

A REFERENCE MANUAL FOR

BASICXE

This manual is Copyright (ClJ 1985 by
Optimized Systems Soft wllre, Inc.

Portions of this manual are
Copyright (ClJ 1980 by Atllri, Inc.

and are reprinted with the
permission of Atarl, Inc.

All right! reserved. Reproduction or translation of
any part of this manual beyond that expressly
permitted by R107 or IH08 of the United States
Copyright Act is unlawful without the permission of
the copyright owner.

Optimized Systems Software, Inc.
1221 B Kentwood Avenue San Jose, California 95129 (408) 446-3099

Page Ii BASIC Xl Reference Manual

Acknowledgements
Trademarks

Acknowledgements

OSS gratefully thanks Atari, Inc., for its kind
permission to reprint portions o f the A tarl B A SIC
Reference Manual. Please be aware that these
portions have been copyrighted (Cl) by A tari, Inc., nnd
respect the rights implied thereby.

We also thank those stalwart OSS users whose requests
and pleas for an extended BASIC Inspired us to create
BASIC XF., and those beta-testers who helped us mllke
sure that BASIC XE works the way we want it to.

Trademarks

DOS XL, BASIC XL, BASIC XE, OSS, and Supereartrldge
are trademarks of Optimized Systems Software, Inc.

Atari is a registered trademark of Atari, Inc.

800 XL, 65 XE, 130 XE, 810 Disk Drive, 1050 Disk Drive,
410 Program Recorder, 1010 Program Recorder,

and 850 Interface Module are trademarks of Atari , Inc.

BASIC XE Reference Manual Page ill

Page Iv BASIC XE Reference Manual

Preface

Preface
Caveat

You may wonder why BASIC XE needs a reference manual at all. It's just another
BASIC, right? Well •.• yes anel no. BASIC XE is another BASIC, but it's a cut above
the other BASICs currently available for Atarl XL and XE series computers. It
needs Its own rpference manual ~o that you can find out just how to take
advantage of all the extras included in BASIC XE.

What's In This Manual?

This manual does not pretend to teach you how to program in R A SIC. There are
several very good tutorials that cover the rudiments of BASIC programming on the
A tarl, and we direct you to them if B A SIC is completely forplgn to you.

That doesn't mean that this manual is useless. If you want to exploit BASIC XE's
advantages, it's a necessity. Between these covers you will find a complete
description of the BASIC XE language, including the special statements unique to
RASIC XE as well as those in standard BASIC. We have avoided computer jargon
whenever poSSible, resorting to It only when absolutely necessary. To decrease
bewilderment we define Jargon terms when they are fIrst used, and provide a
glossary of all the jargon used In the manual.

As you will notice when you look at the table of contents, this manual groups
commands that perfonn related tasks into chapters, rather than simply listing them
in alphabetical orner. This enables you to find all the commands that could help
you with a specific task. lVe have incluoPd an alphabetized ind(>x at the end of til<'
book so that you can find single topics and commands quickly.

Where To Go From Here

If you are planning to relld this manual cover to cover bpforp you pVf>n boot
BASIC XE, that's fantastic! If not, may we suggest thllt you at least read the
introduction and scan the table of contents. This will give you a brief overview of
BASIC XE and an Idea of where to find things In the reference manual.

Caveat

Because we're only human and so sometimes make mistakes, a eavcAt is required.
We have made every effort to ensure that this manuAl accurately describes the
RASIC XE system and language. However, due to the ongoing improvement ano
updating of all OSS products (Including B A SIC X E), we cannot guarantee the
absolute accuracy of the documentation. Therefore, OSS, Inc., disclaims all
liability for changes, errors, or omissions in either the manual or the software
itself.

BASIC XE Reference Manual Page v

Page vi BASIC XE Reference Manual

Table of Contents

Introduction
Extras that J1ASIC XF, Offers you 1
How to Boot BAS IC XF. ••••••••••••••••••• • •••••••••••••••••• • ••••••• •• 2
How to Use this ManuaI. ••• 3
Special NotatIons this Manual Uses ••••••• ••••• ••••• ••••••••••••••• •• ~
BASIC XE's Operating Modes •••••••••• ••••••••• •••••••••.••••••••••••• 4
BAS IC XE Keywords and S:,mbol s ••.•••••••••••••••••••••.•••••••••••••• 4
A Glossary of Terms thi s Manual Uses •••••••••••••••••.•••••••••••••• 5

Variables (var)
Var lab I e Types, Names, and Max imllll •••••••••••••••••.•••••••••••••.•• !l
Aritlmetlc Variables (avar) •••••••••••••• ••••••••••••••••••••••••••• 9
Aritlmetlc Arrays and Matrices (mvar) •••••••••••••••••••••••••••••• 10
String Variables (svar) ••••• •• ••• •••••••• •••••••••••••••••••••••••• 12
String Arrays (savar) ••.•••••••••••.••••••••••.• ' ••• •••.•••• ••••• ••• 12
Specifying mvar, svar, and savar Sizes DIM 13
Creating Private Variables ••.•••••••••••••••• LOCAL •••••••••.••••••• 14
Notes and Warnings Regarding LOCAL 15
Assigning Val ues to Variables • IR
Using Keywords as Variable Names ·LET 17

Operators (ops)
Arltlmetic Operators (aop)19
Log leal Opera tors (lop) •••••••••••••••••••••.•••••••••••••••••••••• 20
Opera tor Precedence •••.•••••••••••••••••••••••.•••••••••••••••••••• ?l

Expressions (exp)
String and NlI'Tlerlc Constants 2~
The Internal Format of Ntmbers 2~
Arltlmetlc Expressions (aexp) 24
StrIng ExpressIons (sexp) 24

EdIting Your Program
WIping the SI ate Clean NEW ?5
LIne NlI'Tlbering the Fasy Way NUM 25
Looking at Your Program LiST 26
Deleting ProgrlJ'Tl Lines ••••••• •••••••• •••••••• DEL ••••••••••••••••••• 26
Renllllbering Your Program •••..•••••••••••••••• RENUM •• •• • • ••••••••.•• 27
Putting Remarks In Your Program REM 27

Storing and Retrieving Your Program
Storing Your Program as Text. LiST 29
Retrieving Your Text Program ENTER ?9
Storing Your Program as Tokens SAVE :to
Retrieving Your Tokenized Program •••••••••••• LOAD •••••••••••••••••• ~n
Stor Ing Your Program on Cassette ••• •• ••• ••.•• CSAVE ••••••.•••••••••• ~O
Retrieving Your Program from C~ssette •••••• •• CLOAD ••••••.•••••••••• ~O

BASIC XI: Reference Manual Page vii

Table of Contents

Making Your Program Stop and Go
Making Your Program Go RUN 31.
Finishing Your Program ••••••••••••••••••• • ••• END •••••.••••••••.•••• 31
Making Your Program Really (',0 FAST ~2
Stopping Your Program ..••.•••••.•••.••••.••.. STOP •• • .••.••..•••••.• ~~
Restarting Your Program .•••••••. • ••••.••••••• CONT ••..••.••••••••••• 33
Finding Out What Your Program is Doing ••••••• TRACE/TRACEOFF ••.••••• 33

Configuring the BASIC XE System
Personal izing BASIC XE •••••••••.••••••••••••• SET •••..•••.•.•••••••• ~"
Find ing Out Wha t' s been Per sonal i zed f SYS 36
Changing Your Computer's ~mory .••••••••..••• LOMEM ••••.•••••.•.•.•. 37
Reset t ing Var iabl es •••..••••..••••••••••••••• CLR •••.•• • ••••••..••.• 37
Finding Out How Much Room You Have f FRE 37
Looking at VariabJ es ••••.••••••••••••••.••••• LVAR .•.••..••••••••••• 37
Accessing the Extr a ~"emory in a J30XE EXTEND 3R

Exiting BASIC XE
Going to the OOS DOS (CP) 39
Going on Long Trips BYE 29

Beginning Data Input/Output
Introducing Atari I/O .•••• • ••••• • ••••• • •••••••••••••..•..•.••••.•.• 41
Prepar ing To Do Some I/O .••••••.••••.•••••••• OPEN •••••••••••••.•••. 4?
Cleaning Up After Doing I/O CLOSE 43
Displaying InformRtion ••••••• . ••••••••••••••• PRINT ••.••••••.•.•.••• 43
r.et t i ng Informat Ion •.•..•.••.•.•••••••••••••• INPUT ••••.• , ••••••.••• 44
Storing a Single Byte PUT 45
Retrieving a Single Byte GET 45
Going Directly to the Printer LPRINT 45
Skipping to the flight Place TAB 46
Another Way of Skipping ! TAB 46

Advanced Data Input/Output
Formatting Infonnation ns You Display It PRINT USING 47
Changing Your Choracter Dlsplny •••••••••••• .. NORMAL/INVERSE ••••.••• 50
Storing Blocks of Data on a Disk Drive BPUT 5l
Retrieving Blocks of Data from a Disk Drive •• BGET ••••••.••••••••••. 51
Storing Records on n Disk Drive RPUT 52
Retrieving Records from a Disk Drlve ••••••••• RGET . ••.••• • ••••.•.••• 53
Storing BinAry Fil e s on n Disk Drive ••••••••• BSAVE .•.••.••••.•••••• 54
Retrieving Binary Files from A Disk Drive BLOAD 54
Finding Out Wher e You Are on the Disk •••.•••• NOTE ••••... • •••••••••• 55
Telling the Disk \\here You Want To Re POINT 55
Finding Out How a Device Feels STATUS 55
Doing X-tra Special I/O XIO 56

Page viii BASIC XE Reference Manual

Table of Contents

Managing Disk Files
Finding Out Whnt's on a Tlisk DIR 57
Protecting a Disk File PROTECT 57
Unprotectlng a Disk FlIe UNPROTECT 57
Changing the Name of a DIsk Flle RENAME 5R
DeletIng a Disk FIle •••• • • • ••• • •••••••.•••••• ERASE • • •••••••••.••••• 58

Looping and Jumping Statements
LoopIng by Nunbers FOR/NEXT/STEP 59
Looping for a \\hlle WHILE/ENIJWHILE 60
Junplng Around In Your ProgrBTl GOTO 61
Getting Out of Loops POP 62

COnditional Statements
The One-LIner ••••••••••..••••.•.•••••••••.••• IF/THEN ••••••••••••••• 63
EI ther/Or Options IF/ELSE/ENDIF 64
Lots of Options •••.••.••••••••.•••••••••••••• ON •••••••••••••••••••• f.5

Handling Errors
Setting and natting Error Traps TRAP 67
FInding Out What's In the TrAp f ERR B7
A ProgrBTl EXBTlple Using TRAP and ERR 68
Using STOP and CONT in Error I'nndl ing 68

Handling Strings
('.ctting a Charact e r's Nunber ! ASC 69
Getting a Nunber's Oloracte r f CHR$ r,g
Finding Out the Length or a Strlng f LEN 69
Searching Through a St ring •.••.•••••••••••• r FIND •••••••••••••••••• 70
FindIng Out the Location oC II String ! ADR 70
Getting the First Port of a StrIng ! LEFT$ 71
Getting the MIddle of a StrIng f MID$ 71
('.cttlng the Last Part of a Strlng f RIGHT$ 71
ChangIng a StrIng Into a Ntmber f VAL 72
ChangIng a Ntnlber into a Strlng f STR$ 72
DisplayIng HexadecImal Nunbers ! HEX$ 72

Using the Game Controllers
UsIng the Paddles in Your Program ! PADDLE 73
PressIng the Trigger on the Paddle ! PTRIG 73
Using the Light Pen In Your Program f PEN 73
UsIng the Joystick the Pard Way ! STICK 73
Moving the Joystick Left and RIght ! HSTICK 74
Mov I ng the Joys tI ck Up and Down ! VSTICK 74
PressIng the Trigger on the Joystick ••••.•• ! STRIG ••••••••••••••••• 74

BASIC XE Re!erence Manual Page Ix

Table of Contents

Graphics
Introducing Ateri Graphics ••••••••••••••..•••••.•••••••.•.••••••••• 75
Selecting a Graphics Mode GRAPHICS 78
Changing the Color Palette SETCOLOR 78
Picking a Color .••.•••••••••••••••••••••••••• COLOR .••..••.••• •••••• 79
Plotting Points •.•••••.••••••.•••••.••••••••• PLOT •••••••••••••••.•• 80
Drawing Lines •••••••••••••••••• ••••••• ••••••• DRAwro •••••••••••••••• 80
Moving Around the Screen ••••••••••••••••••••• POSITION •••••••••••••• 80
Finding Out What's on the Screen LOCATE 80
Coloring In Boxes •••••••••••••••••••••••••••• XIO Fill •••••••••••••• 81

Player / Missile Graphics
Introducing P/M Graphics •••••••••••••••••• •••• •• •••••• •.• • .•••••••. 83
P/M Graphics Conventions •••••.•••••••••.••••••..•••••••.••.•••••••• R4
Selecting a P/M Graphics Modc .••••••••.••••.• PMGRAPHICS •••• • ..••• • • 85
Changing the P/M Color Palette PMCOLOR 86
Moving a P/~l PW>VE ••••••.••••••••• 86
CreatIng and Firing Misslles ••••••••••••••••• MISSILE •••.••••••••••• 87
Selecting a P/M's Width PMWIIYI'H 87
Erasing a Player PMCLR 88
Looking for a COllision t BUMP 88
Cleaning Up Co II is ions ••••••••••••••••••••••• HITCLR ••••• ••• •••••••• 88
C',etting a P/M's Address ! PMADR 89
Using POKE and PEEK with P/M's 89
Using MOVE with P/M's •••••••••.•.•••••••••••••••••••.•••.••••••••.• 8~
Using BGET and BPUf with P/M's 89
Using USR wi th P/M' s .•.••••••••••••••••••••••••••••••••. .•• •••••••• 90
Two Player/Missile Graphics Progrll'Tls ~O

Sound
Making Music and Raspberries SOUND 93

Sorting Arrays
Introducing the Array Sorting Statements •••••••••••••••.•.••••••• • • 95
Sorting String and Arithmetic Arrays •••••.••• SORTUP/SORTDOWN •••.••. ~8

Using Fixed Data In Your Program
Putting Fixed Data in Your Progran DATA 99
Accessing the Fixed Data in Your Progrem ••••• READ • •••••• ••••••••••. 99
Deciding What Fixed Data to Access ••••• •••••• RESTORE •••••••••••••• 100

