIT instruction is used 
in a program, bits 6 and 7 of the value being tested are trans
ferred directly to bits 6 and 7 (the sign and overflow bits) of the 
processor status register. Then an AND o~~ration is performed 
with the accumulator and the value in memory. The result of this 
AND operation is stored in the Z (zero) flag of the P register. If 
there is a 1 in both the accumulator and the value in memory at 
the same bit position, the result is non-zero and the Z flag is 
cleared. Ifthe bits are different or both zero, the result is zero and 
the Z flag is set. The most important aspect here is that after all of 
this takes place, the values in the accumulator and the memory 
location remain unchanged. 
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Chapter Ten 

Assembly Language Math 

As an Atari assembly language programmer, you probably 
won't ever have to write many, if any, ultrasophisticated, multi
precision arithmetical programs. If you ever have to write a pro
gram that includes a lot of multiprecision math, your Atari can 
help you. It has a pretty powerful set of arithmetical programs, 
called Floating Point, or FP routines, built right into its operat
ing system. The folks at Atari have taken care to provide you with 
the means of using these OS routines in your own assembly lan
guage programs. They've provided instructions on how to use the 
Atari FP package in a number of publications, includingDeReAtari, 
a manual published by Atari for assembly language programmers. 

Even if you don't want to use the FP package built into your Atari 
(and there are reasons not to; the routines are slow), you can find 
prewritten code for most kinds of sophisticated arithmetical 
operations, often called multiple precision binary operations, in 
a number of manuals on 6502 assembly language programming. 
One text that's packed with multiple precision programs that you 
can simply type into your computer and use is 6502 Assembly 
Language Subroutines, written by Lance A. Leventhal and 
Winthrop Saville and published by Osborne/McGraw Hill. 

Then Why Bother? 

You may ask why we are bothering to include a chapter on 
advanced 6502 arithmetic in this volume. The answer: no matter 
how much help is available, you still have to know the principles 
of advanced 6502 arithmetic if you want to become a good 
assembly language programmer. So even though you may never 
have to write an assembly language routine that will perform 
long division on signed numbers, accurate to 17 decimal places, 
chances are pretty good that you'll eventually have to use some 
arithmetic operations in some programs. 
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Most assembly language programmers occasionally have to write 
an addition or subtraction routine, or a routine that will multiply 
or divide a pair of numbers, or a program that will deal with 
signed or BCD (Binary Coded Decimal) numbers. Logical opera
tions, which are extensively used in 6502 programs, also fall 
under the heading of assembly language math. In this chapter, 
therefore, we'll be reviewing 8-bit and 16-bit binary addition, 
subtraction and multiplication, and also saying a few words 
about binary long division. We'll wind up the chapter with brief 
introductions to signed numbers and the BCD (Binary Coded 
Decimal) number system. 

In the addition problem that you called from BASIC in Chapter 8, 
you saw how the carry bit of the processor status works in 16-bit 
addition operations. Now we're going to review the use of the 
carry bit in addition problems, and we're also going to take a look 
at how carries work in subtraction, muliplication and division 
problems. 

A Close Look at the carry Bit 

The best way to get a close look at how the carry bit works is to 
look at it through an "electronic microscope" at the bit level. 
Look at these two simple 4-bit hexadecimal and binary addition 
problems in their binary and hexadecimal forms, and you'll see 
clearly how neither addition operation generates a carry in either 
binary or hexadecimal notation. 

HEXADECIMAL BINARY 

04 0100 
+01 +0001 

05 0101 

08 1000 
+03 +0011 

0B 1011 
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Now let's look at a couple of problems that use larger (8-bit) num
bers. The first of these two problems doesn't generate a carry, 
but the second one does. 

HEXADECIMAL BINARY 

8E 1000 1110 
+23 + 0010 0011 

81 1011 0001 

80 1000 1101 
+FF + 1111 1111 

18C ( 1) 1000 1100 

Note that the sum in the second problem is a 9-bit number - 1 
10001100 in binary, or 18C in hexadecimal notation. Here's an 
assembly language program that will perform that very same 
addition problem. Type it into your computer and run it, and 
you'll be able to see how the carry flag in your computer works: 

a-BIT Addition With a Carry 

10 *=$0600 
20 CLO 
30 CLC 
40 LOA #$80 
50 AOC #$FF 
60 STA $C8 
70 RTS 

When you've typed this program, assemble it and then run it by 
activating your assembler's debugger and using the "G" com
mand. When the program has been executed, and while your 
debugger is still turned on, type the command "DCB" (for "Dis
play memory location $CB"). You should then see this kind of line 
displayed on your video screen: 

00CS 8C 0121 00 121121 121121 
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That line shows us that memory address $CB now holds the num
ber $8C, the correct sum of the numbers we added, except for the 
carry. So where's the carry? Well, if what you've read in this book 
about the carry bit is true, it must be in the carry bit of your com
puter's Pregister. As our program is written now, there's no easy 
way to find out whether the carry bit from our addition operation 
has been dumped into the carry bit of the P register. But by add
ing a couple of lines to the program, and running it again, we can 
find out. Here's how to rewrite the program so we can check the 
carry bit: 

1121 *=$1216121121 
2121 CLO 
3121 CLC 
4121 LOA #$80 
5121 AOC #$FF 
6121 PHP 
7121 5TA $CB 
8121 PLA 
9121 ANO#12I1 
1121121 5T A $CC 
11121 RT5 

In this rewrite of our original program, we've used one new stack 
manipulation instruction: PHP.PHP means "PusH Processor 
status (P register) or stack." We've also used the AND operator 
introduced in Chapter 9. In addition, we've used one stack 
manipulation instruction that was introduced a couple of chap
ters ago: PLA, which means "PulL Accumulator from stack." 

The instruction PHP is used in line 60 of our rewritten program. 
It appears there because we want to save the contents of the P 
register as soon as the numbers # $8D and # $FF have been 
added. We can use the instruction PHP without any fear that it 
will do anything terrible to our program, since it is an instruction 
that doesn't affect the contents of either the P register or the 
accumulator, but it does affect the stack pointer. 

When you run this program, the first thing it will do is add the 
literal numbers $8D and $FF. Before it stores the result of this 
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calculation anywhere, however, it pushes the contents of the 
status register onto the stack, using the instruction PHP. When 
that operation is complete, the value in the accumulator (still the 
sum of $8D and $FF, with no carry), is stored in memory address 
$CB. Next, in line80, when almost everything else in the program 
has been done, the value that was pushed onto the stack by the 
PHP instruction back in line 60 is removed from the stack. Then, 
since the only flag in the P register that we're interested in is the 
carry flag (Bit 0), we have used an AND operation to mask out 
every bit of the number just pulled from the stack except Bit O. 
Finally, the resulting number - which should be $01 if our 
operations up to now have worked - is stored in memory 
address $CC. 

Now, at any time we like, we can peek into the memory address 
and see what the result of the calculation in the program was 
(without a carry). Then we can peer into memory address $CC 
and take a look at just w hat the status of the P register was just 
after we added the numbers $8D and $FF. So let's do it! Assemble 
the program, execute it using your debugger's "G" comand, and 
then use the command "DCB" to take a look at the contents of 
memory address $CB and the memory locations that follow. 
Here's what you should see: 

00CB BC 01 000000 

That line tells us two things: that memory address $CB does hold 
the number $8C, the result of our calculation, without a carry and 
that our addition of # $8D and # $FF did indeed set the carry bit 
of the processor's status register. 

16-Bit Addition 
We will now take a look at a program that will add two 16-bit 
numbers. The same principles used in this program can also be 
used to write programs that will add numbers having 24 bits, 32 
bits, and more. Here's the program: 

A MULTIPLE PRECISION ADDITION PROGRAM 

10 
20 ;THIS PROGRAM ADOS A 16-BIT NUMBER 

IN $80 AND $81 
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30 ;TO A 16-BIT NUMBER IN $C0 AND $C1 
40 ;AND DEPOSITS THE RESULTS IN $C2 

AND $C3 
50 ; 
60 *=$0600 
65 
70 
B0 
90 

100 

11 0 
120 

130 

140 
150 

CLD 
CLC 
LOA $B0;LOW HALF OF 16-BIT NUMBER IN 
$B0 AND $B1 

ADC $C0;LOW HALF OF 16-BIT NUMBER 
IN $C0 AND $C1 
STA $C2 
LOA $B1 ;HIGH HALF OF 16-BIT NUMBER 
IN $B0 AND $B1 
ADC $C1 ; HIGH HALF OF 16-BIT 
NUMBER IN $C0 AND $C1 
STA $C3 
RTS 

When you look at this program, remember that your Atari com
puter stores 16-bit numbers in reverse order - high byte in the 
second address, and low byte in the first address. Once you 
understand that fluke, 16-bit binary addition isn't hard to com
prehend. In this program, we first clear the carry flag of the P 
register. Then we add the low byte of a 16-bit number in $BO and 
$Bl to the low byte of a 16-bit number in $CO and $Cl. The result 
of this calculation is then placed in memory address $C2. If there 
is a carry, the P register's carry bit will be set automatically. 

In the second half of the program, the high byte of the number in 
$BO and $Bl is added to the high byte of the number in $CO and 
$Cl. If the P register's carry bit has been set as a result of the pre
ceding addition operation, then a carry will also be added to the 
high bytes of the two numbers being added. Then the result ofthis 
half of our program will be deposited into memory address $C3. 
When that operation is completed, the results of our addition 
problem will be stored, low byte first, in memory addresses $C2 
and $C3. 
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16-Bit subtraction 

Here's a 16-bit subtraction program: 

10 
20 ;THIS PROGRAM SUBTRACTS A 16-BIT 

NUMBER IN $B0 AND $B1 
30 ;FROM A 16-BIT NUMBER IN $C0 AND $C1 
40 ;AND DEPOSITS THE RESULTS IN $C2 

AND $C3 
50 
60 *=$0600 
65 
70 CLD 
80 SEC ;SET CARRY 
90 LOA $C0 ;LOW HALF OF 16-BIT NUMBER 

IN $C0 AND $C1 
100 SBC $B0 ;LOW HALF OF 16-BIT NUMBER 

IN $B0 AND $B1 
110 STA$C2 
120 LOA $C1 ;HIGH HALF OF 16-BIT NUM8ER 

IN $C0 AND $C1 
130 S8C $81 ; HIGH HALF OF 16-81T NUM8ER 

IN $80 AND $81 
140 STA $C3 
150 RTS 

Since subtraction is the exact opposite of addition, the carry flag 
is set, not cleared, before a subtraction operation is performed in 
6502 binary arithmetic. In subtraction, the carry flag is treated 
as a borrow, not a carry, and it must therefore be set, not cleared, 
so that if a borrow is necessary, there'll be a value to borrow from. 
After the carry bit is set, a 6502 subtraction problem is quite 
straightforward. In our sample problem, the 16-bit number in 
$BO and$Bl is subtracted, low byte first, from the 16-bitnumber 
in $CO and $Cl. The result of our subtraction problem (including 
a borrow from the high byte, if one was necessary) is then stored 
in memory addresses $C2 and $C3. 
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Binary Multiplication 

There are no 6502 assembly language instructions for multiplica
tion or division. To multiply a pair of numbers using 6502 assembly 
language, you have to perform a series of addition operations. To 
divide numbers, you have to perform subtraction sequences. 
Here is an example of how two 4-bit binary numbers can be mul
tiplied using the principles of addition: 

0110 ($06) 
X 0101 ($05) 

0110 
0000 

0110 
0000 

0011110 ($1 E) 

Notice what happens when you work this problem. First, 0110 is 
multiplied by 1. The result of this operation, also 0110, is written 
down. 

what Happens Next 

Next, 0110 is multiplied by O. The result of that operation, a string 
of zeros, is shifted one space to the left and written down. Then 
0110 is multiplied by 1 again, and the result is once again shifted 
left and written down. Finally, another multiplication by zero 
results in another string of zeros, which are also shifted left and 
duly noted. Once that's done, all of the partial products of our 
problem are added up, just as they would be in a conventional 
multiplication problem. The result of this addition, as you can 
see, is the final product $1E. 

This multiplication technique works fine, but it's really quite 
arbitrary. Why, for example, did we shift each partial product in 
this problem to the left before writing it down? We could have 
accomplished the same result by shifting the partial product 
above it to the right before adding. In 6502 multiplication, that's 
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exactly what's often done; instead of shifting each partial product 
to the left before storing it in memory, many 6502 muliplication 
algorithms shift the preceding partial product to the left before 
adding it to the new one. 

Multiple precision Multiplication 

We're now going to present a program that will show you how 
that works. 

A MULTIPLE PRECISION MULTIPLICATION 
PROGRAM 

10 MPR=$C0 ;MULTIPLIER 
20 MPD1 =$C1 ;MULTIPLICAND 
30 MPD2=$C2 ;NEW MULTIPLICAND AFTER 

8 SHIFTS 
40 PRODL=$C3 ; LOW BYTE OF PRODUCT 
50 PRODH=$C4 ;HIGH BYTE OF PRODUCT 
60 ; 
70 *=$0600 

. 80 
85 ;THESE ARE THE NUMBERS WE WILL 

MULTIPLY 
87 
90 
100 
110 
120 
130; 

LOA #250 
STA MPR 
LOA #2 
STA MPD1 

140 MULT CLD 
150 CLC 
160 LOA #0 ;CLEAR ACCUMULATOR 
170 STA MP02 ;CLEAR ADDRESS FOR SHIFTED 

MULTIPLICAND 
180 STA PRODL ;CLEAR LOW BYTE OF 

PRODUCT ADDRESS 
190 STA PRODH ;CLEAR HIGH BYTE OF 

PRODUCT ADDRESS 
200 LOX #8 ;WE WILL USE THE X REGISTER 

AS A COUNTER 
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210 LOOP LSR MPR ;SHIFT MULTIPLIER RIGHT; 
LSB DROPS INTO CARRY BIT 

220 BCC NOADD ;TEST CARRY BIT; IF ZERO, 
BRANCH TO NOADD 

230 CLC 
240 LOA PRODL 
250 ADC MPD1 ;ADD LOW BYTE OF PRODUCT 

TO MULTIPLICAND 
260 STA PRODL ;RESULT IS NEW LOW BYTE 

OF PRODUCT 
270 LOA PRODH ;LOAD ACCUMULATOR WITH 

HIGH BYTE OF PRODUCT 
280 ADC MPD2 ;ADD HIGH PART OF 

MULTIPLICAND 
290 STA PRODH ;RESULT IS NEW HIGH BYTE 

OF PRODUCT 
300 NOADD ASL MPD1 ;SHIFT MULlPLICAND 

LEFT; BIT 7 DROPS INTO CARRY 
310 ROL MPD2 ;ROTATE CARRY BIT INTO BIT 

7 OF MPD2 
320 DEX ;DECREMENT CONTENTS OF X 

REGISTER 
330 BNE LOOP ;IF RESULT ISN'T ZERO, JUMP 

BACK TO LOOP 
340 RTS 
350 .END 

A Complex procedure 
As you can see, 8-bit binary multiplication isn't exactly a snap. 
There's a lot of left and right bit-shifting involved, and it's hard to 
keep track of. In the above program, the most difficult manipula
tion to follow is probably the one involving the multiplicand 
(MPDl and MPD2). The multiplicand is only an 8-bit value, but 
it's treated as a 16-bit value because it keeps getting shifted to 
the left, and while it is moving, it takes a 16-bit address (actually 
two 8-bit addresses) to hold it. 

To see for yourself how the program works, type it out on your 
keyboard and assemble it. Then use the uG" command of your 
debugger to execute it. Then, while you're still in the DEBUG 
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mode, you can type "De3" (for "Display $C3), and take a look at 
the contents of memory addresses $C3 and $C4, which should 
hold the 16-bit product of the decimal number 2 and the decimal 
number 250, which the program is supposed to multiply. The 
value in $C3 and $C4 should be $01F4, displayed low byte first, 
the hex equivalent of decimal 500, the correct product. 

Not the Ultimate Multiplication program 
Although the program we've just outlined works fine, there are 
many algorithms for binary multiplication, and some of them are 
shorter and more efficient than the one just presented. The 
following program, for example, is much shorter than our first 
example, and therefore more memory efficient and faster run
ning. One of its neatest tricks is that is uses the 6502's accumu
lator, rather than a memory address, for temporary storage of 
the problem's results. 

AN IMPROVED MULTIPLICATION PROGRAM 

10 ; 
20 PROOl=$C0 
25 PROOH=$C1 
30 MPR=$C2 
40 MPO=$C3 
50 ; 
60 *=$0600 
70 ; 
80 VALUES lOA # 10 
90 STA MPR 
100 lOA #10 
110 STA MPO 
120 
130 lOA#0 
140 STA PROOl 
150 lOX#8 
160 lOOP lSR M PR 
170 BCC NOAOO 
180 ClC 
190 AOC MPO 
200 NOADO ROR A 
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210 ROR PRODL 
220 DEX 
230 BNE LOOP 
235 STA PRODH 
240 RTS 
250 .END 

Another Test 

If you wish, you can test out this improved multiplication pro
gram the same way you tested the previous one: by executing it 
using your debugger's "G" command, and then taking a look at 
its result using the " D" command. 

A Different Command 

You should type "DCO" this time, since the product in this prob
lem is stored in $CO and $Cl. The 16-bit value in $CO and $Cl 
should be $0064 (stored low byte first), the hexadecimal equiva
lent of decimal 100, and the answer to this problem. 

Feel Free to Play 

You can play around with these two multiplication problems as 
much as you like, trying out different values and perhaps even 
calling the programs up from BASIC, the way we did our 16-bit 
addition problem a few chapters ago. The best way to become 
intimately familiar with how binary multiplication works, though, 
is to do a few problems by hand, using those two tools of our 
forefathers, a pencil and a piece of paper. Work enough binary 
multiplication problems on paper, and you'll soon begin to under
stand the principles of 6502 multiplication. 

Multiprecision Binary Division 

It's unlikely that you'll ever have an occasion to write a multi
precision binary long division program. And even if the need 
should arise, you'd probably have no use for the limited program 
and explanation we could publish here. 
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Nevertheless . . . 
Still, this chapter would not be complete without an example of a 
binary long division program. So here is a simple (but tricky) pro
gram for dividing a 16-bit dividend by an 8-bit divisor. The result 
is an 8-bit quotient. 

A Tricky program 
This program is even more subtly designed than the multiplica
tion program we presented a few paragraphs ago. During the 
execution of the program, the high part of the dividend is stored 
in the accumulator and the low part of the dividend is stored in a 
variable called DVDL. The program contains a lot of shifting, 
rotating, subtracting, and decrementing of the X register. When 
it ends, the quotient is in a variable labeled QUOT and the 
remainder is in the accumulator. That's true until line 380 when 
the remainder is moved out of the accumulator and into a vari
able called RMDR. Then, finally, an RTS instruction ends the 
program. 

A SIMPLE DIVISION PROGRAM 

10 ; 
20 ;DIVISION.SRC 
30 ; 
40 *=$0600 
50 ; 
60 DVDL=$C0 ;LOW PART OF DIVIDEND 
70 DVDH=$C1 ;HIGH PART OF DIVIDEND 
80 QUOT=$C2 ;QUOTIENT 
90 DIVS=$C3 ; DIVISOR 
100 RMDR=$C4 ;REMAINDER 
110 ; 
120 
130 
140 
150 
160 
170 
180 

LOA #$1 C ;JUST A SAMPLE VALUE 
STA DVDL 
LOA #$02 ;THE DIVIDEND IS NOW $021 C 
STA DVDH 
LOA #$05 ;ANOTHER SAMPLE VALUE 
STA DIVS ;WE'RE DIVIDING BY 5 
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190 LOA DVDH ;ACCUMULATOR WILL HOLD 
DVDH 

200 LOX #08 ;FOR AN 8-BIT DIVISOR 
210 SEC 
220 SBC DIVS 
230 DLOOP PHP ;THE LOOP THAT DIVIDES 
240 ROL QUOT 
250 ASL DVDL 
260 ROL A 
270 PLP 
280 BCC ADDIT 
290 SBC DIVS 
300 J M P NEXT 
310 ADDIT ADC DIVS 
320 NEXT DEX 
330 BNE DLOOP 
340 BCS FINI 
350 ADC DIVS 
360 CLC 
370 FINI ROL QUOT 
380 STA RMDR 
390 RTS; EN 0 IT 

Not the Ultimate Division Program 

As complex as this program appears, it is not by any means the 
world's best binary long division routine. It isn't the most ac
curate division program you'll ever see, and it won't handle frac
tions, decimal points, very long numbers, or signed numbers. If a 
versatile, accurate multiprecision division program is what you 
need, you'll have to look toward the floating point package built 
into your Atari's operating system. 

The Atari floating point package is not easy to use, but more or 
less complete instructions on how to use it can be found in the 
Atari programmer's guidebook De Re Atari. If you decide not to 
use your computer's FP package, you can take a look at the many 
division and other arithmetic routines that are included in 
many 6502 assembly language manuals and" cookbooks." Quite 
a few arithmetic routines that are yours for the asking are 
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published in manuals such as the excellent text 6502 Assembly 
Language Subroutines by Leventhal and Saville (Berkeley: 
Osborne/McGraw-Hill, 1982). 

Signed Numbers 

Before we move on to the next chapter, there are two more topics 
that we should briefly cover: signed numbers and BCD (Binary 
Coded Decimal) numbers. First we'll talk about signed numbers. 
Arithmetic operations cannot be performed on signed numbers 
using the techniques that have been described so far in this chap
ter. However, if some slight modifications are made in those 
techniques, the 6502 chip in your Atari computer is capable of 
adding, subtracting, multiplying and dividing signed numbers. If 
you want to perform arithmetic operations on signed numbers, 
the first thing you'll have to know is how to represent their signs. 
Fortunately, that isn't difficult to do. To represent a signed num
ber in binary arithmetic, all you have to do is let the leftmost bit 
(bit 7) represent a positive or negative sign. In signed binary 
arithmetic, if bit 7 of a number is zero, the number is positive. If 
bit 7 is a 1, the number is negative. 

Obviously, if you use one bit of an 8-bit number to represent its 
sign, you no longer have an 8-bit number. What you then have is a 
7-bitnumberor, if you want to express it another way, you have a 
signed number that can represent values from -128 to +127 
instead of from 0 to 255. It should also be obvious that it takes 
more than the redesignation of a bit to turn unsigned binary 
arithmetic operations into signed binary arithmetic operations. 
Consider, for example, what we would get if we tried to add the 
numbers +5 and -4 by doing nothing more than using bit 7 as 
a sign: 

0000 0101 (+5) 
+ 1000 0100 (-4) 

1000 1001 (-9) 

That answer is wrong. The answer should be 1. The reason we 
arrived at the wrong answer is that we tried to solve the problem 
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without using a concept that is fundamental to the use of signed 
binary arithmetic: the concept of complements. 

