
Deep Blue C Compiler Version 1-1

(C) 1982 John Howard Palevich

introduction

Overview

The Deep Blue C Compiler helps you create large

I programs — ones that take more than a day to write

and contain more than a hundred lines of code - for

your ATARI Home Computer. It lets you write your

programs in a subset of the popular programming

language “C". C is a general-purpose programming

language designed to fill the "Software Gap" between

BASIC and Assembly Language. C is more powerful and

faster than BASIC, yet clearer and less error-prone

than Assembly Language. Pointers, recursive function

and high-level control structures make complex

software systems easy to design, implement, and

I maintain.

C was created by system programmers as a viable

high level alternative to assembly language. While

slower running than assembly language, C code is much

to write and understand. Furthermore, C is the

"defacto" systems programming language of the new

generation of "workstation computers". Unlike

i assembly language, you'll be able to transport your

valuable C programs to other (especially

non—6502—based) computers, with only trivial

modifications.

Deep Blue C is a proper subset

which means that programs written

almost without change on computer

language. The Deep Blue C Compil

modified version of Ron Cain's &

domain Small-C Compiler. It took

three months to convert the Small

Blue C. While the original Small-

public domain, this version is pr

of version 7 C,

for it will run

s supporting the full

er is an extensively

Brian Smith’s public

the author about

-C compiler into Deep

C compiler was in the

otected by copyright.

Mini mum Ram and accessories.

48K RAM

810 Disk Drive

PROGRAM TEXT EDITOR

(or other no-1ine—number text editor)

Optional accessories:

ATARI Macro Assembler

Deep Blue C Supports the following

1) char, int, and pointer data types

2) single dimension arrays

3) Unary operators: + &*++n—j !?(tilde)

4) Binary operators: +, —, *, /, 7., ! , ==, ! =, < ? < = ? >? >=, <

<op>=, ! ! , ?: , comma

5) Statements: if,else, whi le, break,continue,return,

for,do,switch,case,default

6) #define and #include compiler directives

7) Relocating linker

Features of C not supported

1) structures, unions

2) multidimension arrays

3) floating point numbers

4) functions returning anything but int

5) Unary operators: sizeof

6) Binary operators: type casting

Special Syntax

C uses several ASCII characters not available on

the ATARI’S keyboard — in particular the curly braces

have been replaced by the two-letter combinations $(

and $), and the tilde has been replaced by The $

character is not used in C, so your editor’s find

replace command can be used to convert standard C

programs into a format acceptable to Deep Blue C„

References to related publications

P
i

This manual will not teach you C. If you do not

know C, you should obtain a copy of “The C Programming

Language", by Brian W. Kernighan & Dennis M Ritchie,

(C) 1978 Bell Telephone Laboratories, Inc-, which is

published by Prentice Hall, Inc., Englewood Cliffs, NJ

07632. Note that many of the examples in the book use

the Unix I/O functions, which are slightly different

from the ones supplied with Deep Blue C.

GETTING STARTED

The first thing you must do is make working copies

of your Deep Blue C disks. Keep the originals in a

safe place, in case you should lose the working

copies. Here is an explanation of the files on your

disks:

Distribution Diskette

DOS'. SYS — Standard DOS II FMS file

DUP.SYS — Standard DOS II DUP file

CC.COM — Deep Blue C Compiler

CLINK.COM — Deep Blue C Linker

DBC.OBJ — C run time module..