Accessing Memory Directly
Looking at a Single Byte of Memory ••••••••• f PEEK ••••••.•••••••••• I01
Changing a Single Byte of Memory .• •••• ••••••• POKE •••••.•••••••.••• 101
Looking at Two Bytes of Memory ! DPEEK 102
Changing Two Bytes of ~~ory DPOKE 102
Moving Your Computer's Memory Around ••••••• • • MOVE ••••••••••••••••• 102

Page x BASIC XE Re!erence Manual

Table of Contents

Arithmetic Functions
Making a Nunber Posl tlve f ABS •••••.••.••••••.•• 103
Getting Rid of Fractions ••••••.•••••••••••• f INT •••••••••••••••••• 10:1
Finding Out the Sign of a Nunber ••••••••••• ! SGN ••••••• • •••••••••• 103
Computing Square Roots ••••••••••••••••••••• ! SQR •••••••••••••••••• 10:1
F,xponen t I a t I ng a Ntrnbcr •••••••••••••••••••• ! EXP .••••••••••••••••• 1 04
Computing Natural Logarltl"ms ••••••••••••••• f LOG •••••••••••••••••• 104
Computing Comnon Logarlttrns •••••••••••••••• f CLOG ••••••.•••••••••• 104
Using the Computer's Random Ntmbers ••.••••• f RND • •••• • • • •••••••••• 104
Selecting Your Own Random Ntmbers •••••••••• ! RANDOM ••••••••••••••• 104
An Example Program Using Arithmetic Functlons ••••••••.•••••••••••• l05

Trigonometric Functions
Swapping Between Units of Measure .••••••••••• DEG/RAD •.•••••••••••• I07
Comput I ng Cosines •••••••••••.••.••••••••••• ! COS •.•••••••••.•••••• 107
Computing Sines ••••••••.•••••••••.••••••••• ! SIN ••••• • •• • ••••••••• 107
Computing ArcTangents (TAN-I) •••••••••••••• ! ATN •• • ••••••••••••••• 107
A Table of Derived Functions •••••••.•••••••••••••••••••••••••••.•• IOR

BASIC and Machine Language Subroutines
Accessing Subroutines by Line Nunber ••••••••• OOSUB •.•••••••••••••• 109
Leaving Simple Subroutines ••••••••••••••••••• RETURN • •••••••••••••• 109
Introducing PROCEDURE and Its Related Statements ••• • •••••••••••••• 1.10
Giving Names to Subroutines •••••••••••••••••• PROCEDURE •••••••••••• 112
Notes and Warn Ings Rcgarrl ing PROCEDURE ••••••••••••.•••••••••••.••• 1.14
Leaving Subroutines Elegantly •.•••••••••••••• EXIT ••••.•••••••.•••• 116
Accessing Procedures ••••••••••••••••••••••••• CALL ••••.•••••••••.•. 117
Accessing Machine Corle Subroutines • • ••••••• f USR •••••••••••.••••.• 118

Appendices
A: ATASCII Characters and Codes A-1
B: BASIC XE Memory r."ap ••••••••••••••••••••••••••••••.••• ••••••• ••• 8-1
C: Compatability with Atari 8ASIC C-l
0: Data Space in Extended Memory n-l
E: Error Situations ••••••••••••••••••••••.••••••.••••••••••••••••• E-1

Index

BASIC XE Reference Manual Page xi

Page xii BASIC XE Reference Manual

In trod uc tlo n Extras That BASIC XE Offers You

Extra! That BASIC XE Offers You

OC course BASIC XE provides all the commands available in stAndar<1 Atari BASIC,
but that Is only the tip of the Iceberg. You can LOAD your SAVEd Atarl BA SIC
programs Into BASIC XF. and make use of Its speed Imm ed iately, hut soon you'll
want to take Culler advAntage of the extras that BASIC XE oUers -- extras like:

Faster Program Execution New Cloating point math routines combine with the
FAST command to produce BASIC programs that execute at near-arcade speed.

Quick Access to the 130XE's Extended Memory Now you can control and utilize
the extra 64k of memory In a 1:l0X E, find you don't even have to be a program
ming genius to do it. One simple IlASIC XE statement makes all that space
available to your program.

Easy Program Formatting and Editing Unlike other BASICs, BA~lC XF. does not
care whether you use upper or lower case letters when you type In programs.
This alone can make your programs m ore readable. lIo wever, R A SIC X E will do
even more Cor you. It will automatically prompt you with line numbers or
renumber an entire program at your request. Also, the LIST command has a
program formatter built in, thus making your programs easier to follow, no
matter how complex or involved they a re. Other editing features include wrap
around and keyboard repeat. If you e nter a program line that's longer than the
length oC the screen, it will "wrap around" to the next scrE'e n line so that you
can view it. Also, If you hold down nny key Cor over half a second, it will start
repeating.

Advanced String Handling BASIC XF. makes string handling ensie r and more
powerful at the same time. No longer must you DIMemsion strings before you
use them -- BASIC XE can do it for you. Also, you can now group related
strings together in string arrays just like you're used to doing with numbers In
numeric arrays. Finally, BASIC XE Includes new operators nnd Cunctions that
make string separation, concatenation, and searching a piece of cake.

Built-in Player/Missile Graphics With other BASICs you can use P/M graphics only
if you're a computer wiz. BASIC XE provides nine commands designed
especially for P/M graphics, and this manual shows you how several others can
be applied to P/M graphics. Now P/M graphics are as easy to control as
common playfield graphics.

Easier Joystick Control Not only does BASIC XE support the paddle and joystick
functions available in Atari RASIC, it also adds several others that make
Joystick input easier to use.

Explanatory Error Messages Instead of generating a cryptic error number when
something goes wrong, FlASIC XE nlso gives you an explanation of the error so
that you can diagnose and fix the problem quickly. When you need more help to
solve the problem, you can look In Appendix E for a Curther discussion of error
sltua tlons.

BASIC XE Reference Manual Page 1

How to Boot BASIC XE Introduction

How to Boot BASIC XE

There's one thing you should do even hefore you boot BASIC XE for the first time:
fill out and return the license agreement that came with BASIC XE. If you don't,
you won't be added to OSS's users list, which means that not only wl11 you not get
newsletters and update info, but you won't even be ahle to get technical help from
OSS when you call. You must have a license agreement on file to get technical
support! So please, please, please, RETURN YOUR LICENSE AGREEMENT!

As you have probably noticed by now, BASIC XE is a supercartridge and /I disk. To
use all of the capabilities of RASIC XE, you need to boot with botilthe cart. and
the disk. The proce ss is simple:

1) Turn on drive 1, making sure that It's connected to your computer.
2) Insert the BA SIC XE Extensions Disk in drive 1 and close the drive door.
3) Insert the IJASIC XE cartridge in your computer.
4) Turn on your computer and wait.

Soon you will see a title screen telling you that the extensions are loading. After
this the screen will clear and you will see the B A SIC X E copyright message at the
top of the screen, and the familiar Ready prompt will appear right below that.
Now you're ready to program!

You can boot without the extensions disk if you want. One of two things will
happen, depending upon whether the disk you boot with has the extensions file on
it (instructions for copying the extensions disk and file are below).

If the boot disk does not have the extensions file on it, or if you boot without a
clrive, you can still use BASIC Xl':. However, the following will not he aVAilable:

BSAVE, CALL, DEL, EXIT, FAST, LOCAL, LVAR, MOVE,
PROCEDURE, RENUM, RGET, RPUT, SORTUP, SORTDOWN,
the fast math routines, and aU P/M commands except HITCLR.

If the boot disk does have the extensions file on it, you will be ahle to use all of
the capabilities of HASIC XE, just as if you had booted with the extensions disk.

Backlng Up the Extensions Disk

The extensions disk is in single density Atarl DOS 2.0s format, so duplicate it using
whatever command your DOS requires to duplicate this disk format.

Moving the Extensions to Other DOS's

The BASIC XE extensions are in the file BASICXE.OSS on the extensions disk. If
you want to use a DOS other than the one on the extensions disk, aU you have to
do is copy the BASICXE.OSS Cile to your DOS boot diskette. This file is In
standard DOS LOAD format, so copying it should not be a prohlem.

Warning: BASIC XE will not work with any 'translator' program, nor will it work
with DOSXL.SUP or OurDOS if you use the extensions (because they try to use the
same memory).

Page 2 BASIC XE Reference Manual

Introduction How to Use this Manual
Specials Notations this Manual Uses

How to Use this Manual

This section might seem supcrfluous because everybody knows how to use a
manual. That may be true, but all manuals have their own Idiosyncracies, even this
one, and we thought you might want to know them.

The chapter groupIngs were desIgned around topics so thnt you cnn find out
everything about a single topic without having to jump from place to place. Also,
the chapters themselves have been grouped into larger topical groups (e.g., the
Graphics and PIM Graphics chapters are together), with the simpler topics near
the beginning of the book. If you are looking for something specific, use the index.
it contains a multitude of references, including subheadings within larger entries.
Finally, If a topic confuses you, try the cxamples. That's what thcy're there for!

Special Notations this Manual Uses

This manual's job is to teach you how to use BASIC XE and its extensions without
befuddling you. To this end we hnve adopted scveral conventions in our
presentation of the language. We list them here at the beginning so that you can
familiarize yourself with them:

Capitalized Words In the text of this manual, all keywords and functions are
printed in uppercase to differentiate them from the other parts of a statement.

Lowercase Words In the text of this manual, lowercase words are used to denote
the various classes of Items which may be used in a program, such as variables
(var), expressions (exp), etc.

Abbreviations In Section Headings If a statement has an abbreviation a~soclated
with it, the abbrcviatlon is placed in parentheses following the full nome of the
statement In the heading (e.g., LIST (L.».

An "t" Preceding a Keyword If an "f" precedes a Keyword in a section heading, It
means that the Keyword is a function, not a statement.

Items In Brackets When showing the usage format of statements and functions, we
use brackets (m to surround Items which are optional In the formRt. If the Item
('nclosed in brackets is followed by an ellipsIs (three dots), It meRns that Itcm may
be used zero or more times In the format (e.g., [exp, .•.] means that you may use ·
0,1,2,3, or more expressions, separated by commas).

Items Stacked In Bars Items stacked vertically In bars indicRte that anyone of the
stacked items may be used, but that only one at a time Is permissible. In the
following eXAmple, you may either use the GOTO or the GOSUB, but not both:

iOOTO I 2000
IGOSUB

Notes, Cautions, and Warnings: You will find these starting paragraphs throughout
this manual. Notes are sImply Interesting asides, Cautions are just that (they point
out things to watch out for), and Warnings describe potentially catastrophic
situations and prohlems.

BASIC XE Reference Manual Page 3

BASIC XE's Operating Modes
BASIC XE Keywords and Symbols

BASIC XE's Operating Modes

In troduc tlon

We humans don't like to do things the same way every time, but comput ers do.
B A SIC X E solves this probl e m by having three" opera ting modes". This helps keep
you and R A SIC XE working on the some wavelength. The following paragraphs
describe these modes and outline what each is used for.

Direct Mode This is the mode you're in whenever you see the "Ready" (or
"XE Ready" if you've used the EXTEND statement) prompt. For this reason
Direct Mode is sometimes called Prompt Mode. Commands you issue In this
mode are executed immediately (Olrectly). Most of the time you will use this

mode only to tell RASIC XE what you want to do next.

Deferred Mode You enter this mode when you use the NUM command, type In a
line that begins with a line number, or edit a program linr-. Commands you
Issue in this mode will not be executed until you tell!lASIC XE to do so. For
this reason Deferred Mode is sometimes callp.d Program Mode. Whp.n you tell
BASIC XE to execute a program (I.e., some numbered lines), it will use the line
numbers to determine the order In which you want the progrwn eXf'cuted.

Execute Mode B A SIC X E goes into this mode when you tell it to start executing a
program and will remain in it until the program halts . The halt can occur
before the program is finished if the program causes a n error, or If you press
BREAK or SYSTEM RESET.

BASIC XE Keywords and Symbols

The following table shows all the words and symbols that mean something special
to BASIC XE:

ARS DATA FPE LVAR PMWIDTH IlUN TRAP
ADR DEG GET MIn$ POINT SAVE UNPilOTEC1
AND DEL msUIl MISS ILE POKE SET lISING
ARC DIM (1()TO MOVE POP SF.TCOLOR USR
ATN DIR GRAPHICS NF:W POSITION SGN VAL
!lGET OOS IlEX$ NEXT POINT SIN VSTICK
JlLOAD DPEEK HITCLR NORMAL PROCEDURE SOPTDOWN WHILE

!lPUT DPOKE HSTICK NOT PllOTF.cT SORTIJP)cIO

RSAVE DRAWfO IF NOTE PTRIG SOUND
D1JMP ELSE INPUT NUM PUT S0R # $

RYE END INT ON RAD STATllS "h &
CALL ENflIF INVERSE OPEN RANOOM STEP ()

clm ENrWHILE LEFn OR READ STICK /
CLOAD ENTER LEN PADDLE REM STOP +
CLOG ERASE LET PEEK RENAME STR$ <
CLOSE ERR LIST PEN RENU'vI STRfG <= <>
CLR EXIT LOAD PLOT RESTORE SYS >
COLOR EXP LOCAL PMADR RETlffiN TAR)= "
CONT EXTEND LOCATE PMCLR RGET THEN
COS FAST LOr. P~ICOLOR RIGHT$ TO

CP FIND LOMEM PMGRAPH ICS RND WACE
CSAVE FOR LPRINT PMMOVE RPUT TnACFOFF

Page 4 BASIC XE Reference Manual

Introduction

adata

aexp

alphanwnerlc

aop

Arithmetic
Expression

Arithmetic
Operator

Arithmetic
Variable

Array

avar

Binary

Channel

cnsme

Command

Device

exp

Expression

A Glossary of Terms this Manual Uses
adata to Expression

A Glossary of Terms this Manual Uses

Short Cor "ATASCII Data". Any ATASCll charncter, excluding
commas and carriage returns. (see DATA for more inCo.)

Short Cor "arithmetic expression".

The letters A through Z (either lower or upper case) and the
digits 0 through 9.

Short for" arithmetic operator".

An expression that evaluates to a number. For more informa
tion, see the Expressions chapter.

A unary or binary operator that performs a math operation.

A location where a single number Is stored .

A one-dimensional structure In which each element (cell) is
uniquely described by its element number . The Variables chapter
gives a more in-depth definition.

Short for" Arithmetic Variable".

Anything that has two states (on/off, up/c!own, action/stasis,
etc.) Not simply "a number system based on powers of 2".

See the Introducing A tari l/O section oC the Beginning Data
Input/Output chapter for a complete discussion.

Short for "Calling Name". The
PROCEDURE; may be either a string
substrings and savars may not be used.

name used to CALL a
constan t or svar. Note:

Anything you tell BASIC XE to do Is a command, so both state
ments and functions are commands. If you give a command in
flirect Mode it will be executed immediately, but if you're In
Deferred Mode BAi>IC XE will not execute the command until you
tell it to do so.