Complements are used in signed binary arithmetic because nega
tive numbers are complements of positive numbers. And com
plements of numbers are very easy to calculate in binary 
arithmetic. In binary math, the complement of a 0 is a 1, and the 
complement of a 1 is a O. It might be reasonable to assume, there
fore that the negative complement of a positive binary number 
could be arrived at by complementing each 0 in the number to a 1, 
and each 1 to a 0 (except for bit 7, of course, which must be used 
for the purpose of representing the number's sign). This tech
nique of calculating the complement of a number by flipping its 
bits from 0 to 1 and from 1 to 0 has a name in assembly language 
circles. It's called one's complement. 

To see if the one's complement technique works, let's try using it 
to add two signed numbers, say +8 and -5. 

0000 1000 (+8) 
+ 11111010 (-5) (one's complement) 

0000 0010 (+2) (plus carry) 

Oops! That's wrong, too! The answer should be plus 3. Well, that 
takes us back to the drawing board. One's complement arithmetic 
doesn't work. 

But there's another technique, which comes very close to one's 
complement, that does work. It's called two's complement, and it 
works like this: first calculate the one's complement of a positive 
number. Then simply add one. That will give you the two's com
plement, the true complement, of the number. Then you can use 
the conventional rules of binary math on signed numbers - and, 
if you don't make any mistakes, they'll work every time. Here's how: 

0000 0101 (+5) 
+ 11111000 (--8) (two's complement) 

1111 1101 (-3) 
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Here's another two's complement addition problem: 

1111 1011 (-5) (two's complement) 
+ 0000 1000 (+8) 

0000 0011 (+3) (plus carry) 

As we said, it works every time. Unfortunately, it's not easy to 
explain why. There are some lovely mathematical proofs, and if 
you're interested in what they are, you can find them in numerous 
textbooks on the theory of binary numbers. At the moment, 
though, the most important thing to know about two's comple
ment arithmetic is how to use it, should the need ever arise. 

using the Overflow Flag 

There's one more important fact to remember about signed binary 
arithmetic: when you add signed numbers, you use the overflow 
(V) flag rather than the carry flag to carry numbers from one byte 
to another. The reason for this is as follows: The carry flag of the 
P register is set when there's an overflow from bit 7 of a binary 
number. But when the number is a signed number, bit 7 is the 
sign bit - not part of the number! So the carry flag cannot be 
used to detect a carry in an operation that involves signed num
bers. You can solve this problem by using the overflow bit of the 
processor status register. The overflow bit is set when there is an 
overflow from bit 6, not bit 7. So it can be used as a carry bit in 
arithmetic operations on signed numbers. 

BCD (Binary Coded Decimal) Numbers 

Another variety of binary arithmetic that it might be helpful to 
know something about is the BCD (Binary Coded Decimal) sys
tem. In BCD notation, the digits 0 through 9 are expressed just as 
they are in conventional binary notation, but the hexadecimal 
digits A through F (1010 through 1111 in binary) are not used. 
Long numbers must therefore be represented differently in BCD 
notation than they are in conventional binary notation. The 
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decimal number 1258, for example, would be written in BCD 
notation as: 

1 2 5 8 

00000001 0000001000000101 00001000 

In conventional binary notation, the same number would be writ
ten as: 

$0 $4 $E $A 

0000 01 00 111 0 1 01 0 

This which equates to $04EA, or the hexadecimal equivalent of 
1258. BCD notation is often used in bookkeeping and accounting 
programs because BCD arithmetic, unlike straight binary arith
metic, is 100% accurate. BCD numbers are also sometimes used 
when it is desirable to print them out instantly, digit by digit as 
they are being used - for example, when numbers are being 
used for on screen scorekeeping in a game program. 

The main disadvantage of BCD numbers is that they tend to be 
difficult to work with. When you use BCD numbers, you must be 
extremely careful with signs, decimal points and carry opera
tions, or chaos can result. You must also decide whether you want 
to use an 8-bit byte for each digit, which wastes memory, since it 
really only takes 4 bits to encode a BCD digit, or whether to 
"pack" two digit into each byte, which saves memory but con
sumes processing time. 

Fortunately, as we have pointed out, you'll probably never have 
to use most of the programming techniques described in this 
chapter, but an understanding of how they work will definitely 
make you a better Atari assembly language programmer. 
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Chapter Eleven 

Beyond page 6 

Most beginning assembly language programmers write short 
routines that will fit easily in short blocks of memory. That's why 
the engineers who designed your Atari set aside page6,a block of 
memory extending from $0600 to $06 FF, as an area for user writ
ten assembly language programs. As you become more and more 
skilled at assembly language programming, however, it's more 
than likely that you'll eventually start writing programs that 
consume more than 256 bytes of memory available on page 6. 
Figuring out where to put long assembly language programs in 
an Atari computer can be a tricky problem. 

The main problem is not usually the amount of free memory 
that's available, but rather where it is situated in your com
puter's RAM. In most computers, most of the memory available 
for user written programs is almost all in one place. It usually 
extends from a low address, just above where the computer's 
operating system ends, to a high address, just below the place 
where a block of RAM called screen memory begins. 

The memory organization of an Atari computer is not quite that 
simple. In an Atari computer, the space available for user written 
programs is scattered all over the memory map, and learning 
how to discover little corners where you can stash object code 
without clobbering your Atari's operating system can become 
quite a challenging, if sometimes frustrating, task. This situation 
exists because there are several different kinds of Atari com
puters, and because all of them are very versatile machines. A tari 
computers have RAM capacities that range from 16K to 641{, and 
they can be used in many different graphics modes and with one 
to four disk drives. Yet they are all software compatible and 
keeping them software compatible has led to some interesting 
tricks that have been pulled by Atari in memory design. 
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Unfortunately, the people who design Atari computers haven't 
yet found a way - and it's doubtful that anyone could - to keep 
all Atari computers compatible and to keep their memory organ
ization simple at the same time. Nevertheless, there are a few 
safe places to store your assembly language programs in your 
Atari's memory. To help you find them, here's a simple memory 
map of your computer's RAM: 

The High Rent District 

Page Zero 
From $0000 to $OOFF 

Page zero, the block of memory that extends from $0000 to 
$OOFF, is the high rent district in your computer's RAM. Memory 
space there is so val uable that very little of it is available for short 
term use by user written programs. If you want to write high per
formance programs, particularly programs that use indexed 
addressing, then you'll have to find at least a few free memory 
locations on page zero. If you look around carefully, you'll find a 
few free locations there. 
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Your Atari's operating system consumes most of page zero. 
There are a couple of small memory blocks that aren't used by the 
OS, but they aren't always available for user written programs, 
since they are often dedicated to other uses. When you write a 
program using an assembler, for example, your assembler always 
uses some of page zero. If your program is designed to be called 
from BASIC, then the BASIC interpreter that you'll have to use 
will use up more of page zero. 

The floating point math routines in your Atari's operating sys
tem also consume a block of memory on page zero. However, if 
you write programs that don't use the Atari FP package, then the 
block of memory reserved for that package will be free. Specif
ically, these are the memory locations on page zero that you can 
use, and the conditions under which you can use them: 

Memory Map for page Zero 

$00 - $AF - Reserved for use by operating system. 

$BO - $CF - Bytes left free by Assembler Editor cartridge. 

$CB - $D1 - Bytes left free by BASIC cartridge. 

$D4 - $FF - Free if you don't use your OS floating point pack
age, the Atari Assembler Editor cartridge, or a 
BASIC program that uses the Atari OS floating 
point routines. 

zero page Locations You Can Use 

In the programs presented in this book, all of the page zero loca
tions that have been used have fallen into the block of memory 
extending from $BO to $CF. Look at the last chart, and you'll see 
why. When you write a program using the Atari Assembler 
Editor cartridge, the $BO to $CF block is the only part of page 
zero that's not used either by your computer's operating system 
or your Assembler Edito~ cartridge. (The MAC/65 assembler 
uses less of page zero, but the programs in this book were written 
to be compatible with both assemblers.) If you're writing a pro-
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gram designed to be called from BASIC, the portion of page zero 
that you can use is even smaller. Then your free space will extend 
only from memory address $CB through memory address $Dl. 
That's seven whole bytes of page zero that you can use for your 
program! There are two easy ways to get around this limitation. 
Either write programs that use very little of page zero, or write 
programs that don't have to be called from BASIC! 

Memory Addresses $100 - $6FF 
Operating System RAM 

Memory addresses $100 to $5FF in your computer are reserved 
for operating system RAM. Here's how this block of memory is 
divided up: 

$100 - $lFF - Your computer's hardware stack. You can use this 
block of memory, but only for stack manipulation opera
tions. You remember those: PLA, PHA, PLP, PHP, JSR 
and RTS. 

$200 - $3BF - lOCB's (input/output control blocks) and miscel
laneous OS variables. Your computer uses this section of 
memory mainly for communicating with input and out
put devices. It's not available for use by user written 
programs. 

$3CO - $3E7 - Printer buffer, where data is held while it's on its 
way to your printer. 

$3E8 - $3FC - Reserved for OS; not available to you. 

$3FD - $47F - Cassette buffer, a holding area for data between 
your computer and data cassette recorder. 

$480 -$57D - Reserved for use by BASIC cartridge. May be used 
by assembly language programs not called from BASIC. 

$57E - $5FF - OS floating point package. Used by BASIC. May 
also be used by user written assembly language pro
grams. Free for other uses in assembly language pro
grams if floating point routines and BASIC cartridge are 
not used. 
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$600 - $6FF - "Page 6". This is usually available for use by user 
written assembly language programs. There is one im
portant exception, however. When the INPUT statement 
is used in a BASIC program, and more than 128 charac
ters are input via the keyboard, the characters in excess 
of 128 are stored on page 6. In this case, object code 
stored from $600 to $67F might be erased. However, 
addresses $680 to $6FF are unconditionally available for 
user written programs. 

Memory Addresses $700 - "MEMlO" 
DOS Dedicated RAM 

Beginning at memory address $700, there's a block of memory 
that's reserved for use by your computer's disk operating sys
tem. The size of this block of memory is affected by a number of 
factors, including how many disk drives you use, and whether or 
not you're currently using the disk utility programs listed on 
your computer's DOS menu. Because the size of this memory 
block varies so widely from computer to computer, and from 
application to application, your Atari has been equipped with a 
special 16-bit variable that can tell you at a glance how large its 
DOS and DOS related block of memory is. That variable is called 
MEMLO, and it's stored in memory addresses $2E7 and $2E8 
(743 and 744 in decimal notation). The 16-bit value that MEMLO 
contains is a very important number. It's not only the address 
where your computer's DOS routines end; it's also the address 
where the biggest block of user addressable memory in your com
puter begins. Once you know what the value ofMEMLO is, you'll 
know exactly where to start the object code for your own machine 
language programs. 

From "MEMlO" to "MEMTOP" 
Free RAM 

The RAM that you can use freely extends from the variable called 
MEMLO ($2E7 AND $2E8) to another 16-bit variable named, 
logically enough, MEMTOP. You can see what value MEMTOP 
contains by peering into the contents of memory addresses $2E5 
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and $2E6 (741 and 742 in decimal notation). Once you know what 
the value of MEMTOP is, you'll know the upper limit of the block 
of memory in which you can store your assembly language 
programs. 

Above "MEMTOP" 
Screen Memory 

The memory block extending upward from MEMTOP is your 
computer's screen display area, an area reserved for the data it 
usesto create its screen display. Programs that create their own 
custom screen displays can overwrite this block of RAM, but if 
you use your computer's built-in screen displays, you'll have to 
stay out of this section of memory, because that's where they 
are located. 

$8000 to $9FFF 
"Cartridge Slot B" 

When the Atari 800 was designed, this block of memory was 
dedicated to "Cartridge B," the right-hand slot in a pair of car
tridge slots. As it turned out, the Cartridge B slot was utilized by 
only one or two programs written for the Atari. So newer Atari 
computers, the 1200XL and subsequent models, have been 
designed with only one cartridge slot. And that means that 
memory addresses $8000 to $9 FFF, originally designed for" Car
tridge B," are now available for use in user written programs. 

$8000 to $BFFF 
Cartridge Slot A 

Cartridge Slot A is the slot that holds most Atari cartridges, the 
Atari Assembler Editor cartridge, and all other kinds of car
tridge based programs. Many disk based programs also use this 
block of memory. When you write programs using cartridges or 
utility programs that occupy this memory block, there's no easy 
way for you to use that space for your programs. If you get 
good at writing relocatable code, however, there's no reason you 
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can't use this memory block; after all, other Atari assembly 
language programmers do! Usually this slot goes from $AOOO to 
$BFFF, but some can go from $8000 to $BFFF. 

$COOO to $CFFF 

Not used in Atari 400 and 800 because they do not contain this 
RAM location. Used by OS in the newer models. Enter at your 
own risk; not recommended for use in user written programs. 

$0000 to $07FF 
Atari hardware Read/Write registers 

Not available for user written programs. 

$0800 to $OFFF 
Floating Point ROM 

Available for use by user written programs if the OS floating 
point package is not used, and if BASIC routines that call FP 
routines are not used. This is only available in the XL line, the 
Atari 400 and 800 do not have RAM available here. 

$EOOO to $FFFF 
Operating System ROM 

Not available for use by user written programs. 

The problem of Allocating Memory 

Once you know your Atari's memory map like the palm of your 
hand, you'll almost be ready to start allocating memory to 
assembly language programs. Almost, but not quite. First you'll 
have to learn how to solve two big problems that can be a real 
pain in the neck to Atari assembly language programmers. These 
two problems are: 
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• Making sure that your source code programs and your object 
code programs don't overwrite each other. 

• Keeping BASIC and machine language programs away from 
each other in the computer's memory. 

Actually, these two problems are not difficult to solve. But they 
seem to be more complicated than they really are because of a 
confusing system that has been developed by Atari for keeping 
track of the lowest address of free memory. 

In your computer's operating system, there are two variables, or 
pointers, that are designed to help you figure out where you can 
start machine language programs in your computer's memory. 
One of these variables is called LOMEM, and the other is called 
MEMLO. If you think that's confusing, that's only the beginning. 
Sometimes LOMEM and MEMLO are interchangeable, and 
sometimes they aren't. While their ab breviations are merely con
fusing, their full names are downright misleading. On pages D-l 
and D-2 of your Atari BASIC R eference Manual, MEMLO is iden
tified as your computer's operating system low memory pointer, 
and LOMEM is identified as your Atari's BASIC low memory 
pointer. Unless you want to wind up totally baffled, don't pay any 
attention to either of these names. Here's how your computer's 
LOMEM and MEMLO pointers really work, and what they can 
really tell you. 

The LOM E M pOinter 

Your Atari's LOMEM pointer is a 16-bit variable stored in 
memory addresses $80 and $81 (or 128 and 129 in decimal nota
tion). LOMEM always contains the beginning address of a block 
of memory in your computer called the edit text buffer. The edit 
text buffer is a special buffer designed to hold ATASCII text 
while that text is being written and edited. When you write or 
edit a BASIC program, the edit text buffer is where your pro
gram is stored until you're ready to run or solve it. The edit text 
buffer is also used to store assembly language source code 
programs. 
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When you turn your computer on, the address in LOMEM is the 
lowest address of your computer's free RAM, the lowest address 
(not including page 6) at which user written programs can safely 
begin. If you don't have any disk drives connected to your com
puter, then the value of LOMEM will be $0700 when you turn on 
your computer system. If you do have one disk drive or more 
hooked-up to your computer, and they're turned on, then the 
block of RAM that lies just below LOMEM will be the memory 
block where your computer's disk operating system (DOS) is 
stored. 

Changing the LOMEM POinter 

Even though the value of LOMEM is automatically set to a pre
determined value when you turn your computer on, you can 
change it any time you like. When the value of LOMEM changes, 
the starting address of your computer's edit text buffer will 
automatically shift to the address that has been loaded into the 
LOMEM pointer. What this means, is that you can change the 
location of your computer's edit text buffer at any time you like 
by merely poking (or loading) a new 16-bit address into the 
LOMEM pointer. 

Why would you want to change the location of the edit text buf
fer? The most common purpose for doing it is to keep source code 
programs and object code programs away from each other while 
source code is being written, edited and assembled. To under
stand how LOMEM can be manipulated to keep source code and 
object code away from each other, it helps to understand how 
LOMEM and MEMLO are related. 

The MEMLO POinter 

MEMLO is also a 16-bit value, but is stored in memory addresses 
$2E7 and $2E8 of your computer (or 743 and 744 in decimal nota
tion). When you turn your computer on, without a cartridge or a 
disk in it, your computer's MEMLO pointer always contains the 
lowest free address in RAM, the lowest address at which user 
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written programs can begin. That means, that when you turn 
your computer on, MEMLO and LOMEM contain exactly the 
same address, the lowest free address in RAM. That address is 
also the starting address of your computer's edit text buffer. 

Now let's suppose that you're sitting at your computer, and that 
your computer, assembler, your disk drives and your program 
data disk are all up and running and ready to go. Let's now sup
pose that your assembler's EDIT prompt has just come on, and 
that you're ready to start typing in some source code. Since 
you've just turned your computer on, your LOMEM and MEMLO 
pointers will contain the same address when you begin your edit
ing session, the lowest free address in your computer's RAM. 
Since you haven't changed any default values, that address will 
also be the starting address of your computer's edit text 
buffer. 

When you start typing in source code, therefore, your source code 
will always start at the lowest free address in your computer's 
memory, which brings us to an unfortunate but obvious conclu
sion: When you write an assembly language program using the 
MAC/65 assembler or the Atari Assembler Editor cartridge, you 
can't start your object code program at the address contained in 
your LOMEM and MEMLO pointers; if you try to do that, your 
source code and your object code will attempt to overwrite each 
other, and your computer will reward you with an error message! 

solving the problem 

So what's a poor programmer to do? Well, you can do a couple of 
things. For example, you could use a special command called 
SIZE that's provided as a special bonus with both the MAC/65 
assembler and the Atari Assembler Editor cartridge. It's easy to 
use the SIZE command. All you have to do is put your assembler 
into its EDIT mode, type the word SIZE, and hit your RETURN 
key. Your computer will then print a line on your screen that 
looks something like this: 

1 CFC 2062 9C1F 
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What the "SIZE" Line Means 

The first of these three numbers, lCFC, is the current value of 
your computer's LOMEM pointer - the lowest usable address in 
your computer's RAM. The second number, 2062 in our example, 
is the value of your computer's MEMLO pointer - the address at 
which your edit text buffer currently ends. (We used the word 
"currently," because the length of your Atari's edit text buffer 
can vary; as you type in source code, your edit text buffer will get 
longer. When you delete source code, it will get shorter). 

The third number in your assembler's SIZE line (9C1F in our 
sample line) is the value of another important pointer - MEM
TOP, the highest memory address that can be used safely in a 
user written program. (Just above MEMTOP is where your com
puter's screen display memory begins.) 

Three Basic Facts 

Your assembler's SIZE command, then, can provide you with 
three important facts that can help you with your memory alloca
tion problems. It can tell you: 

• Where your source code program begins. 
• Where your source code program ends. 
• How much free RAM there is between the end of your 

source code program and the start of your computer's 
screen display memory. 

A Word of Caution 

If you use the SIZE command to decide where to store your object 
code, however, we do have one more warning: Most assembly 
language programs produce a symbol table, a list of labels used 
within a program and their corresponding memory addresses. 
When you write a program containing labels using an Atari 
Assembler Editor cartridge, your assembler will automatically 
store a symbol table just above your computer's edit text buffer. 
So when you use the Atari Assembler Editor to write a program 
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that produces a symbol table, you must always leave some space 
between the end of your edit text buffer (the second number in 
the SIZE line) and the beginning of your object code program. 
Otherwise, your symbol table and your object code program may 
overwrite each other, with potentially disastrous results. 

NO Need to Guess 

Fortunately, you don't have to guess how much room you'll need 
for a symbol table; you can figure that out. You'll need three 
bytes for each label in your program, plus one byte for each typed 
character in each label. That sounds like a lot of calculating, and 
it is; but if you do it long enough, you'll eventually become very 
proficient at guessing the lengths of symbol tables. 

There's an Easier way! 

Now that you know all that, here's some good news. There's 
another command that can be used with both MAC/65 and the 
Atari Assembler Editor, a command called LOMEM, that can 
make this whole business of allocating memory much easier. 
Here's how to use the LOMEM command: When you've loaded 
your assembler into RAM - or have slipped your assembler 
cartridge into your computer and turned your computer on, just 
type the word LOMEM followed by a hexadecimal number -
like this: 

LOMEM $5000 

Then hit your RETURN key. That simple procedure will auto
matically reset your computer's LOMEM pointer, and will place 
any source code you subsequently write above the object code 
that it will generate, instead of below it. You can then store your 
source code anywhere you like, in the wide open spaces above 
your machine code, instead of in the cramped space beneath it. 

With the LOMEM command, you'll never have to worry about 
what the current value of MEMLO is, and you'll never have to 
count the number of typed characters in a symbol table. There's 
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one fact to remember, though; if you want to use the LOMEM 
command, you must use it before you start writing a program. If 
you use the LOMEM command with a MAC/65 assembler, it will 
wipe out everything stored in RAM, just like the command NEW. 
When you're writing programs using the Atari Assembler Editor 
cartridge, LOMEM must be the very first command you use when 
you you turn your computer on. Otherwise, it simply won't work. 
If you forget that and still want to use LOMEM, you'll have to 
turn your computer off and then back on again. 

Another Memory Management problem 

You can also run into memory allocation problems when you mix 
BASIC and assembly language, that is when you write an assem
bly language program that's designed to be called from a BASIC 
program. When you want to call a machine language program 
from BASIC, it's obviously necessary for both programs to be 
present in your computer at the same time. It's also obvious, 
unfortunately, that the two programs can't start at the same 
address. If they did, one program would overwrite the other, and 
chaos would result. Fortunately, there are ways to solve this 
problem. 

Changing Your MEMLO painter 

When you load a BASIC program into your computer's memory, 
your computer uses the value in MEMLO to determine where the 
program should be stored. If MEMLO points to the lowest free 
RAM address in your computer when the BASIC program is 
loaded, then the program will be loaded into your computer's 
memory starting at that address. But if MEMLO points to a 
higher address when a BASIC program is loaded into memory, 
then the program will be loaded into RAM starting at that 
address. 

