
~

.. F1R~ AND FlNEST

C/65
C/65
e/6S ·
e/65
C/65

Systems Software for
. Apple and Atari Computers

...... ;' /' ~ . . .~~ '

.....

OptJmLted Systems Soft ware, lne. .

I

I

•

•

Thil Reference Manual end the program
C/651'11 are Copyright 01982

OptJmiz.ed Systems Software.lnc •

•

arataranc ... nual foe

C / Ii ~

a •• all C lanquage compiler tor u.e with
~tarl 40~, Atarl 0'1, and Appla 11 C~puter.

Tb. program., diaka, .nd .anual. ca.prialng
C/65 ara CoPyri9ht (cl 19~1 by
Optimicad Sr.tem. Software, [ne.

ane!
LiqhtSpeed Softwar.

Thh manual h Copyrl'Jht (cl l\lß2 by
Optiml&a~ Sy.te~. Software. Inc., of
10179 Lanadale Avenue, Cupertlno, C~

All right. r •• erve<!. Reproduction or tralldation of
any part of thi. werk beyone! that parmitted by .actiona
1'7 and 108 of the Unitae! Statea Copyright Act without

th. per~i •• ion of tha copyright ownar 1. unlawful.

a reference manual for

C / 6 5

a small C language compiler for use with
.Atari 400, Atari 809, and Apple 11 computers

The programs, disks, and manuals compriB!ng
C/65 are Copyright (c) 1982 by
Optimized Syst~m. Software, Inc •

• nd
LightSpeed Software

This manual is Copyright (c) 1982 by
Optimized Systems Software, Inc. of
1221-B Kentwood Ave., San Jose, CA

All rightB reaerved. Reproduction or translation of
any part of this work beyond that permitted by Beetions
197 and 198 of the United States Copyright Act without

the permission of the copyright owner i. unlawful.

PREFACE

We realize that C/65 is not the most sophisticated,
moat complete, lanquaqe on the market today, but wa
balieve that the inherent power and flexibility that it
exhibit. within its compact size are a qood match for
the aize and featurea of the machinea it is intended
fore

C/65 waa authored by Sam Dillon and John Lowry, under
the company name of LiqhtSpeed Software, based on the
Small C Compiler publiahed in Dr. Dobb'a Journal.
C/65 ia a händ-coded translation fram C code to 6502
aaaembly lanqu&qe and ia, aa a result, a fast and easy
to uae compiler.

TRADEMARKS

Tbe followinq trademarked name. are used in various
place. within thia manual, and credit ia hereby qivenl

OS/A+, BASIC A+, MAC/65, and C/65 are trademarka of
Optimized Sy.teme Software, Inc.

Apple, Apple 11, and Apple Computer(a) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, -Atarl 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atarl, Inc., Sunnyvale, CA.

OOPS OOPS OOPS OOPS OOPS OOPS

Errata found in the C/65 manual ,

UPPER CASE versus lower ca ••

In a last minute effort to fix a bug having to do with lower ca ••
global label. being improperly sent to th. a •• embly fil., w. put in a
simplistic and not altegeth.r de.irable kludqe: generally, lower cas.
names are not allowed.

We promiae that thi. etate of event. will not la.t very long . Watch
for our update announcement ••

C/65 Manual, page 4

Tbe suppoaedly -Simple Exampl.- on thi. page was a di.asterl Several
typographic error. (and one misunderstanding) crept into it. Pleas.
replace the entire exampl. sequence with th. followingl

• (Oll) HAC6S
(EOIT)
TEXT
(TEXTKODE)
U' HAIN ()
2e $(
Je PUTS(-TalS 15 A C/6S PROGRAH") ,
4e $)
se IASK O:IO.LIB
LIST 'D:TEST.C
(TEXTHODE}
DOS .

(Dll) C6S· TEST.C . TEST.A-T
(D11) HAC65 TEST.A EI TEST.COK-A
(01:) TEST

Please note that we hav. also 1ncluded a demo pregram and EXeCute file
on .your master disko Try listing, compiling, modify1ng, etc., this
demo program. It include. a reasonable · -ITOA- (Integer '1'0 Ascii)

. ~eonversion routine which you can -lift- for other pregram ••

THE LIBRARIE5

All the a.sembly language libraries on th1. di.k are HAC/65 "SAVEd­
files, NOT standard ASCII file.. If you hav. HAC/65 (a. over 90\ of
you do), this i. exactly what you want. If you are on. of tho.e brave
souls intending to convert the compiler output to run on other
assemblers, the.e file. are useles.. Unfortunately, th.re is not
enough room on · the di.k.tte to includ. both type. of library files.

Pear not. If you really want or need the ASCII version. of theae
file., simply return your master di.k to u. (after rnaking a ' copy, if
you desire) along with your lieens. agreement end we will airmail YO~ ' a
disk with ASCII librarie. in.tead.

P.S.I If you DO hav. HAC/6S but want an ASCII library anyway, simply
LOAD the various library file. one at a time, following each LOAD with
a LIST to another disko

OOPS OOPS OOPS OOPS OOPS OOPS

Errata found In the C/6S .. anual I

In • la.t minute effort to fi_ • bug having to do with low.r c•••
glob.l lab.l. b.ing improperly ••nt to the ••••mbly fil., we put in •
• 1apli.tic and not altogether dealrable kludge. generally, lower c•••
n•••• ara not allowed.

THE LIBRARIES

All the ••••mbly l.nguag. libr.ri•• on thi. di.k .r. MAC/6S "SAVEd"
til•• , NOT .t.nderd ASCII til•• , It you h.v. MAC/6S C•• ov.r 90' of
you do), thi. i. exactly what you vant. If you ara on. of tho•• brave
aoul. intending to convert the complier output to run on other
•••••bl.r., the•• tile. are u••l.... Unfortunately, there 1. not
.nough room on the di.k.tt. to includ. both typo. ot libr.ry til•••

rear not. If you r.ally want or n••d the ASCII ver.lona ot th•••
til•• , .imply return your ma.ter di.k to u. C.ft.r .aking a copy. it
you d•• ir.) .long with your licen•••gr••m.nt .nd w. will .irmail you.
di.k with ASCII libr.rie. in.t.ad.

P.S •• It you DO haY. MAC/6S but w.nt an ASCII libr.ry anyw.y, .imply
LOAD the v.riou. libr.ry til•• on••t • tim., following ••ch LOAD with
• LIST to another di.k.

Chapter 5 Statements 35 Chapter 7 Interfacing to Assembly Language 89
5.1 Simple Statements 35 7.1 Zero Page , System Stack usage 90
5.2 Compound Statements 36 7.2 Accessina Function Parameter. 91
5.3 Keyword Statements 37 7.3 Pa •• ing Va1us. 93
5.3.1 IF Statement 37 7.4 Returning Values 93
5.3.2 IF-ELSE Statement 38 7.5 A Simple Example 94
5.3.3 ELSE IF Statement 40
5.3.4 WHILE Statement 42
5.3.5 BREAK Statement 43
5.3.6 CONTINUE Statement 44
5.3.7 RETURN Statement 45
5.3.8 NULL Statem.nt 46

Chapter 6 C/65 Library Functions 47
6.1 Standard Error Codes 49
6.2 Runtime Library Functions 50
6.2.1 PUTCHAR 51
6.2.2 GETCHAR 52
6.3 I/O Library Functions 53
6.3.1 FOPEN 54
6.3.2 OPEN 56
6.3.3 FGETC 57
6.3.4 GETC 58
6.3.5 FPUTC 59
6.3.6 PUTC 60 ~ -6.3.7 READ 61
6.3.8 WRITE 62
6.3.9 FGETS 64
6.3.18 GETS 65
6.3.11 FPUTS 66
6.3.12 PUTS 67
6.3.13 FERROR 68
6.3.14 FEOF 69
6.3.15 FCLOSE 70
6.3.16 CLOSE 71
6.3.17 EXIT 72
6.3.18 NOTE and POINT 73
6.3.19 XIO 76
6.4 Graphics Library Functions 78
6.4.1 GRAPHICS 79
6.4.2 SETCOLOR 80
6.4.3 COLOR 81
6.4.4 PLOT 82
6.4.5 DRAWTO 83
6.4.6 POSITION 84
6.5 Storage Allocator
6.5.1 ALLOC 86
6.5.2 FREE 87

~ •

CHAPTER 1: INTRODUCTION

C/65 is a subset of the C programming langua~e as
defined by Kernighan and Ritchie in the book, The C
Programming Language-, published by Prentice-Hall.

With a few clearly noted exceptions, programs written
in C/65 are compilable without modification under
standard C.

The C/65 package comes with a runtime library, which
includes standard-looking character input and output
functions, all of which are describe~ later in this
document. The output of the C/65 compiler is HAC/65
assembly language, which must be run through the MAC/65
assembler to produce a runnable object module. It is
possible for this to be done automatically. Since the
output is assembly language, it is easy to write your
own assembly languauge routines that are compatible
with the code generated by the compiler.

SECTION 1.1 WHAT'S IN IT

Very briefly, C/65 supports

the basic data types CHAR and INT

- pointers to the basic types (*)

one dimensional arrays of the basic types ([])

the basic arithmetic, logical, and bit operations
familiar to C programmer.

- simple source
('DEFINE)

level character substitution

- file inclusion of C source code

file inclusion of assembly language source code
(not compatible with standard C)

- functions with parameters and local variables

an if statement, with an optional else clause

- a while statement
--1--

(

- break and continue statements

CHAPTER 2: USING C/65

I

- a return statement, with an optional return value
already? Did the introduction

tell enough? Anxious to get

- compound statements
'$(' and '$)' must be
, } ,) .

grouped by braces (although
used instead of '(' and

Are you a C hacker
(sections 1.1 and 1.2
started? Here you gol

After using your favorite text editor to create a C
source file, enter the command to OS/A+:

- separate compilation

- limited external declarations

C65 filenamel filename2 [-T)

Where

For experienced C programmers, use of
from standard C will get you in trouble:

SECTION 1.2 WHAT'S NOT IN IT

~e following

filenamel is the name of the source file,
filename2 is the name of the output file,
-T is an optional flag which tells C/65 to include

the C source text as comments in the assembler
output file.

- long ints

unsigned ints (but note that pointers to char will
do most of what you want here)

- floats and doubles

- structures, unions and bit fields

Special Note:

E: is a valid filename
files (or both). I.e.,
to the screen, or you
on the fly.

for either source or output
compiler output can go directly
can even type in your C program

- multi-dimensional arrays

parameters to 'DEFINE macros

+- and his brothers -=, *z, etc.

- for statement

- do w~"e statement

- switch statement

- &&,1 I, unary 1

There are nther restrictions not listed here, but these
seem to be the major ones. Despite this, C/65 is
complete enough that one could write C/65 in itself,
space considerations aside. For various reasons, C/65
is written in assembly language, which makes it
extremely fast and quite small.

--2--

Assemble the output file using HAC/65. Consult your
HAC/65 reference manual for details of this operation.
A complete, start to finish, compilation and assembly
is shown in the next section.

NOTE: HAC/65 may be used to edit C source files if
TEXTHODE is selected (via the TEXT command).

--3--

)

CHAPTER 3: LANGUAGE DEFINITION

2.1 SIMPLE EXAMPLE

2.2 SOURCE FORM

,NOTE: This example assumes you are working with an
unprotected version of the master disk which has had
MAC65.COM COPYed to it. PLEASE don't do this on your
master system diskl We purposely do not protect our
system disks so that you can keep safe, backup copies.

NOTE: The characters in brackets (thusly) are intended
to show you what the computer has put on the screen.
For example, the computer has "01:" on the screen, and
you type "MAC65". MAC/65 loads from disk and prompts
you with "EDIT": you respond with "TEXT", and so on.