A peripheral (add-on) that you can use for 1/0. The Introducing
A tari l/O section of the Beginning Data Input/Output chapter
discusses this term in further detail.

Short for "expression".

An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Fx
presslons can be either arithmetic or string.

BASIC XE Reference Manual Page 5

A Glossary ot Terms this Manual Uses
Floating Point to pexp

Introrluctlon

Floating Point Numbers represe nterl using a rl ... clmnl poInt (~.~, -?R.4!1)

tllespec Short for "file speclfier". A filespec is used when whe n doing
some typcs of J/O. You can find R complete d efinition of this
term in the IntroduC'ing A tnrl I/O section of the Beginning Data
Input/Output chapter.

Function A function Is a subroutine built Into the eomput!'r so thAt it can
be called by your program. Functions and statements differ in
that functions must be used in expressions to necomplish their
task, whereas statem ents are selfsufficient. COS (Cosin!'), FR r
(remaining memory), and INT (integer) are examples of functions.

Integer A whole number (not R fraction). Integers may be either positive
(4, lH3) or negative (-4, -18:1).

]/0 Short for "Input or Output". This term refe rs to the transfer of
data between your computer or RASIC program And pcripheral
devices like printe rs, disk drives, etc.

Keyword

Uneno

Literal String

Logical
Operator

lop

Matrix

Any word that m!'ans something speeinl In the nASIC XE
language.

Short for "line number". A constant that Id!'ntifies a particular
progrAm line. Must be on Intnf,er from 0 through ~2767. Line
numbering d!'termlnes the order of program execution.

A synonym of "~tring Constant".

An operntor that performs a compnrision where the r!'sul tis
either" true" (1) or "false" (0).

Short for "Logical Ope rator".

A two-cilmenslonnJ structure compo~nd of separate eJ!'ments.
Fach element (cell) in a matrix is uniquely described by its row
and column number.

Matrix Variable An arithmetic varinble of 1 (an array) or 2 (matrix) dimcnsions.
Ree the mvnr section of the Variables chnpter for more info.

mvar Short for "matrix variabl e".

Numeric A synonym of" Arithmetic".

Operator Operators are used In expressions to tell R A ~IC X E how It should
evaluate the variables, constants, and functions in the expres
sion. Th!'re are two operator types: arithmetic and logical.

pexp Short for "Passing Expression". An expression whose value will
be passed passed via CALL to a PROCEDURE, or pnssed via
EXIT back to the CALL. pexp may be An exp, IIvar, svar, savar,
or mvar. Note: svars, savers, and mvers ~ b!' preceded by n !.

Page 6 BAS]C XE Reference Manual

Introduction

pmnum

pname

Program LIne

rvar

savar

sexp

Statement

A Glossary of Terms this Manual Uses
pmnum to Variable

A player or missile number In P/M Graphics. Players Rre num
bered 0-3, and missiles 4-7.

Short for "Procedure Name". The nam e usecl to Identify a
PROCEDURE. pname must be a string constant.

B A SIC XF. program lines are made up of three c lements: th" line
number, the program statement(s) (multiple statem"nts are
separated by colons), and the line terminator (a RETURN). In an
actual program, the three elements might look like this:
100 PRINT "I'm a program line.":GOTO 100
If a program line will not Cit on one screen line, it will wrap
around to the next screen line so that you can see the entire
program line.

Short for" Receiving Variable". A var which will receive a the
value of a parameter passed either from CALL to PROCEDURE,
or from EXIT back to CALL. Note: svars, savars, and mvars
must be preceded by a !.

Short for" String Array Variable".

Short for "String Expre ssion".

Statem en ts nre subroutines buil t into 11 II SIC X E that will perform
specific tasks for you. Statements and functions differ in that
functions must be used in expressions to accomplish their task,
whereas sta tem en ts are selfsufficlent.

String Constant A group of characters enclosed In quotation marks. "oss is the
best" Is a string constant. So are "1234567R9" ancl "Hello".

String
Expression

String Variable

String Array
Variable

Substring

svar

var

Variable

An expression that evaluates to a string constant. /,lay consist
of an svar, an savor element, a string constant, or a function that
returns a string constant.

A variable where a single string Is stored.

An array variable whose elements are strings.

Simply a part of a string (e.g. , "abc" is a substring of" abcder").

Short for "String Variable.

Short for "Variable".

This is the term used to describe a quantity which may (or may
not) change. In 11 A SIC XE , there are two basic types of
variables: string and arithmetic.

BASIC XE Reference Manual Page 7

Your Additions to the Glossary Introduction

Your Additions to the Glossary

Page 8 BASIC XE Reference Manual

Variables Variable Types, Names, and Maximum
Arithmetic Variables

Types of Variables

BASIC XE supports two basic types of variables: arithmetic variables and string
variables. Tn addition, It supports both arithmetic and strings arrays, and
arithmetic matric es. Arithmetic variables, arrays, and matrices nre used to store
numbers, and may be used only where numbers are rf'quired. StrIng variables and
arrays store character strings and may be used only where a character string is
required.

Variable Names

All variable names must start with an alphabetic letter, but the r est of the
characters in the name may be either letters or digits. Also, varinble names must
be less than 120 characters long. Finally, string varable and array names must end
with the dollar sign ($) character. The following examples should mskp. these
requirements clearer:

Arithmetic Nrumes
Rate
Playerlscore
Temp

String Names
Name$
A$
Ti tie$

Number of Variables

BASIC XE limits you to a maximum of 128 variables. If you need more than 128
(which Is unlikely), YOli might lise elements of an array as individual variables
instead of having R sf'pa rate nome for eoch. YOli might olso use LOCAL to crf'ate
reusable private ve.riRbles. To clear the variable name tRble of extraneous names
(possibly after an error 4), LIST your program to disk or cassette, type NEW to
clear the variable name table, and then ENTER your program back Into memory.
We suggest that you use SET 5,0 and SET 12,0 before doing this.

Arithmetic Variables (avar)

A rithmetlc variables are used to store numbers, and are the most common vl'riables
used. Here are some exampl es of arithmetic variables In use:

181 Input "avar Ualu@» ",H
118 Print "HI ";H
121 Print "KAl: ";HAl
138 Print "ro/H: ";HA S.5
148 Print ".AH: ";EXp(X)
158 Print "InCX)1 ";Log(X)
168 Print "logCK): ";Clog(X)
171 Print :'oto 188

BASIC XE Reference Manual Page 9

Arithmetic Arrays and Matrices Variables

Arithmetic Arrays and Matrices (mvar)

An arithmetic array Is a group of separate arithmetic variables (called elempnts or
subscripts of the array) which share a common name, and may accessed only by
specifying the numbf'r of a given element as well as the nam!' of the arithmetic
array. If you think of an array as a string of pearls the idea is ensier to under
stand. If you want to list the worth of each pearl (for insurnnce purposes), your
list might look like:

Pearl 1 : $1000.00
Pearl 2 : $950.00
Pearl 3 : $1125.00
Pearl 4 : $1100.00
Pearl 5 : $1050.00
Pear I 6 : $1200.00

Translated into a BASIC XE arithmetic array, your list would be:

188 DiM Pnrl IS)
118 P.arl(8)=1080
128 Pnr 1 HJ ='58
130 Prarl(2)=1125
148 Prarl(3J=1189
158 Prarll4J:1858
168 Prarl(SJ=1288

Notice that the elements of the BASIC XE arithmetic array are numbered starting
at zero. This doesn't seem right because we humans don't think of zero as a
number, but - as far as computers and mathematicians are conc!'rned - It is.

The DIM statement on line 100 is used to tell BASle; XE how mony elements you
want reserved for the arithmetic array named "Pearl". DIM is discussed in greater
detail In its own section later in this chapter.

An arithmetic matrix is similAr to an arithmetic array, except thnt it is two dimen
sional. This means that there are two numbers required to specify a given
element: a row number and a column number. Our string of pearls analogy can be
extended to describe matrices if you consider a matrix as a bunch of pearl strings.
Now, your price list would look something like:

S t ring 1 String 2 String 3
Pearl 1 : :;1000.00 Pearl 1 : $R75.00 Pearl 1 : $1100 . no
Pearl 2 : $950.00 Pearl 2 : $1075.00 Pearl 2 : $9RO.00
Pearl 3 : $1125.00 Pearl 3 : $1300.00 Pearl ~ : $1115.00
Pearl 4 : ~1100.00 Pearl 4 : $990.00 Pearl 4 : $1120.00
Pearl 5 : $1050.00 Pearl 5 : $1250.00 Pearl 5 : $8!)0.00
Pearl n: $1200.00 Pearl 6 : $1035.00 Pearl 6 : $1225.(10

Page 10 BASIC XE Reference Manual

Variables Arithmetic Arrays and Matrices

Translated into a RASIC XE arithmetic matrix, your JIst would be:

181 DiM PearlSl2,5)
118 PearISI8,8)=JI18:PearISC1,8)=a75:Pearls(2,8)=1188
128 PearlsC8,l)='58:PearlsCl,l)=1875:PearISC2,l)=,a8
138 PearISCI,2)=1125:PearIS(l,2):1388:pearISC2,2)=1115
148 Pe.rlsCI,3)=118a:PearlsCl,3)="8:Pearls(2,3)=1128
158 P.arlsCI,4)=1858:PearIS(1,4):12S8:PearlS(2,4)=a'8
161 PearIS(I,5)=1211IpearISC1,5):1835:PearlsC2,5):1225

As with arithmetic arrays, the first elE-ment Index is 0 rather than 1, so the first
pearl on the first string is accessed using the subscript (0,0). The first 0 is the
number of the pearl string (the row numbed, and the second is the number of the
individual pearl (the column number). This analogy might lead you to believe that
a matrix Is just an array where each element is Itself an array (our list is one of
strings of pearls, and each string of pearls is a group of individual pearls). This
conception of matrices is, in essence, correct and is very useful when trying to
manipulate matrices.

When you use a single element of an arithmetic array or matrix, you are actually
using a single number (which is what an arithmetic variable Is). This means that
avar, array(element), and matrix(row,column) may all be used whenever a nllmber is
wanted.

BASIC XI! Reference Manual Page 11

String Variables Variables
String Array Variables

String Variables (svar)

String variables are used to store literal strings of characters. A literal string of
characters Is simply some characters enclosed in double quotesi for example,
"This string encl osed in quotes is a literal string"
"NuMbers in quotes are strings too - 12345"
"Even control charcters are - ~ "~,I\J."

are all literal strings. As mentioned earlier, string variable names are just like
arithmetic variable names, except that they must end with a dollar sign ($).

Before you use a string variable, you need to tell BASIC XE the size (maximum
number of characters) of the variable. This is done using the DIM (dim cnsion)
statement as follows:

DIM String$(66), A$(lO)

Note: When you manipulate strings a character at a time, remember that the
e lem ent numbering begins at 1, not 0 (as with arithmetic arrays and matrices). For
example, if you want to get the first character of A $ (which contains the string
"ABCDEFG"), you would use A$(I,lJ, and get" A" as the result. If you try to get
the" A" by using A $(0,0), you will get an error.

Bonus : BASIC XE can automatically dimension a string variable for you if you
don't manually DIMension it. For more Information about this fe ature see the
discussion of SET 11,aexp.

String Array Variables (savar)

A string arrllY is very s imilar to an arithmetic array, except that each element is a
string variable, not an arithmetic variable.

String array variables resemble string variables in three aspects: their names must
end with a dollar sign, they must b e DIMensioned before being used, and their
element numbering b eg ins at 1, not r. However, there are two dimensions to a
string array: the number of strings in the array, and the length of the strings. The
following examples show how to specify both of these dimensions:

DIM Sarray$(4,40), A$(10,lOO)

This example first dimensions a string array called "Sarray$" to contain 4 strings,
each 40 characters long, and then dimensions" A$" to 10 strings, each 100
characters long .

To access one of the strings in a string array you specify the string's number
(remember, the first string is number 1, not 0) followed by a semicolon (i), as
follows :

198 DiM Test$(3,5)
118 Test$U;)="ThiS ..
128 Tes1$(2;)="iS a ..
139 Test$(3I)="test."

As you may notice, savar(element;) is equivalent to svar, and may be used
wherever svar is used, unless stated otherwise.

Page 12 BASIC XE Reference Manual

Variables DIM

DIM

Format :

!

ITWar(aeXPlr ,aexPZ])!
DIM svar(aexp1) [, •••]

savar(aexpl,aexp2)

The DIM statement is used to reserve space for arithmetic arrays and matrices,
nnd strings and string arrays.

For arithmetic arrays DIM reserves space for aexpl+1 arithmetic elements. For
arlthmctic matrices it rpserves space for aexp!+l rows of aexp2+1 elements each.
The "+1" Is there because arithmetic Indexing begins at 0, thus giving you aexp+l
total Indices.

DIM reserves space for lip to aexp! characters when allocating strings, ano space
for aexp! strings, each of up to aexp2 characters, when allocating string arrays.

The following examples illustrate the use and effect of the DIM statement. The
first one reserves 101 arithmetic elements for an array named At. The second
allocates space for 7 rows of 4 columns each for a matrix called Grid. The last
example reserves ' ·0 bytes for the string Bstr$, and then allocates 100 strings,
each of up to 40 characters, for the string array Friends$.

188 Di" Ai UII)
118 Di" 'rid(6,1)
121 Di" 8str$(28),friends$(188,48)

Note: B A SIC XE is capable of automatically DIMenSioning string variables. For
more information, see SET ll,aexp.

BASIC Xl Reference Manual Page l!l

LOCAL Variables

LOCAL

Fonnat: LOCAL avar! r ,avar2 •••)

Examples: 100 LOCAL T~pl
320 LOCAL Sun,N,Count,Misc

The LOCAL statem!'nt allows you more flexibllity in your programming because it
e nables you to have temporary arithmetic variables within PROCEDURE and
GOSUB subroutines. The way LOCAL works is very simple. When a LOCAL state
ment is executed, all aver nam es (no mvars, svars, or sllvars) following it become
private until the next EXIT is encountered. What does 'becomp private ' m!'An?
Simply that you can change the value of e LOCAL avar within its
LOCAL/EXIT bounds without aff!'cting its value outside of these bounds, as if you
had a private copy of the variable. Whcn you use LOCAL, you clon't have to worry
about conflicts between routines in your program that use variables with the same
name.