Obviously, then, the way to keep a BASIC program from over
writing a machine language program stored in low memory is to 
change MEMLO to a higher address before the BASIC program 
is loaded. It's easy to change MEMLO to a higher value before a 
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BASIC program is loaded. All you have to do is use a routine 
like this: 

CHANGING THE VALUE OF THE MEMLO POINTER 

10; 
20 ;NEWMEMLO.SRC 
30; 
40 *=$0600 
50; 
60 NEWMLO=$5000 ;NEW MEMLO ADDRESS 
65 MEMLO=$2E7 ;ADDRESS OF MEMLO 

POINTER 
70; 
80 LOA # NEWMLO&255 
90 STA MEMLO 
100 LOA # N EWM LO/256 
110 STA MEMLO+1 
120 RTS 

What Have You Done? 

When you assemble and run this routine, it will store a new 
address, in this case $5000, into your computer's MEMLO pointer. 
If you then load a BASIC program into your computer's memory, 
the starting address of that program will not be the lowest 
address in free RAM, as it would ordinarily be. Instead, the 
BASIC program will start at memory address $5000. That will 
reserve a big block of memory for user written machine language 
programs: the block extending from the lowest byte in free RAM 
(the value of LOMEM) to memory address $4FFF. 

A Better way 

Although the routine we've just presented will work fine in pro
grams you run yourself, it may not be adequate in programs 
designed to be run by other people. That's because the MEMLO 
pointer is set not only at power-up time, but also when the Atari 
SYSTEM RESET button is pushed. So if the SYSTEM RESET 

192 



button is pressed accidentally by a program user, MEMLO will 
be reset to its default value. A more complex MEMLO setting 
program that is immune to accidents such as the hitting of SYS
TEM RESET can be found on pages 8-11 of De Re Atan, the 
assembly language programmer's guide published by Atari. 
That program, yours for the typing, can even be run as an 
AUTORUN.SYSroutine, and is just about as user transparent as 
such a program can be. 
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Chapter TWelve 

I/O and You 

Types of I/O Devices 

Many kinds of I/O devices can be connected to your Atari com
puter. But there are seven specific kinds of devices that can be 
addressed in both Atari BASIC and Atari assembly language 
using specific procedures and specific commands. Each of these 
seven types of devices has a unique one letter abbreviation, or 
device name, by which it can be addressed in both Atari BASIC 
and Atari assembly languages. These seven types of devices, and 
their corresponding device names in both BASIC and assembly 
language, are: 

• Keyboard (K:). 
• Line Printer (P:). 
• Program (Cassette) Recorder (C:). 
• Disk Drives (D:) (or, if more than one disk drive is 

used, D1:, D2:, D3:, and D4:). 
• Screen Editor (E:). 
• TV Monitor (Screen) (S:). 
• RS-232 Serial Interface (R:). 
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Note the colon following the letter in each of these abbreviations. 
The colon is an integral part of each device name, and may 
not be omitted. 

The Eight Atari I/O operations 

In both Atari BASIC and Atari assembly language, there are 
eight I/O operations that can be performed using the seven 
abbreviations, or device names, listed above. These eight I/O 
operations are: 

• OPEN (to open a specified device). 
• CLOSE (to close a specified device). 
• GET CHARACTER (to read one character from a 

specified device or file). 
• PUT CHARACTER (to write one character to a speci

fied device or file). 
• READ RECORD (to read the next record, a string 

which must end with a return character [$9B] from a 
specified device or file). 

• WRITE RECORD (to write a record, a string, which 
must end with a return character [$9B] to a specified 
device or file). 

• STATUS (to get the status of a specified device). 
• SPECIAL (to perform a specified special operation on 

specified device used primarily in file management 
and RS-232 serial operations). 

How Device Names and I/O Operations 
are Used Together 
In both Atari BASIC and Atari assembly language, all of the I/O 
operations listed earlier are designed to be performed using a 
centralized peripheral interface system called the Central I/O 
Utility, or CIO. The Atari CIO system, like most peripheral inter
face systems, is designed to handle sequences of data bytes 
called files. A file may contain data, text, or both, and it mayor 
may not be arranged by records, strings of text or data separated 
by end of line characters (ATASCII code $9B). Some files, such as 
files recorded on disks, can be given individual names (such as 
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"D1: TESTIT. SRC). Other files, such as those used with the Atari 
screen editor or line printer, do not have individual names, but 
are addressed simply by the name of the device on which they 
appear, for example, "E:" or "P:". 

Both Atari BASIC and Atari assembly language allow program
mers to access up to eight different devices and/or files at the 
same time. In both BASIC and and assembly language, this 
access is provided via eight dedicated blocks of memory that are 
calledlnput/Output ControlBlocks, or lOCBs. In Atari assembly 
language, just as in Atari BASIC, the eight IOCBs are numbered 
from 0 through 7. In both assembly language and BASIC, any 
free IOCB number can be assigned to any I/O device, although 
IOCB #0 is always assigned to the screen editor when an Atari 
computer is first turned on, and is the screen editor's default 
IOCB number. 

opening a Device 
In both Atari BASIC and Atari assembly language, I/O devices 
are assigned IOCB numbers when they are first addressed, or 
opened. When a device is first opened for either read or write 
operations, an IOCB number must be assigned to it. Once an 
IOCB number has been assigned to a device, the device can be 
referred to by that number until a command to close the device is 
issued. Once a device is closed, the IOCB number that was 
assigned to it becomes free again, and can be used to open any 
other device in your computer system. 

Assembly Language Lacks 
IOCB commands 
In Atari BASIC, specific commands are provided to open, close, 
read from and write to any I/O devices that may be connected to a 
computer. No such commands exist in 6502 assembly language. 
The IOCB system used in Atari computers does provide the 
assembly language programmer with a means of handling all of 
the I/O devices that can be connected to an Atari computer. It can 
handle it in a way that is relatively easy to manage and easy 
to understand. 

197 



opening a Device using Atari BASIC 

It is not difficult to open a device or a file using Atari BASIC. To 
open a device or a file, all a BASIC programmer has to do is write 
a line using the following formula. 

10 OPEN # n,n1 ,n2,filespec 

The following is an example of an Atari BASIC statement writ
ten using the standard IOCB formula. 

10 OPEN #2,8,0,"01 :TESTIT.BAS" 

As you can see, there are five components in an OPEN statement 
in Atari BASIC: The OPEN command itself, a series of three 
parameters separated by commas, and a device name plus a file 
name, if applicable. A mandatory" #" mark appears before the 
first parameter after the OPEN statement and the device name is 
followed by a mandatory colon. In addition, the device name and 
the file name, if applicable, are enclosed in mandatory quotation 
marks. The meanings of the five components of an OPEN state
ment are explained below. 

1. "OPEN" - the OPEN command. 

2. "# n" (# 2 in the sample statement above) - The IOCB num
ber. This number, as we have pointed out, ranges from 0 
through 7. "# 2" in this position means" IOCB # 2." 

3. "nl" (8 in our example) - A code number for a specific type 
of input or output operation. In our sample OPEN statement, 
the "8" in this position is the code number for an output (open 
for write) operation. 

4. "n2" (0 in our sample statement) - A device dependent aux
iliary code sometimes used for various purposes (in this case, 
though, not used). 

5. "filespec" - A device name plus a file name, if applicable. In 
our example, "D1:TESTIT.BAS" refers to a file called 
TESTIT.BAS which our computer will expect to find stored on 
a disk in disk drive 1. 
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How BASIC processes an "OPEN" 
Command 

When your computer encounters an OPEN command while 
processing a BASIC program, it carries out a series of standard
ized operations using the values in each of the four parameters of 
the OPEN statement. When all of those operations are com- . 
pleted, BASIC jumps to a special OS subroutine called the CIO 
vector, or CIOV. The CIOV subroutine then automatically opens 
the device in question, referring to the parameters that were con
tained in the OPEN statement (and are now stored in certain 
memory locations) in order to make sure that the proper device is 
opened for the kind of access called for in the OPEN statement. 

Advantages of Assembly Language 
I/O operations 

To understand how a device is opened using Atari assembly 
language, it's helpful to know how devices are opened using 
Atari BASIC. That's because BASIC programs and assembly 
language programs open devices in exactly the same way. The 
only difference is that when you open a device using BASIC, your 
BASIC interpreter does most of the work for you. When you use 
assembly language, you have to do all of the work yourself. For
tunately, there's a payoff for doing all of this extra work. When 
you control your system's CIO system using assembly language, 
you have a lot more control over the system than you do when you 
allow BASIC to do all the work. 

Opening a Device Using Assembly 
Language 

Now let's take a look at exactly how devices are opened, read 
from, written to and closed, in both Atari BASIC and Atari 
assembly language. 
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Another Look at IOCBS 

As we've pointed out, the I/O operations of an Atari computer are 
controlled using a series of eight I/O control blocks, or IOCBs. 
Each of these I/O control blocks is an actual block of memory in 
your computer. Each IOCB is 16 bytes long, and each byte in each 
IOCB has a specific name and a specific function. Moreover, each 
byte in each IOCB has the same name, and performs the same kind 
off unction, as the corresponding byte in every other IOCB. That's 
important, so let's say it again in a different way: Each byte in 
each IOCB in your computer has the same name, and performs 
the same kind of function, as the byte with the same offset in each 
other IOCB. 

Indirect Addressing in IOCB operations 

The reason this fact is important is that indirect addressing is 
used quite often in IOCB operations. Indirect addressing, as 
we've explained several times in this book, is an addressing 
technique in which a memory location is sought out by means of 
an offset value stored in the 6502 processor's X or Y register. 
Since the offsets of all of the bytes in all Atari IOCBs correspond 
to each other, that makes the indirect addressing mode very easy 
to use in Atari IOCB operations. 

The 16 Bytes of an IOCB 

This concept is much easier to understand when examples are 
given. So here is an actual assembly language program that will 
now be used to explain the Atari I/O system. If this program 
looks familiar, that's because it's almost exactly like the one you 
were asked to type in back in Chapter7. It is the same one we used 
to print messages on the screen. If you still have that program 
stored on a disk, you can load it into your computer, and with just 
a few changes, you can turn it into an exact replica of the pro
gram below. That way you won't have to type it all over again. 
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PROGRAM FOR PRINTING ON THE SCREEN 

10; 
20 .TITLE "PRNTSC ROUTINE" 
30 .PAGE "ROUTINES FOR PRINTING ON THE 

SCREEN" 
40; 
50 *=$5000 
60; 
70 BUFLEN=255 ;(EXPANOED BEYOND PREVIOUS 

LIMITS] 
80; 
90 EOL=$9B ; ATASCII CODE FOR END OF LINE 

CHARACTER 
100 ; 
110 OPEN=$03 ;TOKEN FOR OPENING A DEVICE 

OR FILE 
120 OWRIT=$08 ;TOKEN FOR "OPEN FOR WRITE 

OPERATIONS" 
130 PUTCHR=$0B ;TOKEN FOR "PUT CHARACTER" 
140 CLOSE=$0C ;TOKEN FOR CLOSING A DEVICE 

OR FILE 
150; 
160 IOCB2=$20 ;OFFSET FOR IOCB NO. 2 
170 ICCOM=$342 ;COMMAND BYTE (CONTROLS 

CIO OPERATIONS] 
180 ICBAL=$344 ;BUFFER ADDRESS (LOW BYTE] 
190 ICBAH=$345 ;BUFFER ADDRESS (HIGH BYTE] 
200ICBLL=$348 ;BUFFER LENGTH (LOW BYTE] 
210ICBLH=$349 ;BUFFER LENGTH (HIGH BYTE] 
220 ICAX1 =$34A ;AUXILIARY BYTE NO. 1 
230 ICAX2=$34B ;AUXILIARY BYTE NO. 2 
235 ; 
240 CIOV= $E456 ;CIO VECTOR 
250 ; 
260 DEVNAM .BYTE "E :",EOL 
270; 
280 OSCR ;OPEN SCREEN ROUTINE 
290 LOX # IOCB2 
300 LOA #OPEN 
310 STA ICCOM,X 
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320; 
330 LOA # oEVNAM&255 
340 STA ICBAL,X 
350 LOA # oEVNAM/ 256 
360 STA ICBAH,X 
370; 
380 LOA #OWRIT 
390 STA ICAX1 ,X 
400 LOA #0 
410 STA ICAX2,X 
420 JSR CIOV 
430; 
440 LOA # PUTCHR 
450 STA ICCOM,X 
460; 
470 LOA #TXTBUF&255 
480 STA ICBAL,X 
490 LOA #TXTBUF/ 256 
500 STA ICBAH,X 
510 RTS 
520; 
530 PRNT 
540 LOX # IOCB2 
550 LOA # BUFLEN&255 
560 STA ICBLL,X 
570 LOA #BUFLEN/ 256 
580 STA ICBLH,X 
590 JSR CIOV 
600 RTS 
605; 
610 CLOSED 
620 LOX # IOCB2 
630 LOA # CLOSE 
640 STA ICCOM,X 
650 JSR CIOV 
660 RTS 
670 ; 
680 TXTBUF=* 
690; 
700 *= *+BUFLEN 
710; 
720 .ENo 
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II PRNTSC.SRC, II Line by Line 

Now, at last, we'll take a good close look at this program and see 
how it works, line by line. We'll start with the first three lines of 
the program, lines 290 through 310. 

Initializing a Device for "OPEN" 

290 LOX # IOCB2 
300 LOA #OPEN 
310 8TA ICCOM.X 

Substitute literal numbers for the variables in these three lines, 
and this is how they will read. 

290 LOX #$20 
300 LOA #$03 
310 8T A $342.X 

These three instructions are all it takes to open a device in Atari 
assembly language. In order to understand what they do, you 
have to know something about the structure of an A tari IOCB. As 
we've pointed out, there are eight IOCBs in your Atari's operat
ing system, and each one contains 16 bytes (or$10 bytes in hexa
decimal notation). That means that to address IOCB #1, you 
have to add 16 (or $10) bytes to the address of IOCB #0 and to 
address IOCB # 2, you have to add 32 (or $20) bytes to the 
address of IOCB # O. In other words, when you use the address of 
IOCB #0 as a reference point (as the Atari CIO system does), the 
offset you have to use is 32 in decimal notation, or $20 using the 
hexadecimal system. Here are all of the IOCB offsets used in the 
Atari CIO system: 

The Eight Atari IOCB Offsets 

IOCB0=$00 
IOCB1 =$10 
IOCB2=$20 
IOCB3=$30 
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N ow let's take another look at our literal value version of the first 
three lines of the PRNTSC.SRC program: 

290 LOX #$20 
300 LOA #$1213 
310 STA $342.X 

Now you can begin to see why the number $20 has been loaded 
into the X register in line 290. Obviously, it's going to be used as 
an offset in line 310, but before we move on to line 310, let's take 
a look at line 300, the line in between. In line 300, the accumu
lator is loaded with the number $03 - which has been identified 
back in line 110 of the program as the "token for opening a 
device." Now what does that mean? 

I/O Tokens 

Well, in the Atari CIO system, each of the eight I/O operations 
described at the beginning of this chapter can be identified by a 
one-digit (hex) code, or token. Here is a complete list of those 
tokens, and the operations for which they stand. 

Token Name Function 

$03 OPEN Open a specified device or file. 
$04 OREAD Open a device or file for read 

operations. 
$08 OWRITE Open a device or file for write 

operations. 
$05 GETREC Read a record from a specified device 

or file. 
$07 GETCHR Read character from specified device 

or file. 
$09 PUTREC Write a record to a specified device 

or file. 
$OB PUTCHR Write character to a specified device 

or file. 
$OC CLOSE Close a specified device or file. 
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Line 300 Explained 

Now you can see what happens in line 300 of the program 
PRNTSC.SRC. The accumulator is loaded with the number $03, 
the token for "OPEN". In line 310, the OPEN token is stored in 
the indirect address ICCOM,X (or $342,X). Just what is this 
address? 

ICCOM is the name of one of the 16 bytes that every IOCB con
tains. Specifically, ICCOM is the first byte (the zero offset byte) in 
every IOCB. Look at line 170 of the PRNTSC. SRC program and 
you'll see that ICCOM is located at memory address $342, and is 
identified as the "command byte" in the Atari CIO system. It is 
called the command byte because it is the byte that must be 
addressed when devices are to be initialized, opened or closed. 
ICCOM is the byte that points to a set of subroutines in your com
puter's operating system that perform all of those functions. 

10CB Addresses 

Since we have listed all of the Atari VO devices, I/O commands, I/O 
offsets and I/O operation codes in this chapter so far, we might as 
well provide a list now of ICCOM and the rest of the 16 bytes in 
each of your computer's IOCBs. Here is a complete list of the 
bytes in each IOCB. 

Byte Adrs Name Function 

ICHID $0340 Handler LD. Preset by OS 
ICDNO $0341 Device Number Preset by OS 
ICCOM $0342 Command Byte Controls CIO 

operations 
ICSTA $0343 Status Byte Returns status of 

operations 
ICBAL $0344 Buffer Address, Low Holds address of text 

buffer 
ICBAH $0345 Buffer Address, High Holds address of text 

buffer 
ICPTL $0346 Unused Pointer Not used in 

programming 

205 



Byte Adrs Name Function 

ICPTH $0347 Unused Pointer Not used in 
programming 

ICBLL $0348 Buffer Length, Low Holds length of text 
buffer 

ICBLH $0349 Buffer Length, High Holds length of text 
buffer 

ICAX1 $034A Auxiliary Byte No.1 Picks write or read 
operation 

ICAX2 $034B Auxiliary Byte No.2 Used for various 
purposes 

ICAX3 $034C Auxiliary Byte No.3 Used by OS only 
ICAX4 $034D Auxiliary Byte No.4 Used by OS only 
ICAX5 $034E Auxiliary Byte No.5 Used by OS only 
ICAX6 $034F Auxiliary Byte No. 6 Used by OS only 

Now you can understand the operation performed in lines 290 
through 310 of the PRNTSC.SRC program: 

290 LOX #:IOC82 
300 LOA #:OPEN 
310 STA ICCOM,X 

In line 290, the X register is loaded with the offset for IOCB #:2: 
the number $20. In line 300, the accumulator is loaded with the 
token for the OPEN operation: the number $03. In line 310, the 
token of the OPEN operation (the number $03) is stored in 
ICCOM,X: the command byte of IOCB #: 2. After a few more 
operations, we're going to issue a "JSR CIOV' statement, so our 
Atari will jump to the CIO vector and open IOCB #: 2, as we have 
instructed. But first, we're going to have to set a few more 
parameters, so our computer will know exactly what kind of 
operations to open 10CB #: 2 for. So let's zip right through the rest 
of this "OPEN" operation now. 

completing the "OPEN" Operation 

330 LOA:IF DEVNAM&255 
340 STA ICBAL,X 
350 LOA:IF DEVNAM/ 256 
360 STA ICBAH,X 
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370; 
380 LOA #OWRIT 
390 STA ICAX1 ,X 
400 LOA #0 
410 STA ICAX2,X 
420 JSR CIOV 

In lines 330 through 360, the text buffer address in IOCB #2 is 
loaded with the address of a variable defined in line 260 as 
DEVNAM. The variable DEVNAM, as you can see by looking at 
line 260, contains the ATASCII code for the character string 
"E:" - the device name for the Atari screen editor. We could 
have opened IOCB #2 for any other I/O device in exactly the 
same way. If we wanted to use IOCB #2 as a printer IOCB, for 
example, we could have written line 260 this way: 

260 OEVNAM .BYTE "P:",EOL 

Then, in lines 330 through 360, the address of the ATASCII string 
"P:",EOL would be loaded in ICBAL,X. With that tiny change, 
the PRNTSC program, instead of opening your computer screen 
as an output device, would open your printer! You can also use 
this same programming procedure to open a specific file on a disk 
so that you can read from it or write to it, on either a character
by-character or a record-by-record basis. In the PRNTSC pro
gram, we could open a disk file instead of the screen editor by 
changing line 260 to read something like this: 

260 OEVNAM .BYTE "01 :TESTIT.BAS",EOL 

Then, instead of opening the screen editor, our program would 
open the disk file TESTIT.BAS (provided, of course, that there 
was a disk drive connected to our computer and that all other 
necessary conditions for opening such a file existed). We have 
just seen two examples of the tremendous power of the Atari CIO 
system. While the system may seem complex at first glance, its 
incredible versatility is a real testament to the programming 
know how of Atari's computer designers. 
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Moving Along 

Let's continue on now with our "OPEN" operation. In lines 380 
and 390, we load the number $08 the token for" open a device for a 
write operation" into Auxiliary Byte No. 1 ofIOCB #2. We could 
make our program do something completely different if we stored 
the value $04, the token for "open read," in ICAX1,X instead of 
the value $08, the token for" open write." That's another demon
stration of the versatility of the Atari CIO system. 

We have now reached lines 400 and 410, in which we clear Aux
iliary Byte No. 2 of IOCB # 2 (a byte that is not used in this 
routine) by stuffing it with a zero. Finally, in line 420, we jump to 
the Atari CIO vector at memory address $E456. With that opera
tion, we have opened IOCB #2 for a write operation to the Atari 
screen editor. In other words, we have opened IOCB #2 to print 
on the screen. 

printing a Character 

We have not yet actually printed a character on the screen, 
however. To do that, we must carry out two more sequences of I/O 
operations. Now that you understand how the Atari CIO system 
works, that will be a snap. Here are lines 440 through 600 of the 
PRNTSC. SRC program. 

430; 
440 LOA # PUTCHR 
450 STA ICCOM,X 
460; 
470 LOA #TXTBUF&255 
480 STA ICBAL,X 
490 LOA #TXTBUF/256 
500 STA ICBAH,X 
510 RTS 
520; 
530 PRNT 
540 LOX #IOCB2 
550 LOA #BUFLEN&255 
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560 STA ICBLL.X 
570 LOA #BUFLEN/256 
580 STA ICBLH.X 
590 JSR CIOV 
600 RTS 

In lines 440 and 450, we store the number $OB, the token for a 
"put character" operation, into the command byteofIOCB #2. In 
lines 470 through 510, the address of the text buffer we have 
created especially for this program is stored in the buffer address 
bytes of IOCBC # 2. That prepares us for the PRNT routine that 
starts at line 530. In the PRNT routine, which extends from line 
530 to line 600, the length of our specially created text buffer is 
stored in the buffer length bytes of IOCB # 2. Then there is 
another jump to the CIO vector, which automatically takes care 
of printing the text in the PRNTSC text buffer on your computer 
screen. 