AI0.C — source for I/O functions

AI0.CCC — object for AI0.C

GRAPHICS.C — source for graphic & game i/o

GRAPHICS.CCC - object for GRAPHICS.C

PMG.C — source for p1ayer/missi1e & character set graphic

PMG.CCC — object for PMG.C

PRINTF.C — source for formatted output

PRINTF.CCC — object for PRINTF.C

X.C — source for demo program

X.CCC - object for X.C

X.LNK-link file f or X. C

X - COM-executable version of X.C

BOUNCE.* - source, etc. for graphics demo

MEDITC.ECF PROGAM/TEXT EDITOR

. “.C“ customization file

• ‘ A

Code Diskette

CC*. C — source -files -for the compiler

CC.LNK — link -file -for the compiler

CLINK*.C — source files for the linker

CLINK.LNK — link file for the linker

DEC*.MAC — Atari MACRO ASSEMBLER files

for DBC.OBJ

MEDITMAC.ECF — PROGRAM/TEXT EDITOR

".MAC" customiztion file

USING DEEP BLUE C

There are four steps between a C propram on papet-

and an executable machine language file on the ATARI

1) The program must be entered as one or more

source files using a text editor

2) The source files must be compiled into object

files by the Deep Blue C Compiler

3) A link file must be created. The link file

contains the names of all the object files that are

part of the program, and is used by the linker (in

step 4) to gather all the parts of the program

together.

4) The individual object files that make up

whole program must be linked together into an

executable file by the Deep Blue C Linker

the

kind of file has its own extension. Here is a

the extensions used by Deep Blue C:

’ A

Each

list of

Source file

□ bj ect file

Link file

Executable file —

Editing a C Source

Deep Blue C source files contain the text

representation of a C program, the comments associated

with that program, and the compiler directives needed

'1 to compile the program. C is a modern high-level

language best edited with a screen oriented text

editor. In particular, the Atari Program Exchange’s

■ PROGRAM TEXT EDITOR is excellent for editing C

programs. If you have this editor you’ll find that

the file MEDITC.ECF contains the apropriate tab

settings for editing C text.

If you have another text editor, you can also use

it to edit your C programs- The only reguirement is

that your editor must not insert line numbers at the

beginning of each line. This means you can t use the

BASIC or ASSEMBLER/EDITOR editors to edit your C text,

unless you write a utility program to strip off the

line numbers before compilation.

All C text files should have the extension ".C", as

in A10. C, PRINTF.C and X.C, The ".C" extension is

traditional, and is also the default extension assumed

by the compiler.

. C

. CCC

. LNK

. COM

File

L source text programs may contain all

characters. The two formating characters

127) and EOL (decimal 155) are treated as

spaces, which means that

the C text in a pleasing

they can be used

manner -

ATASCI I

TAB (decimal

if they were

to indent

i

cr
 n

COMPILING A C PROGRAM

Once entered, the C program must be translated into

a special code (called object code) before it can be

executed. The program that does this translation is

called the Deep Blue C compiler. The compiler reads a

program from a C file, translates it into object code,

then writes the object code into a file with the

extension CCC. For example, to compile the program X.C

you would do the following:

1) Remove all cartridges from your Atari, turn on

the disk drive, insert the distribution diskette, and

power on your Atari.

2) When DOS II prints its menu you type L (for Load

File), the RETURN key, CC.COM, the return key, and

wait for the Deep Blue C Compiler to load.

3) The Deep Blue C Compiler clears the screen and

prints its header message:

Deep Blue C Compiler version 1.0

(0 1982 John Ploward Palevich

File to compile (or RETURN to exit)

Figure 1. Deep Blue C Compiler Display

4) Type in the name of the C text file you want to

compile — where the full name might be D:X.C, you

need only type the main part of the file name — the

X, and the rest of the name will default to the D:

disk and the .C file. So you need only type X., then

the RETURN key.

5) The compiler prints " D: X . C—>D: X . CCC11 , which

means that the input file D:X.C is being read in,

translated to objectc code, and written out to a file

ailed D:X.CCC. In general, the file Dn:<name>.C will

e translated into the file Dn :<name>.CCC

6) The compilation may take several minutes,

depending upon the length and complexity a-f the source

program. To give you an idea what it is doing, the

compiler prints the name of the current function it’s

parsing.

7) If you have any syntax errors the compiler will

print out the line where it detected the error, an

arrow pointing to the point in the line where it

detected the error, and a line of text describing the

error. An example would be:

main()$(p5("Hello, World")n

Missing close $)

Figure 2. Compiler error message

8) If you have no syntax errors the compiler will

j print out the reassuring message "No Errors.". In

either case, you will again be prompted "File to

Compile (or RETURN to exit)". If you have more than

one file to compile at a time, you can type the next

file name now, followed by RETURN.

I,

9) When the compier has finished compiling your

files, press RETURN to go back to DOS II.