A simple example will help:

19 T.st=1234567:Print 19,T.st
29 'OSUb 49:Print 29,r.st
39 End
49 Local T.5t:Print 48 .T.5t
59 T.st=9.54321:print 59,T.st
69 Exit

Note the that PRINT stlltements purposely display the current line number as well
as the value of Test. This is simply to make tracing the flow of the program
easier. noes it surprise you to find that the output of the above program will look
som ething like this?

18 1234561
48 1234567
58 9.54321
28 1214Sfi1

Let's examine that program a little closp-r. Line 10 is simple <'nough - we just
assign a value to the variable Test and verify that it has been Accepted. Tn lin e
20, we first GOSUB to a routine and then again display the contents of our
variable. Note that in the program's running this PRINT is the last thing ex<'c ut ecl
(other than the END). Line 40 begins the Interesting part of this program. We
declare that Test is a LOCAL variable and, once again, display its value. Line 50
is a repeat of line 10 except that we assign a cI!fferent value to our now-privAte
variable Test. Note that the PRINT verifies our change. Finally, in line 60, we
use EXIT to restore Test to its original value, as shown by the PRINT in line 20.

The point of all this was to show that our subroutine (lines 40 through 60) coulcl do
what it liked with the LOCAL variable without affecting its value in the rest of
the program .

Bonus: when you POP n LOCAL variable the non-private vnlue is restored, so you
can use LOCAL and POP to create private variables even when you're not in n
subroutine.

Page 14 BASIC XE Reference Manual

Variables

Notes and Warnings Regarding LOCAL

Notes and Warnings
Regarding LOCAL

Note: the fact that LOCAL may he used with GOSUB subroutines Is not an
accident. EXIT was specially designed to find out what type of subroutine
(PROCEDURE or GOSUB) It Is t e rminating, and handle the r e turning condition
appropriately. This small fact alone allows you to modIfy your existing programs
to use LOCAL variables without having to change all GOSURs to CALLs. Also,
there are occasions where it could be advantageous to use GOSUB instead of
CALL. In particular, GOSUBbing to Rn absolute line number is significantly
qllicker than any other type of subroutine access when your program is in
FAST mode.

Note: variables do not change value whIm the y are made LOCAL. You can se e this
in the example earlier In this section . The PRINTed value of Test in line 40 is still
t2~4567, even though it has b e en mad e private. If you want your LOCAL variables
to be zeroed before you use them, you must e qua te t hem to zero yourself.

Note: since you are still limited to .128 different variabl e na mes, you might
consider using the same LOCAL varia ble nam es In all your subroutines I! you are
pushing the name limit. For example, you mig ht start e ach subroutine with the line

Each subroutine then has four variabl es avail Able exc lusivf'>ly for its own use, and
you have used only four names f rom your maximum of 1 28.

Technical Note: LOCAL pushe s the current v alue of an Rvar onto BASIC:: XE's
stack when that variable is made private . When an EXIT is e ncountered, the value
is poppe d off the stack and into the avar, thus restoring Its previous value .

Warning: you may use LOCAL onl y at the beginning of subroutin es thAt Are
terminated by an EXIT (not a R ETU R N), unless you PO P the previous values
before RETURNing. For more info, s ee POP.

BASIC Xl Reference Manual Page 15

Assigning Values to Variables Variables

Assigning Values to VarIables

The assignment statement is used to assign a value to a variahle, and is of the
general form variable=expression. The variable and expression must be of the
same data type (arithm eti c or string) or you will get an f'rror.

Arithmetic Assignment
Arithmetic assignment is the simplier of the two, so we'll discuss it first. The
syntax is simple: avar=aexp, but the extensions are numerous. Whcn you remember
that subscripted arithmetic arrays and matrices are functionAlly f'quiVAlf'nt to
simple arithmetic variAblf's, all of the following become valid:

188 DiM ArrIY(18),"atriX(18,18)
128 ArithYlr=27.4
131 KltriX(I,8)=27.4

String Assignment
String aSSignment can bE' clone two ways: by substring and by f'ntirf' strinr;. Re forE'
discussing these two methods, we need to discuss what "string" and "substring"
mean. The following table defines these terms when used 8S both as the source
and destination in an ope ration (e.g., in A$="abc", A~ is the destinntion, and "abc"
is the source):

String
-S$--

S$(n)
S$(n,m)

As Source String
characters 1 •• LEN value
characters n •• LEN value
characters n • • m

As Destination String
charactf'rs 1 •• nlM value
characters n •• nIM value
characters n • • m

Assigning an entire string Is easy; the form is simply svar=sexp. Whatever svar had
in It before is wiped out and sexp is put in. The LEN value is set to the length of
the eexp string. Here ore some examples:

18 DiM 51$(51),52$(59)
28 51$="A str ing assignMent"
38 52$="Another s tring assignMent"

Substring assignment can he done using either the format svar(n,m)=sexp or
svar(n)=sexp. In the first case, charActers n through m (Inclusive) of svar will he
changed to sexp. If sexp eVAluates to a string longer thnn the spe..,ified
destination substring, only the characters up to the substring length will be
assigned. If the sexp string has fewer characters than the dcstinntion substring,
only LEN(sexp) characters will be changed in the substring. Also, IlASIC Xr. will
update the length of svar if the substring assignment makes it lonr,er. The second
method of substring assignment replaces n through the DIM valuc of svar with the
sexp string, and then updates the length of svar. The example on line 90
ill ustrates this type of substring assignment. The others show the two subscript
method:

48 RIPM "Use D1"'5 fro ... aboye"
59 51$="A8CD"
68 51$ (4, 8) ="J2:14": ReI'! 51$="A8CI>1234"
71 Sl$(J,4)="ab":RPI'I 51$="abCD1234"
88 52$="8A5IC HE - Prpcision Software"
'8 52$(8)="fRO" 055":ReM "52$=8A51C HE frOM 05S"

Page 16 BASIC XE Reference Manual

Variables Assigning Values to Variables
LET

To assign a value to a string array (SAVAd, first you specify whirh string plemf'nt
of the savar you want to usc (followed by a semi-colon), ane! th"n treat it .lust like
a normal string (svar). The following examples help clarify this procedure:

18 Oi" S~$(18,48J
28 S~$ Un ="A string ~ssignl .. nt": Rt!" "sayar yt!rsion of 28 aboyt!"
38 S~$(2;J="AIICD"
48 SiI$(2;4,8J="123oC56":Rt!" "sayar yt!rsion of 68 ~boYt!"
58 Sa$(Jn="SIISIC HE - Prt![ision Sof'twart!"
68 Sat (JUIJ ="froM OSS": Rt!" "sayar Yt!rsion of '8 aboYt!"

BASIC XE also allows you to e!o string concatenation (tacking one string onto the
pnd of another) easily using the assignment statpmf'nt. To ('on('ntcnntf' strings,
simply change the sexp In the strIng assignment format to sexpl,sexp2,sexp3, ••••
sexp2 Is then concatenated to sexpl, sexp3 Is concatenated to thc result, and so
on. The following examples show concatenation:
18 DiM A$(18J,II$(28J,C$(48J
29 A$ =" frOM OSS"
38 II$="IIASIC HE"
oC8 C$=II$," a hot languagt!",A$
59 8$=11$,11$
68 Print CS:Print BS
Note that line 50 is equivalent to

58 1I$(Lt!n(IISJ+1J=II$

Note: It Is possible to store Into the middle of a string by llsing subscripting;
however, the beginning of the string will contain garbage or nulls.

Fonnat:
Example:

LET

LET <assignment statement>
LET OOTO=~.5
LET LETIERS~="a"

LET allows you to assign values to variables with names that start with or are
identical to a keyword. In the first example, LET allows GOTO to be used as an
arithmetic variable rather than as the GOTO statemf'nt. The second allows thp
use of LETTERS$, the first the letters of which are the keyworrl LET.

There Are a few keywords which CAN NOT be used as variable names even when
you use LET. They are the unary logical operator NOT, and all the function names
(ABS, LEN, etc.) Here Is an example of what will happen if you try to use NOT as
the first three letters of a namp. TypP. In this program:

10 CSHARP=37
20 LET NOTE=CSHARP
:10 PRINT NOTE

When you R UN It, a "1" will get printed on the screen, not a ":17". If you LIST the
program you will see wh y. Line 30 Is listed as

31 Prin1 1101 E

because BASIC XI': does not allow "NOT" as the start of a variable name ane! Inter
prets it as the keyword NOT.

BASIC XE Reference Manual Page) 7

Space For Your Notes VAriables

Space For Your Notes

Psge 18 BASIC XE Reference Manual

Operators Arithmetic Operators

Operators

IlASIC XE has two types of operat.ors: Arithmetic Operators and Logical
Operators. As you will see In the expressions chapter, either of these two types of
operators may be used In arithmetic expressions, while neither may bp. used In
string expressions.

Refore discussing these two types of operators, a rp.mlnder of the mennlng of
'binary' Is needed. As stAted In the glossary, this term does not mean simply "a
number system based on powers of 7., in which 0 and 1 are the only digits". When
'binary' is used to mean this, It is an abbreviation of 'binary number system', and
applies only to numeric representations within this system. Anything which has
only twoSIBtes (on and off, up and down, action and stasis, etc.) can be considered
binary. When we arE' discussing operators, 'binary' means that the operator
requires two operAnds. For example, * Is a binary operator because It multiplies
one value by a second (4*3 means something, while *3 menns nothing). Simllarly,
'unary' is used to describe an operator which requires one operand (- Is a unary
operator when we use It to signify that a number Is negative, e.g. -5).

Arithmetic Operators (aop)

II A SIC XE supports 8 binary and 2 unary arithmetic operators. The binary ones
are:

Symbol Function
+ Addition

*
I
1\

&.

SubtrAction
Mul tlpl ication
Division
Exponp.ntiatlon
III twlse AND
III twlse OR

% Bitwise EOR (Exclusive OR)

The first four are straightforward enough since they are the arithm etic opera tors
we use all the time, but t he last four require some explanation.

The" operator Is used to raise a number to a specified power. For example, 4"3
simply means "multiply 4 by Itse!! 3 times", or 4 *4 *4, which equnls 64.

The &., !, and % operators allow you to perform bitwise operations on positive
integers up to 65,535. If you use thE'm with non-Integers (e.g., 4.3, P.528, etc.),
the number will be rounded to the nearest Integer before the operation. Tf you try
to use them with negative numbers an error occurs. The following tables show the
results of comparing two bits for each of these operators:

Rit A Hit Il Result Hit A Hit II Result Ilit A R i t R Resu It
-1-&'-1- -1-- -1--1--)-- -1-%-1- -0--

0 &. 1 0 0 1 1 0 % 1 1
1 &. 0 0 1 0 1 % 0
0 &. 0 0 0 0 0 0 % 0 0

BASIC XE Reference Manual Page 19

Logical Operators Operators

The following examples illustrate the results of using eur.h of these bitwise
operators with the operands 5 and ~~:

a: example
00000101 (fi)

a: 0010011 t (~9)

00000101 (5)

example
00000101 (5)
00100111 (3~)
00100111 (3~)

96 example
00000101 (5)

96 00100111 (~9)
00100010 (:12)

The two unary arithmctic operators are plus (+) and minus (-), and are use<l to
denote the sign (positive/negative) of a number. For example, +5 means "positive
five" and -5 means "negative five". Note: If you do not specify the sign of a
number, RASIC XF. assumes that the number is positive.

Logical Operators (Iop)

BASIC XE supports three types of logical operators: relational, unary and binary.

The relational operators compare two exprE'ssions, giving a boolean (true/false)
resul t, and are most frequently used in conditional statements (I.e., the IF state
ments) . They may also be used in arithmetic expressions, returning a 1 If the
relation is true, and a 0 if it's false.

< The first exp Is less than the second expo
> The first exp Is greater than the second.

The exps are equal to each other.
<= The first exp is less than or equal to the second.
>= The first exp is greater than or equal to the second.
<> The two cxps are not equal to each other.

Examples of the relational lops may be found in the Expressions chapter.

The unary logical operator is NOT, and is used to reverse the result of an
expression. For example, the expression 2<3 is obviously true, but the exprt'ssion
NOT(2<3) is false, since]\lOT inverts the truth of "2 is less than 3".

There are two binary logical operators: AND and OR. Do not confuse them with
the bitwise binary arithmetic operators a: and!. They are not the same! AND and
OR are used to create compound logical exprE'ssions like

IF X=3 OR Y=9 THEN roTa 400
WHILE Done=O ANn Bail=O

Note how these operators are different. Only one of the two operand expressions
must be true for the logical 0 R to be true, while hoth must bc true for the logical
AND to be true.

Page 20 BASIC XE Reference Manual

Operators Operator Precedence

Operator Precedence

Operators require some kind of preccdence (a defined order of evaluation) or we
wouldn't know how to evaluate expressions like 4+5-3. Is this equal to (4+5)*3 or
4+(5-3)? Without operator precedence It's Impossible to tell. BASIC Xll's normal
precedence Is very precise, as shown In the following table. The operators are
listed In order of higl1est to lowest precedence. Operators on the same line are
evaluated left to right In an expression.

()
< > = <= >= <>
NOT +-

" %!a:

- I
+-
< > = <= >= <>
AND
OR

P aren theses
ReI. lops In faring Comparislons
Unary NOT lop, Unary Plus and Minus aops
Exponentiation
Bitwise EOR, (lR, AND aops
Binary Multiplicative aops
Binary Additive ROpS
ReI. lops in Numeric Comparisons
Binary ANn lop
Binary 0 R lop

If you're ever In a situation where you're unsure of the evaluation of on
expression, use parentheses to Insure the proper order of evaluation. F.xamples of
operator precedence during expression evaluation can be found In the
Expressions chapter.

BASIC XE Reference Manual Page 21

Space For Your Notes Operators

Space For Your Notes

Page 22 BASIC XE Reference Manual

Expressions String and Numeric Constants
Internal Format of Numbers

Expressions

Expressions are constructions which obtain values from variables, constants, and
functions using a specific set of operators. RASIC XE supports two types of ex
pressions: arithmetic (aexp) ~nd string (sexp). Refore discussinp; these two types of
expressions something necds to be said about the constants RA RIC XE allows.

String and Numeric Constants

String constants are frequently c~lIed literal strings becouse they are just A group
of characters enclosed in double quotes ("):
"This string ~n(los.d in quot~s is a string constant"
"lIuMb.rs in quotl!s ar~ strings too - 123015"
"So ar. control charct~rs ar~ - ~ t'~,~."

To get a double quote into a string constant, use two double quotes In a row (n,,).

RASIC XE allows you to enter numeric constants (numbers) in one of two ways -
decimal or hexadecimal. Decimal numbers may either be integers, fractions, or
scientific notation. The following examples illustrate these three types of
numbers:

Intep;ers
4027

-2

Fractions
-67.254
325.04

Sci. Notation
4. ~~E2

23.4E-14

The "E" in the scientific notation examples stands for "Exponent". The number
following It is the power of ten (e.g., 4.33E2 means "4.~3 * l02", or 433).