Closing a Device 

When I presented the original version ofthis program in Chapter 
7, I left out one very important routine, the routine for closing a 
device. There was no need for such a routine in Chapter 7, since 
the PRNTSC program was not presented as a program in its own 
right, but as an adjunct to two other programs that ended · in 
infinite loops. Still, I must admit that it was a bad programming 
practice for me not to close the 10CB I was using when I was 
finished with it. When you open a device in assembly language 
(as in Atari BASIC), you must close it when you're finished with 
it. Otherwise, you'll cause an 10CB error, and that could cause 
some serious problems. 

Forgetting to carry out such tasks as closing 10CBs (at the time 
they should be closed) can lead to program crashes and long and 
agonizing debugging sessions. Anyway, 10CB # 2 is closed in 
this new and improved version of the PRNTSC program. In lines 
610 through 660, the value $OC - the token for closing a file - is 
loaded into lCCOM,X. Then there's ajump to CIOV, and the Atari 
OS closes the IOCB. 
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That ends our brief glimpse into the intricacies of the central 
input/ output system of Atari computers. But we have by no 
means exhausted that topic; much more information on Atari I/O 
is available in more advanced books than this one, and in techni
cal reference manuals. 
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Chapter Thirteen 

Atari Graphics 

This chapter and the one that follows are the real payoffs in this 
book on Atari assembly language. In this chapter and the next, 
you'll learn how to use assembly language to: 

• Custom design your own screen displays, intermixing text, 
graphics and colors in any way you choose. 

• Scroll text and graphics on your computer screen. 
• Create and use custom designed character sets. 
• Use game controllers in assembly language programs. 
• Use Atari player-missile graphics to create arcade style action 

on your computer screen. 

To accomplish all of these things, you're going to have to write 
some fairly complex assembly language routines, but once you've 
typed and saved them, you'll find that there are many, many 
ways to use them. By the time you've finished this book, you'll 
discover (I hope) that you've become a pretty advanced assembly 
language programmer. 

The first program in this chapter will enable you to create a title 
screen that you can use with any homemade program you like, 
and it will be a real eye catcher, too! It will display three different 
sizes of type on your computer screen, with each size of type dis
played in a different color, against a background of still another 
color. And, as they say in those TV mail order ads, there's more. 
In thenext(and last) chapterofthis book, you'll learn how to use 
fine scrolling to animate your title screen. Then, as an extra 
bonus, you'll learn how to use game controllers and player
missile graphics in Atari assembly language programs. First, 
though, we'll have to take a brief look at some of the graphics 
related features of your Atari computer, and at the way it 
generates its screen display. 
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The Antic Chip 

Atari computers use a much more sophisticated, and much more 
powerful technique for generating screen displays than most 
microcomputers do. In most microcomputers, you'll find just one 
block of RAM in which you can store data that is to appear on the 
computer's screen, in other words, one block of RAM that's 
dedicated to screen memory. Within that block of RAM, each let
ter or symbol that appears on the screen will be assigned one 
memory location. When the value of that memory location is 
changed, the text or graphics display in the screen location that 
corresponds to that memory location will also change. And that's 
about all you have to know to understand the graphics and text 
displays of most computer systems. 

Atari graphics, as wejust said, are more sophisticated than that 
and just a bit more complicated as well. Atari computers use two 
special chips, an ANTIC chip and a GTIA chip, to generate their 
graphics displays. One of these chips, the ANTIC, is a real micro
processor; it is designed to be used with a special instruction set, 
and a special kind of program called a display list. So, to create 
graphics using the ANTIC chip, you have to know how to use the 
instruction set to design display lists for your Atari. It also helps 
to have a rudimentary knowledge about how a television set 
works. So here goes: 

Scan Lines 
The picture on a television screen, as you may know, is made up of 
tiny horizontal lines - 262 lines, to be exact. And each of these 
horizontal lines is called a scan line. 

As you may also know, these scan lines are produced by an elec
tron gun behind your television set's picture tube. This electronic 
pistol fires electrons at the phosphor coating inside the TV pic
ture tube in what is known as a raster scan pattern, a zigzag pat
tern that begins at the upper left-hand corner of the screen and 
ends in the bottom right-hand corner. 

Since there are 262 horizontal scan lines on a video tube, the com
plete 262 line display on your TV screen is replaced by a com-
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pletely new display 60 times each second. Between each of these 
lightning fast scenery changes, there is an extremely brief inter
val called a vertical blank period, in which the whole screen 
goes blank. 

Because of a picture tube design technique called overscan, 
however, not all of the 262 scan lines that are available for a TV 
picture appear on the screen; some fall off the edges and are 
therefore never seen. So programs used to generate video dis
plays for computers don't usually make use of all of those lines. 
Your Atari, for example, uses only 192 of the 262 scan lines that 
are available. 

Dot Matrix Characters 
If you look at a computer generated text display on a TV screen, 
you may also notice that each text character on the screen is 
made up of tiny dots. And if you could look closely enough at the 
text screen generated by your Atari while your computer is in its 
normal 40 column by 24 line text mode, you'd be able to see that 
each letter on the screen is made up of 64 dots, arranged in a 
matrix 8 dots wide and 8 dots high. 

213 



Mode Lines 

Your Atari computer has four different text modes. Each of these 
modes produces letters of a different size. But no matter how big 
the letters on your screen are, each line of text in an Atari display 
is called a mode line. In your Atari's normal 40 column by 24 line 
text mode, the mode referred to in Atari BASIC as Graphics 0, 
each letter in a mode line is eight dots high, and each of those 
dots equates to one scan line. In BASIC's Graphics 0 mode, 
therefore, one mode line is equal to eight scan lines. 

Atari BASIC supports two other text modes: the Graphics 1 
mode, in which the characters on the screen are the same height 
as Graphics 0 characters but twice as wide, and the Graphics 2 
mode, in which the characters are twice as high and twice as wide 
as standard Graphics 0 characters. When your computer is in its 
Graphics 1 mode, each mode line is made up of eight scan lines, 
the same number of scan lines used in a mode line in Graphics o. 
When your Atari is in its Graphics 2 mode however, each mode 
line equals 16 scan lines. 

AntiC Mode 

In assembly language, there is also another text mode, called 
ANTIC Mode 3, that is not supported by BASIC. In ANTIC Mode 
3, each mode line is made up of 10 scan lines. You can find out 
more about ANTIC Mode 3 by reading theAtari Programmer's 
Manual, De R eAtari, or by consulting The A tari 400/800 Techni
cal Reference Notes published by Atari. 

In addition to their four text modes, Atari computers have 
numerous graphics modes; either 10 or 13 of them, depending 
upon what kind of graphics hardware came installed in your 
Atari. (The number of graphics modes offered by Atari com
puters vary, since older Ataris have a graphics chip called a 
CTIA, while newer models come with a new GTIA chip installed.) 
In non-text graphics modes, the number of scan lines per mode 
line can range from one (in high resolution graphics) to eight (in 
low resolution graphics). The number of colors available also dif
fers from graphics mode to graphics mode. 
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In the Mode 

Here is a table ofthe graphics modes available to Atari assembly 
language programmers. Sharp-eyed readers will notice that there 
are differences between the ANTIC designations and the BASIC 
designations of these modes, and that assembly language sup
ports more modes than Atari BASIC does. The table doesn't 
include the special modes available to owners of GTIA chips, 
since this book is for all Atari Home Computers, and programs 
that use those modes won't work properly on all Atari computers. 
If you want to use them anyway, you can find out how in the 
assembly language programming guide, De Re Atari. 

Atari Text and Graphics Modes 

ANTIC BASIC Scan Lines No. of 
Mode Mode Per Mode Line Colors 

2 0 8 2 
3 None 10 2 
4 None 8 4 
5 None 16 4 
6 1 8 5 
7 2 16 5 
8 3 8 4 
9 4 4 2 
A 5 4 4 
B 6 2 2 
C None 1 2 
D 7 2 4 
E None 1 4 
F 8 1 2 

Customizing Your Atari's Screen Displav 

Two steps are needed to custom design an Atari screen display. 
First you have to create a special kind of program called a display 
list. Then you have to write a program that will tell your com
puter how to use the display list you have designed. While doing 

215 



this be aware that a display listmaynot cross a lK boundary and 
a screen display memory may not cross a 4K boundary without 
special handling. 

In a moment, we'll talk about how to write a display list program. 
First, though, let's take a look at the display list that the ANTIC 
program will refer to. A display list is made up of a series of one
byte instructions that can be placed almost anywhere in your 
computer's available RAM. To get an idea of what a display list 
looks like, you can use your assembler's debugging utility to 
examine the display list that your computer uses when it's in its 
Graphics 0 text mode. 

When you turn on your computer, it automatically goes into 
Graphics 0 mode, and the address of the display list which it uses 
to generate that mode is always stored in two locations: memory 
addresses $230 and $231. Memory address $230 always holds the 
low byte of the starting address of the display list that your com
puter is using, and memory address $231 always holds the high 
byte of the display list's starting address. So, once you know the 
contents of these two addresses, you'll be able to locate the dis-
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play list that your computer is currently using. Once you locate 
your computer's Graphics 0 display list, you'll find that it looks 
something like this: 

70 70 70 42 20 7C 02 02 
02 02 02 02 02 02 02 02 
02 02 02 02 02 02 02 02 
02 02 02 02 02 41 E0 78 

As you can see, a display list is just that: a list, not a program. To 
use a display list, a separate program is needed. You'll get a 
chance to take a look at such a program in a moment. But first, 
let's examine this sample display list, byte by byte: 

Bytes 1 - 3 
$70 $70 $70 

Each byte in a display list has a specific meaning to the Atari 
ANTIC chip. And within each byte, each nybble (that is each hex
adecimal digit) also has a specific meaning. For example, each of 
the first three bytes - each of the three $70s at the beginning of 
the list - tells the ANTIC chip to display one blank mode line (in 
BASIC Graphics 0, eight blank scan lines). A standard Graphics 
o display always begins with three" skip mode line" instructions 
(in ANTIC language, three $70s) in order to overcome the over
scan characteristics of TV tubes and make sure that the whole 
screen display called for in the display list winds up visible on 
the screen. 

Bytes 4 - 6 
$42 $20 $7C 

The first actual display byte in our sample display list ($42) is 
what is known as a Load Memory Scan (LMS) command. The 
first display byte in a display list, that is, the first byte after all 
necessary blank lines have been taken care of, is always an LMS 
command. And a load memory scan command is always a three
byte instruction. In the display list we are now examining, the 
load memory scan instruction is made up of the three bytes: "$42 
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$20 $7C." The first nybble in this instruction, the digit 4, alerts 
ANTIC that what follows is going to be an LMS instruction. The 
second nybble in the LMS instruction, the digit 2, tells ANTIC to 
display an ANTIC Mode 2 line. Consult the table on graphics 
modes presented a few paragraphs back, and you'll see that in 
ANTIC language, Mode 2 is the same as BASIC Mode O. The next 
two bytes of the LMS command, the bytes $20 $7C, provide 
ANTIC with the address at which screen memory will begin. 
ANTIC interprets these two bytes low byte first, in standard 
6502 fashion. When ANTIC encounters the LMS instruction $42 
$20 $7C, therefore, the first byte displayed on your Atari's video 
screen will be whatever byte is stored in memory address $7C20. 

When you write a display list, you can put your screen memory in 
just about any convenient and available block of RAM. And you 
can fill that RAM up with whatever you like: ATASCII codes that 
equate to text, display screens drawn with the help of a graphics 
program, or character graphics created with a graphics generator 
program. Once you have a display created, address in the two 
bytes that follow your display list's LMS command. You'll have 
an opportunity to see how this technique works in the sample 
program at the end of this chapter. 

Bytes 7 - 29 
The byte $02, repeated 23 times 

As explained above, the first LMS command in a display list tells 
ANTIC two things: the address at which screen memory begins, 
and the graphics mode to use to display the first mode line of text 
or data that will be found starting at that address. After ANTIC 
has been presented with this information, it must be told what 
graphics mode to use to display each subsequent mode line that 
will displayed on the screen. In the display list which we are now 
examining, every mode line on the screen is an ANTIC Mode 2 
line. Therefore the next 23 instructions in this display list are all 
the same: Each tells ANTIC that the next line on the screen will 
be an ANTIC Mode 2 line. 

What would happen, you may ask, if all of these 23 instructions 
were not the same? Well, if they were not the same, then more 
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than one graphics mode could be displayed on the screen simul
taneously. Text of various sizes could be displayed on the same 
screen, and text and graphics modes could be intermixed as 
desired. This is a very powerful and quite unusual capability of 
Atari computers. You'll get a chance to see exactly how it works 
before we finish this chapter. 

Bytes 30 - 32 
$41 $EO $7B 

Every display list must end with a three-byte command called a 
JVB (Jump on Vertical Blank) instruction. The first byte in aJVB 
instruction is always the value $41. The next two bytes always 
combine to form a jump address. The destination of the jump is 
always the beginning of the display list in which the jump is con
tained. As it happens, the display list we're now looking at starts 
at memory address $7BEO. So that's the address that follows 
(low byte first) the JVB instruction $41. When ANTIC encounters 
the JVB instruction $41 in a display list, it jumps back to the 
beginning of the display list, waits for the next vertical blank 
period between raster scan displays, and then jumps to the 
address that follows theJVB instruction. Since this address is the 
address of the beginning of the display list, what the JVB instruc
tion really does is generate the display list again. 

Running a Display List 

As we've pointed out, a display list can be placed in almost any 
convenient and available spot in your computer's memory. Screen 
memory can be placed just about anywhere in RAM, too. Once 
you've created a display list and a block of data to be used as 
screen memory, all you have to do to put your custom designed 
display on your TV screen is write a simple little assembly lan
guage program that tells your computer's operating system 
where your display list is. To direct your computer to your cus
tom display list, all you have to do is store new values into a pair 
of OS memory locations known as "shadow" locations. Shadow 
addresses are used often in Atari programming, so I might as 
well explain right now what they are. 
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In your computer's memory, there are some very useful hardware 
registers that cannot normally be accessed by user-written pro
grams. But sixty times per second, the data in each of these 
memory locations is updated. During this updating process, the 
value stored in each of these registers is replaced by data that has 
been stored in a corresponding shadow register. And shadow 
registers are in user-accessible RAM. So, by changing the value 
in a shadow register, you can also change the value of its cor
responding hardware register. For most intents and purposes, 
therefore, a shadow register works just about like any other OS 
register that's situated in RAM. Three shadow addresses that 
are often used in display list programs are$22F, $230, and $231. 
Address $22F is an Atari OS memory location called SDMCTL 
(Shadow, Direct Memory Access Control). Addresses $230 and 
$231 are OS locations called SDLSTL (Shadow, Display List 
Pointer - Low) and SDLSTH (Shadow, Display List Pointer
High). To write a program that will put a custom display list on 
your Atari's screen, all you have to do is follow these three 
steps: 

1. Turn your computer's ANTIC chip off by storing a zero in $22F 
(SDMCTL). 

2. Store the starting address of your custom display list in $230 
and $231 (SDLSTL and SDLSTH). 

3. Turn your computer's ANTIC chip on again by storing the 
value $22 in $22F (SDMCTL). 

Doing It 

N ow that you know how all of those things are done, we're ready 
to do them. Here is a customized display list, along with a pro
gram that will run it. If you wish, you can type it into your Atari 
computer, save it on a disk, and run it right now: 

A CUSTOMIZED SCREEN DISPLAY 

1121 
2121 ;HELLO SCREEN 
3121 ; 

220 



40 *=$3000 
50 JMP INIT 
60 ; 
70 SDMCTL = $022F 
80 ; 
90 SDLSTL = $0230 
100 SDLSTH = $0231 
110 ; 
120 COLOR0 = $02C4 ;OS COLOR REGISTERS 
130 COLOR1 = $02C5 
140 COLOR2 = $02C6 
150 COLOR3 = $02C7 
160 COLOR4 = $02C8 
170 ; 
180 ;DISPLAY LIST DATA 
190 ; 
200 START 
210 ; 
220 LlNE1 ,SBYTE" PRESENTING 
230 LlNE2 ,SBYTE" the big program 
240 LlNE3 ,SBYTE " By [You" 
250 ,SBYTE "r Name) " 
260 LlNE4 ,SBYTE" PLEASE STANO BY 
270 ; 
280 ;DISPLAY LIST 
290 ; 
300 HLiST 
310 ,BYTE $70,$70,$70;3 BLANK LINES 
320 ,BYTE $70,$70,$70,$70,$70 ;MORE 

BLANK LINES 
330 ,BYTE $46 ;LMS, ANTIC MODE 6 [BASIC 

MODE 2) 
340 ,WORD LlNE1 ;[TEXT LINE: 

"PRESENTING", ") 
350 ,BYTE $70,$70,$70,$70,$47 ;LMS, ANTIC 

MODE 7 
360 ,WORD LlNE2 ;[TEXT LINE: "THE BIG 

PROGRAM") 
370 ,BYTE $70,$42 ;[LMS, ANTIC MODE 2 

[GR. 0]) 
380 ,WORD LlNE3 ;[TEXT LINE: "By [Your Name],,) 
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390 .BYTE $70,$70,$70,$70,$46 ;LMS, ANTIC 
MODE 6 

400 .WORD LlNE4 ;(TEXT LINE: "PLEASE 
STAND BY") 

410 .BYTE $70,$70,$70,$70,$70;5 BLANK 
LINES 

420 .BYTE $41 ;JVB INSTRUCTION .. . 
430 .WORD HLiST ;TO JUMP BACK TO START 

OF LIST 
440 ; 
450 ;RUN PROGRAM 
460 ; 
470 INIT ;SWITCHING COLOR REGISTERS FOR 

NICELY COLORED DISPLAY 
480 LOA COLOR3 
490 STA COLOR1 
500 LOA COLOR4 
510 STA COLOR2 
520 ;NOW WE'LL RUN THE PROGRAM 
530 LOA #0 
540 STA SDMCTL ;TURN ANTIC OFF FOR A 

MOMENT ... 
550 LOA #HLlST&255 ;WHILE WE STORE OUR 

NEW LISTS ADDRESS 
560 STA SDLSTL ;IN THE OS DISPLAY LIST 

POINTER. 
570 LDA#HLlST/ 256 ;NOW FOR THE HIGH 

BYTE. 
580 STA SDLSTH ;NOW ANTIC WILL KNOW 

OUR NEW LISTS ADDRESS 
590 LOA #$22 
600 STA SDMCTL ; ... SO WE'LL TURN ANTIC 

BACK ON NOW 
610 ; 
620 FINI 
630 RTS 
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How it Works 
We've already covered just about everything in this program, so 
it's probably fairly self-explanatory. However, if you're using an 
Atari Assembler cartridge or an Atari Macro Assembler and 
Text Editor package, you'll have one problem with the program: 
it won't work! That's because Atari's two assemblers, as sophis
ticated as they may be, they are not equipped with one handy lit
tle directive that the MAC/65 assembler does have, the .SBYTE 
directive used in lines 220 through 260 of of our display list 
program. 

The MAC/65's .SBYTE directive was designed to convert 
ATASCII code, which is what your computer uses to store text in 
its memory, to a completely different code that's used to display 
characters on the screen. This latter code is called, appropriately 
enough, screen code. It wouldn't be difficult to convert AT ASCII 
to screen code if there were a direct one-to-one correlation be
tween the two codes. Unfortunately, there is no such one-to-one 
relationship. To translate from ATASCII code to screen code, 
you have to add 64 to some character codes, subtract 32 from 
others, and leave still others alone. Here's an AT ASCII to screen 
code conversion table that shows just what the translation 
process involves: 

CONVERTING ATASCII CODE TO SCREEN CODE 

ATASCII VALUES 

o to 31 
32 to 95 
96 to 127 

128 to 159 
160 to 223 
224 to 255 

223 

OPERATION NEEDED 
FOR CONVERSION 

Add 64 
Subtract 32 
None 
Add 64 
Subtract 32 
None 



An Automatic Conversion Routine 

If your assembler doesn't have an .SBYTE function, there is an 
assembly language routine you can use to make the above con
versions. I wrote it before there was any such thing as a MAC/65 
assembler or an . SBYTE directive. It's a" quick and dirty" routine 
that was dreamed up in a hurry, and if you're a good assembly 
language programmer, you can probably write a routine that will 
do the same job faster, more efficiently, or both. But this one 
works just fine, and it will work with a block of text of any size. 
This little conversion subroutine simply performs the calcula
tions in the above table automatically. Before you can use it, 
however, you'll have to make a few minor alterations in the main 
display list program you typed a few moments ago. Here's what 
you'll have to do: 

Three Modifications 

• Convert the .SBYTE directives in lines 220 to 260 to .BYTE 
directives (or to DB directives, if you're using an Atari Macro 
Assembler). 

• Add one variable and one constant to the symbol table in your 
display list program. The variable, which I'll call TEMPTR 
(for "temporary pointer)," will have to be located on page 
zero, since it will be used with indirect indexed addressing, an 
addressing mode that demands two zero page locations. The 
constant you'll be using, called EOF, will have the literal value 
$88, which is the ATASCII code for an end of file character. 
You can add these symbols to the symbol table in your title 
screen program with these lines: 

65 TEMPTR = $CC 
66 EOF = $88 
67 ; 

• Add this line to your program to mark the end of the block of 
text to be converted to screen code: 

265 .8YTE EOF 
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Now Let's Get Started 
The conversion routine starts off by storing the starting address 
of the data for our new display list into a pair of pointers called 
TEMPTR and TEMPTR+l. Then, using indirect indexed ad
dressing, it moves through the text to be converted character by 
character. Before it performs each conversion, however, it checks 
to see if the character in question is an end of file character ($88). 
If the character in question is an EOF character, the subroutine 
ends, since that means that all necessary conversions have been 
performed and that it's time to end the conversion routine. If the 
character is not an EOF character, the program goes ahead and 
performs the necessary conversion (if one is needed). Then it 
moves on to the next character. 

Faking the .SBYTE Directive 

If your assembler isn't equipped with an . SBYTE directive, or if, 
for some reason, you don't want to use the .SBYTE directive 
that the MAC/65 assembler provides, then you can use this con
version routine. Just type it into RAM, and then jump to it after 
your display list is loaded into memory but before the code that 
initilizes your display list begins. You can do that with this 
line: 

475 JSR FIX 

Here's the conversion program: 

Note: Before assembling this program type SIZE to verify that 
MEMLO (the second number) is less than the starting address of 
the object code in line 40. If it isn't, you should either change the 
starting address (e.g., 40*=5000), change LOMEM(e. g., LOMEM 
4000), or remove commentsfrom the source code so thatMEMLO is 
less than the starting address. 