(01:) MAC65
(EDIT)
TEXT
(TEXTMODE)
10 MAIN ()
20 $(
30 PUTS("THIS IS A C/65 PROGRAM"):
40)$
50 'ASM D:IO.LIB
LIST 'D:TEST.C
(TEXTMODE)
DOS
(01:) C65 TEST.C TEST.A -T
(01:) MAC65 TEST.A E: TEST.COM -A
(01:) TEST

double
long
struct
unsigned

do
goto
static
union

defaul t
for
siz:eot

case
float
short
typedef

BREAK
CHAR
CONTINUE
ELSE
EXTERN
IF
INT
RETURN
WHILE

contemporary languages, C has very few
statements and no predefined I/O capability
fact, the complete list of C/65 keywords is

auto
entry
register
switch

This chapter will begin an informal, top-down
discussion of C/65. In general, C is a simplistic
looking language: it achieves its popularity and power
from its modular approach to programming. By its very
nature, C encourages the user to build his/her own
library of capabilities (i.e., functions).

These keywords are reserved tor compiler use and may
NOT be used for any other purpose. Additionally, we
would like to recommend that the C/65 user avoid the
following keywords, which constitute the rest of the
list used by standard C, if compatibility with other C
compiler. i. desired.

3.1 RESERVED WORDS

Unlike many
"built in"
at all. In
as follows:

example of a complete, start to
edit, compile, assembly, and

is an
program

The following
finish, C/65
"run".

In general, please note that the line numbers are
optional and that line boundaries are ignored except
for those at the end of compiler control statements
('ASM, 'INCLUDE, 'DEFINE).

SPECIAL NOTE: The current version of C/65 recognizes
keywords in UPPER CASE ONLY and is sensitive to case in
all words. We anticipate that future versions will.
recognize keywords in both upper and lower case (or
perhaps even mixed case). In the meantime, those
experienced in C who prefer the lower case keywords may
uee 'DEFINE, if desired, to redefine lower case
versions (e.g., 'DEFINE int INT). See section 3.3 for
more information on the 'DEFINE compiler control
directive.

--4-- --5--

I

!

3.2 USER COMMENTS
3.3 GENERAL FORM OF A C/65 PROGRAM

'DEFINE char CHAR
square (num) INT num 7

$(return (num*num':
$)

EXTERN char c:

The outermost level of a C/65 program may be thought of
as consisting of just THREE distinct types of elements,
which may be mixed and repeated in any order.

The elements of a C/65 program arel
Compiler Controls
Function Definitions
Global Data Declarations

C/65 conforms to the C standard for inclusion of user
comments in C programs. Comments begin with the
character pair '1*' and continue, ignoring line
boundaries. until the character pair '*1' is found.

Comments may be used anywhere in C, even in the middle
of an expression or statement, so they will not be
fur~her discussed hereafter.

CAUTION: Comments are NOT nested by C.

EXAMPLE
1* this begins a comment
1* this does nothing!

then some more comments
which end with the

*1
this is NOT a comment
and will cause compilation
errors!

*1
and that was too late •.. this
generates more errors.