Hexadecimal numbers can only be integers, And the digits must be preceded by a
dollar sign ($), as in the followinp; examples:

$4A~O -~OA $6FF
-$E -~7R2D $FFFF

Notice that the unary minus (denoting a negative number) precedes the (lollar sign.
The maximum hexadecimal value allowed is $FFFF (65,~35 decimall.

Internal Format of Numbers

Note: this section is provided for those of you who are interested in the t('chnicAI
aspects of B A SIC X E. You can skip this section without impairing your ahility to
use BASIC XE.

All numbers In BASIC XE Are Rlnary Coded Decimal (BCD) floating pointing point
with a five byte (to ReD digit) mantissa and a one byte exponent. The most
significant bit of the exponent is the sign of the mantissa (0 for positive, J for
negative), and the rest of the bits Are the value of the exponent In excess 64
notation. Internally, the exponent represents powers of 100 (not powers of 10).
For example, 0. 02 equals 2*10-2, which equals 2*100-1 , so the internal represen
tation is

3F 02 00 00 00 00

$3F Is the exponent (-0 plus 64 ($40), and the mantissa is 2. The implied decimal
point Is always to the right of the first byte of the mantissa. An exponent less

BASIC XE Referenee Manual Page 2~

Expressions Arithmetic Expressions
String Expressions

than $40 indicates a numbcr bctween 0 anCt I, while an exponent greater than or
equal to $40 represents a number greater than or equal to 1. 7ero is represented
by a zero mantissa and a zero exponent.

In general, numbers hav<:> a 9 (ilgit precision. For example, only the first 9 cti{!Jts
Rre guaranteed to be significRnt when INPUTting a number. You can som<:>times
get 10 significant digits in the special case where an even number of digits are to
the right of the decimal point.

Arithmetic Expressions (aexp)

Arithmetic expressions are those which evaluate to a number, lind are made up of
one or more of the following list of operands, separated by operators:

J) a numeric constant (number)
2) an avar (or subscripted mvar)
~) a function which returns a number
4) string camparislon using relational lops

The first three /lre straightforward, but the fourth requires explanation. You may
use string compnrisions In Rrithmetic cxpressions because the comparision results
In a 1 (true) or 0 (false). For example, "ABC"<" ACC" would return n I, s ince
"A B C" precedes "A C C" whcn the two are alphab etizecl. Conversely,
"ABC">" A CC" evaluates to O. An arithmetic expression can simply be one of the
above described operands, or two or more of them separat<:>d by opcrators (dther
arithmetic or logical). The following examples of arithmetic expressions include
the evalua tlon order of the operators (If any) and the result:

Exprf'ssion
3*(4+(21/7)*2)
"AR">"AC"+7*(ASC("A"»
X=100 : Y=2
INT(X·Y/3)

Evaluation Ord<:>r
/,*,+,*

> ,ASC, *,+
N/A

* ,I, INT

String Expressions (sexp)

RcsIII t
:li1

455

String expressions are much simpler than Rrithmetic pxpressions since there are
fewer things they can be. The following list shows all the valid string expressions:

1) a string constant (literal string)
2) an svar (or subscripted savar)
~) a function which returns a string
4) a substring of an svar or savar

Notice that nothing has been said about operators in string exprp.ssions. That is
because none arc allowed (with the special exception of the comma (,) for concate
nation In string assignment). A string expression may be only onp. of the abovp., as
in the following examples:

Page 24

"A literal string"
AS
Sa$ (1 ;)
STR$(126.83)

A$(3)
Sa$(l ;3)
A$(4,R)
Sa$(1;4,8)

BASIC XE Reference Manual

Editing Your Program

Editing Your Program

NEW
NUM

The statements in this chapter ease the .lob of e diting a BASIC XE program, so
that programming need not be considered a chore. This chapter covers the state
ments NEW, NUM, LIST, DEL, RENUM, and REM.

Format: NEW
Ex amp I es: NEW

100 NEW

NEW

This command erases the BASIC XE program currently in memory. Therefore,
before typing NEW, make sure you have saved your program (using SA VE, CSAVE
or LIST) If you want to keep It . NEW also clears BASIC XE's internal symbol table
so that no variables are defined. NEW is normally used in Direct Mode but is
sometimes useful In Deferred Mode as an alternative to END, when you want a
program wiped out after It has RUN.

Format:
Examples:

NlM fstartl[,Inc]
NlM
NlM 50
N1.M ,1
NLM 50,1

NUM

The NUM command enables RASIC XE's automatic line numberIng ability. This
facility can Increase your program en try speed because It puts in the program line
numbers for you. If no start or Inc Is given (first example), NUM will start
numbering from the last line number currently in the program In increments of In.
If there is no current program, NUM wlll start with line number 10. If thc starting
line number alone Is given (second example), NUM will start numbering from that
line number In Increments of 10. If the Increment alone Is given (third example),
NUM will start numbering from the last line currently in the program, In
Increments of Inc. If both the starting line number and the Increment are given
(last example), NUM will start numbering from t.he given line number In Increments
of Inc. Note: neither start nor Inc may be O.

Four things cause the automatic line numbering to stop:
1) If you press < R ETUR N> immed iately following the line number.
2) If BASIC XE encounters a syntax error on a program line you type in.
3) If the line number the automatic numberer would use already exists.
4) If the automatic numberer would generate a number larger than ~27fi7.

Note: using NUM In Deferred ModE:' always returns you to Direct ~ode.

BASIC XE Reference Manual Page ?5

LIST
DEL

LIST (L.)

Format: LI ST r I inenol] [,[I inen02 J]
Examples: LI::lT

LIST 10
LIST .10,100
LIST la,

Editing Your Program

Note: this section covers only the editing uses of LIST. For its program saving
uses, see the Storing and Retrieving Your Program chapter.

LIST causes thc program currently In memory to be displayed so that you c an edit
or study It. If LIST Is used alone (without linen01 or 2), the entire program is
displayed (first example). If you follow It with a single line number, only that line
will be displayed (second example). If you specify two line numbers (separated by
commas), lines 1Inen01 through llnen02 will be LISTed (third example). If you give
the starting line number, a comma, and no ending line numher, the ending line
number is assumed to be the last line in the program (Jast example).

Note: You can control the automatic indention of structured statements (FOil,
WHILE, etc.) when they are LISTed using SET 12,aexp. You can also control the
casification using SET 5,aexp. See SET for more info.

DEL

Fonnat: DEL linenol[,linen021
Examples: DEL 100

DEL J 000, J B!l9

DEL deletes program lines currently in memory. If a single line number is given,
only that line wiII be deleted (first example). If two line numbers are given, lines
1Inen01 through 1Inen02 (inclusive) will be deleted (second example).

Page 26 BASIC XE Reference Manual

Editing Your Program

Fonnat: PEI'RM [startJ[,lnc1
Examples: RENlM

RENUM 100
RENl", ,~O

RENlM 1000,5

RENUM

RENUM
REM

RENUM renumbers the program In memory, using start as the starting line number,
And Inc as the Increment between line numbers. If start Is not specified, lOis
used. If Inc Is not specified, an increment of 10 Is assumed. Note: n(>ither
start nor Inc may be O.

All line number references (e.g., In GOTOs, GOSUlls, etc.) Are also renumbered
if they are numeric constants. Line number expressions (e.g., GOTO 10* A) will
not be renumbered.

Caution: If you are RUNning A program in FAST mode, a RENUM in that program
will do nothing.

Caution: If you lise LIST In Deferred /.4ode (I.e., In a program) the line number
values you want to list will not be renumbered by RENUM.

Caution: RENUM will not renumber An absolute line number after 0 line number
expressed as an expression. If you RENUM the statement
18 On K 60sub 188,J*V,288
the 100 will be renumbered, but the 200 will not since it follows a line number
expression (3*Y). This sltuotion is possible only In the ON statement.

Warning: If you have a reference to a line number that does not yet exist (e.g. a
GOTO 50 when line 50 doesn't exist), RENUM will not renumber thAt reference.
After the RENUMbering, however, the non-existent line number might exist, thus
making the reference valid, but it will most likely not refer to the program line
you want It to.

Format:
Exlrnples:

REM (R.)

REM text
REM This is a remark
10 RKM Routine to calculAte X
20 GOSPIl ~OO : IlEM Find Totals

R EM stands for "rem ark" and Is used to put comments into a program. This
command and the text following it on the same line are ignored by the computer.
However, It is Included In a LIST along with the other numbered lines. ~Ince All
characters following A REM are treated as part of the REMark, no statements
following It (on the SAme program lin.,) will he executed.

BASIC XE Reference Manual Page 27

Space For Your Notes Editing Your Program

Space For Your Notes

Page 2R BASIC XE Reference Manual

StorIng and RetrIevIng Your Program

StorIng and RetrIeving Your Program

LIST
ENTER

BASIC XE allows you to store your programs In eIther of two formats - as ATASCII
text, or as the tokenized gIbberIsh Internal to BASIC XE. LIST and
ENTER perform program I/O using the first format, while SAVE and LOAD, and
CSA VE and CLO A D use the second. The reason the tokenlzed fonnat is offered is
that It Is generally more compact than the ATASCII format and always cuts down
on dIsk/cassette use and I/O time.

LIST (L.)

Format: LIST "filespec"[,linenolH ,[llnen021l
Examples: LIST "C:"

LIST "D:OEMO.LIS"
LIST "P:",20,IOO

LIST allows you to write out the ATASCII text version of the program in memory.
As evIdent from the examples, filespec may refer to any devIce. You may add any
of the line number specifications (descrIbed In the previous chapter's discussion of
LIST) to LIST only a portion of your program to filespec.

Note: the quotes around filespec are required by LIST, unless of course a strIng
varIable Is used.

Format:
Examples:

FNTER "filespec"
ENTER "C : "
ENTER "D2:DFMO.LIS"

ENTER (E.)

The ENTER command allows you to read In a program you have saved using the
LIST command, and will not work with programs which have been SAVEd or
CSA VEd. To use this command, you simply need to give the filespec of the
program. Note: whereas both LOAD and CLOAD clear the program memory space
before reading In the new program, ENTER does not, And so Is useful when trying
to merge programs together.

Bonus: You can modify what BASIC XE does after completing an ENTER using the
SET 9,aexp command (see SET for more info).

BASIC XE Reference Manual Page 29

SAVE,LOAD
CSAVE, CLOAD

Format:
Examples:

SAVE "filespec"
SAVE "D:TEST.BXE"
SAVE "C:"

Storing and Retrieving Your Program

SA VE (S.)

SA VE allows you to snve the tokenized form of a B A SIC XE program to any df'vice.
A file saved using this command may then be read back into program memory using
LOAD or loaded and immediately executed using the RUN command.

Format:
Examples:

WAD "filespec"
WAD "Dl: (''''MEl. BXE"
100 LOAD "e:"

LOAD (LO.)

LOAD allows you to load the SAVEd version of a program into memory from any
device. It wlll not work with programs saved using LIST or CSA VE.

Format:
Examples:

CSAVE
CSAVE
100 CSAVE
100 CS.

CSAVE (CS.)

CSA VE Is used to save the tokenized version of a program. The difference
between CSAVE and SA VE "C:" is that CSAVE leaves shorter inter- record gaps
and so makes cassette I/O faster. On entering CSA VE two bells sound to indicate
that the PLAY and RECORD buttons must be pressed, followed by <RETURN>.
Do not, however, press these buttons until the tape has been positioned. Note:
tapes saved using the two commands SA VE and CSAVE are not compatible. Note:
due to a flaw in the Atari OS nOMs (not HASIC XE), it may be necessary on some
machines to enter an LPRINT before using CSAVE, otherwise it may not work
properly. For specific instructions on how to connect and operate the hardware,
cue the tape, etc., see the Atari 410 or 1010 Program Recorder Manual.

Format: CLOAD
Examples: CLOAD

100 CLOAD

CLOAD

This command can be used in either Direct or Deferred Mode to load a program
from cassette tape, and may be used only with programs which have been CSA VEd.
On entering CLOAD, one bell sounds to indicate that the PLA Y button needs to be
pressed, followed by < R ETU R N >. However, do not press PLA Y until the tape has
been positioned. Specific instructions for CLOADlng a program are contained In
the Atar! 410 or 1010 Program Recorder Manual.

Page 30 BASIC XE Reference Manual

Making Your Program ~top Rnd Go

Making Your Program Stop and Go

RUN
END

The statements discussed In this chapter enable and control t.he execution of your
RASIC XE progrAm. They are RUN, END, FAST, STOP, CONT, TRACE, and
TRACEOFF.

RUN

Fonnat: RUN ["filespec"]
Examples: RUN

100 RUN "fl:MENU"

This command callses R A SIC)/' E to bcgln executing a program. JC filespec Is not
specified, the curr('nt RAM-resident program Is executed; otherwise R A ~IC X E
retrIeves the tokenlzed program form the specified file And then ex ecutes It.
Refore execution begins, RUN sets all avars to zero, unDIM('nslons all mvars,
svars, and savars, CLOSEs all open files (channels), Rnd turns off all SOUNDs. If
an error occurs while your program Is RUNning, execution will halt and nn error
message will be displayed (unless the error has been TRAPpect).

Although RUN without a filespec is most frequently used In Ilirect ~'ode, it can
also be used In Deferred mode. For example, RUN the following program (press
< B R EA K> to exit):

18 Print "Continuous RUllning"
28 Run

Note: RUN must be the lAst (or only) commanct on a progrRm fine whpn used In
Deferred Mode.

If you want to begin program execution somewhere other than at the first program
line, use GO TO In Ilirect Mode. Caution: varIables lire neither clE'ared nor
initialized by GOTO.

Fonnat: END
Ex amp I es: END

4000 END

END

END is used to terminate the execution of a program. In adrlition to this, it also
closes all mes (channels), silences Rny sounds, and turns off P/M's Of thl'Y were
turned on via PMG.). It does not chonge the graphics mode, however. END Is not
required In most programs because RASIC XE automatically closes all files and
silences any sounds after the last program line has executed.

Note: if you have any subroutines following the main program you should put an
END at the end of the meln program, or the subroutines may be executed as part
of the main program.

END may also be used in Direct mode to close files, silence sounds, and turn off
P/M's.