AN ATASCII-ASCII CONVERSION SUBROUTINE 

2000 ; 
2010; FIX DATA 
2020; 
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2030 FIX 
2040 LOA #START&255 ;STARTING ADDRESS 

OF NEW DISPLAY LIST [LOW BYTE) 
2050 ST A TE M PTR 
2060 LOA #START/ 256 ;NEW DISPLAY LIST 

ADDRESS [HIGH BYTE) 
2070 STA TEM PTR+1 
2080 ; 
2090 ;"FIX DATA" SUBROUTINE 
2100 ; 
2110 LOY #0 ;LOAD Y REGISTER WITH DUMMY 

o FOR INDIRECT INDEXED ADDRESSING 
2120 FXDT 
2130 LOA [TEMPTR),Y ;START WITH FIRST 

CHARACTER IN BLOCK 
2140 CMP #EOF ;IS IT AN END OF FILE 

CHARACTER [$88)? 
2150 BEQ DONE ;IF SO, WE'RE DONE--EXIT 

SUBROUTINE 
2160 JSR FXCH ;ELSE JUMP TO "FIX 

CHARACTER" SUBROUTINE 
2170 STA [TEMPTR), Y ;THEN REPLACE OLD 

CHARACTER WITH NEW ONE 
2180 INC TEMPTR ; ... AND INCREMENT 

TEMPTR [LOW BYTE) 
2190 BNE FXDT ;IF NO CARRY TO HIGH BYTE, 

START AGAIN 
2200 INC TEMPTR+1 ;ELSE INCREMENT 

TEMPTR'S HIGH BYTE 
2210 JMP FXDT ; ... AND THEN GO BACK TO 

FXDT AND START AGAIN 
2220 ; 
2230 DONE ; MAIN SUBROUTINE DONE--ALL 

CHARACTERS CONVERTED 
2240 RTS ;SO NOW WE RETURN TO THE 

PROGRAM IN PROGRESS 
2250; 
2260 ;"FIX CHARACTER" ROUTINE 
2270 ; 
2280 FXCH 
2290 CMP #32 ;IS CHARACTER CODE < 32? 
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2300 BCC ADD64 ;IF SO, JUMP TO "ADD64" 
ROUTINE 

2310; 
2320 CMP #96 ;15 IT < 96? 
2330 BCC SUB32 ;IF SO, JUMP TO "SUBTRACT 

32" ROUTINE 
2340; 
2350 CMP #128; < 128? 
2360 BCC FIXT ;IF SO, JUMP TO "FIXT" 

ROUTINE (NO ACTION) 
2370; 
2380 C M P # 1 60 ; < 1 60? 
2390 BCC ADD64 ;IF SO, JUMP TO ADD64 
2400; 
2410 CMP #224 ; < 224? 
2420 BCC SUB32 ;IF SO, JUMP TO SUB32 
2430; 
2440 JMP FIXT ;IF BETWEEN 224 AND 255, 

NO ACTION NEEDED 
2450; 
2460 ADD64 
2470 CLC ;CLEAR CARRY TO ADD 
2480 ADC #64 ;THEN ADD 64 
2490 JMP FIXT ;RETURN TO MAIN (FXDT) 

SUBROUTINE 
2500 ; 
2510SUB32 
2520 SEC ;SET CARRY FOR SUBTRACTION 
2530 SBC #32 ;AND SUBTRACT 32 
2540 FIXT 
2550 RTS ;RETURN TO MAIN (FXDT) 

SUBROUTINE 

Coarse Scrolling 

As soon as you've typed this program and saved it on a disk, you 
can run it, and if you've typed it exactly as written, you should 
have no problems. As soon as you have it up and running, you can 
start fixing it up so that it will be even fancier, with a technique 
known as scrolling. Before I start discussing scrolling, though, 
1'd like to suggest that you make one more small modification in 
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the display list program that we've been working on. We'll be 
scrolling just one line in the program - the line that says "THE 
BIG PROGRAM." And we'll need to insert some blank spaces 
before and after that line so that it will scroll across the screen 
properly. With these spaces inserted, the screen will start off 
with a blank space where the words "THE BIG PROGRAM" 
should be. Then these three words will come scrolling across the 
screen, like those ticker tape style signs you sometimes see in 
store windows and on TV. To provide this new spacing, you'll 
have to change one line of your original display list program, and 
then add two more lines. Here are the three lines we'll need (230 is 
the amended line, and 225 and 235 are the new ones): 

225 LlNE2 .SBYTE " 
230 .SBYTE" the big program 
235 .SBYTE" 

Once these lines are modified, it isn't difficult to implement a 
primitive sort of scrolling (called coarse scrolling) in our display 
list program. To implement a coarse scroll, all you have to do is 
set up a loop that keeps incrementing or decrementing certain 
addresses in a program - specifically, the addresses that follow 
the LMS instructions in a display listing. If your scrolling pro
gram is written in assembly language, it will also have to include 
some sort of delay loop, since machine language is so fast that 
without some sort of delay, it will cause a scroll line to zoom by so 
rapidly that it turns into a blur. 

Here is a display list and an accompanying display list implemen
tation routine will add coarse scrolling to your title screen pro
gram. Make the following changes in the program, and the line 
that reads "THE BIG PROGRAM" will scroll across the screen 
over and over again in an endless loop. The text will move in a 
very jerky manner, one full letter at a time. But don't worry; in 
the next chapter, we'll smooth out that action with an assembly 
language technique known as fine scrolling. 

AN EXAMPLE OF COARSE SCROLLING 

10; 
20; HELLO SCREEN (COARSE) 
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30 ; 
40 *=$3000 
50 JMP INIT 
60 ; 
70 TCKPTR = $2000 
80 ; 
90 SDMCTL = $022F 
100 ; 
110 SDLSTL=$0230 
120 SDLSTH=$0231 
130 ; 
140 COLOR0 = $02C4 ;OS COLOR REGISTERS 
150 COLOR1 =$02C5 
160 COLOR2=$02C6 
170 COLOR3=$02C7 
180 COLOR4=$02C8 
190 ; 
200 ;DISPLAY LIST DATA 
210; 
220 START 
230 LIN E1 .SBYTE" PRESENTING 
240 LlNE2 .SBYTE" 
250 .SBYTE" the big program 
260 .SBYTE " 
270 LlNE3 .SBYTE " By (You" 
280 .SBYTE "r Name) 
290 LlNE4 .SBYTE" PLEASE STAND BY 
300; 
310 ;HELLO DISPLAY LIST 
320; 
330 HLiST 
340 .BYTE $70,$70,$70 
350 .BYTE $70,$70,$70,$70,$70 
360 .BYTE $46 
370 .WORD LINE1 
380 .BYTE $70,$70,$70,$70,$47 
390 SCROLN 
400 .WORD $00 
410 .BYTE$70,$42 
420 ·.WORD LlNE3 
430 .BYTE $70,$70,$70,$70,$46 
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440 .WORO LlNE4 
450 .BYTE$7a$7a$7a$7a$70 
460 .BYTE $41 
470 .WORO HLiST 
480; 
490 ;RUN PROGRAM 
500 ; 
5101NIT 
520 LOA COLOR3 
530 STA COLOR1 
540 LOA COLOR4 
550 STA COLOR2 
560 ; 
570 LOA #0 
580 STA SOMCTL 
590 LOA # H LlST&255 
600 STA SOLSTL 
610 LOA #HLlST/ 256 
620 STA SOLSTH 
630 LOA #$22 
640 STA SOMCTL 
650 ; 
660 ;COARSE SCROLLING ROUTINE 
670 ; 
680 LOA #40 
690 STA TCKPTR 
700 JSR TCKSET 
710 ; 
720 COARSE 
730 LOY TCKPTR ;40 TO START 
740 DEY 
750 BNE SCORSE 
760 LOY #40 
770 JSR TCKSET 
780 SCORSE 
790 STY TCKPTR 
800 INC SCROLN 
810 BNE LEAP 
820 INC SCROLN+1 
830 ; 
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840 ;OELAY LOOP 
850; 
860 LEAP 
870 TYA 
880 PHA ;SAVE Y REGISTER 
890 LOX #$FF 
900 XLOOP 
910 LOY #$80 
920 YLOOP 
930 DEY 
940 BNE YLOOP 
950; 
960 OEX 
970 BNE XLOOP 
980 PLA 
990 TAY ;RESTORE Y REG 
1000 ; 
1010 JMP COARSE 
1020; 
1030 TCKSET 
1040 LOA #LlNE2&255 
1050 STA SCROLN 
1060 LOA # LI N E21256 
1070 STA SCROLN+1 
1080 ENOIT 
1090 RTS 

If you type the above modifications into your display list program 
and run it, what you'll see is an example of coarse scrolling. The 
line that reads "THE BIG PROGRAM" will come jumping across 
the screen, a letter at a time, in a jerky kind of way that could get 
rather disconcerting if you had to look at it for very long. Coarse 
scrolling is bad enough when it' s used to movejust one line across 
a screen. But it becomes even more nerve shattering when it's 
used to scroll an entire screen display. 
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To scroll more than one line on your screen, up to and including 
the maximum number of lines in a full screen display, all you have 
to do is go to your display list and insert an LMS instruction 
before every line you want scrolled. If you want to scroll your 
entire screen, you can precede every line with an LMS instruc
tion! Then, to scroll your screen horizontally, all you'll have to do 
is set up a loop that progressively increments or decrements the 
starting address of the data that appears on every line. If you 
increment those addresses, your display will scroll from right to 
left. If you decrement them, it will scroll from left to right. 

It's just as easy to do coarse vertical scrolling as it is to do coarse 
horizontal scrolling. To scroll a screen display vertically, all you 
have to do is increment or decrement the LMS address of each 
line by the number of characters in the lines being scrolled, instead 
of by just one character at a time. When you set up this kind of 
scrolling action, you have to count the number of characters in 
each line very carefully, so your characters won't move back and 
forth on the screen as they scroll up or down. Coarse vertical 
scrolling, like coarse horizontal scrolling, can be used to scroll 
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any number of lines on a monitor screen. Whether you're aware 
of it or not, in fact you've probably enountered coarse vertical 
scrolling in action many times. It's the kind scrolling you see 
when you're writing a BASIC or assembly language program, 
reach the bottom line on your monitor screen, and hit a carriage 
return. When you do that, your entire screen display moves up 
one line, using a coarse vertical scrolling routine. 

Coarse scrolling is fine when it's used that way, just one line at a 
time, but it doesn't work very well in more demanding applica
tions, such as moving screen displays around in arcade style 
games. Unfortunately for BASIC programmers, coarse scrolling 
is the only kind that Atari BASIC supports. To do smooth scroll
ing, you have to use - you guessed it! - assembly language. In 
the next (and last) chapter of this book, you'll learn how to use 
smooth scrolling in assembly language programs. And, as if that 
weren't enough, you'll also learn how to create and animate 
character sets, how to use player-missile graphics, and how to 
write assembly language programs that call for the use of game 
controllers. 
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Chapter Fourteen 

Advanced Atari Graphics 

No matter how good a BASIC programmer you may be, there are 
some things that you just can't do in a BASIC program. BASIC is 
simply not fast enough to handle such tasks as fine scrolling, 
high-speed character animation, and player-missile graphics. 
Assembly language can handle all three of these tasks quite 
easily, and in this chapter, you'll see exactly how. Let's start with 
fine scrolling. 
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Fine scrolling 

To demonstrate fine scrolling, I'm going to use an expanded ver
sion of the title screen program you typed into your computer in 
the preceding chapter. If you've saved that program on a disk, 
you can load it into your computer right now. Then, with a little 
editing and a few additions, you can modify it until it looks like 
the listing below. After you've modified it, you can save it on a 
disk, run it, and take a look at it in action. Then I'll explain how it 
works, and you'll have an eye-catching assembly language pro
gram that you can use from now on to help you create customized 
title screens for your own programs. 

A DEMONSTRATION OF FINE SCROLLING 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 

250 

;HELLO SCREEN (FINE] 

*= $3000 
JMP INIT 

TCKPTR = $2000 
FSCPTR = TCKPTR+1 

SOMCTL = $022F 
, 
SOLSTL = $0230 
SOLSTH = $0231 
, 
COLOR0 = $02C4 ;OS COLOR REGISTERS 
COLOR1 = $02C5 
COLOR2 = $02C6 
COLOR3 = $02C7 
COLOR4 = $02C8 
. 
HSCROL = $0404 

VV8LKI = $0222 ;OS INTERRUPT VECTOR 
SYSV8V = $E45F ;INTERRUPT ENA8LE 
VECTOR 
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260 SETVBV = $E45C ;SET VERTICAL BLANK 
INTERRUPT (VB I] VECTOR 

270 XITVBV= $E462 ;EXIT VBI VECTOR 
280 , 
280 ;DISPLAY LIST DATA 

, 
START 
LlNE1 .SBYTE" 
LlNE2 .SBYTE" 

PRESENTING 

300 
310 
320 
330 
340 
350 
360 
370 
380 
380 , 

.SBYTE " the big program 

.SBYTE" 
LlNE3 .SBYTE " By (You" 

.SBYTE " r Name] " 
LlNE4 .SBYTE" PLEASE STAND BY " 

400 ;DISPLAY LIST WITH SCROLLING LINE 
410 
420 
430 
440 
450 
460 
470 
480 
480 
500 
510 
520 

530 
540 
550 
560 
570 
580 
580 
600 
610 
620 
630 
640 

, 

, 
HLlST ; ('HELLO' LIST] 

.BYTE $70,$70,$70 

.BYTE $70,$70,$70,$70,$70 

.BYTE $46 

.WORD LlNE1 
;NOTE THAT THE LAST BYTE IN THE 
;NEXT LINE IS$57, NOT$47 AS IT 
;WAS IN THE PRECEDING CHAPTER 

.BYTE $70,$70,$70,$70,$57 
SCROLN ;(THIS IS THE LINE WE'LL SCROLL] 

.WORD $00 ;A BLANK TO BE FILLED IN 
LATER 
.BYTE $70,$42 
.WORD LlNE3 
.BYTE$7a$7a$7a$7a$46 
.WORD LlNE4 
.BYTE $70,$70,$70,$70,$70 
.BYTE $41 
.WORD HLiST 

;RUN PROGRAM 
, 
INIT ; PREPARE TO RUN PROGRAM 

LOA COLOR3 ;SET COLOR REGISTERS 
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650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 

810 
820 
830 

840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 

STA COLOR1 
LOA COLOR4 
STA COLOR2 

LOA #0 
STA SoMCTL 
LOA # H LlST&255 
STA SoLSTL 
LOA # H LIST 1256 
STA SoLSTH 
LOA #$22 
STA SoMCTL 

JSR TCKSET; INITIALIZE TICKER ADDRESS 

LOA #40 ;NUMBER OF CHARACTERS IN 
SCROLL LINE 
STA TCKPTR 
LOA #8 
STA FSCPTR ;NUMBER OF COLOR CLOCKS 
TO FINE SCROLL 

;ENABLE INTERRUPT 

LOY #TCKINT&255 
LOX #TCKINT/ 256 
LOA #6 
JSR SETVBV 

; TICKER INTERRUPT 
, 
TCKINT 

LOA #SCROLL&255 
STA VVBLKI 
LOA #SCROLU256 
STA VVBLKI+1 

INFIN 
JMP INFIN ;INFINITE LOOP 

, 
SCROLL 
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1040 LOX FSCPTR ;8 TO START 
1050 OEX 
1060 STX HSCROL 
1070 BNE CONT 
1080 LOX #8 
1090 CONT; [CONTINUE) 
1100 STX FSCPTR 
1110 CPX#7 
1120 BEQ COARSE 
1130 JMP SYSVBV 
1140 COARSE 
1150 LOY TCKPTR ;NUMBER OF CHARACTERS 

TO SCROLL 
1160 DEY 
1170 BNE SCORSE ;LOOP BACK TILL FULL LINE 

IS SCROLLED 
1180 LOY #40 
1190 JSR TCKSET ;RESET TICKER LINE 
1200 SCORSE; DO COARSE SCROLL 
1210 STY TCKPTR 
1220 INC SCROLN ;LOW BYTE OF ADDRESS 
1230 BNE RETURN 
1240 INC SCROLN+1 ;HIGH BYTE OF ADDRESS 
1250 RETURN 
1 260 J M P SYSVBV 
1270 
1280 TCKSET 
1290 LOA # LI N E2&255 
1300 STA SCROLN 
1310 LOA # LlNE2/ 256 
1320 STA SCROLN+1 
1330 ENOIT 
1340 RTS 

As soon as you've typed this program, be sure save it on a disk 
immediately. Then you can run it, debug it if necessary, and save 
it again. Once you have it up and running properly, I think you'll 
agree with me that it's quite a nice display, and it certainly is an 
example of very smooth scrolling! Now for an explanation of how 
the program works. 
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How to Implement Fine scrolling 

The reason fine scrolling works so smoothly is that it has eight 
times the resolution of coarse scrolling. When coarse scrolling is 
employed in a program, it causes lines of text to jump across (or 
up or down) the screen one full character at a time. But when fine 
scrolling is used, text can be moved around the screen one-eighth 
of a character at a time. Here's how that works: Look closely at a 
text character on your video screen, and you'll see that it's made 
up of a matrix of tiny dots. If you use a magnifying glass, you will 
be able to see that there are exactly 64 dots in each character. 
Every character on your screen is eight rows of dots (or scan 
lines) high, and eight rows of dots (or color clocks) across. And 
these rows of dots, scan lines and color clocks, are the increments 
used in fine scrolling. 

To create and implement a fine scrolling routine, several steps 
are required. First, you must go to your display list and enable 
fine scrolling by setting certain bits in the LMS instruction that 
appears before every line you want to scroll. When bit 4 of an 
LMS instruction is set, the line that follows the LMS instruction 
can be scrolled horizontally. When bit 5 of an LMS instruction is 
set, the line that follows the instruction can be scrolled vertically. 
If both bit 4 and bit 5 of an LMS instruction are set, then the line 
that follows the instruction can be scrolled both horizontally 
and vertically. 

Take a look at lines 500 through 520 in the program you just 
typed, and you'll see that the LMS instruction preceding the line 
which I've labeled SCROLN (the line that scrolls) is $57. Look at 
the program in its previous incarnation, the version in Chapter 
13, in which fine scrolling was not enabled. You will see that this 
LMS instruction has been changed from $47 to $57. 

The number $47, expressed in binary notation, is 0100 0111. As 
any assembly language programmer can plainly see, bit 4 of that 
binary number (the fifth bit from the right, since the first bit of a 
binary number is bit 0), is a zero. In other words, bit 0 is not set. 
When we set bit 4, the number we're looking at becomes 0101 
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0111, or $57. Therefore, when horizontal fine scrolling of the line 
labeled SCROLN is enabled, lines 500 through 520 of our pro
gram become: 

500 .BYTE$7~$7~$7~$7~$57 
510 SCROLN ;[THIS IS THE LINE WE'LL SCROLL) 
520 .WORD $00 ;A BLANK TO BE FILLED IN 

LATER 

Now suppose you wanted to scroll SCROLN vertically instead of 
horizontally. What would you do? Well, you'd simply set bit 5 of 
the LMS instruction in line 500. Then the $57 that you see in that 
line would become $67 or, in binary notation, 01100111. If you 
wanted to enable both horizontal and vertical scrolling of the 
line, you'd simply change the LMS instruction $77 (0111 0111). 

Fine scrolling, just like coarse scrolling, can be performed on any 
number of lines of text on your screen. Just set the proper bit (or 
bits) in the proper LMS instruction (or instructions), and the 
desired type of scrolling can be implemented for each selected 
line. But, you may ask, what if there is no LMS instruction for a 
line you want to scroll? Well, in that case, you could simply write 
one. There's absolutely no reason that a display list can't have an 
LMS instruction for every line on the screen. If you want to scroll 
an entire screen, you must, in fact, put an LMS instruction in 
front of every line. So far, all we've talked about is how to enable 
fine scrolling. But now that you know how to enable it, how do 
you actually do it? 

Good question. 

When fine scrolling of a line is enabled, control of the line is handed 
over to one of two scrolling registers that reside in your Atari's 
operating system. If you have authorized a horizontal scroll on a 
given line of a display, then that line becomes subject to control of 
a horizontal scroll register, which is abbreviated HSCROL and is 
situated at memory address $D404. When a vertical scroll has 
been enabled for a given given display list line, then that line 
becomes subject to the control of a vertical scroll register, or 
VSCROL, situated at address $D405. If both horizontal and ver
tical scrolling of a given line are enabled. then that line becomes 
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subject to the control of both the HSCROL and the VSCROL 
registers. Once control of a line has been turned over to HSCROL, 
VSCROL or both, then you can implement a fine scroll by simply 
loading a value into the appropriate scrolling register (or regis
ters) . When you load a number into the HSCROL register, every 
display list line that has been put under the control of that regis
terwill be shifted to the right by the number of color clocks loaded 
into HSCROL. Load a number into the VSCROL register, and 
every line for which a vertical scroll has been enabled will be 
scrolled upward by the number of scan lines you have specified. 

Combining Fine scrolling and Coarse 
Scrolling 
There is one hitch, though. The scrolling registers in your com
puter are 8-bit registers, and only four of these 8-bits in each 
register are ever used. That means that fine scrolling can be 
taken only so far. To work properly, fine scrolling must be com
bined with coarse scrolling, which can handle as much scrolling 
data as you can program. Generally speaking, the best way to 
combine fine scrolling with coarse scrolling is to fine scroll a line 
or column of characters by seven color clocks or scan lines, and 
then to reset the appropriate fine scrolling register to its initial 
value and implement one coarse scroll. Loop through this kind of 
procedure over and over, and the result will be a smooth fine 
scroll. You can see how this procedure works by studying and 
experimenting with the fine scrolling routine in the title screen 
program we've been examining. 

Smoothing Out Your Scrolling Action 
That's about all there is to fine scrolling if you don't mind putting 
up with a jerk, a jump or a smear every now and then on your 
video display. If those kinds of messy situations don't appeal to 
you, and I'm sure they don't, then we might as well go ahead and 
talk about how to make a fine scrolling operation perfect: smooth, 
smear proof and jerk free. 