LINKING A C PROGRAM

Once the individual files making up the C program

have been compiled without error, the whole program

can be linked together into an executable file. To

link together a C program one must construct a text

file, called a "link" file, containing the names of

all the files that have to be linked together to

produce the complete program.

i

A typical small program, such as X.C, needs two

-files in addition to itself: AIO-CCC (the compiled C

code of the I/O functions) and DBC.OBJ (the run time

package) - If you were to print out the file X. LNK you

would see that it contains the following:

X

A10
DBC.OBJ

Figure 3- X -LNK

The files must have the Dn: prefix if they are on a

drive other than drive 1. If no extension is given a

".CCC“ extension is assumed. The LNK file cannot

contain any blank lines, not even at the end of the

file.

Two types of files make up an executable C program

— . CCC files, produced by the compiler,, and .OBJ

files, produced by the ATARI MACRO ASSEMBLER (or other

assembler), which contain machine language. .CCC

files are linked together into a C program, while .OBJ

files are copied verbatim into the output file.

All C programs MUST include the file name DBC.OE<J

in their link file. DBC.OBJ contains the run time

routines & the C—code interpreter needed to execute

properly. If you use the “asm” keyword (described

later) and want to have your own machine language file

loaded automatically, then you would list it in the

link file too.

Once yourve written the link file for your program,

you can link it by running the Deep Blue C' linker.

Put the distribution diskette into the drive, close

the door, boot DOS II, and type L, then RETURN,

CLINK.COM, then RETURN.

The Deep

display its

Blue C Linker will

message:

load into RAM and

Deep Blue C linker version 1.0

(C > 1982 John Howard Palevich

Link program. Duplicate file or Quit

Figure 4. Deep Blue C linker display

Type the first letter (L,D, or Q) of a command,

then hit RETURN. Link will construct a working C

program out of its parts. Duplicate will let you move

small files from one disk to another without resorting

to DOS II?5 0 command. Quit will., of course, return

you to DOS I I.

Duplicating a file

Typing the letter D, then a space, then the name of

the file you want to duplicate. The linker will

prompt you to insert the source disk, after which you

should press RETURN. The linker will read in the

file, then prompt you to insert the destination disk,

after which you should press RETURN. The linker will

write out a duplicate copy of the file onto the

destination disk. You can use this command to copy CCC

files from the disk where the'/ were compiled onto the

disks they are to be linked upon. Except for the

limited file size (about five thousand characters)

this command acts like the DOS II 0 command.

Linking a file

Once you have compiled all the files that make up

your C program, you must link them together. The L

command of the linker is used to do this. To link the

separate parts of your program together, type L,

space, link file name, then RETURN. An example would

be "L X", RETURN, which would instruct the linker to

link together the program X.COM according to the

directions in X.LNK.

The linker will -fail to link if the files you

specify do not exist. In addition, if it cannot find

a function or external variable declaration it will

complain "undefined label: ", and the missing

variable's name. If you mistyped a variable name

(such as "alhpa" instead of "alpha") the mis spelling

will be reported here.

If there are no errors the linker will print

errors" before re-printing the "Duplicate, Link

Quit" prompt.

“No

or

Exiting the linker

When you've finished

programs, you can exit

followed by a RETURN.

Running a C program

duplicating -files and linking

the linker by typing 110"

A compiled and linked C program can be treated like

any other executable file — it can even be renamed

AUTORUN. SYS in order to have it boot in when you urn

on the disk drive. Like other object code files it.

should be loaded via the "L" command of DOS II.

Run-time Errors

There are only four errors that can occur at

run-time (while the C program is executing). 0

these, only the first is common. Should any of

occur, your program will stop and the following

message will print out on the screen:

them

dbc 1 run-time-error <letter>

Type a key to return to DOS.

Run Time Error Message figure 5.

T.he <letter> will be one of the following:

A — stack overflowed RAMTOP — either you are

recursing endlessly, or you have defined too many

variables.

B — Illegal op—code - your program has messed up

its code area, and tried to execute garbage.

C — version error — you have versions of CC.COM,

CLINK.COM and DBC.QBJ that do not have the same

version number.