1* a comment again ••• on one line *1

~~~

Each of these elements will
the sections which
(non-functional) example of
above. might be as follows I

be separately discussed in
follow, but a simple
each, used in the order

--6-- --7--



r: \
.- I

) ) "\
!

3.4 COMPILER CONTROLS 3.4.2 Text Substitution: 'DEFINE

The C/65 compiler recognizes certain compiler control
directives which begin with a "." in the first column.
Compiler controls do not DIRECTLY generate or affect
the compiled code and need not be considered part of
the formal language. Nevertheless, the specifications
of C do include the compiler contro's. While C/65 does
not implement all the specified controls, it implements
three very useful controls, including one which is not
specified in standard C.

3.4.1 Source File Inclusion: 'INCLUDE

form:

purpose:

example:

'DEFINE anycharacters anyothercharacters

allows substitution of one character
string for another, throughout a compile

'DEFINE BEGIN $(
'DEFINE END $)

These examples allow the user to
redefine the C/65 block delmiters $(
and $) to a form possibly more familiar
looking.

---------------------------------------
form:

purpose:

example:

'INCLUDE filename

requests inclusion of the source code of
the specified file in the current
compilation.

'INCLUDE D:STDIO.H

The 'DEFINE compiler control will cause the compiler to
change all occurences of the first given string to the
second given string.

NOTE: Macro arguments are NOT allowed as in standard C.
C/65 simply performs a text substitution.

3.4.3 Assembly Language Inclusion: 'ASM

Since the OSS products C/65 and MAC/65 do not yet
produce relocatable, linkable object code. some means
of including various library routines needs to be
provided. 'ASM is the means by which thi. is done in
C/65.

The 'INCLUDE statement is most commonly used to include
"header files" which define and/or implement various
standard functions, variables, etc.

NOTE: The filename should not be enclosed by or
preceded by any special characters (in contrast to
standard C, where it would be enclosed by N or
<... ) ).

CAUTION: 'INCLUDE statements are NOT nestable. A file
which has been 'INCLUDEd may not itself contain a
'INCLUDE compiler control directive.

form:

purpose:

caveat:

example:

'ASH filename

includes the named assembly language
file (in place of the current line).

'ASH is not a standard C directive.

'ASH 0: 10. LIB

--8--

NOTE: C/65 implements the 'ASH directive by writing the
line" .INCLUDE .filename" to the assembly language
output file, in a form compatible with MAC!65. Because
of this, the assembly language file cannot itself
contain a .INCLUDE directive. ALSO, if the assembler
used is indeed MAC!65, the included file MUST be a file
SAVEd under HAC/65 and may NOT be an ASCII format file.

--9--



SPECIAL NOTE: The libraries to be included via the 'ASH
directive need NOT have been originally written in
assembly language. In fact, a common way of performing
multiple module compiles with C/65 is to compile one
module (or several), go to MAC/65 and ENTER the C/65
assembly language output, SAVE the assembly language to
another file, and then 'ASH the SAVEd code.

If doing compiles of very large files, in fact, the
only way to assemble the entire result might be to
break the C/65 source into modules which may then be
lASHed by a master module. The critical restriction
here is that anyone assembly language file output by
C/65 must be capable of fitting into MAC/65's editor
memory space so that it can then be SAVEd.

3.5 FUNCTION DEFINITIONS

Functions are the large~t building blocks of C. In
fact, the language supports no other form of callable
module. A program written in C is not in and of itself
callablel

There is a convention, however, that the function named
MAIN will receive control when the program is loaded
and run by the operating system. This MAIN function
must then setup and control the flow to the rest of the
program by, in turn, making function calls.

In any case, we first need a format for function
definitions I

Function Definition

Function Declaration
$(

Local Data Definition(s)
Statement(s)

$)

The character pairs $( and $) are the block delimiters
of C/65, since the keyboard of Apple and Atari
computers cannot usually generate the ( and )
characters which are used by standard C (but see
section 3.4.1 if you don't like those characters).

Local data definitions will be discussed in section
3.6, along with the global data definitions.
Statements will be introduced in section 3.7, but the
subject is complex enough to require its own chapter
(chapter 5, because before we can seriously discuss
statements we must understand expressions, chapter 4).

--le--

The function
now. In many
significantly
standard C.
follows I

declaration, however, needs explanation
ways, the C/65 function declarations are
simpler and more restricted than those of

In fact the general form is simply as

--11--



I
;

)

Function Declaration 3.6 DATA DECLARATIONS

function name ( opt paraml , opt param2 , ••• )
aeclaration-of opt paramI
declaration:of opt:param2

Functions in C/65 are presumed to return INTs. If you
need to return something else (e.g., a pointer), simply
assign its returned value to a variable of the proper
type (see the example below).

There are four places in C/65 where one or more data
declarations are legal, three of those places have
already been noted (the fourth will be discussed in
Section 5.2). The legal places are:

GLOBAL VARIABLES
Outside of any functions (at the global level):
any number at any place.

Since C/65 believes that functions always return
INT, the calling program could play it safe thusly:

CHAR *foundit :
foundit - looky ("find a digit 1 2 3"):

--12--

There may be any number of parameters (including zero),
each of which is presumed to be an INT unless otherwise
declared. The form of a parameter declaration is the
same as that of a local variable declaration, to be
discussed in section 3.6, but briefly we may state here
that a parameter may be of any standard C/65 variable
type.

the right
brace (and

names listed

FUNCTION PARAMETERS
In a function declaration, after
parenthesis and before the left
matching name(s) with parameter
between the parentheses).

LOCAL VARIABLES
In a function definition, after the left brace
and before the first statement(s).

LOCAL VARIABLES
In any compound statement, after the left brace
and before the firat atatement(s).

--13--

Global variables are known throughout a program (NOT
just a program module, in the case of separately
compiled modules). Function parameters are known
throughout the function in which they are declared.
Local variables are known within the block (delimite~
by braces, whether or not function delimiting braces)
in which they are defined.

Although there are fundamental differences in the
implementation of the various types of variables, the
user will Bee little if any difference in usage or
form. However, one important difference to be noted is
the scope of the various types of variables.

Given two variables of the same name, which must be
declared at different "levels" (as levels are given
below), the "inner" variable will be known while the
outer one is temporarily forgotten.

3.6.1 SCOPE OF VARIABLES

*here ( ''''

the explanations
chapters, but the

value of 'here',
(Of course, this
it keeps looking
might not find.)

character pointer (or
into 'lOOky' from the

is a
passed

The function returns the updated
the address of the digit.
function is flawed, in that
forever for that digit, which it

The variable 'here'
character string)
calling function.

Several parts of this function need
which will follow in subsequent
points to be made here are:

As promiaed, then, here is an example of a function.
This routine will search a string of characters for a
digit and return the address of (or a pointer to ••. same
thing) the first digit found:

looky ( here) CHAR *here 1
$( WHILE ( *here ) '9'

++here:
RETURN ( here

$)



EXAMPLE:
CHAR a,b,c: /* global variables */

afunction ( a,d )
INT a,d, /* parameters */

CHAR name[constant] , /* array of CHAR with
size of array defined*/

INT naroe[]: /* an array of INTegers */
INT name[constant] , /* array of INT with

size of array defined*/

ALSO, all of the.above declarations may be prefaced by
the keyword EXTERN (but see the next section for
restrictions).

SPECIAL NOTE: All declared names in C/65 must begin
with an alphabetic character and may contain any number
of alphanumeric characters. However, only the first 8
characters are significant. Thus C/65 sees the names
"lengthofline" and "lengthofrecord" as being identical.
(But "LeNgTHofthis" is different -- remember that case
is significant).

3.6.3 GLOBAL DECLARATIONS

to this function */
INT parameter */
local *CHAR */
global CHAR */
INT parameter */

the global CHAR */

7 /* local to this
block */

/* the local *INT */
/* the local *INT */
/* still the local *CHAR */

*b : /* local
/* refers to
/* refers to
/* refers to
/* refers to

$(
INT *c, *d

c
d
b 7
$ )

/* back toc :
$ )

$ (
CHAR
a
b
c
d

C/65 has two primary data types: INT and CHAR.

INTs are signed 16 bit quantities: CHARs are signed 8
bit quantities.

CHARs are widened to 16 bits with sign extension prior
to being passed as parameters or being used in
expressions. Be aware that when using characters with
the high bit set, you are dealing with negative
numbers. This can have amusing (1) side effects when
using characters to index into an array, for example.

In addition to the two primary data types, C/65 allows
the user to declare pointers to the primary types AND
singly dimensioned arrays of the primary types.

Rather than try to make a complex single form which
shows the possible data declarations, we present here a
short table of the allowed declarations:

3.6.2 C/65 DATA TYPES

CHAR
INT
CHAR
INT
CHAR

name ;
name ;
*name ;
*name ;
name[] :

/*
/*
/*
/*

the simplest forms
a pointer to a CHARacter
a pointer to an INTeger
an array of CHARacters

*/
*/
*/
*/

In C, any variable declared outside of any function is
perforce a global variable. Presuming we are
restricted to a single module compile, the only real
differences between a global and local variable in C/65
are as follows: (i) a global variable's space is
defined at compile time while local variables are
defined on a system stack at run time: (ii) a global
value retains its value at all times while a local
variable's value is forgotten each time the function
(or block) defining it is exited: and (iii) global
variables and their references may be found in the
assembly language listing by name while local variable
names are known only to the compiler (thus global
variables may be easier to debug with).

However, if we consider separately compiled modules
(or, for that matter, assembly language modules and
libraries, since they are really the same thing), one
aspect of global variables becomes important: they are
known by name to all modules of the (assembled)
program.

Consider, though, what would happen if two separate
modules tried to declare the same variable name. The
assembler would receive two separate definitions (e.g.,
.WORD or • BYTE) of the same name and would give a
"Duplicate Definition" error. Therefore was the
keyword EXTERN invented and reserved.

--14-- --15--



Any data declaration which is, at the global level,
prefaced by the keyword EXTERN is presumed to refer to
a name which will be defined IN ANOTHER MODULE of the
same (assembled) program. This means that, in any
complete program, each variable name should be declared
WITHOUT the keyword EXTERN one time and one time onlyl

Finally, the other important point to be noted is that
array declarations have a similar problem: the size of
an array must be defined once and only once. Thus, it
is good practice to avoid putting an array size (a
constant) between the brackets when the EXTERN keyword
is used.

SPECIAL NOTE. The global name "An is illegal in C/65,
to avoid conflict with 65"2 mnemonics which use "A" to
designate the accumulator.

--16--

3.6.4 LOCAL DATA DECLARATIONS

All occurrences of data declarations within a pair of
braces ( recall that C/65 uses $( and $) in lieu of (
and ) ) are presumed to be local declarations.

In C/65, local variables are allocated space on the
C/65 stack and "live" only as long as the function
defining them lives (i.e., until the function exits or
RETURNs). Access to local variables is thus somewhat
more complicated and slower than access to global
variables: and yet, through a quirk in the necessary
65e2 implementation of the language, an access to a
local variable actually requires less memory than a
similar global access.

Since all local variables can only be defined within
the enclosing block, there is no need for an ambiguous
array reference (that is, one which does not declare
the constant size of the array). The program SHOULD
provide a size for each local array.

Incidentally, C/65 generates less code for local
variables which are contained within the first 127
bytea of local apace (alao known aa AUTomatic space in
standard C). It is therefore a good idea to place all
local array declarations AFTER the non-array
declarations unless the array names are used
considerably more than the non-array names.

NOTE I The keyword EXTERN is ILLEGAL inside the body of
a function. A local variable may NOT be declared
EXTERN.

--17--



3.6.5 PARAMETER DATA DECLARATIONS

Function parameter variables, as described above, are
also allocated space ....ithin the C/6~ stack (and see
chapter 7 for a description of exactly ....hat part of the
stack ill used). In most respects, then, function
parameters are identical to local variables.

Ho....ever, there is one important difference, having to
do ....ith how.C defines and uses pointers. Briefly, any
expression involving a pointer may be converted by the
C compiler to one inv91ving an array reference (or vice
versa, as desired by the implementer). Section 4.4
....ill present more details on this concept, and
generally the substitution ....ill be invisible to the
user.

No....here, though, is this subtle point more strongly
felt than when function parameters are involved. To
illustrate:

SIDELIGHT I Though not immediately obvious, all the
above taken all a ....hole lIuggestll that a usage of
'arrayname' is equivalent to a usage of
.~ arrayname[9], (that is, 'the address of the zeroeth
element of arrayname). Indeed, this ill true, and it ill
perfectly legal in C to use either of the following
formlll

givenl
CHAR buffer[590]

thenr
callfunction( buffer )

is the same asr
callfunction( ~ buffer [0] ) r

Noter '~' ill the 'address-of' operator. See section
4.5.1 for clarification.

anyfunction ( buffer )
is EXACTLY the

anyfunction ( buffer)

CHAR -buffer :
same as
CHAR buffer[] :

And ....ithin 'anyfunction', the programmer could code

* (buffer+i)
or,

buffer( i ]

*buffer:
EXACTLY equivalently,

buffer( 0 ]:

NOTE THE IMPLICATIONS: the calling function will
presumably pass the function a CHARacter array (which
might be a literal string, as in 3.5 above). What is
actually passed, though, is the ADDRESS of the array.
Thus, the use of the pointer ('-buffer', etc., above)
is a better visualization of what actually occurs. BUT
the user who prefers to think in terms of arrays is
encouraged to do so: the compiler literally cannot see
the difference.

Finally, note that parameter arrays should not have a
size defined (there should be no constant between the
brackets), since no array is actually allocated. (A
not uncommon practice, incidentally, is to pass a
function not only the array--via its address--but also,
as a separate parameter, the array's size.)

--18-- --19--



3.7 Introduction to Statements Chapter 41 EXPRESSIONS

4.1 Local or global variable nameSI

Any name previously declared as a local variable,
parameter, or global variable may be used, by itself,
as an expression.

Expressions are the building blocks of C statements.
In point of fact, an expression is a valid statement in
C, Whether it be an assignment statement or not. This
is not surprising, since an expression may contain one
or more function calle and/or may perform variable
incrementing or decrementing, all of which may alter
the values of one or more C variables.

When used with the various C keywords, expressions are
built into all the statement type. recognized by C/65.

Expressions are built "from the inside out". Rather
than give a formal definition (e.g., a Backus-Naur
listing) of the various expression forms, we will
present the components of expressions in a "bottom up"
order.

are significant to 8 characters, must
alphabetic character, and case is

Remember, names
begin with an
preserved.

EXAMPLE I

total - total + newamount

Just as functions are the building bloCKS of C
programs, so are statements the building blocKs of
functions. If you are new to C and/or other blocK
structured languages (e.g., if you are only familiar
with BASIC or PILOT or similar simple languages),
statements may be the most familiar looking part of
C/65. After all, most languages provide for statements
similar to this: '

And perhaps the semicolon lOOKS foreign to you, but at
least it looks "right". So it is with most C/65
statements I they "looK right" (well. •• maybe almost
right?) to most programmers.

EXCEPT. There always has to be a catch. The catch in
C is that there are so few statement types. The C
novice almost always aSKS, "But how do I do
Input/Output?" And the answer is, simply, "with
functions." The LANGUAGE DEFINITION of C does not
actually include a specification of ANY input/output
capabilities whatsoever. And yet, if you examine
chapter 6, you will find a rich array of 110 functions