As you may recall from the preceding chapter, the display on 
your computer monitor is redrawn by an electron gun 60 times 
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every second, and between each screen refresh there's a split 
second total screen blackout that takes place too rapidly for you 
to see. Well, when you write a fine scrolling routine in assembly 
language and don't take a few special precautions, your display 
may (in fact it virtually always will) smear a bit and jump around 
a little from time to time. That's because some of the scrolling 
action you've programmed will sometimes take place while a dis
play is being drawn on your screen by the electron gun inside 
your video tube. But there is a way to keep that from happening. 
The folks who designed your Atari have provided you with some
thing called a Vertical Blank Interrupt (VEl) vector, and once 
you learn how to use that vector, you can perform all kinds of 
graphics tricks on your computer screen, in real time and without 
any danger whatsoever of messing up your computer's screen 
display. 

A vector, as you may know, is a pointer in your computer's 
operating system that contains the address of a specific routine. 
The primary purpose of a vector is to give you an easy method for 
implemeting an often used routine. When you jump to an OS vec
tor during the course of a program, your program will auto
matically jump to the OS routine that the vector points to, and 
you can thus implement that routine without having to write 
from scratch all of the code that it contains. Vectors can some
times be used in another way, too. Sometimes you can "steal" a 
vector; that is, you can change its value so that it will point to 
some routine you've written yourself, rather than the OS routine 
that it originally pointed to. That means that you can sometimes 
use a vector as an easy method for controlling the behavior of 
your computer's operating system. And that brings us the the 
point at hand: vertical blank interrupt vectors. 

Actually, there are two VBI vectors in your computer, and each 
one has a corresponding pointer in your Atari's operating sys
tem. One of these vectors is called VVBLKI ("I" for "Im
mediate"), and the pointer that can be used to access it is situated 
at memory address $0222. The other VEl pointer is labeled 
VVBLKD ("D" for Deferred) and resides at memory address 
$0224. 

Every time your Atari starts a vertical blank interrupt, it takes a 
look at the contents ofthe VVBLKI pointer. If the program that is 
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being processed does not make use of the VVBLKI pointer, then 
that pointer will contain nothing but an instruction to jump to a 
predetermined memory address: specifically, memory address 
$E45F (which Atari has labeled SYSVBV). Memory address 
$E45F usually doesn't contain anything exciting, either. All that 
it ordinarily contains is an instruction for your computer to con
tinue its normal processing. By stealing the VVBLKI vector, 
however, you can make it point to any routine you like - usually 
one you yourself have written. Then, 60 times every second 
(every time your computer begins its 60 Hertz vertical blank 
interrupt) it will automatically process the routine whose address 
you have stored in the VVBLKI pointer. When your routine is 
finished, your computer will resume its normal processing. 

Your computer's other VEl vector, VVBLKD, also points directly 
to an exit point unless it has been stolen for a software applica
tion. The VVBLKD vector's normal exit point is memory address 
$E462, which Atari calls XITVBV, it works just like SYSVBV. It 
merely terminates your computer's vertical blank interrupt period 
and allows your computer to resume normal processing. Once 
you understand how the VVBLKI and VVBLKD interrupts work, 
it isn't difficult to steal them. Here's all you have to do: 

• Write a routine that you would like to see take place during a 
vertical blank interrupt. 

• Make sure that your routine ends with a jump to SYSVBV or 
XITVBV (depending upon whether the vector you use is im
mediate or deferred). 

• Store the address of your routine at VVBLKI for an immediate 
interrupt, or at VVBLKD for a deferred interrupt. 

Once those steps are taken, your computer will process your new 
routine 60 times every second, just before it begins each VBI 
interrupt if you've used the immediate vector, or just before it 
returns from each VBI interrupt if you've used the deferred vector. 
That makes vector stealing a very valuable technique for writing 
programs involving high-speed, high-performance processing, 
such as the processing of routines involving graphics and sound. 

At this point, you may be wondering why there are two vectors 
that you can steal, and what the differences between them are. 
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Well, the reason is simply that certain user-written routines are 
best performed at the start of a vertical blank period, while 
others should not be performed until a VBl has ended. More 
information on this point can be found in De Re Atari and in The 
Atari 400/800 Technical Reference Notes. 

One More Thing . .. 
There's just one more important fact that you should remember 
about VBl vector stealing. After you've stolen a vector, there's a 
small chance that an interrupt will begin after the first byte of the 
pointer you're using has been updated, but before the second 
byte has been changed. If that happens, it could crash your pro
gram. But this possibility can be easily avoided. All you have to 
do is use an operating system routine that the good people who 
designed your computer thoughtfully provided. This routine is 
called SETVBV, and it begins at memory address $E45C. 

Here's how to use the SETVBV routine: First, load the 6502 Y 
register with the low byte of the address of the routine that 
instructs your computer to begin a vector changing routine. Then 
load the X register with the high byte of the address. Next, load 
the accumulator with a 6 for an immediate VBl or a 7 for a 
deferred VBl. Then do aJSR SETVBV, and your interrupt will be 
safely enabled. That's just about the whole story on how to use 
vertical blank in assembly language fine scrolling programs. 

customizing a Character Set 
Your Atari computer has a very fine built-in character set. If you 
have a late model Atari, it may even have two sets of characters 
built into its ROM. But how would you like to be able to create 
your own character sets, including not only letters, numbers and 
special text symbols, but graphics characters, too? 

Well, you can do that quite easily if you know assembly language. 
You can do it at lightning speed, too - not at the snail's pace you 
may have agonized over if you've ever tried to alter a character 
set using a BASIC program. It's actually quite easy to design a 
character set on an Atari computer. As I pointed out earlier in 
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this chapter, each character that your computer prints on your 
video monitor is made up of an 8 by 8 matrix of dots. This 8 by 8 
grid is stored in your computer's RAM as eight bytes of data. The 
letter A, for example, is stored in your computer's memory as a 
string of binary digits that could be represented in this fashion: 

Binary Notation Hexadecimal Notation Appearance 

0900 0000 00 
0001 1000 18 XX 
O()li 1100 3C XXXX 
0 Q 110 66 XX XX 
0110 0110 66 XX XX 
0111 1110 7E XXXXXX 
0110 0110 66 XX XX 
0000 0000 00 
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The primary character set in your computer is composed of 128 
letters, each made up of 64 dots that could be arranged in the 
same 8 by 8 format as the letter" A." In fact, that is precisely the 
format in which the letters are arranged when they're displayed 
on your computer screen. Since there 128 characters in a set, and 
since each character is made up of eight bytes of data, a full 
character set occupies 1,024 bytes of RAM. Put all of that data 
together, and you have quite a lengthy table. You also have a 
table which must start on a 1K boundary because of your com
puter's architecture. Character sets can be stored almost any
where in an Atari computer's memory, but the address of the 
character set currently in use is always stored in a specific pointer 
in the computer's operating system. That pointer, labeled CHBAS 
by the engineers who designed your Atari, is situated at memory 
address $2F4. 

To locate a character in your computer, you only have to know 
two things: the current value of CHBAS, and the ATASCII code 
for the character you're seeking. Add the character's ATASCII 
code number to the value of CHBAS, and that will be the memory 
address of the character you're looking for. If your computer is an 
Atari 400 or an Atari 800, then its character set is built into ROM 
and thus, cannot be modified. If you have a later model Atari, 
your character set has a RAM address and can therefore be 
accessed somewhat more easily. But, if you want to alter your 
computer's built-in character set, you have to do it in a rather 
indirect way, no matter what kind of Atari you own. 

The best way to modify a character set is to copy your computer's 
built-in character to some free and easily accessed block of RAM. 
You can then modify the contents of CHBAS so that it points to 
the starting address of your own block of characters rather than 
your computer's built-in character set. Then you can use either 
set of characters you like, either the one built into your Atari at 
the factory or the one you have created on your own. 

Once you've defined a new character set and stored it in RAM, all 
you have to do to change your screen display from one character 
set to another is change the contents of CHBAS. That makes it 
easy to write routines calling for character animation. All you 
have to do to animate a character set is draw several different 
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character sets that vary slightly, and then switch back and forth 
among them by simply changing the contents of the CHBAS 
pointer. BASIC is too slow to handle ajob like that very well, but 
when you know assembly language, you can animate character 
sets in real time, at lightning fast speeds. In a moment, I'll show a 
program that you can use to custom design your own character 
sets. The program has two distinct parts. The first part copies the 
entire Atari character table to a spot in memory selected by the 
programmer. The second part alters just one character - the 
character" A." But the same technique can be used to alter any 
other character or, if you wish, all of them! 

I'd like to make two more observations before you type the 
next program. First, I'd like to point out that the first half of the 
program, the part that moves the character set, can be used to 
move any block of data from any location to any other location in 
your computer's RAM. That's a useful utility, since data often 
has to be moved from one block of memory to another in assembly 
language programs. The data moving portion of the program 
that follows is a particularly good one, since it it is designed to 
move blocks of memory a full page at a time, using 8-bit pointers 
instead of 16-bit pointers and thus saving a considerable amount 
of processing time. The second point I'd like to make is that there 
are ways to create character sets without having to go through 
the drudgery of drawing character sets on graph paper and then 
punching them into memory a byte at a time. There are several 
excellent programs on the market that can help you create your 
own character sets for Atari computers right on the screen, using 
a cursor, a set of menus, and keyboard commands. So if you're 
interested in computer graphics, it might be to your advantage to 
take a look at some professionally produced character generator 
programs. 

But that's enough from me. Here's your program: 

MOVING AND MODIFYING A CHARACTER SET 

10 
20 ;ALTERING GRAPHICS CHARACTERS 
30 
50 *=$0600 
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60 JMP MOVOAT 
70 . 
80 C H 8AS=$02 F4 
90 NEWAOR=$5000 
100 TABLEN=1024 
110 . 
120 MVSRCE=$B0 ;PAGE ZERO PTR 
130 MVOEST=MVSRCE+2 ;OITTO 
140 CHRAOR=MVOEST+2 ;OITTO 
150 . 
160 LENPTR=$6000 ;ANOTHER POINTER 
170 RAMCHR= LENPTR+2 ;OITTO 
180 
190 

200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 

· SHAPE .BYTE $1 B.$OB.$42.$7E.$18.$7E. 
$66.$E7 ;A MAN 

· START=MOVOAT 

· MOVOAT 

· ;STORE VALUES IN POINTERS 

· 

LOA #0 
STA MVSRCE ;LOW BYTE 
LOA CHBAS ;HIGH BYTE 
STA MVSRCE+1 ;HIGH BYTE 

LOA #NEWAOR&255 
STA MVOEST 
LOA # NEWAOR/ 256 
STA MVOEST+1 

LOA #TABLEN&255 
STA LENPTR 
LOA #TABLEN/ 256 
STA LENPTR+1 

;START MOVE 

LOY #0 
LOX LENPTR+1 
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460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 

BEQ MVPART 
MVPAGE 

LOA [MVSRCE),Y 
STA [MVOEST),Y 
INY 
BNE MVPAGE 
INC MVSRCE+1 
INC MVOEST +1 
OEX 
BNE MVPAGE 

MVPART 
LOX LENPTR 
BEQ MVEXIT 

MVLAST 
LOA [MVSRCE),Y 
STA [MVOEST),Y 
INY 
OEX 
BNE MVLAST 

MVEXIT 
, 
;PART II : CHANGE CHARACTER 
, 
;WE'LL ALTER THE CHARACTER "A" 

, 

LOA #33 ;RAM CODE: "A" 
STA RAMCHR 

;NOW WE CALCULATE RAMCHR'S AOR 

LOA #0 
STA RAMCHR+1 ;CLEARING IT 
LOA RAMCHR ;#33: AN "A" 
CLC 
ASL A ;MULT BY 2 
ROL RAMCHR+1 ;GET CARRY 
ASL A ;AGAIN 
ROL RAMCHR+1 
ASL A ;ANO AGAIN 
ROL RAMCHR+1 
STA RAMCHR ;MULT BY 8 DONE 
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870 
FNDADR 

CLC 
880 
890 
900 
910 
920 
930 
940 
950 
960 , 

LOA RAMCHR 
ADC #NEWADR&255 
STA CHRADR 
LOA RAMCHR+1 
ADC #NEWADR/ 256 
STA CHRADR+1 

970 ;NOW WE CHANGE THE CHARACTER 
980 
990 NEWCHR 
1000 LOY #0 ;NR OF BYTES+1 
1010 DOSHAPE 
1020 LOA SHAPE,Y 
1030 STA (CHRADR),Y 
1040 INY 
1050 CPY #9 
1060 BCC DOSHAPE ;REPEAT TILL DONE 
1070 
1080 ;STORE NEW CHR SET ADR IN CHBAS 
1090 
1100 LOA #NEWADR/ 256 ;HIGH BYTE 
111 0 ST A C H BAS 
1120 
1130 FINI 
1140 RTS 

Player-Missile Graphics 

Although animation can be programmed by flipping through 
alternate character sets, a far easier way to animate characters 
in an Atari assembly language program is to take advantage of a 
special graphics feature of Atari computers called player-missile 
graphics. Player-missile graphics is a technique for program
ming animation using graphics characters called (not sur
prisingly) players and missiles.Your Atari computer is equipped 
with four players, numbered 0 through 3, and four missiles, one 
for each player. If you write a program that doesn't call for mis-
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siles, you can combine your four missiles to form a fifth player. 
Players and missiles can be used in any graphics mode, and can 
be drawn and moved around on a video display completely 
independently of anything else on the screen. They can pass over 
or under other objects on the screen, and over or under each 
other. Alternatively, they can be programmed to come to a halt 
when they run into things, or even to explode upon impact with 
on screen objects or with each other! 

Each of your Atari's four players is 8-bits wide, just like an 
ordinary graphics character. But players can be much taller than 
they are wide. Their maximum height is either 128 or 256 bytes 
high, depending on their vertical resolution. That means a player 
can be as tall as the full height of your video screen. Each player 
has its own color register. So by using players, you can add more 
color to a program than would ordinarily be available. Players 
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are usually single color entities. It is possible, however, to merge 
two or more players into a multicolored player by placing one 
player on top of another. 

Players can have a vertical resolution of either one or two scan 
lines. The maximum horizontal resolution of a player is eight pix
els, but the width of each horizontal pixel is variable; each pixel 
can be 8 color clocks, 16 color clocks or 32 color clocks wide. This 
choice is up to the programmer. The missiles used in player
missile graphics are 2-bit wide spots of light that can be used as 
bullets, stars, or other small graphics objects. Or, as previously 
mentioned, they can be combined to form a fifth full-size player. 

Players are made up of grids of dots, just as standard text 
characters are. They can therefore be designed on graph paper, 
in the same way that ordinary text characters are created. Before 
you start blocking out a player on graph paper, however, it might 
be a good idea to remember what a player looks like on the screen 
when all of its bits are filled in. When a player is completely filled 
in, it looks like a ribbon extending from the top of a video screen to 
the bottom. You won't need nearly all of that height for most pro
gramming needs. Before you start drawing a player, it's usually 
a good idea to "erase" that entire ribbon by filling it in with zeros. 
The whole ribbon will thus become invisible. Then you can draw 
your player in exactly the same way you'd draw a conventional 
text character, by filling in its shape with "on" bits, or binary 
ones. When you've finished drawing your players in this way, you 
can store them almost anywhere in RAM. You can tell your com
puter where your players and missiles are by simply storing the 
starting address of the RAM in which they appear in an OS pointer 
called PMBASE. The address of PM BASE is $D407. 

Since players and missiles are graphic objects, it is considered 
good programming practice to store them in high RAM, just 
below your computer's screen display. Atari's in-house program
mers, who generally know what they're talking about, recom
mend that you store your player-missile display RAM about 2 K 
bytes below the top of your Atari computer's memory. Once 
you've figured out where your player-missile RAM is going to be 
stored, and consequently, what address PM BASE will point to, 
you can start storing the data for your players and missiles right 
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into RAM. Here's a chart showing where the RAM for each 
player and missile will start, in respect to the address stored 
in PMBASE: 

DOUBLE-LINE 
RESOLUTION 

OFFSET 
FROM 
PMBASE 

+ 0 - 383 
+384 - 511 
+512 - 639 
+640 - 767 
+768 - 895 
+896 -1023 
+1023 

CONTENTS 

Unused 
Missiles 
Player 0 
Player 1 
Player 2 
Player 3 
End of P/M 
RAM 

Must start on a 1K address 
boundary. 

SINGLE-LINE 
RESOLUTION 

OFFSET 
FROM 
PMBASE 

+ 0 - 767 
+ 768 - 1023 
+1024 - 1279 
+1280 - 1535 
+1536 - 1791 
+1792 - 2047 
+2047 

CONTENTS 

Unused 
Missiles 
Player 0 
Player 1 
Player 2 
Player 3 
End of P/M 
RAM 

Must start on a 2K address 
boundary. 

When your players and missiles are drawn and stored in RAM, 
it's fairly simple to move them around on your screen. In your 
computer's operating system there's a set of memory registers 
that are used to keep track of the horizontal positions of all 
players and missiles. These registers are labeled HPOSPO through 
HPOSP3 (for players) and HPOSMO through HPOSM3 (for mis
siles). The addresses of these registers are: 

HORIZONTAL 
REGISTER FOR: LABEL ADDRESS 

Player 0 HPOSPO DOOO 
Player 1 HPOSP1 D001 
Player 2 HPOSP2 D002 
Player 3 HPOSP3 D003 

Missile 0 HPOSMO D004 
Missile 1 HPOSM1 D005 
Missile 2 HPOSM2 D006 
Missile 3 HPOSM3 D007 
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When you want to move a player or a missile from one horizontal 
position to another, all you have to do is change the value of the 
appropriate horizontal register. 

Changing the vertical position of a player or a missile is a little 
more difficult. To move a player up or down, you have to "erase" 
the player from the vertical ribbon on which it appears by filling 
that space in with zeros. Then you have to redraw it in a position 
higher or lower in the block of RAM that makes up the ribbon. 

The utility program below, the final program in this book, is a 
demonstration of how to use player-missile graphics. As a special 
bonus, it will also show you how to use a joystick in assembly 
language programs. 

The joystick reading portion of the program begins with a set of 
instructions setting bit 2 of a register called P ACTL (for" Port A 
ConTroL") located at memory address $D302. When bit 2 of 
P ACTL is set, the reading of game controllers is enabled. The 
direction switches of a joystick plugged into port A can then be 
read, in much the same way as they are read in BASIC programs. 
When you type this program in and run it, you'll be able to move a 
little pink heart around on your screen using ajoystick controller. 
When the heart disappears from the screen in any direction, keep 
your joystick switch pressed, and it will soon "wrap around" and 
reappear on the opposite edge of the screen, just where you 
would expect it to, moving in the same direction. 

This program uses vertical blank interrupts, just like the smooth 
scrolling routine presented at the beginning of this chapter. As 
you'll see when you type the program and run it, assembly 
language is the best possible language to use when you're work
ing with player-missile graphics. If you've ever worked with 
player-missile graphics using BASIC, you'll soon see that PM/G 
action is much faster and much smoother when it's programmed 
in assembly language. 
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A PLAYER-MISSILE GRAPHICS PROGRAM 

10 , 
20 ;PLAYER-MISSILE GRAPHICS ROUTINE 
30 
50 *=$5000 
60 JMP START 
70 , 
80 RAMTOP=$6A ;TOP OF RAM PTR 
90 VV8LKD=$0224 ;INTERRUPT RTN 
100 SDMCTL=$022F ; DMA CNT. SHADOW 
110 SDLSTL=$0230 ;SDLST, LOW BYTE 
120 STICK0=$0278 
130 PCOLR0=$02C0 ;PLAYER COLOR 
140 COLOR2=$02C6 ;BKG COLOR 
150 , 
160 HPOSP0=$D000 ;PLAYER HORZ PSN 
170 GRACTL=$D01 D 
180 PACTL=$D302 ;JS PORT CNTRL 
190 PMBASE=$D407 ;PM BASE ADR 
200 SETVBV=$E45C ;ENABLE INTRPT 
210 XITVBV=$E462 ;EXIT INTERRUPT 
220 , 
230 HRZPTR=$0600 ;HORIZ PSN PTR 
240 VRTPTR=HRZPTR+1 ;VRT PSN PTR 
250 OURBAS=VRTPTR+1 ;OUR PMBASE 
260 TABSIZ=OURBAS+2 ;TABLE SIZE 
270 FILVAL=TABSIZ+2; BLKFIL VALUE 
280 , 
290 TABPTR=$B0 ;TABLE ADDR PTR 
300 TABADR=TABPTR+2 ;TABLEADDRESS 
310 , 
320 PLBOFS=512 ;PLAYER BAS OFFS 
330 PLTOFS=640 ;PLAYER TOP OFFS 
340 , 
350 SHAPE .BYTE $00,$6C,$FE,$FE,$7C,$38, 

$10,$00 
360 , 
370 START 
380 , 
390 ;CLEAR SCREEN 
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400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 

, 

LOA #0 
STA FILVAL 
LOA SOLSTL 
STA TABPTR 
LOA SOLSTL +1 
STA TABPTR+1 
LOA #960&255 ;BYTES PER SCRN 
STA TABSIZ 
LOA #960/ 256 
STA TABSIZ+1 
JSR BLKFIL 

;OEFINE PMG VARIABLES 

LOA #0 
STA COLOR2 ;BLACK BKG 
LOA #$5B 
STA PCOLR0 ;PINK PLAYER 

LOA # 100 ;SET HORIZ PSN 
STA HRZPTR 
STA HPOSP.0 

LOA #48 ;SET VERT PSN 
STA VRTPTR 

LOA #0 ;CLEAR OURBASE 
STA OURBAS 
STA OURBAS+1 

SEC 
LOA RAMTOP 
SBC #8 
STA PMBASE ;BASE=RAMTOP-2K 
STA OURBAS+1 ;SAVE BASE AOR 

LOA #46 
STA SOMCTL ;ENABLE PM OMA 

LOA # 3 
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810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 

STA GRACTL ;ENABLE PM OSPLY . 
;FILL PM RAM W/ ZEROS TO CLEAR 

CLC 
LOA OURBAS 
AOC # PLBOFS&255 
STA TABAOR 
STA TABPTR 
LOA OURBAS+1 
AOC #PLBOFS/ 256 
STA TABAOR+1 
STA TABPTR+1 

SEC 
LOA # PLTOFS&255 
SBC # PLBOFS&255 
STA TABSIZ 
LOA # PLTOFS/ 256 
SBC #PLBOFS/ 256 
STA TABSIZ+1 

· 

LOA #0 
STA FILVAL 
JSR BLKFIL 

;OEFINE PLAYER 

· PLAYER 

· ;ORAW PLAYER 

JSR ORAWPL 

· ;ENABLE INTERRUPT 

LOY # INTRPT&255 
LOX #INTRPT/ 256 
LOA #7 
JSR SETVBV 
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INTRPT 1220 
1230 
1240 
1250 
1260 
1270 . 