D — divide by zero — you've tried to divide a

number (or take its remainder) by zero.

Constants

Deep Blue C supports the following types of constants

decimal numbers like —12, 134, 4500

octal numbers like 017, 045, 017777

hexidecimal numbers like 0xd400, 0xff, 0x2fc

character constants like 'a1', 7ee7, 707

string constants like "foo", "bar blatz", "spam"

Any control or inverse video character that can be

embedded in a BASIC string (like control-A thru

control-Z or the arrows) can also be embedded in a

deep blue C string. There is one exception:

control-comma (the heart) is used to signal the end of

the string & thus should not be used in a string

constant.

In addition,

generate certai

the backslash character

n useful characters:

(7 \ 7) is used to

\f — clear screen.

\n — EGL (new line)

\7 — apostrophy

\###, where ### is a

produces the ATASCII

\g — ring bell

\r — dele t e 1i

\" — quote

one to three di

character with

\h — back spa

ne \\ — backslas

\t — tab

get octal constant

that ATASCII code.

U

JZ

Differences from Standard C

i
j
V

1

The Deep Blue C language has the following non-standard.

features: . f;

The last clause of a "switch” statement., either "case."

or "default", must be terminated with a "break", a "continue1

or a "return" statement.

The ancient =<op> construct has been removed. Use <op>=

instead.

Characters are unsigned — chars range in value from

0 to 255.

Strings cannot be continued on the next logical line.

C source code lines can be a maximum of seventy nine

characters long.

Functions can have a maximum of 126 arguments.

I >

The Deep Blue C Library

Unlike most other languages, C has no built in I/u

statements. Instead of Basic’s PRINT or Pascal’s

WRITE, C uses -functions for it’s I/O. While extremely

useful, this means that each version of the C language

has its own version of the basic input/output

functions. Deep Blue C is, alas, no exception, but if

: you find its mix of pre-defined functions lacking in

one way or another, you are welcome to define new 1/o

functions to fit your needs!

The functions defined in the files AIO.C,

GRAPHICS. C, PMG.C and PRINTF.C give you access to the

Atari’s hardware at about the same level as BASIL. C

library functions with familiar names (like plot(1,

drawtoO, and poke(> act, on the whole, like their

BASIC counterparts.

While the most accurate definition of each function

is its C code, here is a description of each function,

starting with the functions in the file AIO.C:

clear(s, 1 en)

char *s;

int len!

clear() puts zero bytes in sH0..1en-13,

useful for initializing large arrays. For

integer arrays the length arguement should

by two, so that the length is in bytes rather

which makes it

i nitializinq

be multip1ied

than in words

i

t

copen (-f n , mode)

char *-f n , mode ;

The copen -function opens -file 'the file named in the

string 7 fn7 for reading, writing, or appending,

depending upon the value of the character •’mode1':

?r? — read file (like OPEN #n,4,0,fn$>

’w* — write file (like OPEN #n,S,0,fn$)

?a’ — append file (like OPEN #n,12,0,fn$)

If the file is opened successfully, the IOCB number

used by that file (0 to 7) is returned as the value of

the function- You must save this value in a variable

in order to be able to actually use the file.

If the file does not open successfully, the

function will return a negative number, where the

number is the negative of the CIO error code. For

example, if you typed the BREAK key while copen was

trying to open a file, then copen would return a —128-

open (iocb,ax 1,ax 2,f name)

char i ocb, ax 1,ax2,*fname?

This is the familiar OPEN statement form BASIC-

open () returns 1 if there was no problem, otherwise it

returns the negative of the CIO error code.

c1ose(i)

char i;

This is the familiar CLOSE statement from BASIC -

it closes the IOCB returns 1 or the negative of the

CIO error code.

cc1ose(i)

i n t i ;

When you want to close a particular file, you

should call ccloseO with the number returned by

copenO. ccloseO will return either a 1 (if

everything turned out OK) or a negative number (the

negative of the CIO error code) if the file failed to

close.