BASIC XE Reference Manual Page ~1

FAST

Format: FAST
EXlmpl es : FAST

100 FAST

Making Your Program Stop and Go

FAST

During normal program execution BASIC XE must search from the beginning of
your program for a specified line number whenever It encounters a GOTO, GOSUB,
FOR, or WHILE (this Is how most other BASICs do It too). However, you can
change this by using the FAST command. When BASIC XE sees FAST, it does a
precomplle of the program currently in memory. During the precompile n A SIC X F.
changes every line number to the andress of that line in memory. Then, whenever
a GOTO, GOSUB, FOR, or WHILE Is executed, no llne number search Is needed,
since BASIC XE can simply jump directly to the specified line's address.

Note: if the lineno used in the GOTO or GOSUB is not a constant (J.e ., is a
variable or an expression), that lineno will not be affected by FAST, and so will
execute at normal speed .

Note: the following statements and situations will terminate FAST mode
execution:

DEL
ENTER
EXTEND
LIST
LOAD
LVAR
RUN "filespec"
SAVE
returning to Direct Mode.

Caution: when you use FAST In Deferred Mode, it must precede your first GOSUB,
FOR, CALL, WHILE, and/or LOCAL. We recommend that you use it as the first
statement in your program.

Caution: if you are using ENTER to create program overlays, you will notice that
the notes and caution above seemingly combine to preclude the possibility of
ENTERed overlays executing in FAST mode . There is only one way to get arounn
this: the main program (the part that calls the overlays) cannot be in a loop,
subrOUtine, or local region when it ENTERs the overlay. If you insure this, you
may then make FAST the first statement in your overlay without creating
problems.

Page 32 BASIC XE Reference Manual

"'aklng Your Program Stop and Go

Format: STOP
Exanples: 100 STOP

STOP

STOP, CONT
TRACE/TRACEOFF

When you use the STOP command in Deferred Mode In a program, RASIC XE
displays the message "Stopped at line Iineno", terminates program execution, nnd
returns to Direct Mode. STOP does not close files or turn off sounds (as does
END), so the program can be resumed by typing CONT. This can be very useful In
error handling. For more Information on this, see the Handling Errors chapter.
When used In Direct "'ode, STOP simply displays "Stopped", and returns to Direct
Mode.

Format: CONT
Exanpl es: CONT

100 CONT

CONT

In Direct Mode, CONT resumes program execution which has been Interrupted by a
STOP statement, a <RRF.AK> key abort, or an error. Cautlon:executionresumes
on the Hne following the halt, so any statements following the halt, but on the
same program Hne, will not be executed .

In Deferred Mode, CO NT may be used for error handHng. For these uses, see the
Handling Errors chapter .

Formats: TRACE
TRACEOFF

Exanpl es: 100 TRACE
TRACEOFF

TRACE / TRACEOFF

These statements are used to enable or disable the line number trace facility of
RASIC XE. When In TRACE mode, the line number of a line about to be executed
is displayed on the screen, surrounded by brackets ([J).

Exceptions: The first line of a program cannot be TRACEd, nor can the target
line of a GOTO, GOSUB, or CALL, or the looping lIne of a FOR or WHILE.

Note: a statement Issued in Direct Mode Is TRACEd as having line number ~276A.

TRACEOFF Is used to turn TRACEing of! once it has been enabled.

BASIC XE Relerence Manual Page 3;1

Space For Your Notes Making Your Program Stop and Go

Space For Your Notes

Page 34 BASIC XE Reference Manual

Configuring the BASTC XE System SET
SETs I - 7

Configuring the BASIC XE System

The statements and functions In this chapter allow you to change how HASIC XE
will function, as well as find out the current configuration. The statements
discussed are SET, LOMEM, CLR, LVAR and EXTEND, lind the functions Are
SYS and FRE.

SET

Format: SET aexp1, aexp2

The SET statement allows you to chanp;e a variety of RASIC XE system-lev!'1 func
tions. aexpl Is the function you wish to change, and aexp2 Is the value to alter
the function. The tablp. followIng summarizes these SET parameters (dp.fault
values are given In parentheses):

aexpl
-0-

aexp2
(0) -0-

12R

Mf'Aning
<RRFA¥> kp.y functions normally.
Note: Returning to nlrect ~~de does R SET 0,0.
<BREAK> causes a TRAPable error (#1) to occur.
<I1JlF..AK>s are Ignored by BASIC XE. Other subsystems
(F: for example), however, will still rE'cop;ni"e
<RRFAK>s.

(10) 1 ••• 12R TAb stop setting for the comma In PRINT statemp.nts.

2 (6~) O ... ?~~ Prompt charactPr for JNPtJT (default Is "?")'

4

5

6

7

(0)

(ll

(1)

(0)

(0)

o
1

o

o

o
1

o

FOR loops expcutp at lenst onN' (nlll Alarl HASH~).
FOR loops may execute zero times (ANSI standard).

Instead of repranptlng, a TRAPahle error (#R)
occurs.
On a multiple variable INPUT, If the user enters too
few Items, he Is reprompted (e.g., with "??")

HASIC XE acts like Atari RASIC In that it is
sensi live to character case on prop;rllTl entry (I'i ther
type-In or ENTER). LowerCAse And/or Inverse
characters cnuse syntax errors, except when used In
REM , DATA, or string constants.
RASIC XE converts text to a nice, readAble format
upon entry. Keywords and variable names Are
capitalized, while REM text, DATA Items, and string
constants remain unchanged.

Print error messages along with error numbers.
Print only error numbers (ala Atari BASIC).

P/Ws that move vertically to the edge of the screen
roll off the edge and are lost .
P/M's Tap around fran top to bottom and ViSA versa.

BASIC XI'! Reference Manual Page 35

SETs8-15
SYS

RP.XPl.
-R-

9

10

aexp2
(1) -0-

(0) 0

(0) 0

11 (40) 1. .. 255

a

12 (1) 0

1

13 (1) 0

14 (0) 0

15 (0) 0

Format: SYS(aexp)

Configuring the D A SIC X E ~ystem

~1enn ing
Don't push (PHA) the numbe r of parameters to a
USR calion the stack (advantage: some assembly
language subroutines not expecting parameters may bf'
called by n s implf' USR) .
Do push the count of parameters, ala Atari BA~IC.

ENTER returns to Di rect Mode on canpl etion.
End-Of-ENTER creates a TRAPablc error (#32).

Thl'! four missi les act indcppndentl y.
The four missiles are grouped together for movement
purposes. However, their widths and colors remain
indcpendent.

BASIC XE wi i I automatically DIM a string to this
size if you do not DiMension it yourself.
BASIC XE works like Atari BASIC.

The LI ST program formatter does not Indcnt when you
use structured statements (FOR, WHILE, etc .J.
LIST indents Mlcn you use structured statements.

VAL produces an error (#tR) if you use a hex digi t
string.
VAL will turn hex digi t strings into numbcrs,
prov ided that thc string begins with a "$".

PRINT USING truncates numbers MIen they contain more
digits than specified in the format.
This situation produces a TRAPable error (#23).

In EXTENDed ItlOcle only, ADR("strlng") will produce An
f'r ror 3.
ADR("string") will always return the acldress of
string.

f SYS

Example: 100 IF SYS(O)=O THEN SET O,12R

The SYS function is used to find out the status of a BASIC XE system function
alterable using SET. aexp is the number of the system function as defined In the
previous section.

Page 3fl BASIC XE Reference Manual

Configuring the B A SIC X E System

Form~t : UlrIFM addr
Example: LOMTh! DPEEK (12 8) + 1 02 4

LOMEM

LOMEM , CLR
FRE, LVAR

LOMEM Is used to reserve space below the normal program space. You could then
use this space for screen display information or assembly language routines. The
usefulness of this may be limited, though, since there are other more usable
reserved areas available. Caution: LOMEM wipes out any user program currently
in memory.

CLR

Format: CLR
Example: 200 CLR

The CLR statement clears the values in the Variable Value Table and
un DIMensions all svars, savars, and mvars. It does not clear the Variable Name
Table (only NEW does), so all the names remain. If you wish to use an svar, savar,
or mvar after using CLR, you must reDIMension It first.

Format:
Exmnples:

FRE(aexp)
PRINT FRE(O)

f FRE

100 IF FHE(O)<lO(lO THEN PRINT "Memory Cri tical"

The FR E function returns the number of of RAM bytes left for your use. Normally
FRE(O) returns the total amount of memory left, but if you have used the
EXTEND statement, FRE(O) returns the amount of data space left, and
FRE(l) returns the amount of program space left in the extended memory area.

Format:
Example:

LVAR ["fllespec"1
LVAR IIp:''

LVAR (LV.)

LV A R will list all variables currently In use to filespec. Each variable Is followed
by a list of the lines on which that variable Is uscd. The example above will list
the variables to the printer. If filespec is not specified, LVAR lists to the screen.

Note: svars and savars are denoted by a trailing "$", and mvars by a trailing "(".

Warning: LV A R must be the last (or only) statement on a program line.

BASIC XE Reference Manual Page 37

EXTEND Configuring the B A SIC X E System
For 130XE Owners Onlyl

EXTEND

Format: EXTEND

Until you use the EXTEND commnnrl with a 130XB, BASIC XE operates very much
like Atarl BASIC. From the viewpoint of most programs, BASIC XE in 'normnl'
mode Is Atarl BASIC. Fnster, and with many additional capabilities, but
very memory compatible.

EXTEND tells BASTC XB to switch from Atari BASIC 'normal' mode to 'f'xtcnded'
mode. In extended mode, BASIC XE programs reside in the 'extra' 64K bytes of n
DO XE, labeled 'extended memory' In the second diagram of Appendix R.
Programs can use up n11 64K bytes of the extended memory without Intruding upon
the data space (for strings, arrays, etc.) in main memory (ngaln, see Appenrlix B).

You may use the EXTEND command In nlrect ~'ode at any tlme--either when you
have no program in memory or after a program is in place. EXTEND will transfer
any program in main memory to the extended memory. Once In extended mode, the
only ways to return to 'normal' mode are to use the NEW command or to LOAD a
program which was SA VEd In normal mode.

On the other hand, you will automatically enter extended mode if you LOAD a
program that was SA VEd from extended mode. Once you have EXTENDed a
program, you can restore it to normal mode only by LISTing nnd re-ENTERing it.

Note: EXTEND can only be used in Direct Mode,~ in a program.

Note: You must be using an Atari 130XE computer (or equivalent) for this
command to work. If RASIC XE cannot find the extended memory banks, you will
see a.n Brror 60, "Extended Memory Not Available".

Note: BASIC XE rollows recently established Atarl Corporation guidelines whf'n It
uses the extended memory. In particular, If the extended memory Is already In use
(e.g., by Atari DOS 2.S's RamDisk), BASIC XF. wiII not let you EXTEND your
program and will give you an Error 60, as above. Early versions of DOS 2.~, as
well as other programs, may not yet follow these new guidelines, so be sure the
extended memory Is available before using the EXTEND command.

Technical Note: n A SIC X E fills the extended memory with your program from the
'bottom' up. Referring to the second diagram in Appendix B, this menns thnt
approximately the first 16K bytes of your program will go in Bank O. The next .\ fiK
bytes go in Dank I, etc. These numbcrs are not exact, because (1) IlASTC XE
al ways maintains a minimum of $1 00 bytes of free space in each bank, nnd (2)
BASIC XE never breaks program lines bf'tween banks.

H!lI, if you subtract about $4(10 from the value returned by FRE(!), you will have
n lower bound on the amount of space left In extended memory. Then you could,
for example, use bank ~ to store miscellaneous data, provided that
FRE(1}-$400 shows at If'ast 16K bytes left. See appendix D for details, or see your
Atarl 130XE owner's manual for information on how the hardware side of the bank
selection works.

Page 38 BASIC XE Reference Manual

Exiting BASIC XE

Exiting BASIC XE

DOS
BYE

The following two commands, DOS and BYE, are used to leave RASIC XF. to use
some other utlllty.

DOS (CP)

Fonnat: OOS

DOS is used to go from RASIC XE to the Disk Operating System (nOs). If you have
not booted a DOS into memory, the computer wi!! go into Self-Test Mode and you
must press <SYSTF.M RESET> to return to BASIC XF.. If you have botted with a
OOS, control passes to DOS. To return to RASIC XF., type "CA R" if you are using
DOS XL, or press "R" If you're using Atarl DOS.

DOS is usually used In Direct Mode, but It may be used in a program as well. For
more details on this, see your DOS manual.

Note: CP (command processor) is exactly equivalent to DOS.

BYE (B.)

Fonnat: BYE

The function of BYE Is to exit SA SIC XE and go directly into your computer's
Self-Test Mode. To return to BASIC XE, press <SYSTEM RESET>.

BASIC XII: Reference Manual Page 39

Space For Your Notes Exiting BASIC XE

Space For Your Notes

Page 40 BASIC XE Reference Manual

Beginning Data Input/ Output Introducing A tarl I/O

Introducing A tarl I/O

The A tarl Personal Computers consider everything except the guts of thl>
computer (f.e. the n A M, ROM, and processing chips) to be external devices - for
example, the Keyboard and Screen Editor. Some of the othcr devices are Disk
Drive, Program Recorder (cassette), and Printer. The following Is a list of the
devices, ordered according to the device specifier. For some devices the
specirler alone Is nGeded as "filespec", while others require both the specifier and
a file name:

c: The Program Recorder - handles both Input and Output. You can use the
recorder as either an Input or output device, but ncver as both slmultR
neously.

Dl: - D8: Disk Drive(s) - handle both Input and Output. Unlike C:, disk drives can
be used for input and output simultaneously. Floppy disks are organized
Into a group of flies, so you are required to give a file name along with the
device specifier (see your DOS manual for more Information). Note : If you
use D: without a drive number, 01: is assumed.

E: Screen Editor - handles both Input and Output. The screen editor simulates a
text editor/word processor using the keyboard as Input and the display (TV
or Monitor) as output. This is the editor you use when typing in a HASIC XE
program. When you specify no channel while doing I/O, E: Is used because
the I/O channel number defaults to 0, which is the channel B A SIC X E opens
for E:.

X: Keyboard - handles Input only. This allows you access to the keyboard without
using E:.

P: Parallel Port on the 850 /rlodule - handles Output only, Usually P: is used for a
parallel printer, so it has come to mean "Printer" as well as "Parallel Port".

Rl: - R4: The RS-232 Serial Ports on the 850 Module - handle both Input and
Output. These devices enable the A tari system to Interface to R S-232
compatible serial devices like terminals, pi otters, and modems. Note: If you
use R: without a device number, Rl: is Assumed.

S: The Screen Display (TV or Monitor) - handles both Input and Output. This
device allows you to do either character or graphics I/O on the screen
display. The cursor is used to address a screen position.