LOA #ROSTIK&255 
STA VVBLKO 
LOA # ROSTIKl256 
STA VVBLKO+1 

1280 ;INFINITE LOOP 
1290 . 
1300 INFIN 
1310 JMP INFIN 
1320 .; 
1330 ;REAO JOYSTICK 

· 1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 

ROSTIK 

· 

LOA #4 
ORA PACTL ;SET BIT #2 

LOA STICK0 
CMP #$FF ;JS STRAIGHT UP? 
BEQ RETURN ;YES. NO ACTION 

TRYAGN 

· 

CMP #$07 ;RIGHT MOVE 
BNE TRYAG2 
LOX HRZPTR 
INX 
STX HRZPTR 
STX HPOSP0 
JMP RETURN 

TRYAG2 

1560 
1570 
1580 
1590 
1600 
1610 . 

CMP #$0B ;LEFT MOVE 
BNE TRYAG3 

LOX HRZPTR 
OEX 
STX HRZPTR 
STX HPOSP0 
JMP RETURN 

1620 TRYAG3 
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1630 CMP #$00 ;OOWN MOVE 
1640 BNE TRYAG4 
1650 
1660 INC VRTPTR 
1670 JSR ORAWPL 
1680 JMP RETURN 
1690 , 
1700 TRYAG4 
1710 CMP #$0E ;UP MOVE 
1720 BNE RETURN 
1730 
1740 DEC VRTPTR 
1750 JSR ORAWPL 
1760 JMP RETURN 
1770 , 
1780 RETURN 
1790 JMP XITVBV 
1800 , 
1810 ;BLOCK FILL ROUTINE 
1820 , 
1830 BLKFIL 
1840 , 
1850 ;00 FULL PAGES FIRST 
1860 
1870 LOA FILVAL 
1880 LOX TABSIZ+1 
1890 BEQ PARTPG 
1900 LOY #0 
1910 FULLPG 
1920 STA [TABPTRj,Y 
1930 INY 
1940 BNE FULLPG 
1950 INC TABPTR+1 
1960 OEX 
1970 BNE FULLPG 
1980 , 
1990 ;00 REMAINING PARTIAL PAGE 
2000 , 
2010 PARTPG 
2020 LOX TABSIZ 
2030 BEQ FINI 
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2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 

LOY #0 

PARTLP 

. 

STA (TA8PTR).Y 
INY 
oEX 
BNE PARTLP 

FINI 
RTS . 

oRAWPL 
PHA ;SAVE ACC VALUE 
CLC 
LOA TABAoR 
AoC VRTPTR 
STA TABPTR 
LOA TABAoR+1 
AoC #0 
STA TABPTR+1 

LOY #0 
FILLPL 

LOA SHAPE.Y 
STA (TABPTR).Y 
INY 
CPY #8 
BCC FILLPL ;REPEAT TILL DONE 
PLA ;RESTORE ACC VAL 
RTS 

Not the End 

Thus concludes this traveler's guide to the fascinating world of 
Atari assembly language. If you have typed and saved all of the 
programs in this book, you now have a fairly extensive library of 
assembly language routines that you can (no doubt) improve 
upon, and use in your own programs. If you have absorbed the 
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material that surrounds the routines in this volume, you now 
know just about all you need to know to start writing some pretty 
sophisticated programs in assembly language. 

I have just one more suggestion. If you're interested in doing 
more programming in Atari assembly language - and I cer
tainly hope you are - then there are two other books which you 
should definitely own. They are (in case you haven't already 
guessed) De ReAtari and The A tari 400/800 Technical Reference 
Notes both published by Atari. With those two books, and the one 
you have just finished, you should be able to do just about any
thing you want to do from now on in Atari assembly language. 
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Appendix A 

The 6502 Instruction set 

The following is a complete listing of the 6502 microprocessor 
instruction set - all of the instruction mnemonics used in Atari 
assembly language programming. It does not include pseudo 
operations (also known as pseudo ops, or directives), which vary 
from assembler to assembler. Here are the meanings of the 
abbreviations used in this appendix: 

Processor status (P) Register Flags 

N - Negative (sign) flag. 
V - Overflow flag. 
B - Break flag. 
D - Decimal flag. 
I - Interrupt flag. 
Z - Zero flag. 
C - Carry flag. 

The 6502 Memory Registers 

A - Accumulator. 
X - X register. 
y - Y register. 
M - Memory. 

Addressing Modes 

A - Absolute addressing. 
AC - Accumulator addressing. 
Z - Zero page addressing. 
IMM - Immediate addressing. 
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IND - Indirect addressing. 
IMP - Implied addressing. 
AX - Absolute,X (X-indexed) addressing. 
AY - Absolute,Y (Y-indexed) addressing. 
IX - Indexed indirect (Indirect,X) addressing. 
IY - Indirect indexed (Indirect,y) addressing. 
R - Relative addressing. 
ZX - Zero page X-indexed (Zero page,X) addressing. 
ZY - Zero page Y-indexed (Zero page,y) addressing. 

The 6502 I nstruction Set 
(6502 Mnemonics) 

ADC (Add with ca rry): Adds the contents of the accumulator to 
the contents of a specified memory location or literal value. If the 
P register's carry flag is set, a carry is also added. The result of 
the addition operation is then stored in the accumulator. 

Flags affected: N, V, Z, C. 
Registers affected: A. 
Addressing modes: A, Z, IMM, AX, A Y, IX, IY, ZX. 

AND (Logical AND): Performs a binary logical AND operation 
on the contents of the accumulator and the contents of a specified 
memory location or an immediate value. The result of the opera
tion is stored in the accumulator. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: A, Z, IMM, AX, A Y, IX, IY, ZX. 

ASL (Arithmetic Shift Left): Moves each bit in the accumulator 
or a specified memory location one position to the left. A zero is 
deposited into the the Bit 0 position, and Bit 7 is forced into the 
carry bit of the P register. The result of the operation is left in the 
accumulator or the affected memory register. 

Flags affected: N, Z, C. 
Registers affected: A, M. 
Addressing modes: AC, A, Z, AX, ZX. 
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BCC (Branch if carry clear): Executes a branch ifthe carry flag 
is clear, results in no operation if the carry flag is set. Destination 
of branch must be within a range of -128 to + 127 memory 
addresses from the BCC instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BCS(Branch if carry set): Executes a branch if the carry flag is 
set, results in no operation if the carry flag is clear. Destination of 
branch must be within a range of -128 to + 127 memory addresses 
from the BCS instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BEQ (Branch if equal): Executes a branch if the zero flag is set, 
results in no operation if the zero flag is clear. Can be used to 
jump to cause a branch if the result of a calculation is zero, or if 
two numbers are equal. Destination of branch must be within a 
range of -128 to + 127 memory addresses from the BEQ instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BIT(Compare bits in accumulatorwith bits in a specified 
memory register): Performs a binary logical AND operation 
on the contents of the accumulator and the contents of a specified 
memory location. The content of the accumulator is not affected, 
but three flags in the P register are. The result of the AND opera
tion is stored in the Z flag. If there is a 1 in both the accumulator 
and the value in memory at the same bit position, the result is 
non-zero and the Z flag is cleared. If the bits are different or both 
zero, the result is zero and the Z flag is set. In addition, bits 6 and 
7 of the value in memory being tested are transferred directly 
into the V and N bits of the status register. This feature ofthe BIT 
instruction is often used in signed binary arithmetic. If a BIT 
operation results in the setting of the N flag, then the value being 
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tested is negative. If the operation results in the setting of the V 
flag, that indicates a carry in signed-number math. 

Flags affected: N, V, Z. 
Registers affected: None. 
Addressing modes: A, Z. 

BM I (Branch on minus): Executes a branch ifthe N flag is set, 
results in no operation if the N flag is clear. Destination of branch 
must be within a range of -128 to + 127 memory addresses from 
the BMI instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BNE (Branch if not equal): Executes a branch if the zero flag 
is clear (that is, if the result of an operation is non-zero). Results 
in no operation if the zero flag is set. Can be used to jump to cause 
a branch ifthe r~sult of a calculation is not zero, or if two numbers 
are not equal. Destination of branch must be within a range of 
-128 to +127 memory addresses from the BNE instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BPL (Branch on plus): Executes a branch if the N flag is clear 
(that is, if the result of a calculation is positive). Results in no 
operation if the N flag is set. Destination of branch must be 
within a range of -128 to +127 memory addresses from the 
BPL instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BRK (Break): Halts the execution of a program, much like an 
interrupt would, and stores the value of the program counter, 
plus two, on the hardware stack, along with the contents of the P 
register (which now has the B flag set). BRK is often used in 
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debugging, and affects various debuggers in various ways. For 
more details, see your assembler and debugger's instruction 
manual. 

Flags affected: B. 
Registers affected: None. 
Addressing modes: IMP. 

BVC (Branch if overflow clear): Executes a branch if the P 
register's overflow (V) flag is clear. Results in no operation if the 
overflow flag is set. This instruction is used primarily in opera
tions involving signed numbers. Destination of the branch must 
be within a range of -128 to + 127 memory addresses from the 
BVC instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

BVS (Branch if overflow set): Executes a branch if the P 
register's overflow (V) flag is set. Results in no operation if the 
overflow flag is clear. This instruction is used primarily in opera
tions involving signed numbers. Destination of the branch must 
be within a range of -128 to +127 memory addresses from the 
BVS instruction. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: R. 

CLC (Clear carry): Clears the carry bit of the processor status 
register. 

Flags affected: C. 
Registers affected: None. 
Addressing modes: IMP. 

CLD (Clear deCimal mode): Puts the computer into binary (its 
default) mode so that binary operations (the kind most often 
used) can be carried out properly. 

Flags affected: D. 
Registers affected: None. 
Addressing modes: IMP. 
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CLI (Clear interrupt mask): Enables interrupts. Used in 
advanced assembly language programming. For more details, 
see advanced 6502 assembly language texts and manuals. 

Flags affected: I. 
Registers affected: None. 
Addressing modes: IMP. 

CLV (Clear overflow flag): Clears the P register's overflow flag 
by setting it to zero. This instruction is used primarily in opera
tions involving signed numbers. 

Flags affected: V. 
Registers affected: None. 
Addressing modes: IMP. 

CMP (Compare with accumulator): Compares a specified 
literal number, or the contents of a specified memory location, 
with the contents of the accumulator. The N, Z and C flags of the 
status register are affected by this operation, and a branch 
instruction usually follows. The result of the operation thus 
depends upon what branch instruction is used, and whether the 
value in the accumulator is less than, equal to, or more than the 
value being tested. 

Flags affected: N, Z, C. 
Registers affected: None. 
Addressing modes: A, Z, IMM, AX, A Y, IX, IY, ZX. 

CPX (Compare with X register): Compares a specified literal 
number, or the contents of a specified memory location, with the 
contents of the X register. The N, Z and C flags ofthe status regis
ter are affected by this operation, and a branch instruction 
usually follows. The result of the operation thus depends upon 
what branch instruction is used, and whether the value in the X 
register is less than, equal to, or more than the value being 
tested. 

Flags affected: N, Z, C. 
Registers affected: None. 
Addressing modes: A, IMM, Z. 
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CPY (Compare with Y register): Compares a specified literal 
number, or the contents of a specified memory location, with the 
contents of the Y register. The N, Z and C flags of the status regis
ter are affected by this operation, and a branch instruction 
usually follows. The result of the operation thus depends upon 
what branch instruction is used, and whether the value in the Y 
register is less than, equal to, or more than the value being 
tested. 

Flags affected: N, Z, C. 
Registers affected: None. 
Addressing modes: A, IMM, Z. 

DEC (Decrement a memorv location): Decrements the con
tents of a specified memory location by one. If the value in the 
location is $00, the result of a DEC operation will be $FF, since 
there is no carry. 

Flags affected: N, Z. 
Registers affected: M. 
Addressing modes: A, Z, AX, ZX. 

DEX (DeCrement X register): Decrements the X register by 
one. If the value in the location is $00, the resultofthe DEX opera
tion will be $FF, since there is no carry. 

Flags affected: N, Z. 
Registers affected: X. 
Addressing modes: IMP. 

DEY (DeCrement Y register): Decrements the Y register by 
one. If the value in the location is $00, the result of the DEY opera
tion will be $FF, since there is no carry. 

Flags affected: N, Z. 
Registers affected: Y. 
Addressing modes: IMP. 

EOR (Exclusive-OR with accumulator): Performs an Ex
clusive-OR operation on the contents of the accumulator and a 
specified literal value or memory location. The Nand Z flags are 
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conditioned in accordance with the result of the operation, and 
the result is stored in the accumulator. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: A, Z, I, AX, AY, IX, IY, ZX. 

INC (Increment memory): The contents of a specified memory 
location are incremented by one. If the value in the location is 
$FF, the result of the INC operation will be $00, since there is 
no carry. 

Flags affected: N, Z. 
Registers affected: M. 
Addressing modes: A, Z, AX, ZX. 

INX(lncrement X register): The contents ofthe X register are 
incremented by one. If the value of the X register is $FF, the 
result of the INX operation will be $00, since there is no carry. 

Flags affected: N, Z. 
Registers affected: X. 
Addressing modes: IMP. 

I NY (I ncrement Y register): The contents of the Y register are 
incremented by one. If the value of the Y register is $FF, the 
result of the INY operation will be $00, since there is no carry. 

Flags affected: N, Z. 
Registers affected: Y. 
Addressing modes: IMP. 

JM P (Jump to address): Causes program execution to jump to 
the address specified. The JMP instruction can be used with 
absolute addressing, and it is the only 6502 instruction that can 
be used with indirect addressing. A statement that uses indirect 
addressing is written using the format 

JMP ($0600) 

270 



If this statement were used in a program, the JMP instruction 
would cause program execution to jump to the value stored in 
memory address $0600, not to that address. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: A, IND. 

JSR(Jumptosubroutine): Causes program execution tojump 
to the address that follows the instruction. That address should 
be the starting address of a subroutine that ends with the in
struction RTS. When the program reaches that RTS instruction, 
execution of the program returns to the next instruction after the 
JSR instruction that caused the jump to the subroutine. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: A. 

LOA (LOad the accumulator): Loads the accumulator with 
either a specified value or the contents of a specified memory 
location. The N flag is conditioned if a value with the high bit set 
is loaded into the accumulator, and the Z flag is set if the value 
loaded into the accumulator is zero. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX. 

LOX (LOad the X register): Loads the X register with either a 
specified value or the contents of a specified memory location. 
The N flag is conditioned if a value with the high bit set is loaded 
into the X register, and the Z flag is set if the value loaded into the 
X register is zero. 

Flags affected: N, Z. 
Registers affected: X. 
Addressing modes: A, Z, IMM, A Y, ZY. 
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lOY (load the Y register): Loads the Y register with either a 
specified value or the contents of a specified memory location. 
The N flag is conditioned if a value with the high bit set is loaded 
into the Y register, and the Z flag is set if the value loaded into the 
Y register is zero. 

Flags affected: N, Z. 
Registers affected: Y. 
Addressing modes: A, Z, IMM, AX, ZX. 

lSR (Logical shift right): Each bit in the accumulator is moved 
one position to the right. A zero is deposited into the bit 7 posi
tion, and bit 0 is deposited into the carry. The result is left in the 
accumulator or in the affected memory register. 

Flags affected: N, Z, C. 
Registers affected: A, M. 
Addressing modes: AC, A, Z, AX, ZX. 

NOP (NO OperatiOn): Causes the computer to do nothing for 
two cycles. Used in delay loops and to synchronize the timing 
of computer operations. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: IMP. 

ORA (Inclusive-OR with the accumulator): Performs a 
binary inclusive-OR operation on the value in the accumulator 
and a literal value or the contents of a specified memory location. 
The Nand Z flags are conditioned in accordance with the result of 
the operation, and the result of the operation is deposited in 
the accumulator. 

Flags affected: N, Z. 
Registers affected: A, M. 
Addressing modes: A, Z, IMM, AX, A Y, IX, IY, ZX. 
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PHA (PuSh accumulator): The contents of the accumulator 
are pushed on the stack. The accumulator and the P register are 
not affacted. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: IMP. 

PH P (Push processor status). The contents of the P register 
are pushed on the stack. The P register itself is left unchanged, 
and no other registers are affected. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: IMP. 

PLA (Pull accumulator): One byte is removed from the stack 
and deposited in the accumulator. The Nand Z flags are con
ditioned, just as if an LDA operation had been carried out. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: IMP. 

PLP (Pull processor status): One byte is removed from the 
stack and deposited in the P register. This instruction is used to 
retrieve the status of the P register after it has been saved by 
pushing it onto the stack. All of the flags are thus conditioned to 
reflect the original status of the P register. 

Flags affected: N, V, B, D, I, Z, C. 
Registers affected: None. 
Addressing modes: IMP. 

ROL (Rotate left): Each bit in the accumulator or a specified 
memory location is moved one position to the left. The carry bit is 
deposited into the bit 0 location, and is replaced by bit 7 of the 
accumulator or the affected memory register. The Nand Z flags 
are conditioned in accordance with the result of the rotation 
operation. 

Flags affected: N, Z, C. 
Registers affected: A, M. 
Addressing modes: AC, A, Z, AX, ZX. 
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ROR (Rotate right): Each bit in the accumulator or a specified 
memory location is moved one position to the right The carry bit 
is deposited into the bit 7 location, and is replaced by bit 0 of the 
accumulator or the affected memory register. The Nand Z flags 
are conditioned in accordance with the result of the rotation 
operation. 

Flags affected: N, Z, C. 
Registers affected: A, M. 
Addressing modes: AC, A, Z, AX, ZX. 

RTI (Return from interrupt): The status of both the program 
counter and the P register are restored in preparation for resum
ing the routine that was in progress when an interrupt occurred. 
All flags of the P register are restored to their original values. 
Interrupts are used in advanced assembly language programs, 
and detailed information on interrupts is available in advanced 
assembly language texts and Atari reference manuals. 

Flags affected: N, V, B, D, I, Z, C. 
Registers affected: None. 
Addressing modes: IMP. 

RTS (Return from subroutine): At the end of a subroutine, 
returns execution of a program to the next address after the JSR 
(jump to subroutine) instruction that caused the program to 
jump to the subroutine. 

Flags affected: None. 
Registers affected: None. 
Address modes: IMP. 

SBC(Subtractwith carry): Subtracts a literal value or the con
tents of a specified memory location from the contents of the 
accumulator. The opposite of the carry is also subtracted - in 
other words, there is a borrow. The N, V, Z and C flags are all con
ditioned by this operation, and the result of the operation is 
deposited in the accumulator. 

Flags affected: N, V, Z, C. 
Registers affected: A. 
Addressing modes: A, Z, IMM, AX, A Y, IX, IY, ZX. 
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SEC (Set carry): The carry flag is set. This instruction usually 
precedes an SBC instruction. Its primary purpose is to set the 
carry flag so that there can be a borrow. 

Flags affected: C. 
Registers affected: None. 
Addressing modes: IMP. 

SED (Set decimal mode): Prepares the computer for opera
tions using BCD (binary coded decimal) numbers. BCD arithmetic 
is more accurate than binary arithmetic - the usual type of6502 
arithmetic - but is slower and more difficult to use, and con
sumes more memory. BCD arithmetic is usually used in account
ing and bookkeeping programs, and in floating point arithmetic. 

Flags affected: D. 
Registers affected: None. 
Addressing modes: IMP. 

SEI (Set interrupt disable): Disables the interrupt response to 
an IRQ (maskable interrupt). Does not disable the response to an 
NMI (non-maskable interrupt). Interrupts are used in advanced 
assembly language programming, and are described in advan
ced assembly language texts and Atari reference manuals. 

Flags affected: I. 
Registers affected: None. 
Addressing modes: IMP. 

STA (store accumulator): Stores the contents of the accumu
lator in a specified memory location. The contents of the ac
cumulator are not affected. 

Flags affected: None. 
Registers affected: M. 
Addressing modes: A, Z, AX, A Y, IX, IY, ZX. 

STX (Store X register): Stores the contents ofthe X register in a 
specified memory location. The contents of the X register are 
not affected. 

Flags affected: None. 
Registers affected: M. 
Addressing modes: A, Z, ZY. 
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STY (Store Y register): Stores the contents of the Y register in a 
specified memory location. The contents of the Y register are 
not affected. 

Flags affected: None. 
Registers affected: M. 
Addressing modes: A, Z, ZX. 

TAX (Transfer accumulator to X register): The value in the 
accumulator is deposited in the X register. The Nand Z flags are 
conditioned in accordance with the result of this operation. The 
contents of the accumulator are not changed. 

Flags affected: N, Z. 
Registers affected: X. 
Addressing modes: IMP. 

TAY (Transfer accumulator to Y register): The value in the 
accumulator is deposited in the Y register. The Nand Z flags are 
conditioned in accordance with the result of this operation. The 
contents of the accumulator are not changed. 

Flags affected: N, Z. 
Registers affected: Y. 
Addressing modes: IMP. 

TSX (Transfer stack to X register): The value of the stack 
pointer is deposited in the X register. The Nand Z flags are con
ditioned in accordance with the result ofthis operation. Thevalue 
of the stack pointer is not changed. 

Flags affected: N, Z. 
Registers affected: X. 
Addressing modes: IMP. 

TXA (Transfer X register to accumulator): The value in the 
X register is deposited in the accumulator. The Nand Z flags are 
conditioned in accordance with the result of this operation. The 
value of the X register is not changed. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: IMP. 
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TXS(TransferX registerto stack): The value in the X register 
is deposited to the stack pointer. No flags are conditioned by this 
operation. The value of the X register is not changed. 

Flags affected: None. 
Registers affected: None. 
Addressing modes: IMP. 

lYA(TransferY registerto accumulator): Thevalue in the Y 
register is deposited in the accumulator. The Nand Z flags are 
conditioned by this operation. The value of the Y register is 
not changed. 