Actually, closeO and ccloseO do exactly the same

thing and can be used interchangab1y. The number

returned by copen() is the number of the IQCB that was

opened for the file, so files opened with EITHER

open() OR with copen() can use all of the rest of the

i/o functions.

cgetc(iocb)

i nt iocb;

cgetc() is very much like the BASIC GET statement

— you pass is the iocb number and it returns either

the next character in the file (which will be between

0 and 255) or a negative number that's the CIO error

code.

cputc (c„iocb)

char c;

i nt iocb;

cputc() is very

— you give it the

iocb number and it

file. If there is'

otherwise it will r

code.

much 1ike

character

will print

no error,

eturn the

the BASIC PUT statement

you wish to print and the

that character into that

cputc() will return 1,

negative of the CIO error

getchar()

getchar() will get one character from the screen

(iocb 0) and return it to you (or the negative of the

CIO error code).

pu.t char (c)

char c;

putchar () will print the character you give it onto

the screen (iocb 0), and return 1 or the negative of

the CIO error code-

gets (string)

char ^string;

getsO is like the BASIC INPUT statement — it will

get an entire “logical line” of text from the user and

place that line in the character array you give as an

arguement. Make sure your character array is at least

120 characters long — otherwi se the user could

overflow your array by typing in a very long line. If

there are no errors, gets () will return the number of

characters in the line of input (0 to 120). If there

is an error, gets () will return the negative of the

CIO error code.

cprints(string)

char -fc-string;

cprintsO is like the BASIC PRINT statement — it

will print the string you give it out onto the screen.

It will NOT print a RETURN, but you can use the

statement "putchar (155) ; 11 to cause a carriage return.

cputs(string,iocb)

char -^-string;

int iocb;

cputsO is like the BASIC PRINT# statement - it

will print the string you give it out to the file you

specify- You should use the iocb number that copen ()

returned- If there are no errors, cputs() will return

a 1, otherwise it will return the negative of the CIO

code. error

ciov(iocb,com,bad,b1en,ax 1,ax 2)

int iocb,com,blen,ax 1,ax2;

char *bad;

1

ciovO is like the BASIC XIO cal 1 — you can set up

the iocb of your choice, then cal 1 the CIO via this

function. The arguement iocb should be between 0 and

7, and specify which i/o control block you are using.

COM is the ICCOM command code, bad is the ICBAD buffer

address, b1en is the ICBLEN buffer length, ax 1 is the

ICAX1 auxiliary byte, and ax2 is the ICAX2 auxiliary

byte. If you do not want to change the current value

of any of the last four arguements (bu.f, blen, ax 1 , or

ac2) use the value —1. Thus, to read another line

into the current buffer, you would use:

ciov(1,5,—1,—1,-1,—1);

Note that most of the i/o functions are implemented

using calls to ciovO. The two exceptions, cgetc() and

cputcO, are coded in assembly to speed them up

slightly. If the CIO returns a result less than 128,

ciovO returns it as—is, but if the CIO result code is

greater than or equal to 128 (which means that an

error has occured), ciovO returns the negative of

that code. This is in keeping with "standard usage"

in C, which has error codes less than zero.

normalize(fname,fext)

char *fname,*fext;

normalized is a handy utility function used to

convert free—form file names into CIO and FMS standard

file names. First the file name is converted into

upper case, then, if there is no device prefix, D: is

added to the front of the name. If there is no

extension, a period and the extension in the string

fext is appended onto the file name. A typical use,

"char fnameC201; gets(fname) ; normalize(fname, "BAS")

\ would ensure that the file name in fname is acceptable

to the CIO system. If the user had input "prog", after

normalize(fname,"BAS") the string fname would contain

"D:PROG.BAS".

toupper (c)

char c;

If c is lower

case equivilant.

case, toupper () returns the

or else toupper () returns c

upper

tolower(c)

char c;

If c is upper case, returns the lower case

equivalent, or else returns c.

; strcpy(a,b)

I char *-a, *b;

strcpy() copies a string from character array b to

character array a. strcpy() returns the length of the

string it copied, not counting the trailing zero byte.

move(a,b,1en)

char *a,*b;

int 1en;

move () moves 1 en bytes from a to b, starting with

the byte at aC0J and finishing with the byte at

a Elen —13. Funny things will happen if a < = b <== a+len.