defined (with definitions virtually identical to those
used on UNIX). BUT ..• the real beauty of C is that, if
you don't like what we give you, you can write your own
functions.

And this applies to all aspects of the language: if you
don't find a statement to do what you want, write a
function which will (using the statements which are
provided, of course). Then, any.ime you need such a
statement, use your function.

Chapter 5 presents a fairly complete view of the
various types of statements, but let us finish this
section by simply noting that any expression (including
an assignment, of course) may be used as a statement,
any function may be used as a statement, and any group
of statements may be combined into a single statement.
This is ALL in addition to the keyword statements (IF,
WHILE, etc.) which are native to C/65.

EXTERN CHAR *name
INT globalint ,

anyfunction( thi.isa )
INT thbisa :

$( INT localint :
/* after the above declarations,

all the following are valid
expressions I */

localint:
name :
thisisa ,
global infallible

$)
/* note that this last is the
same as 'globalint' since only
eight characters are used */

--20--
--21--



)

4.2 Constants

Recognized constant forms are as follows:

- decimal numbers, in the range allowed by C/65

- one or two ascii characters enclosed in single
quotes (').

E.9.. •z', •ab' .

Standard C escape sequences are also recognized.

They are:
'\n' -- newline
'\b' -- bacKspace
'\t' -- tab char
'\nnn' -- three octal digits

(e.g., \994 is control-D)
'\9xhh' -- two hex digits

. (e.g., \9x94 is also control-D)

- a string of ascii characters inside of double
quotes (").

E.g., "this is a string".

As in standard C, the value of a string constant
is the address of the first character.
Succeeding characters are stored sequentially
and are terminated with an ascii nul (zero
byte) •

The escape sequences defined above for character
constants also work in string constants.
. e.g., "\nlinel\nline2"

NOTE: Of course, an expression consisting of
only a single contstant or variable name doesn't
"do" anything it just sits there and
evaluates its navel.

--22--

•~·"·\fl' ..

P\r' '.,

Function.

Properly, a function usage (remember, we are here
talking about elements of expressions) consists of 8

function name, followed by a set of zero or more
parameter expressions enclosed in parentheses. In
standard C, a pointer to a function may be used in
place of the function name, and the call is then made
to the address contained in the pointer.

Since C/65, at this time, has no means to declare that
something (e.g., a variable) is indeed a pointer to a
function, the C/65 definition is simpler:

Functions are ANY expression followed by an open
parenthesis.

(And, of course, a name qualifies as an
expression, so the simplest standard C form is
satisfied by this definition.)

While this is far from standard C, if a program limits
itself to name(s) followed by the open parenthesis, it
will remain upward compatible with standard C.
However, the looser definition allows such crudities
(or niceties, depending upon your viewpoint) as:

/* calls location 1999 decimal */

array[2]() /* calls routine whose address is
in the 3rd element of array
( remember, C zero-indexes arrays)

*/

--23--



Arrays and pointers may be followed by
enclosed in square brackets to access
the given array (or elements of the
pointed to by a pointer).

The parameters to functions are limply listed between
the open parenthesis and a closing parenthesis.
separated by commas, and are themselves expressions I
(See how cleverly and easily we begin to build up to
more complicated expressions.)

EXAMPLE:

4.4 Sublcripted Variablel

an expression
the elements of
presumed array

*/

foobar( i ) : /* a valid expression,
although it does assume
the existence of the
function 'foobar'.

is functionally and properly equivalent to

standard C which is carried over to
subscripted variable may also be
pointer expression equivalent. That

A convention in
C/65 is that any
represented by its
is, the form.

name ( element ]

/* declare i an integer */int i :

Parameters are pushed onto the C system stack in the
.order listed (not important unless you are trying to
interface to C/65 from assembly language, in which case
see Chapter 7 ).

A value is ALWAYS returned from a function call, but it
need not be used and may be junk (if the called
function neglects to return a specific value).

name + element

The subtle implication here ia that the ·element~
number il "sized". In C/65, this means that if ~name~
is a character pointer or character array, the value of
"element" is added to the addresl of name (for arrays)
or the content. of name (for pointerl) to achieve the
addrell of the element alked for.

For integer pointerI or integer arrays, though, the
value of "element" mUlt be doubled before the addition
takes place, lince integerl occupy two bytes each.

If thil point seeml esoteric and unnecessary at this
time, we apologize. But the concept needs explanation,
lince otherwise integer pointers can and will cause
problems. (And lee allo lection 3.6.5 for related
disculsion) •

char vector(38]
int *pointer 7

vector(8]7 /* first element of array vector */
vector(j+18]: /* 18 il added to j, with the result

being used as the index */
pointer(9]: /* the number stored in pointer ia added

to 18 and the value at that location
ia fetched */

pointer+97 /* exactly the sam~ as the line above I */

AI mentioned, only aingle-subscript arrays are allowed.

--24--
--25--



Given an expression x,

4.5.1 Unary Expression Operatorsl

4.5 Introduction to Operators

More complex expressions may be constructed from the
primary expressions by using three kinds of operators:
unary, binary, and comparison.

&l~~B : /* illegall */

p • &c:
*p is equivalent to c

&p is not equal to &c, and
&p is not equal to c, etc.

unless otherwise explicitly
declared, pointer expressions
are always assumed to point
to INTegers I I I

EXAMPLE:

REMEMBER:

But:

If you dOl
Then:

'x evaluates to the address of x. Generally, this
operator may only be applied to variables and
array elements. Since most expressions have a
value only (since they Mexist M only on the
system stack), trying to take their addresses
is illegal.·

. After all, just what memory location
contains the constant l3~3? Perhaps
none, perhaps several? C says that it
can't know and won't try to tell you.

This example shows that there is no
relationship between the address of p and the
address of c. Here we let p equal the address
of c. Then we can say that the object pointed
to by p is equivalent to c. But the address of
p does not equal the address of c nor does the
address of p equal to c.

x++ The two forms of this operator refer 'to post
++x increment and pre increment respectively. Post

increment means that the storage location x
will be incremented AFTER it is used. Pre
increment means that the storage location x
will be incremented BEFORE it is used. The
value that x will be incremented by (whether it
be post or pre) depends on what x was declared
as. If x was declared as anything other than a
pointer to INT then x++ and ++x will increment
the storage location of x by one. If x was
declared as a pointer to INT then x++ and ++x
will increment the storage location of x by
two.

/* stores the INT 257 into
locations 1000-1001 */

/* ditto •.• in C/65 only */
/* stores the CHAR value of

65 into location 1000 .•.
does not affect 1001. */

/* NOT the samel Stores the
INT value 65 into loc'ns
1000 and l00l •.. careful*/

/* pc is a CHARacter pointer*/
/* pi is an INTeger pointer */
/* i is a simple integer */

l~~~ 1 /* both now point to
location l~~~ */

pi

*1000=257
*pc .. 'A'

*1000""A'

*pi .. 257

pc

*pc - 5 7 /* loc'n 1000 now contains 5 */
*(pc+l)=8 1 /* and 1001 contains 8 */

~ • *pi : /* i gets the INT at location
l00~, which is 5 + 256*8
(standard 6502 order) so
i now equals 2053 */

i '" *1000 /* same effect as above I I .*/

EXAMPLE:
CHAR *pc
:INT *pi
:INT i

negates x

Standard C definition: if x is a pointer, refer
to the Object pointed to by x. However, C/65
allows a looser definition: If x is an
expression, refer to the (assumed) INT pointed
to by the expression. "Pointed to by x" means
that the value of x is a memory address and the
program is to operate on the contents of that
address (rather than the address itself).

*x

-x

--26-- --27--



)

x-- The two forms of this operator refer to post
--x decrement and pre decrement respectfully. Post

decrement means that the location x will be
decremented after it is used. Pre decrement
means that the storage location x will be
decremented before it is used. The value that
x will be decremented by (whether it be post or
pre) depends on what x was declared as. If x
was declared as anything other than a pointer
to INT then x-- will decrement the storage
location of x by one. If x was .declared as a
pointer to INT then x-- will decrement the
storage location of x by two.

alb gives the bitwise inclusive or of a and b.
·Inclusive or· can be defined as: Given the
binary value of a and the binary value of b, if
either of the corresponding bits are a 1 then
the resulting bit is a 1, otherwise the
resulting bit is a e. As shown belOW:

Example:

(5 I 12) -- 13

where eeeeelel 5
and eeeellee 12

Example:

aAb gives the bitwise exclusive or of a and b.
·Exclusive or" can be defined as: Given the
binary value of a and the binary value of b, if
both of the corresponding bits are the same
then the resulting bit i. a e, otherwise the
r.Bulting bit is a 1. As shown belows

NOTE: Usages of ++x and --x generate less code
than usages of x++ and x--. So use the former
versions when no order of operation is needed.

4.5.2 Binary Operators:

Binary operators take two expressions, operate on
them, and result in another expression.

Given expressions a and b,

resul t e""ell"l

(5 A 12) -- 9

13

a+b adds a to b.

a-b subtracts b from a.
where
and

ee""eUH
eel!lellee - 5-12

a*b mUltiplies the signed a value to the signed b
value producing a signed result.

alb divides the signed a value by the signed b
value producing a signed result.

alb The value returned for this operation is the
remainder of a divided by b (or a modulo b ).

result el!ll!lell!lel - 9

a~b gives the bitwise and of a and b. A ·bitwise
and" can be defined aB. Given the binary value
of a and the binary value of b, if both of the
corresponding bits are a 1 then the resulting
bit iB a 1, otherwise the reBulting bit is a e.
AB shown below:

Example:
Example:

(5 & 12) -- 4
(5 I 2)

would produce
performed is

the value
signed.

1. The division
where
and

eeeeell!ll
aeeai i ee - 5-12

CAUTION. The above 5 operators do
overflows and underflows.

--28--

not recognize
result el!le"elee

--29--

- 4



(

4.5.3 Comparision Operators I

Comparison operators return a 1 or 3 based on the
result of a comparison of two expressions. A 1 is
returned if the expression resulting from the
comparison is true, a " is returned if it is false.

Given the expressions a and b:

a--b Tests if a is equal to b

al-b Tests for inequality

a<b Tests for a less than b

a>b Tests for a greater than b

a<-b Tests for a less than or equal to b

a>-b Tests for a greater than or equal to b

a c eb shifts a arithmetically left b bits

Examplel

(7 « 3) evaluates to 56

(8 « 3) evaluates to 64

a»b shifts a arithmetically right b bits

Examplel

(7 » 3 ) evaluates to "
(8 » 3) evaluates to 1

NOTE: In the 2 shift operators above, any bit or
bits shifted too far .left or right, out of
the CHAR or INT, will be lost as C does not
recognize the- concept of a "carry bit".

aKb The assignment operator ' m ' can be used anywhere
a binary operator can be used.

Example:

", .

If a comparison involves a
unsigned comparison is performed.
a signed comparison results.

pointer, an
Otherwise,

i,j, *pi,*pj
i • -1""" 1

x[k=k+3] = a-(b=c/d)

This example performs 3 assignments. b is set
to the value of c/d. k is set to k+3. The
array element x (new value of k) is set to a
minus new value of b.

Example I

c is set to ". Then b is set to c, i.e., to ".
Then a is set to b, also ".

~~i,:~

Example:
INT
pi

pj j­

i ( j
pi < j

pj < pi

t
/* but C/65 , thinks' of
pi as containing an
address of 55535 II */

1""" :
/* is true ••• returns 1 */
/* is false •.. unsigned compare

looks like 55535 < 1333
so returns" */

7 /* is true ••• returns 1 */

--33-- --31--



4.5.4 Operator Precedence.

----------------------~----

The table below summarizes the rules of precedence of
all operators. Operators on the same line have the
same precedence; rows are in order of decreasing
precedence, so for example, *, /, and' all have the
same precedence, which is higher than that of + and -

1------------------------------------------11 Operator 1
1------------------------------------------1I· () [] I
1------------------------------------------

@ I ++ -- - * (pointer) & (address)

1------------------------------------------
1 • / ,

+
------------------------------------------

« »

4.6 Building Complex Expressions and Statements

The various primary operators and operands presented
above may be combined in some very complex and exotic
ways to provide some sophisticated power to the C/65
user. And, since any expression may be turned into a
C/65 statement by simply appending a semicolon, we can
easily expand the built in structures of the langu~ge.

Some of the more obviously useful statement/expressions
may be grouped as follows.

Expressions which call functions.
Since calling a function invokes all the
code of that function and all the code of
any function it in turn calls.

Expressions which perform assignments.
Since we are changing program and system
variables in hopefully meaningful ways.

Expressions which perform incrementing or
decrementing.

Again, since we are changing a system or
program location in a meaningful way.

But the real power of C becomes apparent when we start
combining all these capabilities into single statements
and sequences of statements.

< <- ) >-

1-

------------------------------------------1
& 1

------------------------------------------1
A 1

------------------------------------------1
1 1

------------------------------------------1
@ - I------------------------------------------1

EXAMPLES.
PUTC( c )

++counter

/* call a function to
perform I/O */

/* calculate a new value
for a variable */

/* count how many times
something happens */

@ NOTE. operators on these two lines associate right
to left; all other operators associate left to
right.

EXAMPLE.
* P ++ is equivalent to
* ( p++ )

* & q is equivalent to
* ( l.q )

--32--

n.....'

EXAMPLES.

CHAR *to, *frOlll;
* to ++ * from ++ ,

/* moves a character from the location
pointed to by 'from' to the"
location pointed to by 'to'; also
increments both 'to' and 'from'
AFTER using each II */

--33--



NOTE FOR BASIC USERS ONLY:
Just to give you an idea of the power implicit here, we
present the BASIC A+ equivalents of the above examples:

1. poke from,peek(to) :
from=from+l :
to .. to+l

2. get 'channel,c :
flag 1& (c )= ASC(""''')) AND

I c <.. ASC(ng"»
3. get 'channel,c :

poke buf,c :
buf .. buf + 1
if c-32 then spaces .. spaces+l

flag - (

spaces -

(c .. GETC(channell ) ) .. ''''') lie (c <.. 'g')1
/* gets a character from the I/O file

specified by channel and assigns it
to the variable c. Checks to see
if the character is numeric (in the
range of ASCII ''''' to 'g'
inclusive). If it is numeric,
assigns 1 to flag. If it is not
numeric, assigns'" to flag. */

spaces + ( ( *buf++ m GETC(channel»==32 )1
/* gets a character from the file and

stores it in a buffer at the
location pointed to by 'buf'. If
the character is a space, then the
counter 'spaces' is incremented.
In any case, 'buf' is incremented
to point to the next loc'n */

~~. - '

CHAPTER 5: STATEMENTS

There are 3 kinds of C statements I simple statements,
compound statements, and keyword statements.

5.1 SIMPLE STATEMENTS

A simple statement is merely an expression followed by
a semicolon. That is, a simple statement has the form I

expre_ss!on:

Some examples of a simple statement follow.

1) c - "'I
2) ++buffer pointerl

3) PUTS (na message n):

4) a - a + doit(3,doocheck(7,do(7»,do(31)1

NOTE: An expression mayor may not involve an
assignment operation, as shown.

By definition, any place a simple statement is legal
and/or needed in C, a compound statement is equally and
equivalently legal and/or necessary.

--34-- --35--



-)

5.2 COMPOUND STATEMENTS
5.3 KEYWORD STATEMENTS

$)
statementNI

An example of a compound statement I

Compound statements have the form I

C is by nature a recursive languagel hence it is not
surprising that the definition of the language involves
recursive definitions. Compound statements (last
section) are a perfect example of this. a compound
statement consists of a collection of statements any of
which might in turn be a compound statement, etc.

The keyword statements of C/65 build on this same
conceptI sQme of the keyword definitions require the
use of a statement to complete their definition. And
what kind of statement can be used thusly? Any
statement, of course, including a simple statement, a
compound statement (Which consists of any number of
statements, etc.), or a keyword statement (which can be
of the same type as the original statement, thus
requiring yet another statement, ad nauseum). Perhaps
section 5.3.3 gives the best example of this logic, in
the example of an ELSE IF structure.

any number of
other compound

form a single

$ ( statementll
statement27

$( INT a,b,c7

Compound statements can be defined as
statements (of any kind, including
statements) inclosed in braces to
statement.

(Remember, braces cannot be generated by the keyboard,