Flags affected: N, Z. 
Registers affected: A. 
Addressing modes: IMP. 
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EOOO 
0800 
0000 
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0700 
0200 
0100 
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Appendix B 
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279 

RAM TOP 
(VARIES) 

LOMEM 
& MEMLO 





Appendix C 

For More Information 

You can't say everything there is to say about Atari assembly 
language in just one volume. So here's a list of books you may 
want to check out, browse through, and perhaps even buy as you 
continue your study of assembly language programming. I found 
many of these books to be quite helpful when I was learning 
assembly language, and some of them still come in handy today. 
Two books that are practically indispensible to Atari assembly 
language programmers-although they can sometimes beimpos
sibly difficult to understand - areDe ReA tari and TheA tari 400/ 
800 Technical Reference Manual, both published by Atari. 

Other useful Atari produced books include the Atari BASIC 
Reference Manual, the AtariAssembler Editor Reference Manual, 
and TheAtari400/800 Operating System Source Listing. There's 
also a very good general user's guide to Atari computers called, 
logically enough, Your Atari Computer. It was written by Ian 
Poole with Martin McNiff and Steven Cook. It's mostly about 
programming in BASIC, but it also contains a wealth of informa
tion that's useful, if not indispensible, to Atari assembly language 
programmers. For owners of Atari XL series computers, there's 
also User's Guide to theAtari 600XL and BOOXL (N ew York: Mac
millan, 1983). 

Generic Books 

There are several good generic books on 6502 assembly language 
programming. Two of the best are Programming the 6502 by 
Rodnay Zaks (Berkeley: Sybex, 1980) and 6502 Assembly Lan
guage Programming by Lance A. Leventhal (Berkeley: Osborne/ 
McGraw-Hill, 1979). Leventhal is also the co-author (with 
Winthrop Saville) of 6502 Assembly Language Routines, an 
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excellent book that contains many assembly language sub
routines you can use in your own programs. Another generic 
book that contains some interesting routines is the 6502 Software 
Gourmet Guide & Cookbook by Robert Findley (Rochelle Park, 
NJ: Hayden, 1979). 

Atari-specific Guides 

There are also a few small books that deal specifically with 
Atari assembly language programming. They have their flaws, 
but you may be able to find something useful in them. Two Atari 
specific books are The Atari Assemhler by Don and Kurt Inman 
(Reston, VA: Reston Publishing Co., Inc., 1981) and How to Pro
gram Your Atari in 6502 Machine Language by Sam D. Roberts 
(Pomona, CA: Elcomp Publishing, Inc., 1982). 

There are a couple of other Atari specific books that have limited 
aims,but fulfill them very nicely. One is the Master Memory Map 
for Atari400/800 Computers by Robin Alan Sherer, published in 
1982 by Educational Software Inc. The other is Mapping the 
Atari by Ian Chadwick (COMPUTE! Books, Greensboro, NC, 1983). 

There are also a few assembly language texts that were written 
for 6502 based computers other than Ataris, but still contain 
information that can be very helpful to Atari programmers. 
These works include Using 6502 Assembly Language by Randy 
Hyde (Chatsworth, CA: DATAMOST, Inc., 1982), andAssemhly 
Lines: The Book by Roger Wagner (N orth Hollywood, CA: Softalk 
Publishing, 1982). 
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address locations _____________________ 29 bit 2 ______________________________________ 50 
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alphabetical symbols ________________ 18 bit 5 ______________________________________ 52 
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AND operator _______________________ 157 bit 7 ______________________________________ 52 
ANTIC MODE ______________________ 214 BIT operator _________________________ 160 
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Apple II, II +, / / e. / / / ________________ 15 bonus program ________________________ 53 
Arithmetic Logic Unit ______ 27, 43-44 bon'owing and carrying ____________ 49 
arithmetic shift left _________________ 142 break flag __________________________ 47, 52 
ASL ____________________________________ 142 break instruction in debugging ___ 52 ASM _____________ _____ ___________________ 77 BRK _____________________________________ 52 
assembled programs ________________ 19 BSAVE _____________________________ 51, 71 
assemblers _____________________________ 18 bus, address ___________________________ 44 
assembling _____________________________ 66 bus, data ___________________________ 44, 45 
assembling your program __________ 76 buses ____________________________________ 44 
assembly language instruction ___ 19 .BYTE directive ________________ 111-112 
assembly language loops _________ 117 byte, least signifcant ________________ 32 
ass em bly language programmers ___ 27 byte, most signifcant __ __ ____________ 32 
Atari BASIC _______________ ____________ 51 bytes ____________________________________ 26 
Atari XL computers _________________ 15 
Atari hardware Read/Write c 

registers ________________________ 185 C _____________________________________ 47, 49 
Atari rainbow program ___________ 151 calculating and indexed or 
ATASCII ___________ 107, 112, 188, 223 relative address _________________ 98 
ATASCII characters ________________ 99 carriage return ______________________ 100 
ATASCII codes ______________________ 121 carry bit _______________________________ 142 
ATASCII-ASCII conversion carry bit set __________________________ 153 

subroutines _____________________ 225 carry flag (C) __________________________ 47 
carry flag __________________________ 47, 49 

B carrying and borrowing ____________ 49 
B _____________________________________ 47, 52 cartridge slot A _____________________ 184 
base, numbers _________________________ 34 cartridge slot B _____________________ 184 
BASIC _____________________ 13, 18, 19, 32 cassette data recorder ______________ 14 
BASIC, Atari __________________________ 51 centeral processing unit _______ 14, 43 
BASIC program ______________________ 33 . central I/O utility ___________________ 196 
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changing the value of the converting decimal numbers 
MEMLO pointer program ____ 192 to binary numbers _________ 37-38 

character set, foreign language ___ 15 CP/M ____________________________________ 15 
chart for writing conditional CPU _________________________________ 14, 43 

branching instructions ______ 116 CTIA chip ____________________________ 214 
CIO _____________________________________ 196 customized screen display 
CIO vector ____________________________ 199 program _________________________ 220 
CIOV ___________________________________ 199 
circuit _________________________ __ ________ 14 
CLC _________________________ _____________ 50 
CLD _____________________________________ 51 o 
clear carry _____________ ________________ 50 D _________________________________________ 47 
clear carry bit _______________________ 153 D command _________ ______________ 78, 80 
clear flag _______________________________ 49 data bus ____________________________ 44, 45 
clear interrupt ________________________ 51 data bytes ____ ____________ ______ ______ 196 
clear the decimal flag _________ ______ 51 data, packing _________________ __ _____ 144 
clearing a text buffer ______________ 122 data, unpacking _____________________ 145 
clearing the stack _______________ ____ 135 debug mode ____________________________ 81 
CLI ________ ______________________________ 51 debugging utility _________________ 75-76 
closing a device _____________________ 209 dec-hex conversion program ____ 38-39 
CLV _____ _____________ ____________________ 52 decimal mode flag _______________ 47, 49 
coarse scrolling __________ _______ 227 -228 decimal number chart __ _________ ____ 31 
COBOL _____________________________ 18, 19 decimal numbers _____________________ 30 
color clocks ___________________________ 240 decimal programs, ordinary _______ 33 
color register _________________________ 147 decimal to hexadecimal 
command error _______________________ 80 conversion ________________________ 38 
command decimal to binary _____________________ 35 

BSA VE ______________________________ 83 decimal to binary 
ENTER ______________________________ 83 conversion chart ________________ 35 
Graphics 0 ____________________ ______ 13 decoding ATASCII ______ ___________ 107 
LIST __________________________________ 83 digital computer ______________________ 23 
LO AD ___________________________ _____ 83 directive, .BYTE _______________ 111-112 
SAVE ________________________________ 83 directive, example of usage ________ 66 

comments ____ ______________________ 61, 62 directives _______________________________ 61 
Commodore 64 computer ___________ 15 disk drive _______________________________ 14 
Commodore PET computer ________ 15 display list ____________________________ 212 
comparing values ____________________ 44 division operations ___________________ 44 
comparison instructions __ __ __ 97, 113 dollar signs ____________________________ 32 
compiler _______________ _________________ 18 dollar signs in hexadecimal 
complement _______________ ___________ 176 numbers ___________ _______________ 32 
computer languages _____ ____________ 18 dot matrix characters _____________ 213 
computer programs __________________ 17 
computer, 16-bit _________________ 28, 29 E 
condition flags ________________________ 47 encoding ATASCII _________________ 107 
conditional branching _______________ 96 END _____________________________________ 84 
conditional branching ENTER command ______ _____________ 83 

instructions __________________ 96-97 entering your program ______________ 67 
conditional branching EOR ____________________________________ 159 

instructions, writing _________ 116 EOR truth table _____________________ 159 
conserving memory __________ ~ _______ 22 examining RAM 5-4 _________________ 78 
contents ________________________________ 94 example of coarse scrolling ______ 228 
conversion chart ______________________ 35 executing a machine language 
conversion remainders ______________ 35 program __________________________ 75 
conversion routine __________________ 223 
converting ATASCII to F 

screen code ____ ___________ ______ 223 files _____________________________________ 196 

converting binary fine scrolling ___ _________________ 235-240 
to hexadecimal numbers _____ 37 flag for test purposes only _________ 53 
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flag, break _____ ___________ ___________ __ 52 interpretation as memory address ___ 46 
flag, carry ________ ________ ____________ __ 49 
flag, negative __________________________ 53 

interpreters __________________________ __ 18 
interrupt disable flag ___________ 47, 50 

flag, overflow _________________________ 52 
flags _____________________________________ 47 

interrupts ______________________________ 50 
I/O _______________________ ___ _____ ________ 14 

flags, condition _______________________ 47 VO devices ___________________________ 195 
floating point ________________________ 161 I/O operations _________________ 196, 204 
floating point ROM _________________ 185 I/O system ____________________________ 200 
floating point math _________________ 181 I/O tokens ____________________________ 204 
foreign language character set ___ 15 
FP ______________________________________ 161 

10CB ___________________________________ 197 
IOCB address and bytes __________ 205 

free RAM _____________________________ 183 IOCB error ___________________________ 209 
IOCB offsets _________________________ 203 

G 
G command _______________________ 75, 81 J 
GOSUB _________ ______ ________________ __ 21 JSR ________ __________________________ 21, 22 
Graphics 0 command ________________ 13 jump to subroutine ___________________ 21 
Graphics 0 ____________________________ 214 
Graphics 1 ____________________________ 214 K 
Graphics 2 ______ ______________________ 214 keeping track of pluses 
graphic tablet ___________ __________ ____ 14 and minuses _____________________ 52 
graphics chip _____________ ___________ 214 keyboard __ _____________________________ 14 
graphics modes ______________________ 215 
GTIA chip ______________________ 212, 214 L 

label length ____________________________ 61 
H labels ____________________________________ 61 
hardware Read/Write registers ___ 185 languages ______________________________ 17 
hex code _______________________________ 204 last in, first out ______________________ 104 
hex-dec conversion program ____ 38-40 L command __________________________ __ 80 
hexadecimal number chart ________ 31 LD A _____________________________________ 45 
hexadecimal number system ______ 30 least significant bit __________________ 34 
hexadecimal numbers _______ ___ 30, 46 least significant byte _________ _______ 32 
high level languages _________________ 18 leftmost bit ____________________________ 34 
horizontal scan lines _______________ 212 LIFO ________________________________ ___ 104 
hortizontal scroll register _________ 241 line number ranges __________________ 58 
hortizontal scrolling ________________ 232 line numbers ___________________________ 58 

LIST _______________________________ 71, 83 
I literal numbers _______________________ 46 
I __________________________________________ 47 LMS ____________________________________ 217 
IBM-PC ________ ____________ ____ 15,28, 29 LOAD ___________________ ___ _____________ 83 
immediate ______________________________ 91 load memory scan __________________ 217 
immediate addressing __________ 91, 93 load the accumulator ________________ 45 
implicit ( or implied) addressing ___ 91, 93 logical shift right ___________ __ 142, 145 
indexed address ______________________ 98 LOGO ___________________________________ 18-
indexed addressing __________________ 99 LOMEM pointer ____________________ 186 
indexed indirect _______________ _______ 92 loops, assembly language _________ 117 
indexed indirect addressing ___ 92,101 LSB _________________ ____ _________________ 34 
indirect addressing ____ ________ 92, 100 LSR ______________________________ 142, 145 
indirect indexed _________ _____________ 92 
indirect indexed addressing _______ 92 M 
INIT _____________________________________ 87 machine language _______________ 18, 20 
INIT address __________________________ 83 machine language instructions ___ 19, 20 
input _____________________________________ 43 machine language program ___ 22, 75 
input/output control blocks ______ 197 macro assembler _____________________ 18 
input/output devices ________ ________ 14 maskable interrupts _________________ 50 
instructions ____________________________ 20 masking instructions ____________ 50-51 
instructions, comparison __________ 113 matrix system _________________________ 29 
interface ______ __________________________ 14 maximum memory capacity _______ 29 
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megabyte _________________________ __ ____ 29 operands _______________________________ 61 
MEMLO _______________________________ 183 operating system _____________ ________ 15 
MEMLO pointer ___ ____________ 187-188 operating system ROM ____________ 185 
MEMLO to MEMTOP _____________ 183 operation code ________________________ 61 
memory ____________ _________ __ _____ 14, 16 optional parameters _________ ________ 84 
memory address _____________ 16, 44, 46 Optimized System Software, Inc. ___ 57 
memory addresses __________________ 183 ordinary decimal programs ________ 33 
memory location _________ ____ 16, 20, 28 origin line ______________________________ 52 
memory locations ____ 13, 28, 180, 181 origin line, example of ______________ 52 
memory map ______________ 28, 180, 181 OS ________ ___ __________ __________ _____ ____ 15 
memory map for page zero _______ 181 OSS __ __________________ __________________ 57 
memory register, 8-bit ______ ________ 27 output ________________________ __ ___ ______ 43 
memory, screen _____________________ 184 overflow flag _____ ___________ 47, 52, 177 
MEMTOP ________________________ _____ 183 overflow flag (V) __________________ __ __ 47 
MEMTOP, above ____________________ 184 overscan ______________________________ 213 
microprocessor unit _____________ 14, 15 
microprocessor, 6502 ___________ 14, 15 p 
mnE'monics ________________________ _____ 61 packing data _______ ______ ____________ 144 
mnemonics requiring operands ___ 61 page 6 _____ ___ ___ ___ ___ ________________ 179 
mode lines ___________ ___________ ______ 214 page zero _______ __ ____________ ____ 94, 180 
modes of 6502 processor ____________ 92 Pascal ______________________________ 18, 19 
MOS Technology _____________________ 14 PC _______ _________ _____ ________ ___________ 47 
most significant byte ________________ 32 PCR _________ _____ _____ ______________ ____ 47 
moving and modifying a PCL ______________________________________ 47 

character set _____ __________ __ __ 248 PEEK _______ __________________ ___ ___ ____ 78 
MPU ________________________________ 14, 43 Penguin Math ________________ 23, 24, 30 
MSB ________ _______________________ ______ 34 PET computer ________________________ 15 
multiple digit hex number PRP ________ ____ __ ___ ___________________ 164 

to binary ______ __ __ ____ ____________ 36 Pilot _____________________________________ 18 

multiple precision addition player-missile graphics ____________ 251 
program __________ ____ ___ __ ______ 165 player-missiles graphics 

multiple precision binary program ____________ _______ ____ __ 256 
operations ______________________ 161 pointer, LOMEM ____________________ 186 

multiple precision multiplication pointer, MEMLO ______________ 187-189 
program ____ ___________________ __ 169 pointer, changing LOMEM _______ 188 

multiplication operations ___ ________ 44 POKE command ______________________ 13 
pound sign _____________________________ 45 

N P register ___________________________ 49-50 
N ______ ____ _______________________________ 47 P register bits _________________________ 47 
negative flag ____________________ __ 47, 53 P register's carry flag ___ ______ ______ 50 
nib ble ___________________________________ 26 processor status register ___ ___ 46, 47 
nonmaskable interrupts ____________ 51 processor status register, flags ___ 47 
notation system __________________ 18, 24 processor status register, 
number base ___________________________ 34 illustration _______________________ 49 
number comparisons ________________ 50 program counter _________________ 46, 82 
number systems _____ _________________ 34 program counter- high _______ ________ 47 
numbers, literal ________ _______ ________ 46 program counter-low __ ______________ 47 
nybble ____________ _________ __ _______ 26, 32 program pointer __ ___ __ ___ ____ ___ __ ___ 47 

program 
o 8-bit addition program ___________ 57 
object code __________ ______________ 19, 21 ADDNRS source _____ ________ _____ 92 
Ohio Scientific computers __ ________ 15 ATASCII-ASCII conversion ___ 225 
one's complement ___________________ 176 bonus no. 3 ___________________________ 53 
op code _____ ______________________ __ 58, 61 changing the value of the 
op code column ____ ______________ ____ 111 MEMLO pointer ______ __ ______ 192 
OPEN command ______________ ______ 199 coarse scrolling ___________________ 230 
OPEN statement ____________________ 198 converting binary to 
opening devices __ ______ __ __ _________ 197 hexadecimal numbers _________ 37 
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converting decimal numbers SA VE _______________________ ____ ________ 71 
to binary numbers _____________ 37 SA VE command ____ __________________ 83 

customized screen display ___ __ 220 saving a machine language 
dec-hex and hex-dec program __________________________ 83 

conversion program _______ 38-40 saving object code ___________________ 71 
moving and modifying a saving your program ________________ 71 

character set ___________________ 248 scan line __________________ 212, 214, 240 
multiple precision screen memory ______________________ 184 

multiplication __________________ 169 scroll register, horizontal _________ 241 
player-missile graphics _________ 256 scrolling registers __________________ 241 
Response ___________________________ 125 scrolling, fine ___________________ 235-241 
simple division ____________________ 173 scrolling, hortizontal _______________ 232 
the Atari rainbow _______________ 151 scrolling, vertical ___________________ 228 
The Visitor __________________ 110, 124 SDLSTH ______________________________ 220 

programmer ___________________________ 19 SD LSTL ____________________________ __ 220 
programmers ____________ _________ _____ 17 SDMCTL ______________________________ 220 
programming languages _______ 17, 18 SEC _________________________________ 50, 51 
programs __________________________ 17, 18 SED _____________________________________ 51 
programs, assembly language ____ 18 SEI ______________________________________ 51 
programs, computer _________________ 17 self-diagnostic system ____________ ~_ 15 
programs, machine language _____ 22 semicolons _____________________________ 61 
pseudo op _____________________________ 111 set carry ________________________________ 50 
pseudo operation code _____________ 111 set carry bit __________________________ 153 
pseudo ops _____________________________ 61 set the decimal flag __________________ 51 

set the interrupt flag ________________ 51 
R setting zero flag ______________________ 50 
Radio Shack ___________________________ 15 shadow, direct memory access 
Random Access Memory ___ 14-16, 27 control ___________________________ 220 
RAM ____________________________ 14-16, 27 shadow, display list pointer-high ____ 220 
RAM, examining _______ ______________ 78 shawdow, :lisplay list 
RAM, free ____________________________ 183 pointer-low _____________________ 220 
raster scan ___________________ ________ 212 shift operations _______________________ 50 
Read Only Memory __________ 14-16, 27 simple division program __________ 173 
Read/Write registers ______________ 185 SIZE command ______________________ 189 
records ________________________________ 196 sorting 16-bit numbers ______________ 32 
registers ________________________________ 46 source code ____________________________ 19 
relative __________________________________ 92 source code ____________________________ 21 
relative addressing ______________ 92, 96 SP ________________________________________ 47 
remainders _____________________________ 35 spacing directives ____________________ 67 
rename file _____________________________ 85 spacing for labels ____________________ 61 
Response program _________________ 125 spacing in assembly language 
RETURN ______________________________ 21 programs _________________________ 58 
rightmost bit ______________________ 34, 49 special instruction list _____________ 212 
ROL ____________________________________ 142 ST A _________ ___ ________________ 45, 46, 65 
ROM ____________________________ 14-16, 27 ST A, example of usage _____________ 65 
ROM, floating point ________________ 185 stack operations ____________________ 135 
ROM, operating system ___________ 185 stack pointer ______________________ 46, 47 
RO R ____________________________________ 142 START __________________________________ 84 
rotate left ____________________ _________ 142 status flags ____________________________ 47 
rotate operations _____________________ 50 store the contents of the 
rotate right ___________________________ 142 accumlator __________________ 45, 46 
RTS _____ ______ _______ ______ ____ 21, 22, 65 subtraction operations ______________ 44 
RTS instruction _______________________ 79 
RTS, example of usage _____________ 65 T 
RUN address __________________________ 82 telephone modem _____________________ 14 

text buffer, clearing ________________ 122 
5 Text Editor package ________________ 18 
S __________________________________________ 47 The Atari rainbow ________ ____ _______ 40 
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token ___________________________________ 204 x 
transmission lines ____________________ 43 X register ______________________________ 44 
turning your keyboard into X register, decrementing the ____ 113 

musical keyboard ______________ 53 X register, incrementing the _____ 114 
two's complement ___________________ 176 
two-state logic ________________________ 23 y 

Y register _____________________ _________ 44 
U Y register, incrementing and 
unpacking data ______________________ 145 decrementing __________________ 113 
unused bit ______________________________ 52 
user addressable memory __________ 16 
USR function ________________________ 133 

z 
Z _____________________________________ 47, 50 
Z-80 chip _______________________________ 15 

v zero flag ___________________________ 47, 50 
V ____________________________ ______ ________ 52 ' zero flag, clear ________________________ 50 
vertical blank ________________________ 213 zero page _______________________________ 91 
vertical scrolling _________ ___________ 228 zero page addressing ___________ 91, 94 
video modem __________________________ 14 zero page, X __________________________ 92 
video monitor __________________________ 14 zero page, X addressing ______ 92, 100 
Visitor Program, The ________ 110. 124 zero page, Y __________________________ 92 
volatile __________________________________ 14 zero page, Y addressing ______ 92, 100 

W 
word _____________________________________ 26 
writing assembly language 

programs _________________________ 58 
writing conditional branching 

instructions ______ _________ _____ 116 

288 






	Cover
	TOC
	Preface
	Introduction
	Introducing Assembly
	Bits, Bytes, and Binary
	Inside the 6502
	Writing an Assembly Language Program
	Running an Assembly Language Program
	The Right Address
	Looping and Branching
	Calling Assembly from BASIC
	Programming Bit by Bit
	Assembly Language Math
	Beyond Page 6
	I/O and You
	Atari Graphics
	Advanced Atari Graphics
	Appendix A - The 6502 Instruction Set
	Appendix B - The Atari Memory Map
	Appendix C - For more Information
	Index 