. - > usr(addr,.

int addr;

usr () is like the BASIC USR(X) function — the

first argument is the address of the machine language

subroutine and the rest of the arguments are passed on

to that subroutine. The result is passed in the A

(low) and X (high) registers. When the user’s routine

is called, the. stack looks (in the order items would

be F‘LA31 d off the stack) like this:

<number of arguments (zero to 120) besides the address

<high byte first argument)-

<low byte first argument)

<high byte second argument)

<low byte second argument, etc.)

<return address (two bytes)>

Zero page variables $F6 to $FF are free for use

with usr() subroutines.

find(addr,1en, ch)

char *addr,ch;

int 1en;

find() searches memory from addr to addr+len-1 for

the first occurence of ch. If it doesn’t find ch, it

returns —1, otherwise it returns the number of

characters past addr that it found ch (range of 0 to

1en - 1) .

peek (i)

char *i;

peek() returns the byte at memory address i.

poke(i,d)
char *i , d;

poke () pokes byte d into address i,

the OLD byte at i .

then returns

dpeek(i)

char *i;

dpeek() returns the word at

byte) to i+1 (most signifigant

i (least

by t e) -

signifigant

d p o k e (i , w)

char *i;

i n t w;

dpokeO pokes the word

then returns the old word
w into address i

at that address.

to i +1 „

val(s)

char *s;

val () , like BASIC's VAL function, takes a string as

input and returns its numeric value.

hval(s)

char *s;

hval() takes a string as input and returns its

hexidecimal value.

Functions Defined in GRAPHICS.C

graphics (n)

char n;

graphics() will change the screen’s graphics mode

just like the BASIC GRAPHICS statement, returns same
status as open().

col or(c)

char c;

color () will set the color to plot () or drawtoO ,

just like the BASIC COLOR statement, returns garbage.

drawto(x , y)

i n t x , y ;

draw5 a line -from last plotted point to (x?y), just

like BASIC7s DRAWTO. Returns 1 if ok, else CIO error
code.

1ocate(x,y)

i n t x , y ;

locates the graphics cursor at the position (x„y)

and returns the value of that pixel, or the CIO error

code. Exactly like BASIC7s LOCATE statement.

p1ot(x,y >
i n t x , y;

plots a point at <X,Y) just like BASIC7 s PLOT

statement. Returns 1 if 0KS else the CIO error code.

position(x,y)

i n t x , y;

positions the graphics cursor at new <X,Y). Not
actually moved until next output.

setcol or(reg,hue,1 urn)

char reg,hue, 1 urn;

Sets color # reg to the color combination hue.

Just like the BASIC SETCOLOR statement.
1 urn.

a
 u

-Fill <x,y,c>

int x,y;

char c;

Fill implements the FILL command o-f the S: device.

It draws a line from the last point plotted to (x,y) ,

filling the backround to the right of the line with

the color provided. Somewhat useful for filling in

large trapazoidal regions of the screen with color.

See page 54 of the BASIC REFERENCE MANUAL for more

detai1s.

add1e(n)

har n!

paddle() returns the value of the numbered paddle,

just like BASIC7 s PADDLE function.

ptrig(n)

char n;

ptrig() returns the value of the numbered paddle

trigger, just like BASIC7s PTRIG function.

stick(n)

char n;

stick() returns the value of the numbered joystick

just like BASIC'S STICK function.

strig (n)
char n;

strigO returns the value of the numbered
joystick's trigger button, just like BASIC's STRIG

function.

(V>
l
\

vstick(n)

char n;

vstickO returns the vertical component of joystick

n- If the joystick is pointed forward (up) vstickO

returns 1. If back (down) vstickO returns —1. If

centered (vertically) vstickO returns 0.

J hstick(n)

! char n ;

hstickO returns the horizontal component of

joystick n. If the joystick is pointed left hstickO

returns —1- If pointed right, hstickO returns 1. If

centered (hor i z on t al 1 v) hstickO returns 0.