so C/65 uses 'S(' for the '(' and '$)' for the ')' of
standard C.)

a 11
b 27
C - a + b7

5.3.1 IF statementl

$)
NOTE I Variables may be declared at the beginning of any
compound statement as shown above. See also section 3.6

The IF statement is used in decision making. It has
the form I

Of course other statements
statements and some examples
statement definition.

can be used in compound
follow in the keyword

IF (expression) statement 7

Here the expression is evaluated. if it is non-zero
then the statement i. executed, otherwise it is not.

EXAMPLE.

INT C7
e - GETCHAR() 7
IF (c -- 'a') PUTCHAR(c):

This example will get one character from the keyboard.
If the character is the letter -a- then it will put the
letter back out on the screen, otherwise it will do
nothing.

--36-- --37--



5.3.2 IF-ELSE statement:

The IF-ELSE statement group is also used for decision
making. it has the form:

IF (expression)
stetementl:

ELSE
statement2:

Here the expression is evaluated. If it is non-zero
then statementl is executed and control passes to after
statement2. If the expression evaluates to zero then
statement2 is executed and control continues
sequentially.

EXAMPLE:

'DEFINE Alfnum 'I'

INT c;
c .. GETCHAR ( h
IF (c .= 'a')

PUTCHAR(Alfnum) 7
ELSE

PUTCHAR(c):
$)

The word Alfnum gets defined as a constant, the
character 'I'. The variable c will be equal to the
letter typed at the keyboard. If the letter typed in
was the letter N a " then the statement PUTCHAR(alfnum),
will be executed putting the character 'I' back onto
the screen; otherwise the letter typed in will be
repeated on the screen, by the execution of the
statement following the ELSE.

--38--

5.3.2 (continued)

IF-ELSE statements can also be nested as shown below.

EXAMPLE:

$(
INT C7
c - GETCHAR() 7
IF (c)- 'A')
$( PUTCHAR('l')7

IF (e ... 'B')
PUTCHAR( '2' ) 7

$)
ELSE

PUTCHAR (c) :
$)

Here c will equal a character typed in from the
keyboard. If the letter is greater than the letter "A"
the number "I" will be printed on the screen. At the
same time if the letter is a "B" then the number "I"
and the number "2" will be printed on the screen.
Otherwise the character input will be repeated on the
screen.

--39--



)

5.3.3 ELSE IF statementl

Even though "ELSE IF" is not properly a C/65 statement
type, the construction occurs so often that it is worth
a brief separate discussion. It has the form:

IF (expression)
statementl:

ELSE IF (expression)
statement2:

ELSE IF (expression)
statementM;

ELSE
statementN:

This sequence of IF's is the most general way of
writing a mUlti-way decision. The expressions are
evaluated in order; if any expression is true, the
statement associated with it is executed, and this
terminates the whole chain. The code for each
statement is either a single statement or a compound
statement.

The last ELSE part handles the "none of the above" or
default case where none of the other conditions were
satisfied. Sometimes there is no explicit action for
the default: is that case the trailing

ELSE
statement:

.can be omitted, or it may be used for error checking to
catch an "impossible" condition.

EXAMPLE:

INT c:

c .. GETCHAR ( ) :

IF (c _ .. 'A')
PUTS ( "ALWAYS ") :

ELSE IF (c -- 'B')
PUTS ("BE):

ELSE IF (c -- 'C')
PUTS("CAREFUL"):

ELSE
PUTS( "III"):

--4"--

~.. /

5.3.3 (continued)

Because of the definition of the IF ELSE statement,
this is equivalent to:

INT cJ

c - GETCHAR() J

IF (c -- 'A ')
$( PUTS("ALWAYS"), $)

ELSE
$( IF (c -- 'B')

PUTS ("BE"lJ
ELSE

$ ( IF (e ... I C I )

PUTS ("CAREFUL") :
ELSE

PUTSC"III"):
$)

$ )

If the character from the keyboard is the letter A then
the message ALWAYS gets printed on the screen and
control passes to after the last ELSE. If the
character ia the letter B then the message BE will get
printed on the screen, and again control passes to
after the laat ELSE. If the character was the letter C
then the message CAREFUL will be printed on the screen
and control passes to after the last ELSE. If the
character from the keyboard is not the letter A, B, or
C then the message III will be printed on the screen.

Notice. even though these two examples execute the
same. when example 1 is compiled C/65 visualizes the
program as if the braces were there as they are in
example 2.

NOTE, Any number of ELSE IF'. may be used in these
constructions.

--41--



5.3.4 WHILE statementl

The WHILE statement is used for program flow and has
the fOrDIl

WHILE (expression) statement;

The statement can either be simple or compound. With
the WHILE statement, at execution time the expression
is evaluated. If it is non-zero the statement is
executed and the expression is evaluated again. This
flow will continue until the expression evaluates to a
zero. When this happens, control is passed to the next
statement following the statement.

EXAMPLE I

INT c;

WHILE { (c - GETCHAR(c» I- 'Z')
PUTCHAR(c);

This example will get characters from the keyboard and
put them to the screen. This process will continue
until the letter "Z" is encountered which will cause
the expression to evaluate to zero, ending the WHILE
loop.

EXAMPLE I

INT c,alfnum;
alfnum - 'I';

WHILE {(c - GETCHAR{) 1- 'Z')
$ {

IF (c -- 'A')
PUTCHAR(alfnum);
ELSE
PUTCHAR (c) ;

$)

This is an example of a WHILE with a compound
statement. Here the expression is evaluated. If the
letter from the keyboard is not the letter "Z" then we
will execute the compound statement which will check to
see if the letter input is the letter "A". If it is
then we will put the number "1" to the screen,
otherwise we will just put the letter to the screen.
If the character is a "Z", the compound statement is
skipped over.

--42--

~
~~....~~Y

5.3.5 BREAK statement.

The BREAK statement is used to provide control loop
exits other than by testing at the top or bottom. In
C/65, it provides an early exit from the WHILE
statement. A BREAK statement will cause the innermost
enclosing loop to be exited immediately. The BREAK
statement has the fOrDIl

BREAK,

EXAMPLE I

INT c,d;

d - '9';

WHILE ({c - GETCHAR(» 1- 'A')
${

IF (c -- 'Z')
BREAK;

ELSE
PUTCHAR{c),

PUTCHAR ( d ) ;
$)

This example shows how a BREAK statement can work.
Here the WHILE loop will end it the letter -A" is typed
in f~om the keyboard (this is controled by the same
line the WHILE statement is on). But inside the WHILE
loop, if the letter typed was a "Z" then the BREAK
statement is executed, which cauees the WHILE loop to
end and the number "9" to be printed on the screen.

--43--



/,

5.3.6 CONTINUE statement I

------------------------- 5.3.7 RETURN statement.

The CONTINUE statement is related to the BREAK
statement, but less often used. CONTINUE causes the
next interation of the enclosing WHILE loop to begin.
This means the test part of the WHILE loop will be
executed immediately. CONTINUE has the form:

The return statement is used to return control back to
the caller. It can also pass back values to the caller
if they are needed. The RETURN statement has the forml

CONTINUE:

EXAMPLE:

RETURN:
or

RETURN expression:

INT c; EXAMPLE.

$)

IF (c .. = 'A')
CONTINUE;

PUTCHAR (c) :

Here the WHILE loop will get characters from the
.keyboard and write them back to the screen as long as
the letter HZ" is not typed in. The CONTINUE statement
comes into play only when the letter "A" is typed in.
When the letter "A" is typed in the CONTINUE statement
causes the control of the WHILE loop to go back and get
another character from the keyboard without printing
the letter "A" on the screen.

In this example c is equal to the character typed in
from the keyboard. If the character is in the range
0-9 then the variable d will be returned with a one in
it, otherwise d will be returned with a zero.

(cc- '9')

INT c,d:
c - GETCHAR () :

IF (c )- '0')

d - I:
ELSE

d - 0:
RETURN(d):

This example could be used when only numeric input is
allowed from the keyboard. The program that called
this function would look at what was returned and if it
was a zero an error message could be printed on the
screen reminding the user that only numeric entries are
allowed.

GETCHAR (» I'" 'Z')WHILE «c
$(

--44--
--45--



r::

) ) )

5.3.8 Null statementl CHAPTER 61 C/65 LIBRARY FUNCTIONS

The NULL statement does nothing.
useful as a place holder in WHILE
It has the form I

It can sometimes be
and IF statements.

C/65 comes with four libraries:

routines
to do

to provide the
the compiler

a runtime library
called directly by
arithmetic and logic.

an I/O library to provide low level input and
output functions.INT C7

EXAMPLE I

WHILE (( c - GETCHAR ( » I- 'Z·)
IF (c _. 'A')

PUTS("ALLRIGHT") 7
ELSE

7

a simple graphics library, allowing only the
most fundamental graphics capabilities.

a storage allocation library to provide a
dynamic storage allocation capability.

necessary and is
compiler. It also

PUTCHAR, so it may be
This example illustrates how the NULL statement is used
as a place holder. Here as long as the letter "Z" is not
input from the keyboard the WHILE loop will continue.
If the letter "A" is typed, the message ALLRIGHT gets
printed on the screen. If the letter is not an "A" then
nothing happens, but by putting the NULL statement in
we have made it easier to change the program if later
we would like it to do something after the ELSE.

The runtime library is always
automatically included by the
contains the routines GETCHAR and
all that you need, including I/O.

The I/O library is only necessary if you will perform
I/O involving the standard C/65 functions listed and
described in section 6.3. Similarly, the graphics
library functions are optional and are listed and
described in section 6.4.

is only necessary if
FREE, as they are

DIIO.LIB
DzGRAPHICS.LIB
DzALLOC.LIB

'ASH
lASH
'ASH

The storage allocation library
calls will be made to ALLOC and
described in section 6.5.

If you use any of the routines of the C/65 I/O,
graphics, and/or allocation libraries, it is necessary
to include one or more of the following lines (as
appropriate) at the END of your C source codel

•'2:,)

EXAMPLE I
. WHILE (( *buf++ • GETCHAR() ) >- " ) 7

In this example because all our data checking and
movement is done within the control part of the WHILE
loop, a NULL atatement must be used because the rules
of the WHILE statement specify it.

--46-- --47--



NOTEI The I/O library has been coded to take advantage
of MAC/65's ".if .ref" feature. Thus it is necessary
to put the 'ASH statement at the end of your code so
that MAC/65 can tell what routines have been used so as
to assemble only those routines.

ALSO NOTE: The previous 'ASH statements assume that the
libraries are on 01:. Use On: as appropriate with your
system.

6.1 STANDARD ERROR CODES

Host of the I/O fuctions in each library return an INT
value. This value is used to determine if the function
called has executed properly. If the value returned
was 0 or a positive value the function called has
executed properly. If the value returned was negative,
add 256 to the value and use this number to determine
the OS/A+ operating system error. An explanation of
each can be found in your OS/A+ manual.

--48--

All references in the following sections to
Errors" or "Standard Error Codes" imply
convention.

--49--

"Standard
the above



6.2 RUNTIME LIBRARY FUNCTIONS

The Runtime Library supplied with C/65 has the basic
building blocks needed by C/65 to create the assembly
language for your C programs. It is mostly invisible
to the user and performs all the operations used in
C/65, such as multiply, divide, staCking and many more.
The two functions that are visible to the user, PUTCHAR
and GETCHAR are described below.

--5"--

I

~i~

6.2.1 Runtime Functionl PUTCHAR

form I
PUTCHAR (cl

CHAR c J

purpose I
PUTCHAR takes its argument and writes it
on the standard output.

arguments I
A single character. If passed an INT or

- other non-CHAR value, only the least
significant byte of the argument is
uae4.

returns I
INTI The value returned will either be
positive, indicating proper execution,
or negative indicating a standard error
code. See section 6.1 for information
about atandard errors.

Currently atan4ar4 output is tha screen an4 cannot be
re4irecte4. If fil. in4epan4ent I/O ia 4esired, we
recommend that the function PUTC be used.

--51--



6.2.2 Runtime Function: GETCHAR

form I

GETCHAR ()

purpose:
GETCHAR returns a character from the
standard input.

arguments I

none

returns I

INT: The value returned is normally the
character form the standard input. If
-1 is returned, an End of File has been
requested (via CONTROL-3 on Atari
keyboard: see OS/A+ manual for Apple II
EOF character, usually CONTROL-Z).
Other negative values are standard C/65
error codes.

discussions:

Currently standard input is the keyboard and cannot be
redirected. If file independent I/O is desired, we
recommend that the function GETC be used.

CAUTION: Due to the peculiarities of screen I/O on the
Atari, if you use GETCHAR, do NOT output characters to
the screen (e.g., via PUTCHAR) unless the last
character recieved from GETCHAR was a RETURN ($98, 155
decimal).

--52--

6.3 I/O LIBRARY FUNCTIONS

You will notice that as the definition of C/65 is being
explained in chapters 3, 4 and 5 there has been no
mention of any input or output statements (except for
some of the examples maybe). The reason for this is
that input-output facilities are not part of the C
language. As in standard C, the I/O functions
(-statements-, if you wish) are contained in the r/o
library. These functions are designed to provide a
standard I/O system for C programs. Also these
routines are meant to be portable, in the sense that
they will exist in (or be adaptable to) a compatible
form on any system where C exists. So, described below
are the I/O functions that C/65 supports.

EXCEPTIONS: The functions NOTE, POINT, and XIO, as
described in the final subsections hereof, do NOT
always have exact counterparts on all C systems, since
they are dependen~ upon the foibles of OS/A+ for their
operation.

--53--



~

\) ) ;

6.3.1 I/O Function: FOPEN Section 6.3.1 (FOPEN) continued:

form:

purpose.

arguments:

returns.

discussion.

FOPEN (filename, options)
CHAR *filenamel
CHAR *optionsl

FOPEN opens the named file in the
specified mode.

filename, a character string specifying
a standard OS/A+ device or file name.

options, a character string specifying
the mode in which the file is to be
opened.

A positive INT (a channel number,
usually referred to in subsequent
sections as "iochan") is returned upon a
successful FOPEN: errors are indicated
by the standard error code return.

There are two files that do not have to be opened:
standard input and standard output. They refer to the
keyboard and screen, respectively and currently cannot
be redirected. The IOCHAN for both of these is 9.

If closer control over the type of OPEN to be performed
is needed, consult Section 6.3.2 for usage of the OPEN
function.

CAUTION: the INTeger "iochan" returned by FOPEN must be
retained and used as an argument to subsequent I/O
operations. Severe errors and/or strange and wondrous
things can occur if the various I/O operations are not
passed a channel number obtained via a successful FOPEN
or OPEN.

OPTIONS must be a string containing one or more
of the following characters.

R read access
W write access
A append mode
D read access to the directory of the specified

device.

The semantics of combining modes is tricky and not
recommended, but consult your OS/A+ documentation if
you want more complete information.

--54--

r'

--55--



6.3.2 I/O Function: OPEN 6.3.3 I/O Function: FGETC

form:

form: OPEN (filename, mode)
CHAR * filename
INT mode:

FGETC (iochan)
INT iochan:

purpose:
FGETC returns the next byte from the
specified I/O channel.

Note that FGETC returns an INTeger character, NOT a
CHAR extended to INT. This implies that successful
returned values will always be in the range of e to 255
decimal. However, if the character returned is
assigned to a CHAR and then used in a signed
comparison, a negative value (indicating an error) will
result if the character's value is actually 128 to 255,
since the CHAR will then be sign extended.

INT: the next byte from the specified
channel. A -1 is returned on end of
file: other negative values are standard
error codes.

purpose:

arguments:

returns:

Opens a file with given name for access
according to given mode. Allows greater
control over mode of opening than FOPEN.

filename, a"character string specifying
a standard OS/A+ device or fil~ name.

mode is an INTeger. The low byte of
mode goes into AUXI and the high byte
into AUX2 of the IOCB associated with
the OPEN'ed file. (See your OS/A+
reference manual for more details of the
IOCB. )

A positive INT (a channel number,
usually referred to in subsequent
sections as "iochan") is returned upon a
successful OPEN: errors are indicated
by the standard error code return.

arguments:

returns:

discussion:

iochan MUST
of a file
read/write
result of
to FOPEN.

be an INTeger channel number
opened for read access (or

access) obtained as the
a previously successful call

discussion:

CAUTION: the INTeger "iochan" returned by FOPEN must be
retained and used as an argument to subsequent I/O
operations. Severe errors and/or strange and wondrous
things can occur if the various I/O operations are not
passed a channel number obtained via a successful FOPEN
or OPEN.

There are two files that do not have to be opened:
standard input and standard output. They refer to the
keyboard and screen, respectively and currently cannot
be redirected. The IOCHAN for both of these is e.

MODES e, 1, and 2 (read, write, and update) are
converted to 4, 8, and 12, for convenience and to
provide conformance with standard C.

--56--