Each of these devices Is used for I/O of some type, although only a few of them
can do both input and output (you wouldn't want to input datA from a Printer).
Because they work differently, each device has to tell the computer how it
operates. This done through the use of a device handler. A device handler for a
given device gives information on how the computer should input And output data
for that device.

One of the sub-systems in the computer Is the Central Input/Output (CIO) proces
sor. It Is ClO's job to find out if the device you specify exists , and then look up
I/O Information in that device's handler. This makes It easy for you, since you
don't need to know anything about given handler. To let CIO know that a device
exists (f.e., Is available for I/O) you need to , OPEN the device on one of the ClO's

BASIC XE Reference Manual Page 41

Beginning Data Input /Output OPEN

eight channels (numbcred 0-7). When you want to do I/O Involving the OPENed
device, you must then usc the channel number instead of the device nam e.

When you see " filespec" in the following sections, it refers simply to the device
(and file name In the case of D:) In A character string. The string may be either a
string constant, An svar, or an savar element.

If you use channel #7, it will prevent LPRINT or some of the other BASIC XE I/O
statements from being performed.

Format:
Examples :

OPEN

OPEN 'chan, aexpl, aexp2, "filespec"
100 OPEN #?,8,O,A$
OPEN #4,4,0,"D:INPUT.TXT"

As mentioned above, a device must be OPENed on a specific channel before it can
be accessed. This "opening" process links a specific channel to the appropriate
device handler, initializes any CIO-related control variables, and passes any
device-specific options to the device handler. The parameters for the 0 PE N
command are defined as follows:

chan

aexpl

aexp2

This is the number of the channel which you want to associate with the
device filespec. Also, this is the number you use when you later want to
do I/O Involving the specified rlevice (using INPUT, PRINT, etc.).

This Is the I/O mode you want to assoclate with the above channel . The
numeric codes are described In the following table:

aexpl Meaning
4 Input Only
6 Read Disk Directory Only
R Output Only
9 Output Append

12 Input and Output
Note: othe r modes may exist for special devices or extensions to a
device.

Device- dependent auxll1ary code. See your device manual to see if it
uses this number. If not, use a zero.

filespec The device (and file name, if required) you want to be associRted with
the specified channel.

Page 42 BASIC XE Reference Manual

Beginning Data Input/Output CLOSt:
PRINT

CLOSE (CL.)

Format: CLOSE #chan
Ex amp I es: CLOSt: #4

100 CWSE #1

CLOSE Is used to close a CIO channel which has been previously OPENed to allow
I/O on some device. After you CLOSE a channel, you can then reOPEN it to some
other device, and thus associate that channel number with a different device.

Note: you should CLOSE all channels you have OPENed when you are finished
using them.

Format:

Examples:

PRINT (p R. or ?)

PRINT [#chan]

PRINT
PRINT X,Y,ZjA$
100 PRINT "The value of X Is "jX
100 PRINT "Cannas" ,"cause","tabs"
100 PRINT #3,A$
100 PRINT 1t4j"$"jllEX$(Xlj" Is "jX

PRINT Is used in either Direct or Deferred Mode to output data. In Direct Mode,
it prints whatever exp information Is given. In the second example, the screen will
display the current values of X,Y,Z, and A$. Tn the fifth example, A$ Is PRINTed
out to the device associated with channel 3.

The comma option causes tabbing to the next tab location. Several commas in a
row cause several tab jump;. To set the tab spacing caused by the use of a comma,
use SET 1,aexp (see SET for more info).

A semicolon causes the next exp to be output immediately after the preceding
exp without spacing or tabbing. Therefore, In the sixth example spaces surround
the 'Is' so that It and the values of X will not butt up against each other.

If no comma or semicolon is used at the end of a PRINT statempnt, then a
< R ETUR N> is output and the next PRINT will start on the following line.

Note: numbers smaller than 0.01 or with more than 10 significant digits will be
PRINTed In scientific notation.

BASIC XE Reference Manual Page 43

INPUT

Fonna t:

Exanpl es:

Beginning Data Input/Output

INPUT (I.)

INPlJI' I [#chAn,] I
["string"]

varl [,var2 •••]

INPlJI' X
100 INPlJI'
100 INPlJI'
100 I NPlJI'
100 INPlJI'

SA$(4 j)
X,Y,Z(4),Il$
#4,A$(5,n)
"SS#,Name» ",Ssnun(X) ,Nomes$(Xj)

INPUT Is used to input various data and store it directly Into variables. The first
data element INPUTted will be stored in varI, the second in var2, and so on. If
you are INPUTting more than one arithmetic variable, the numeric data elements
may be entered on a single line if they are separated by commas, or on separate
lines, each followed by a <RETURN>. In the latter case, BASIC XE will prompt
with a double question mark to indicate that more input is needed. When
INPUTting a group of strings, each must be typed on a line by itself, or as the last
item on the line when combined with numeric input.

Note: you can make RASIC XE produce a TRAPable error instead of the double
prompt by using SET 4,aexp. Also, you can change the default question mark (?)
prompt to any character using SET 2,aexp (see SET for more Info).

The fifth example above shows off one of the most powerful additions to INPUT.
If a literal string immediately follows the INPUT, that string will be used as the
prompt, thus allowing you to create prompts that are more explanatory than the
standard "?".

We strongly recommend that:
1) no more than one variable be used on each INPUT line.
2) INPUT and PRINT should not be used for disk data file access

(RGET and RPUT are suggested instead).

Bonus: BS you can sel' from the third and fourth examples above, you can
INPUT directly in mvar elements and/or substrings. This addition (not in Atari
BA SIC) can be extremely useful and make your programs very efficient.

Page 44 BASIC XE Reference Manual

Beginning Data Input/Output

Fo nnat:
Fxamples:

PUT #ehan,Aexp
PUT #6"ASC("A")
100 Plrr #O,4·1~

PUT (PU.)

PUT J GET
LI'RINT

PUT Is used to output a single byte oC dAta to An open channel. The data output is
aexp, and It Is output to channel chan.

Fonnat:
F.xample:

GET #channel, aver
JOO GET #0, X

GET

GET Is used to input one byte oC deta Cram an open channel. This byte of
information Is stored in avar.

LPRINT (LP.)

Fonnat: LPRINT [exp1 [I; I cxp •••][I; 11

, ',I
LPRINT "Calculation of X squared:" Ex amp I e:

LPRINT causes BASIC XE to output data on the printer rather than on thp. sere.,n.
It can be used in either Direct or neferred Mode, and requires n either device
specifier nor OPEN or CLOSE statp.ment.

Caution: LPRINT cannot he used succpssCully with most print.ers when n trailing
comma or semicolon is used. If advnnc ed printing cnpabllitles are reoulred, we
r ecommend using PRINT # on a c hannel previously OPENed to the printer (P:).

Note: the semicolon nnd comma options are discussed in the PRINT section of this
chapter.

Note: although LPRINT mAy be used with USING just like PRINT, we recommend
using PRINT Ix; USING Instead.

BASIC XE Reference Manual Page 45

TAB Beginning Data Input/Output
f TAB

TAR

Fonnat: TAB [#chan,] aexp
Examples: TAB #2,20

100 TAB 12

TAB outputs spaces to the device specified by chan (or the screen If chan is not
specifled) up to column aexp. The first column is numbered O.

Note: the column count is kept for each device and is reset to zero each time a
carriage return is output to that device. The count is kept in Aux6 of the IOCR
(See OS documentation).

Note: if aexp is less than the current column count, a <RETURN> Is output and
then spaces are put out up to column aexp.

f TAB

Fonnat: TAB(aexp)
EX!rnple: PRINT #3;"colunns:"TAB(20);20;TAR(~0);30

The TAB function's effect is identical to thAt of the TAB statement (see above).
The difference is that imbedding a TAB function in a PRINT USING or PRINT can
simplify your programming task greatly. The TAB function will output sufficient
spaces so that the next Item will print in the column specified (only if the
TAB(aexp) is followed by a semicolon, though).

Note: if aexp is less than the current column count, a carriage re turn is output and
then spaces are output up to column aexp.

Caution: the TAB function will output spaces on some device whenever it is used;
therefore, it should be used only in PRINT or PRINT USING statements.

Page 46 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numeric Formats If It •

Advanced Data Input/Output

The statements in thIs chapter deal with specIal applIcations or advanced concepts
of data I/O. Unless you are already familiar with these or similar statements (I.e.
If you've used BASIC XL), we suggest that you play with them a lIttle just to get a
feel for what they can and can't do.

PRINT USI NG

Format: PRINT f#chan!:/] USINGsexp, expl [,exp2 •••)

PRINT USING allows you to specify a format for the data you wish to output.
sexp is the string which defines the format you wish to use, and is made up of one
or more format fieldS . Each format field tells how one of the exps which follow
sexp is to be prInted. The fIrst field specifies the first exp's format, the second
field specifies the second exp's, and so on. The valid format field characters are
If It • + $, • 96 ! and / (each will be explained separately in just a moment). Non
format characters terminate a format field and are printed as they appear.

Note: the comma (,) and semicolon (j) spacing options of PRINT are overridden in
the expressIon list of PRINT USING, but apply after chan if it Is used (I.e. ','
produces a tab, and 'j' produces no spacing).

Warning: sexp must contain at least one valid format fIeld, otherwIse BASIC XF.
wlll prInt sexp repeatedly as it searches for a format field .

NumerIc Formats: the characters for formatting numbers Are :

If Blank Fill
It Zero Fi II
• AsterIsk FIll

[\ec Ima I Po In t

, Insert a (',omna
+ Sign (+/-) pre/postfIx
- Sign (- only) pre/postfix
$ Dollar Sign prefix

& and *: If there are fewer dIgits in the output number than specified in the
format, then the digits are rIght justified in the field and prefixed with the proper
fill character. If there are more dIgits in the output number than specified in the
format, then the rIghtmost diglt(s) of the number which fit in the field format are
displayed (see last example). The following table illustrates these capabilities and
limits (bars have been placed around the output so that you may visualIze the fIeld
boundaries):

Value Format

O"~:;i 123 #iiiiI
123 MM 0123
123 ** •• *123

1234 If If If If 1234

1 12345 Iflf## 2345

Note: If you don't want numbers truncated, you can use SET 14,1. BASIC XE will
then force a TRAPable error (#23) ra ther than truncate the number .

BASIC XE Reference Manual Page 47

PRINT USING
Numeric Formats. , +

Advanced Data Input/Output

• (period): a period in the fonnat field indicates that a decimal point is to be
printed at that location in the number. All digit positions in the format that
follow the decimal point are filled with digits. If the output number contains
fewer fractional digits thAn specified In the format, then zeroes are prlntp.d in the
extra positions. If the output number contains more fractional digits than
indicated In the format, then the output number is rounded 50 that there are the
specified number of fractional digits. Note: a second decimal point within a single
fonnat 15 treated as a non- format character, and so terminates the format field.
Here are some examples:

Value Fonnat
12.488 ##ff.##

123.4 ###.##
*. ** I O~;'~~~1 12~.40

*2.:15.

,(comma): a comma in the format field indicates that a comma 15 to be printed at
that location In the output number. If the format specifies that a comma should be
printed at a position that 15 preceded only by fill characters (#,& ,*), then the
appropriate fill character will be printed instead of the comma. Note: the comma
15 a valid fonnat character only to the left of the decimal point (If a decimal point
is used); when a comma appears to the right of a decimal point, It becomes a
non-format character and terminates the format field. Here are some examples:

Value Format
5216 ##,###

3
4175

* ***. ,
#,###.

Output

15";2i61 *****3
14 ,175.1

+ and -: a plus sign In a format !leld Indicates that the sign of the output number 15
to be printed (+ If positive, -If negativ e). A minus sign indicates that a min us sign
(-) Is to be printed If the output number is negative and a blank If the output
number is positive.

The signs may be fixed or flO'!lting prefixes, or fixed post!lxes. When used as fixed
prefixes, the sign format character be the first character In a format field:

Value Format Output
43.7 +###.## + 43.70

-4~ .7 +###.## - 43.70
23.58 -&&&.&& 023.58

-23 .58 -&&&.&& - 023.58

Floating signs must start In the first format position and occupy all positions up to
the decimal point. This causes the sign to be printed immediately before thc first
digit rather than in 8 fixed location. Each sign after the first also represents a
blank-fill digit poSition:

Value Format Output
3.75 +++.## I +3.

75
1 3.75 ---.## 3.75

-3.75 ---.## 1 -3.75

Page 48 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numeric Format c\ String Formats '16 !

A trailing sign may appear only arter a decimal point and as the last character in
the ronnat field. It terminates the format and prints the appropriate sign (or
blank):

Value
4D7

43.17
-43 . 17

Format
~+
&!!&.&&
. ##+ I~+I 043.17

43.17-

$ (dollar sign): a dollar sign In a format field indicates that a $ is to be used as a
fixed or !loatlng prefix to the output numbE'r. A fixed dollar sign must be either
the first or second character in the format field (second only If the first Is a + or -
used as a fixed sign prefix):

Value
34. ?
34.2
34.2

-34.2

Format
$## . ##

+$##.##
-$## .##

+$###.##

Output
$34.2°1
+$34.2°1

$34.20
-$ 34.2°1

Floating dollar signs must start as either the first or second (second for reasons
outlined above) character In the format field and continue to the decimal point.
Each dollar sign after the first also represents a blank-fill digit position:

Value
~
34.2

-72692.41

Format
$$$$$.##

+$$$$$.##
$$$,$$$.##+

Output

1
~20I
+ $34.2°1
$72,692.41-1

Note: There may be only one floating character per format field.

Warning: using +, - or $ in other than proper positions will give strange results.

String Formats: the format characters for strings are as follows:

'16 indicates the strIng is to be right justified.
Indicates the string is to be left justified.

If there are more characters in the string than in the format !leld, then the string
Is truncated . Following are examples of string formatting:

String Format Output
"BASIC XE" %%%~ I RASIC XEI
"BASIC XE" ! ! ! ! !! !! ! \ BASIC XE
"BASIC XEIf ?If)I,"f00)6 BASICI
"BASIC XE" !!!! ! 1 HASIC

BASIC XE Reference Manual Page 49

PRINT USING - Embedding Format /
NORMAL/INVERSE

Advanced Data Input/Output

Embedding Characters: the slash character (/) does not terminate the format CieId
but wlll cause the next character to be printed as is, thus allowing you to insert
non-format characters in the middle of a form at field, as in the followIng
examples:

Value
4084463099
"oss"

Format
(### Il ### /-####
%/.%/.%/.