Functions Defined in PMG.C

pmcinit()

pmcinitO initializes player/missile and character set

graphics. pmcinitO must be called exactly once, and should

be used BEFORE any calls to graphicsO.

pmcf1ush()

pmcflush() flushes p 1 ayer/missi1e and character set graphics

buffers out of RAM, returning the 4K of RAM that they use.

pmcflush() should be called exactly once, just before returning

to DOS.

i

pmgraphics(i)

i n t i ;

pmgraphicsO should be called AFTER each call to graphicsO

to set up the resolution of the p1ayer/missi1e graphics,

pmgraphics(1) produces single line resolution, pmgraphics(2D

produces double line resolution, and pmgraphics(0) inhibits

player missile graphics all together.

hitc1 ear ()

hitclear() clears the collision registers.
j
I

hi tp2pf (f rom, to)

! char -from, to;

j •
! f

hitp2pf() returns one if player # '‘from" hit playfield
color "to", otherwise it returns zero.

hitp2pl (from,to)

char from,to;

hitp2pl() returns one if

If "from" is equal to "to",
player “from” hit player # "to

then one is returned.

pmc1 ear (n)

char n;

pmclearO clears player number "n" .

p me olor(n,c, i)

char n,c,i;
j

pmcolor () sets the color of p 1 ayer/mi ssi 1 e "n" to hue
"c" and intensity " i " . Similar to color ().

pmwidth (n,w)

char n, w;

pmwidth() sets the width of player "n" to “w":
w =- 0 means normal size
w == 1 means two times normal size
w -3 means four'times normal size

r

P1 addr (n)

pladdr () returns the address of the buffer containing

player "n" .

p 1 move (n , >: , y, shape)

char n,x,y,*shape;

plmoveO moves player "n" to position "x 'V'y" (in

the current pmgraphicsO mod e7 s coordinates) and draws

it's shape from the character array "shape". shape[0]

is the size of the player’s shape, and shaped . .

size] is the byte pattern for the player itself. Be

sure to put several zero bytes before and after the

actual graphic so that previous images will be erased

proper1y.

chget(c,s)

char c,*s;

chget() fills the sC0. .71 with the character font

I for internal atascii character c. ATASCII

| blank—space's internal representation is 0, so it's

current font could be obtained by chget(0,5).

choget(c,s)

char c , *-s ;

choget() fills sH0..7D

font for internal atascii

with the ORIGINAL character

character c.

\
i

i

chput (c , s)

char c , *-s;

chput() makes sE0..7D the font for i nternal—atascii

character c- To put a dot in the middle of the space,

for instance, one would say

chput (0, ,,\0\0\0\60\60\0\0\0") ;

REMEMBER that one must use pmcinitO before any

other function in F'MG'.C will work.

sound(voice,pitch,distortion,volume)

char voice,pitch,distortion,volume);

sound() makes sound effects just like BASIC’s SOUND

statement.

rnd (n)

i nt n;

rnd() returns a random number between 0 and n—1

(inclusive), so to generate a random number between 1

and 10 you would use the expression: 1+rnd(10). If n

is less than 2 then rnd() will return 0.

In addition to the functions in AIO,

more library functions in PRINTF:

there are two

printf(s,- - - -)

char *s;

printf() is the standard C formatted output

function- It takes a variable number of arguments.

The first one is a format string containing the

message to be printed, along with characters

specifying where to insert the rest of the arguments-

£
*
V

\v
>

The 7. character is special when it appears in the

-Format string- The characters following the X tell

how to print one of the arguments — the first 7

matches the first argument after the format string,

the second 7- matches the second argument, and so on-

If you specify too few arguments (or too many Xs) your

output string will be garbled.

you may type one of the following

d — to print a decimal number

x — to print a hexidecimal number

c — to print a character

s — to print a string

or

X — to print a X

If you want the argument to take at least a certain

number of characters, type a number between the X and

the format character. The value will be right

justified. If you want it left justified, then insert

a minus sign before the number. Here are some

examples to clarify things:

printf ("abed") ; produces

| abed

printf ("=Xs=", "abed") ; produces

=abcd=

printf ("=X5d=",99) ; produces

= 99=

printf (,,=7.“5d = n , 99) ; produces

=99

and printf ("Xc Xd 7.x ",65,65,65) ; produces

A 65 41

fprintf(iocb,s..)

int iocb;

char *-s;

fprintf () is just like printf () except that it

takes an additional argument, iocb, and outputs to

that iocb. printf() is esentially fprintf(0,...).