~~~

EXAMPLE:
CHAR C1

IP (c-fgetc(9» < 9)
PUTS ("I/O ERROR")

In this example, the user will see an apparent r/o
error anytime the byte fetched from the file has a
value from 128 to 255. A better approaCh would have
been to declare "c" to be INT.

As with all I/O operations, "iochan" may be specified
as zero (9), indicating input from the standard input
(the keyboard).

--57--

,,-

6.3.4 I/O Functions: GETC

form:

6.3.5 I/O Functions: FPUTC

form:

purpose:

arguments:

returns:

discussion:

GETC (iochan)
INT iochan:

GETC is exactly the same as FGETC. The
second entry name is for consistency and
convenience only.

iochan is an INTeger channel number of a
file previously opened for read access
(or read/write access).

INT: Same as FGETC

see FGETC for cautions and hints

--58--

~';."}

~I'~2=~t

FPUTC (c, iochan)
CHAR c :
INT iochan

purpose:
FPUTC writes the CHARacter c to the
specified channel, iochan.

arguments:
c is a single character. If passed an
INT or other non-CHAR value, only the
lsast significant byte of the argument
is used.

iochan is an INTeger channel number of a
file previously opened for write access
(or read/write access).

returns:
INTI The value returned will either be
positive, indicating proper execution,
or negative indicating a standard error
code. See section 6.1 for information
about standard errors.

discussion:

As with all I/O operations, -iochan- may be specified
as zero (8), indicating input from standard input (the
keyboard) •

--59--

6.3.7 I/O Functionl READ

READ reads a binary record of up to
COUNT characters from the file specified
by IOCHAN into BUFFER.

iochan is an INTeger channel number of a
file previously opened for read access
(or read/write access). .

buffer is a pointer to an array of
characters. The array must have been
declared large enough (at least of size
count) to contain the requested record.

count is an INTeger which specifies the
size of the record to be read.

buffer, count)
iochan:

*buffer:
count :

READ (iochan,
INT
CHAR
INT

purpose I

form:

arguments I

ele
I

I

c is a single character. If passed an
INT or other non-CHAR value, only the
least significant byte of the argument
is used.

PUTC (c, iochan)
CHAR CI
INT iochan:

PUTC is exactly the same as FPUTC. The
second entry name is for consistency and
convenience only.

iochan is an INTeger channel number of a
file previously opened for write access
(or read/write access).

form:

purpose I

arguments:

6.3.6 I/O Fuctions: PUTC

returns:
INT: Return codes are exactly the same
as FPUTC

discussion:

See FPUTC for discussion.

returns I
INTI The return value will either be the
number of characters read, a zero
indicating an end-of-file occured, or a
negative number indicating an error.
See section 6.1 for details on standard
error codes.

discussion:

Under OS/A+ version 2, READ will always return count
unless an end of file was encountered while trying to
read the. specified record, in which case the actual
number of characters read is returned. If this "short
count" is non-zero, then the next and all subsequent
reads will return zero.

~\~:!3'

Under OS/A+ version 4, the above rules apply except
that, if the program reads a record in a random access
file which has a "hole" in it, it is possible that a
short read will result. The next read will then result
in either zero bytes read or an error code. However,
if the file pointer is moved past the hole (via POINT),
further reads might be successful.

--61--

6.3.8 I/O Function: WRITE 6.3.8 (continued)

form:
WRITE (IOCHAN. BUFFER, COUNT)

INT iochan:
CHAR * buffer:
INT count :

discussion:

Generally, the returned INTeger will always be equal to
count unless some fatal error (e.g., disk write
protected or disk full) occurred.

purpose:
WRITE writes a binary record of length
COUNT from BUFFER to the file specified
by IOCHAN.

arguments:
iochsn is an INTeger channel number of s
file previously opened for write access
(or read/write access).

buffer is a pointer to an array of
characters. The array should have been
declared large enough (at least of size
count) to contain the requested record.

count is an INTeger which specifies the
size of the record to be written.

~r-=:·~

Since C is "stupid" about "buffers", the user might
consider setting up some record I/O like this:

EXAMPLE:
CHAR name[2S] :
CHAR address[2S]
CHAR city[IS] :
CHAR state[2J :
CHAR zipcode[S]
'DEFINE record name
'DEFINE recordsize 72

MAIN ()
$(

WRITE (iochan,record,recordsize):

This trick only works if the character arrays
the record are globals. Order of allocation
(auto) variables on the system stack is not
predictable.

CAUTION:
defining
of locsl
so neatly

INT: The return value will either be the
number of characters transfered or a
negative number indicating an error
occur.d. See section 6.1 for details on
standard error codes.

returns:

~
"'" ,.'

--62-- --63--

(

6.3.9 I/O Function: FGETS 6.3.19 I/O Fuctions: GETS

form: form:

input until a
putting the

The carriage
a zero.

purpose:

arguments:

FGETS (buffer, count, iochan)
CHAR *buffer
INT count
INT iochan

FGETS reads up to count characters from
iochan into buffer. Input is terminated
early if a carriage return is
encountered. A zero is appended after
the last character read.

buffer is a pointer to a character array
which will contain the characters read.
Because of the appended zero byte,
buffer should be declared as containing
at least count+l bytes. It is the
user's responsibility to ensure this, as
no checking of this is done.

count is an INTeger which specifies the
maximum number of bytes (characters) to
be read into buffer. The read will
terminate upon reaching a carriage
return character or upon reading count
bytes, whichever occurs first.

iochan is an INTeger channel number of a
file previously opened for read access
(or read/write access).

•_ff~!}..... .-,-

purpose:

arguments:

returns:

GETS (BUFFER)
char * buffer:

GETS reads the standard
carriage return is seen,
characters in BUFFER.
return is overwritten by

buffer is a pointer to a character array
which will contain the characters read.
Because of the appended zero byte,
buffer should be declared as containing
~ least count+l bytes. It is the
user's responsibility to ensure this, as
no checking of this is done.

count is an INTeger which specifies the
maximum number of bytes (characters) to
be read into buffer. The read will
terminate upon reaching a carriage
return character or upon reading count
bytes, whichever occurs first.

INT: The value will either be the number
of characters gotten or a negative value
indicating an error. See section 6.1
for more information on standard errors.

returns:

discussion:

INT: The value will either be the number
of characters gotten or a negative value
indicating an error. See section 6.1
for more information on standard errors.

discussion:

See discussion
equivalent to
assumed and the
differently.

of FGETS, secti~n 6.3.9. GETS is
FGETS, excepting that channel 9 is
terminating RETURN code is handled

The same discussion noted for the READ
section 6.3.7, re end of file and/or "holes"
applies here as well.

--64--

function,
in files

--65--

6.3.11 I/O Function: FPUTS

form:
FPUTS (buffer. iochan)

CHAR • buffer:
INT iochan:

purpose I
FPUTS writes the null-terminated buffer
on the indicated IOCHAN. No newline is
appended.

.1., 6.3.12 I/O Function: PUTS

form I
PUTS (buffer)

CHAR • buffer

purpose I
Writes the null-terminated string BUFFER
on the standard output. A newline IS
appended.

arguments I

PUTS is designed to be used with
character string oriented output.
line) to be written to the file is
as is a normal C character .tring.

arguments I
buffer is a pointer to an array of
characters. The array should have been
declared large enough to contain the
character string which is to be written.

iochan is an INTeger channel number of a
file previously opened for write access
(or read/write access).

returns I
INTI The value returned will either be
positive (number of characters written)
or negative. indicating an error. See
section 6.1 for details on standard
error codes.

~
'.~. - "

returns:

discussion:

buffer is a pointer to an array of
characters. The array should have been
declared large enough to contain the nul
terminated string.

INTI The value returned will either be
positive, indicating proper execution. or
negative indicating a standard error.

line oriented and
since the record (or
nul terminated, just

discussion:

FPUTS is designed to be used with
character string oriented output.
line) to be written to the file is
as is a normal C character string.

line oriented and
since the record (or
nul terminated. just

CAUTION: note the difference between FPUTS and PUTS.
PUTS does indeed automatically append a Return
character to the output line while FPUTS does not.
Should you need to output a line to· the screen
(standard output) without the appended Return, simply
use FPUTS(buffer. e), .ince channel e is always
standard output.

Remember. the nul byte is not written. and a Return
character is not appended. If a Return character is
desired in a literal string. use the standard escape
convention. thuslyl

EXAMPLE I

FPUTS("\exDCPrinter Page Heading\n".pr):

The exec is a standard ASCII form feed character. The
\n is a newline character. specifying the appropriate
byte value for the machine on which it is used.

--66-- --67--

6.3.13 I/O Function: FERROR

6.3.14 I/O Function: FEOF

form:

purpose:

arguments:

FERROR (iochan)
INT iochan:

FERROR returns the last return code
generated by the operating system for
the specified I/O channel.

iochan MUST be an INTeger channel number
of an accessible filed obtained as the
result of a previously successful call
to FOPEN (or OPEN).

form:
FEOF (iochan)

INT iochan:

purpose:
FEOF returns non-zero (TRUE) if end of
file has been reached on the specified
I/O channel.

arguments:
iochan MUST be an INTeger channel number
of an accessible filed obtained as the
result of a previously successful call
to FOPEN (or OPEN).

returns:
INT: Always returns an error code, as
specified in section 6.1: but the code
returned may also be 1, meaning no
errors.

returns:

disqussions:

INT:
then
the
not.

If the value returned is non zero,
an end-of-file has been reached on
specified channel: otherwise it has

discussion:

The main purpose for FERROR is that it allows the user
to "trap· certain errors that may require some sort of
special attention. Such as:

IF (FERROR(channel) == Dfull)
PUTS("\nDisk Full"):

--68--

The advantage of FEOF is that it allows the user to
control the reading of a file with only one statement,
such as in:

WHILE (FEOF(l) C~ 8)
H

$)

--69--

6.3.15 I/O Fuctionl FCLOSE

form:
FCLOSE (iochan)

INT iochan:

purpose:
FCLOSE closes the specified channel.

arguments I

iochan MUST be an INTeger channel number
of an accessible filed obtained as the
result of a previously successful' call
to FOPEN (or OPEN).

returns I

INTI The value returned will either be
positive indicating proper execution or
negative indicating an error. See
section 6.1 for details on error codes.

discussion:

The function FCLOSE is the reverse of FOPEN: it breaks
the connection between the tile descripter and the
external name that was established by FOPEN.

NOTE I When control is returned to OS/A+ all open files
are closed automatically.

--70--

\
I

j

6.3.16 I/O Fuction~ CLOSE

form I

CLOSE (IOCHAN)
int iochan:

purpose I

CLOSE is identical to FCLOSE.

arguments I

See description of FCLOSE.

returns I

INTI Return value same as FCLOSE

discussionl

Same as FCLOSE.

--71--

6.3.17 I/O Fuction: EXIT

form:
6.3.18 I/O Functions: NOTE and POINT

EXIT returns control to the operating
system.

It is expected that if a returned error code system is
implemented in OS/A+, it shall be ~ one byte error code
and the following convention will be used:

arguments:

purpose:

is a flag which
position pointer

type (NOTE only)
determines which file
is to be returned.

iochan MUST be the INTeger channel
number of an accessible file obtained as
the result of a previously successful
call to FOPEN (or OPEN).

NOTE (iochan, type)
INT iochan I
INT type :

POINT (iochan, pointerB, pointerl)
INT iochan I
INT pointer~ I

INT pointerl I

Used for random access to disk files.
NOTE reports the current position in an
opened file. POINT changes the current
position in an opened file.

forms:

purpose:

arguments I

ignored by
the present

is
at

INT: The value returned
the operating system
time.

error is an INTeger value, intended to
designate the degree of failure (or
success) of the C/65 program.

EXIT (error)
INT error:

e,l Normal error free return
2-127 Warnings .•• non-fatal errors
128-255 Fatal errors

discussion:

returns:

pointere and pointerl (POINT only) are
the sector and byte (or page number and
byte, see below) of the to-be-made­
current position in the file.

returns I

NOTE returns INT: either pointer value e
(sector or page number) or pointer value
1 (byte number) of the current position
within the open file.

POINT returns INT: a standard error
code.

cHscussionl

--72--

NOTE and POINT are grouped together here because, in
Version 2 of OS/A+ (and, naturally, Atari DOS 2.0s),
they are a tightly linked pair used in building and
using random access file8.

--73--

(Section 6.3.18 continued)

Specifically, since true random access files are not
supported by Version 2 OS/A+, one must build a
sequential file (opened for write) and NOTE the disK
sector and byte numbers at the beginning of each record
(perhaps saving the NOTEd numbers in yet another
sequential file). Then, when one wishes to read or
update a record in that same file, one MUST use a set
of the NOTEd values to POINT to-an absolute sector and
byte number on the disK.

Under Version 4 of OS/A+ (the only version available
for Apple II users, an optional double density diskette
version for Atari owners), proper and true random
access is supported. So NOTE becomes a convenience
function rather than a necessity, and POINT may be used
to seek to any position in any open file (including
positions not yet written ... caution).

An examination of section 5.4.3 of the OS/A+ manual
will show that NOTE returns an integer (in AUX3 and
AUX4 of the IOCB) and a byte (in AUX5 of the IOCB).
The "type" parameter to the C/65 NOTE function
determines which will be returned I if type is zero, the
sector number (page number under version 4) will be
returned (and is known as pointere when used with
POINT), if type is non-zero, the byte number within the
current sector (page) will be returned (and is known as
pointerl when used with POINT).

EXAMPLE I
sector - NOTE (file, e) :
byte - NOTE (file, 1) :

/* miscellaneous operations .•.
presumably including file I/O
on channel 'File' */

minusiferror • POINT (sector, byte)
/* the file pointer is repositioned

to the Bame place it was when the
NOTE function calls were made */

--74--

r:

)

(Section 6.3.18 continued)

FINAL NOTE for Version 4 of OS/A+ ONLYI

POINT may be used in an approximation of the standard
(Unix-oriented) C function "lseek", which usually has
the forml

lseek(iochan, byteposition)
int iochan: long byteposition

Unfortunately, C/65 doesn't (yet?) support the type
"long" (traditionally a 32 bit integer), so a similar
function would allow random file positioning only
within the first 64K bytes of a file. Thus we borrowed
a chapter from pre-version 7 Unix and provided POINT,
which may be thought of as

POINT(iochan, pageposition, byteinpage)
int iochan, pageposition, byteinpage ,

Remember, the "pages U are always 256 bytes long,
regardless of the sector or block size in use with
version 4 OS/A+. Therefor, if you need to port a C/65
program to a system supporting the ·lssek" function,
you could easily rewrite POINT as foilowsl

POINT(io, page, byte) int io,page,byte ,
(return lseek(io, (page«8)+byte), e , }

Or, if the new system's C compiler supports 'define
macros with parameters, one could simply code

'define POINT(i,p,b) lseek(i, p*256+b, B)

For ~re information on these possibilities and others,
we recommend a thorough study of chapters 7 and 8 of
·The C Programming Language".

--75--

6.3.19 I/O Function: XIO

e e
(Section 6.3.l9'continued)

EXAMPLE:
minusiferror - XIO(3,7,6,A,"D:*.*") :

/* will perform an open (command 3) on
channel 7 for directory read (auxl=6)
of all files ("*.*") on drive 1 1"0:")*/

Rather than give a complete list of all the possible
uses of XIO here, we will refer you to Chapter 5 of the
OS/A+ manual. The C/65 XIO function can perform all
the system commands listed therein other than NOTE,
POINT, and the various data transfer operations--all of
which are available via other C/65 standard functions
previously described in this chapter.

form:
XIO (command, iochan, auxl, aux2, filename)

INT command 1
INT iochan 1
INT auxl
INT aux2 1
CHAR *filename:

purpose:
XIO provides a maximum level of access
to the various file manager functions of
OS/A+.

arguments:
command is the equivalent of the OS/A+
COMMAND byte (ICCOH in the IOCB).

XIO can even-be used to
channel, rather than
for you:

open a file on a specific
letting C/65 choose the channel

iochan must be an INTeger channel
number. Depending on the XIO function
desired, the channel mayor may not be
one associated with an OPENed file.

And, of course, XIO can be used for such functions as
renaming, erasing, protecting, and unprotecting files,
as well as much more. As a final example, we show here
the implementation of an ERASE (file from disk
directory) function:

$(
RETURN XIO(33,7,9,9,file
$)

CAUTION: This example assumes that channel 7 is
available for use by the XIO function. Generally,
since the C/65 FOPEN and OPEN functions allocate
channels in increasing order starting from channell,
channel 7 will be the last one used. Still, if you
wanted to write a truly safe function, you should
perhaps examine the ICHID field of channel 7's IOCB
(and, again, see your OS/A+ manual for the specific
location of the field and the IOCBs). Of course, you
can avoid the problem by also using XIO to perform your
file opens to specific channelp, but this will make
your program less portable to other C systems.

auxl and aux2 are the equivalent of the
ICAUXI and ICAUX2 bytes of the OS/A+
IOCB.

filename is a character string
specifying a standard OS/A+ device or
file name. Generally, if "iochan"
refers to a previously opened file,
filename will be ignored. If "iochan"
refers to an available (CLOSEd) channel,
then filename will be significant.

returnsl
INT: a standard error code

discussion:

This function is a generally non-transportable system
call designed to provide properly compatible access to
OS/A+. Those of you familiar with Atari BASIC and/or
BASIC A+ will recognize XIO as a direct translation of
BASIC's XIO statement.

f"',\' , ~~
'.J'

ERASE file)
CHAR *file

--76-- --77--

6.4 GRAPHICS LIBRARY FUNCTIONS

The graphics library of C/65 gives you limited access
to some of the graphics features of the Atari and Apple
microcomputer. These functions are not supported by
standard C and they probably will make your C programs
non portable. They do however make life a little
easier when trying to use your computer's'graphics.

--78--

)

~f'~·:; ,ry
""'--/

~
f\'.~ l,"'
" .. /

)

6.4.1 Graphics Functionl GRAPHICS

forml
GRAPHICS (mode)

INT mode:

purposel
The GRAPHICS function allows the user to
set his/her system to a particular mode,
such as mode 7 for high resolutton, four
color graphics.

argumentsl
mode is an INTeger value, the legal
values for mode are 0-11 and 17-24.
Remember that not all of these values
are legal on the Apple II.

returnsl
The value returned is the standard error
code, see section 6.1 for details on
error codes.

discussion:

The modes selected are simply those modes available
via the systems graphics driver. C/65 knows nothing
about GRAPHICS per se but in.tead performs an operating
system call to execute the requested function.

--79--

6.4.2 Graphics function: SETCOLOR
6.4.3 Graphics Function: COLOR

form:
form:

SETCOLOR(reg,hue,lum)
INT reg,hue,lum7

purpose:
The SETCOLOR function allows the user to
access the color registers of the Atari
microcomputer.

users:
ATARI ONLY

arguments:
reg, hue and lum are all INTeger values.
The legal limits for these arguments
are:

purpose:

arguments:

COLOR(c)
INT C7

To select a particular color
plotting points on the screen.