Adding machine language -Functions

to Deep Blue C.

If you look at the AIO.C file you will note that

the "primitive" functions, like ciovO are defined in

a peculiar way, using the asm statement:

ciov(iocb,com,bad,b1en,ax 1,ax 2)

in t iocb,com,b1en , ax 1,ax2;

char *bad;

asm 12291;

This kind of function definition, using asm rather

than $(<statements> $) , creates a "hook" into machine

language. When an "asm" function is called, the

arguments are pushed onto the 6502 machine language

stack just like the usr() function, then a jump is

made to the address that follows the "asm" keyword.

If you want to add "asm" function to your DBG

■ programs, at memory location $600 (page six), you

would simply write:

f oo ()

asm 0x600;

In addition, you've got to write the assembly

language routine (using the assembler of your choice)

and include the name of the object file (which must

have the extension .OBJ) in your .LNK file.

Don't forget that the number of arguments you

I actually get may vary depending upon how many the user

supplies. You should use the byte on the top of the

: stack to tell you how many arguments to pop off the

stack before returning.

!

RAM usage: The Deep Blue C run-time package uses

RAM from $3000 to $3FFF, and the user's program starts

1 at $4000 and continues towards the top of memory. You

can use page six and any RAM free between the top of

the OS and $3000 for your own purposes. Although the

compiler needs 48K, most Deep Blue C programs will run

in much less space — it is certainly possible to

create useful programs that run in as little as 24K of

RAM.

Modi -fving the Compiler

The compiler is contained in the 12 files cc0.c to

cc9.c, ccv.c, and ccg.c. To modify the compiler,

compile each of these modules except for ccg.c, which

is an “include" file, and link them together using

CC.LNK.

The run time package (the compiled—c—code

interpreter) is contained in the files DBC.MAC,

DBCX.MAC, and E>BC2.MAC. These files can be

re—assembled via the ATARI MACRO ASSEMBLER with the

command line:

D:DBC.MAC

The source for the linker is in the files cl ink.c

and clink2.c. When these files are compiled you can

link them together using the CLINK.LNK file.

If you make changes to the compiler or the linker,

! rename the old version to OCC or OCLINK rather than

j deleteing it. This way you?11 be able to backtrack i

| the event of bugs in your new code!

If you find any bugs (and especially if you have

written a well tested fix for a bug) in either the

compiler or the linker, please fill out the REVIEW

FORM in the back of this manual and send it to APX.

The compiler is known to compile itself, so it's

pretty much bug—free. The author does NOT appreciate

hearing about obscure bugs at three a.m., so please

use the REVIEW FORM rather than the telephone!

Compiler Notes:

I
l

These notes are intended -for a VERY experienced user

who wishes to modify the compiler- In all probability this- ,

does NOT mean YOU- Mere mortals can safely ignore this

section!

Ron Cain's original Small C compiler translated the C

program into an assembly language source file. The user

would then use an assembler to convert this file into ex ecutab

code- There are to reasons why this could not be done for

the Atari: a) The assembly language file would be about

180K bytes long, much larger than the Atari disk drives

could handle, and b) The object code would be more than

30K, much larger than available RAM.

The first problem, that of gigantic intermediate files,

was solved by having the compiler emit a compressed pseudo-

assembly language and.construeting a linker- The second

problem, caused by the byte-oriented nature of the 6502,

was overcome by having the compiler/1inker emit pseudo-code

rather than machine code. This pseudo—code is interpreted

at run time by* the machine code in the DBG.OBJ file, which

is inserted into the COM file by the linker. (This insertion

happens because of the DBC.OBJ line of the LNK file.)

If you want the COM file to reside in a different portion

of memory (say, for instance, that you want your program

to run in a cassette—based environment where DOS is not

in RAM) then you should re-assemble DBC.MAC and CLINK.C

to expect and emit the code at the new location.

Somebody should add structures to this compiler! (It

won 71 be me!)