The argument c is an INTeger value.
legal limits for the argument c
normally 0-3 but other values can
used depending on what graphics mode
in use.

for

The
are

be
is

The COLOR function can
program, the result being
the color selected by
execute.

returns:

discussion:

reg
hue
lum

undefined

0-4
0-15
0-14 - even numbers onlyl

returns:

discussion:

The value COLOR returns is undefined.

be exeruted many times in a
that points plotted will be
the last COLOR function to

The values for SETCOLOR's arguments are the same as if
you were programming in BASIC. For a description of
what each value does refer to your Atari BASIC or BASIC
A+ manual.

--80--

~. :~..
.», :. ,-,

--81--

e e
6.4.4 Graphics function. PLOT 6.4.5 Graphics Function: DRAWTO

form.

arguments.

purpose.

DRAWTO returns the standard error codes.
See section 6.1 for details on error
codes.

DRAWTO(x,y)
INT x,yr

DRAWTO will draw a line from the last
point plotted to the point x,y.

x and yare INTeger values representing
the horizontal and vertical position of
the end point of a line to be drawn.
Legal values for x and y depend on the
graphics mode selected.

returnsr

arguments:

purpose:

form:

DRAWTO cause. a line to be drawn from the last point
PLOTted to the specified x,y coordinate. Again, we
suggest you consult the appropriate operating system,
technical, or BASIC manual for details and legal values
for x and y.

~,..'

standard error code.
6.1 for details on

PLOT(x,y)
INT x,y;

PLOT allows the user· to plot a point
anywhere on the screen.

PLOT returns the
Refer to section
error codes.

x and yare INTeger values. The value
for each depends on the particular
graphics mode you are in· and represent
the requested horizontal and vertical
position of the point to be plotted.
Consult your operating system,
technical, or BASIC manual to be sure
you are using legal values for the
graphics mode you've selected.

returns.

discussion:

The PLOT function works the same way that BASIC's does,
with the x value corresponding to the horizonal axis
and the y value corresponding to the vertical axis.

~\. ...
~~~

--82-- --83--



6.4.6 Graphics Function: POSITION

form:
POSITION(X,y)

INT x,y;

purposer
Positions the horizonal and vertical
pointer to the x y value selected.

arguments:
x and yare INTeger values. Their
limits depend on the particular graphics
mode selected.

returns:
The value POSTION returns is undefined.

discussion:

Although the POSITION function can be used in all
graphics modes, its best use is in text mode(s) where
the cursor will be positioned at the point x,y.

--84--

6.5 STORAGE ALLOCATOR LIBRARY FUNCTIONS
----------------------------------------
The storage allocator functions provide a. way of
obtaining and releasing variable-sized bloCKS of
memory. Freed bloCKS are coalesced if possible. The
memory allocated is obtained from the "free memory
above the end of your C/65 program and below HIMEM.
The user should refrain from calling operating system
routines that change the value of HIMEH after the
storage allocator (ALLOC) has been called the first
time.

--85--



)

6.5.1 Allocation Function: ALLoe

form:
ALLoe (SIZE)

INT size:

purpose:

ALLoe returns a pointer to an area of
memory SIZE bytes 10ng--1f such an area
is available.

~.",\

)

6.5.2 Allocation function: FREE

form:
FREE (STORAGE) char *storage:

purpose:
FREE returns previously allocated memory to
the available pool.

argumentsl
arguments:

returns:

discussion:

size is an INTeger value and represents
the area in bytes that you want to
allocate.

CHAR: The value returned will be a
pointer to the area of memory size bytes
long. If a zero is returned then there
was no large enough available block of
memory.

storage is a pointer to the block of memory
to be freed.

returns I

Undefined.

discussion:

The FREE function requires special attention by the
user. It the pointer passed to FREE is not the result
of a lIuccellsful call to ALLOe, the con8equenc~s could
be disallteroull.

The ONLY area the can be allocated by ALLoe is the
memory space between the end of your e program and
himem.

--86-- --87--



outside of C
but they could

optimization.
if any, use of

---this page intentionally left blank---

--88--

~i .

CI~PTER 71 Interfacing to Assembly Language

Although programs written in C/65 can run up to 10
times faster than BASIC programs, sometimes it is
desirable to use Assembly Language routines for even
greater speed and compactness. For example, the I/O
library provided with C/65 is written entirely in
HAC/65 Hacro Assembly Language.

Since there is (currently) no linking loader available
for OSS and HAC/65, the easiest way to use assembly
code is via the 'ASH directive. This directive simply
causes a .INCLUDE directive to be placed in the
assembly language output file generated by C/65. (See
HAC/65 manual for a full description of the '.INCLUDE
directive, but the form is generally .INCLUDE
'<filespec>.)

Typically, 'ASH directives are placed
functions to define entire functions,
also be used inside of C functions for
At this writing, we have made little,
this latter capability.

A little theory about how C/65 generates code may help.

--89--



7.1 C/65 Zero Page and System Stack usage 7.2 Accessing Function Parameters

First, C/65 defines several locations in zero page. A
16 bit primary register refered to as RL is where C/65
does most of its work. The high byte of this register
may be referred to as RH in addition to RL+l. A 16 bit
secondary register called RE (high byte known as RD) is
also heavily used.

Binary operators have their operands placed in RL and
RE before the operation is executed, the result going
back into RL.

There is also a 16 bit tertiary register used for
internal operations called RC, whose high byte may be
referenced by the name RB, and there is an 8 bit
temporary register called RA that is only used for
temporary storage.

These registers are used by a series of routines that
the compiler calls directly (over and over again).
Collectively these routines are known as the "runtime
library".

There is one other 16 bit register used by the runtime
library, a stack pointer known as RSPL( whose high byte
can be addressed as RSPH if necessary). The C system
stack (not to be confused with the 6502 stack located
from $100 to $IFF) is initialized to what is assumed to
be the bottom of the user program upon program
execution and grows DOWNWARD. By defaUlt, a C
program's base address is $4000, with the system stack
residing between the contents of LOMEM and $3FFF
(CAUTION: C makes no check for a "crash" of the system
stack with LOMEM).

Parameters are passed to called functions, whether
written in C or assembly language, via C/65's system
stack. The rule for placing parameters on the stack
is: Decrement first, and then store, for each parameter
in the order which they are defined.

Parameters are stored in the standard low byte/high
byte format (i.e, the high byte of a 16 bit parameter
is stored in the higher address). All parameters, even
character parameters, are sign-extended, and arrays and
strings are passed as pointers to the actual data.

For example, suppose that the stack pointer's value is
$3500, and that there is a function named "FOOBAR"
which expects 3 parameters: an integer, a character,
and a string (or, more properly, a "pointer to
character"). Then, assume a call of the form:

FOOBAR (3, 'e', " abc" )

Note that although the
"push" and "pop" must
instruction, at least the
256 bytes deep and reside

standard stack operations,
be done with more than one
C/65 stack can be more than
anywhere in memory.

SPECIAL NOTEI The inital value of the stack pointer may
be changed by editing the runtime library source code.
(Change the equate of the string "STARTSTACK"). The
executable code file grows up from the intial stack
pointer value.

--90--

Ar"' '~

--91--



If we assume that the compiler has allocated space for
the string "abc" 6tarting at location $5000, then upon
entry to FOOBAR, the stack looks like this: 7.3 Passing Values Via Globai Variables

Any variable declared at the "global" level in a C/65
program is known, by its label, to the assembler.
Therefore, any assembly language program caYled by a
C/65 program may refer to these variables by name.

Also, if the C/65 declares a variable to be "EXTERN",
that variable may be defined in the assembly language
routine (so that it is, indeed, EXTERN to the C/65
module).

$34FF I $00
---------

$34FE , $03 /* the constant 3 */
---------

$34FO , $0"
---------

$34FC I $63 /* hex equivalent of 'c' */
---------

$34FB I $50
---------

$34FA J $00 <-------RSPL points here
---------

Remember, INT variables are equivalent
assembly language locations, with the LSB
HSB.

to ".WORO"
before the

Now, let us assume that FOOBAR is an assembly language
routine which we are writing. Let us further aS6ume
that we want access to the third parameter, the
character pointer (or string address, or ••. ). A
function compiled by C/65 will use code similar to the
following:

LOY '0
LOA (RSPL). Y
STA RL
INY
LOA (RSPL). Y
STA RH

And that code loads the address of "abc" in the primary
register. Of course, an assembly language routine
might wish to place the parameter it has retrieved
somewhere else, but the principal is the same. The
second parameter to the function is accessed in the
same way by simply replacing the "LOY '0" with "LOY
'2". And, of course the first parameter is accessed
via "LOY '4 ft

• Remember: the receiving function sees
the parameters on the stack in reverse order compared
to the way they are written in the function call.

CAUTION: The compiler allocates space for local
variables on the stack BELOW the system stack pointer.
Thus the above code will not work INSIDE of a compiled
routine unless it is placed directly after the
function's opening left brace and before any. local
declarations. (Of course, if the function defines no
local variables, the code given might be valid.)

--92--

7.4 Returning Values to the C Expression

Any C/65 function (and that includes function
subroutines written in assembly language) may pass back
one and only one value to the function which called it.
In the current version of C/65, the returned value is
always take to be an INTeger. If some other usage is
desired, it is the caller's and callee's responsibility
to coordinate the meaning of the returned value.

To return a value to a caller, simply place the 16 bit
return value in location RL (which is the LSB, RH is
the HSB). Care should be taken to zero or sign extend
the HSB if a one byte value is being returned.

--93--



7.5 A Simple Example The C Calling Program:

$)

The MAC/65 Assembly Language Routine:

INT GORP: /* a global .••defined here */
EXTERN INT SORTABLE[] : /* an externally defined

array of integers */

MAIN () $ (
INT RES r /* a local variable */
GORP - 5r
RES NEWROUTINE (7), /* RES should be 12 */
RES - SORTABLE[ RES ] r /* and now RES -

the square of
itself ••• 144 */

rto fetch parameter
rget ready to add
rfetch low byte of parameter
radd to low byte of global
rstore low byte of result
rpoint at high byte of parameter
rfetch it
,add to high byte of global
,store high byte of result
rreturn to C/65

NEWROUTINE
LOY te
CLC
LOA (RSPL), Y
ADC GORP
STA RL
INY
LOA (RSPL l. Y
ADC GORP+l
STA RH
RTS

•\,-r ..,

The following example shows a C/65 program and a
C-callable assembly language routine which demonstrate
nearly all of the points made in sections 7.1 through
7.4. The C/65 function MAIN() uses both entry and
EXTERN global variables and local variables and expects
the assembly language routine to return a proper value.

Also. please note that since the C program defines the
global GORP. the assembly language routine need not do
so. And. contrariwise. since the assembly language
code defines the variable SORTABLE. the C program needs
only make an EXTERN reference to it.

(The program example follows on the next page.)

The assembly language. NEWROUTINE. adds what is in a
global location named GORP to a passed parameter and
returns the result. This routine illustrates three
principles: (i) passing values in global locations.
(ii) passing values via the C system stack. and (iii)
returning values to the caller via the C expression
evaluation mechanism. In addition. though not part of
the code of the routine per se. the assembly code
defines a variable (an initialized array. no less) to
be referenced by the C routine.

SORTABLE. * ra table of squares
.WORD e*o. 1*1. 2*2. 3*1 .
•WORD 4*4. 5*5, 6*6, 7*7
•WORD a*a, 9*9, 10*19, 11*11
.WORD 12*12, 13*13, 14*14. 15*15

note how we let the assembler do the work
for u•••• an~ it'. faster than letting C/65
do the work at runtime

--94-- --95--