Output

1

(408)446-3099 1
O. S. S.I

Bonus: If there are more expressIons In the list than there are format fields, the
format rIelds will be reused. For example,

PRINT USING ''##If#'',25,19,7
wIll output

I 25 19 71

Fo rma t : NORMAL
INVERSE

EXEmples: NORMAL
100 NORMAL
150 INVERSE

NORMAL / INVERSE

NORMAL and INVERSE allow you to change the video presentation of all PRINTs,
LPRINTs, and PRINT USINGs. AnythIng you display after a NORMAL will be
output just as It appears in your program, while anything you display after using
INVERSE wlll be converted to Inverse video. In this case, characters that were
previously in inverse video will appear in normal video.

Note: BASIC XE returns to NORMAL display whenever you return to Direct ~ode

or reRUN a program from within itself.

Page 50 BASIC XE Reference Manual

Advanced Data Input/Output

BPUT

Fonnat: BPUT #chan, aexpl, aexp2 [,bank]

BPUT
BGET

BPUT outputs a block of data to the device OPENed on channel chan. The block
of data starts at Rdctress aexpl, and is aexp2 bytes long. You may also select an
optional bank number If you're In EXTENDed mode (see EXTEND for more Info).

Note: aexpl the address may be a memory address, or the address of a s tring
(found using ADR).

The following example writes out an entire mode II graphics screen directly from
screen memory:

18. Graphics 8:Addr=Dp •• k($S8)
118 Print "filling 5cr •• n ••• "
128 for 5byt.=8 To (48*168)-1:A." "fill scr •• n"
13. Poke Addr+5by1.,Aando"(2S6)
H. Nnt 5byU
158 Print "Don. filling. Now BPUTting
168 ClOs. SUIOp.n Ul.8 D:ItODE8 . 5CA .. :A." "ready to 8PUT"
17. Bput al.Addr.48*16'
111. Close SU
1'8 Print "finish.d BPUTting"
288 End

Note: nothing is written to the file which indicates the length of the data written.
We suggest that you write fixed-length data to make the rereading process
simpler.

BGET

Fonnat: BGET #chan, aexpl, aexp2 r ,bank]

B GET gets aexp2 bytes from the device 0 PE Ned on channel chan, and stores them
starting at address aexpl. As with BPUT, aexpl may be the address of a string; in
this case BGET does not change the length of the string - this is your
responsibility. You may also select an optional bank number if you're in
EXTENDed mode (see EXTEND for more info).

The following example will read in an entire mode II graphics screen directly into
screen memory:

188 Graphics 8:Addr:Dp •• k(SS8'
118 Clos. IU:Op.n Ul.C,8,"DII.cIDE8.5CA":A." "r.ady to 8GE1"
121 Print "Now 8GElting
131 8g.1 #l,Addr.48*168
1'8 Close #1
158 Print "Finish.d BGETting"
168 End

Note: no error checking Is done on the address or length so care must be taken
when using this statem ent, lest you wipe out pRrt of DOS or your BASIC XE
program.

BASIC XE Reference Manual Page Ii!

RPUT Advanced Data Input/Output

RPUT

Fonnat: RPUT #chan, exp [,exp .•.)

RPUT allows you to output fixed-length records to the device OPENed on channel
chan. Each exp constitutes one field element In the record. An arithmetic field
consists of one byte which indicates an arithmetic data type, and 6 Il C D floating
point bytes of data. A string fielcl consists of one byte which indicates a string
data type, 2 bytes of LEN length, 2 bytes of DIM length, and then DIM length bytes
of data. All this really means is tha t you can't INPUT data which has been
RPUTted, since more than just the data Is RPUT.

The following example R PUTs 20 records of the form" Nam e", " Address", "City",
"State", Zip, Phone:

188 DiM NaMes$C28,38),Addrs$C28,38),Citi,s$C28,28),States$C28 2)
118 DiM lips(28) ,Phones(28) ,
128 Close .1:0pen .l,8,8,"D;fRIENDS.DAT"
138 for RecnuM:l To 28
148 Input "Na"e» It, Na".s$ CR.cnu"n
158 Input "Address» It,Addrs$CRecnU"IJ
168 Input "City» ",Citiu$(RecnUMJ)
178 Input "'tat.» ",states$CRecnUM;)
188 Input "liP» ",lipsCR.cnuM)
1'8 Input "Phone» ", Phon.s (RecnuMJ
288 Print :Print .. 1t._miW·
218 Print Na"es$CRtcnUM;) ;print Addrs$CRtCnU";)
228 Print Citits$CRtcnu,,;);", ";States$CRecnu,,;);" ";lipsCRtcnUM)
238 Print Using "UUmIJmutl-ImW",Phon.sCRecnUM)
248 Prin1 :Input "C.la'''i#fjM,"n:'A ",Ans$
258 If CQns$:"Y") O·r (Ans$:"y"); R.1tI "do RPUY"
268 RPut U1,Naltll's$(RecnultI;J,Addrs$(RecnUItI;),citi.s$(RecnUM;'
278 Rput Ul"tates$(ReCnUItl;),lipSCRecnUMJ,Phon.sCR,cnUItI'
288 Else ;Print "Rt-enter rtcord";Goto 148
U8 Endif
388 NtXt RI![nUItI
318 Clos. #1lPrint ;Print "All Don."
328 End

Page 52 BASIC XE Reference Manual

Advanced Data Input/Output RGET

RGET

Format: RGET Jlchan, var [,var •.•]

RGET allows you to retrieve fixed-length records from the device OPENed on
channel chan, and assign the values to string or arithmetic variables. Note: the
Input data and the variable into which the data is stored must be of the same type
(I.e. they must both be string or both be arithmetic).

Note: when the data type Is string, then the DIMensioned length of the data string
must be equal to the DIMensioned length of the svar. Once the clata string has
been assigned to the svar, RGET sets the LEN length of the svar to the
actual length of the inputted data string (not the DIM length of the data string).

Warning: you may not RGET Into mvars or savars. You must RGET the field into a
temporary avarorsvar, and then transfer into the subscripted variable.

The following example RGETs 20 records of the form "Name", "Address", "City",
"State", Zip, Phone, and stores them in string and arithmetic arrays, dependent
upon the data type of the field:

J88 DiM Na.es$C28,38),Addrs$(28,38),CitifS$(28,28),States$(28,2)
118 DiN TnaNe$(38',Taddr$(38',TCity$C28',Tstate$(2'
128 Di. Zips(28),Phonfs(28)
138 CIOSf #1:0pfn #l,.,8,"D:fAIfNDS.DAT"
1.8 for Recnu.=1 To 28
J58 Agft UJ,TnaNe$,Taddr$ TCity$,Tstatf$,TZiP,TPhonf
168 S$(AfCnUNJ'=Tna .. $:Addrs$(Afcnu.;)=Taddr$:Cities$(AecnUM;):Tcity$
178 States$CAecnu.;)=Tstat.$IZipsCRecnu.)=TziP:PhonfsCAecnUM)=Tphone
188 Nut RfCnu.
1'1 Close U1:Print :Print "'ot filf"
281 At. ".ow that Wt hive records, let's show thf."
218 Input "Afc'ord to "iew? ",RfCnu.
221 If Afcnu.(>I:If Recnu.>21 Thfn 388
231 'osub U8
2.1 £ISf :AfM "show all rfcords"
258 for Afcnu.=l TO 28
261 ,osub 318
271 Nfxt R.cnu.
281 £ndif
2'8 'oto 218
388 End
311 Print NaMfs$CAfcnu.;)IPrint Addrs$(Recnu.;,
328 Print Citifs$(Recnu.;lI", ")states$(RfcnuM;l;" "IZipsCAecnu.)
338 Pri nt Using" CSIUSI/)SIUSII-USlUU", PhonfS CA.cnuMl I Print
H8 Return

BASIC XE Reference Manual Page 53

BSAVE
BLOAD

Forma t:
F.x II1lp Ie:

BSAVE

llSAVE aexpl,aexp2," fi I espec"
BSAVE $680,$6FF,"D:PAGP.FLJP.BIN"

Advanced Data Input/Output

BSAVE allows you to store a binary image in standard Atarl DOS LOA" format
(with header) so that you can later BLOAD it directly into the right place.
aexpl is the starting address of the region of memory you want to save, and
aexp2 is the ending address of the region. A total of aexp2-aexpl +1. bytes of
binary data are stored.

Technical Note: BSAVE saves the memory image as a single segment, with a single
header. No R UN or JNJT vector Is appended.

BLOAD

Format: BLOAD "til espec"
Example: BLOAD "D:PAGEFLJP.llJN"

BLOAD is the complementary statement to BSAVE because it allows you to load a
standard Atari DOS LOA D format binary file. It can also be used to load
USR routines you have written using M A C/65 (or some other Inferior assembler).

Warning: BLOAD performs no checks of the addresses specified in the segment
header(s). You can easily wipeout huge and important parts of memory with this
statement! ---

Technical Note: BLOAD will load binary files that are made up of any number of
segments. Jt wllliond but ignore RUN nnd/or INIT vectors.

Bonus: if your binary file has a flU N vector, you can execute it via
SET 8,O:A=USR(DPEEK($2EO».

Page 54 BASIC XE Reference Manual

Advanced Data Input/Output

Fonnat:
Exmnple:

NOTE (NO.)

NOTE #chan, avar1, avar2
100 NOTE #l,X,Y

NOTE, POINT
STATUS

NOTE stores the current disk sector number in avar! and the current byte ortset
within that sector In avar2. This is the current read or write position in the
specified file where the next byte to be read or written is located.

POINT (P.)

Ponnat: POINT #chan, avar1, avar2
Exmnple: 100 POINT #2, A, B

POINT sets the current disk sector to avarl, and the current byte number within
that sector to avar2. Essentially, it moves a software-controlled pointer to the
specified location in the file. This gives the user "random" access to the data
stored on a disk tile. The POINT and NOTE commands are discussed in more detail
in your DOS Manual.

Format:
F.xmnple:

STATUS #chan, avar
350 STATUS #l,Z

STATUS (ST.)

STATUS calls the status routine for the device OPENed on channel chan, and
stores the value returned In avar. This can be useful when denllng with devices
that produce special status values (e.g., R:).

Warning: if no rlevice is currently OPEN on chan, STATUS will stili try to do
something. What It will do depends on the last thing that was done on channel
chan, and can produce disastrous resul ts. We strongly recommend using XIO 13 on
channels which are not OPEN.

BASIC XE Reference Manual Page 55

XIO Advanced Data Input/Output

XIO (X.)

Format: XIO cmdno, #chan, aexpl, aexp2, "filespec"
Example: XIO 18,#6, 0, 0, "S:"

XIO Is a general input/output statement that allows you to access the special
capabUltic!I of the device f11espec. cmdno Is an aexp, and specifies the function
you wish the device to perform. aexpl and aexp2 are put in the aux1 !lnd !lux2
bytes of channel chan, and are dependent upon the function. A list of useful
cmdnos follows:

andno operation example
--3- Open Use OPEN instead

5 Get Text Use INPUT instead
7 Get Char Use GET or BGET instead
9 Put Text Use PRINT instead

11 Put Char Use PUT or BPUT Instead
12 Close Use CWSE instead
13 Status XIO 13,#6,O,O,"R4:"
17 Draw Line Use DRAWTO instead
18 Fi 11 XIO 18, #6 , 0, 0, " S:"
32 Rename File Use RENAME instead
33 Delete File Use ERASE Instead
35 Lock File Use PROTECT instead
36 Unlock File Usc UNPROTECT instead
37 Disk Point Use POINT instead
38 Disk Note Use NOTE instead

253 2.5 Format XIO 253,#1,$22,O,"D2:"
254 Di sk Format XIO 254,#1,O,O,"D2:"

Note: we strongly recommend that you use only cmdno's 13,18,253, and 254, since
BASIC XE has statements that perform all the others.

Page 56 BASIC XE Reference Manual

Managing DIsk Files

Managing Disk Files

DlR, PROTECT
UNPROTECT

The statements In this chapter allow you to perform DOS-type commands without
ever leaving BASIC XE. The statements are DIR, PROTECT, UNPROTECT,
RENAME, and ERASE.

Note: In the examples in this chapter, you will sometimes see the wildcard
characters • and? In the filespec. For Information on the use of these, see your
DOS manual.

Format:
Ex !I1lpl es :

DIR [" fli espec")
100 DIR "0:*.001"
DIR FILE$
DIR "D2:TEST?B*"

DIR

The DlR command shows a list of the disk files which match filespec, and Is similar
to the DOS XL DIR command. If no filespec Is given all files on 01: are displayed.
The first example will display all !lies on 01: with the "COM" extensIon. The
second example shows a string variable being used as filespec. ThIs Is legal, but
the string variable must contain a valid filespec, otherwise an error will occur.
The third example will display all !lies on the disk In drive 2 which match
TEST? .B*.

Note: OrR must be used as the last (or only) commAnd on II progllm line.

Format:
Ex!l1lples:

PRCYfECT "fli espec"
PROTECT "0:* • COO"

PROTECT

IOn PRCYfECT "D2:FILE.RXE"

PROTECT allows you to protect your disk files without going to DOS, and Is very
similar to the DOS XL PRO command.

Note: Atllrl DOS uses the terms 'LOCK' and 'UNLOCK' Instead of PROTECT and
UNPROTECT. They're just different names for the same Ides.

Format:
Ex !I1lpl es :

UNPROTECT (UNP.)

UNPRCYfECT "filespec"
100 UNPRCYfECT "D:DATA.OOl"
UNP. "02:* .*"

The UNPROTECT statement allows you to unprotect disk files which have been
protected using either the RASIC XE PROTECT statement or the DOS XL PRO
command, and Is similar to the DOS XL command UNProtect.

BASIC XE Reference Manual Page 57

RENAME
ERASE

Fonnat:
ExEl11pl e:

Managing Disk Files

RENAME

J!.ENAME "f II espec, f il enlme"
RENAME "1)2: OLDNAME. EXT, NEWNAME. EXT"

RENAME allows you to rename disk files directly from BASIC XE. Note: the
comma shown between filespec and filename 15 required.

Caution: the new filename cannot Include a device specifier (Dn:). Also, we
strongly suggest that you do not use wildcards when REN AMElng.

Fonnat: ERASE filespec
Examples: ERASE "D:* .IlAK"

ERASE "D2:TEST? • SAY"

ERASE

ERASE will erase any unprotected flies which match the given filespec. The first
example above would erase all files on the disk in drive 1 with the extension
"BAK". The second example would erase all flies matching TEST? .SAY on the disk
in drive 2. This command is similar to DOS XL's ERA.

Page 58 BASIC XE Reference Manual

Looping and Jumping Statements FOR/STEP/NEXT

LoopIng and JumpIng Statements

The statements discussed in this chapter allow you to have repetition and iteration
in your BASIC XE programs without a lot of trouble. The looping statements are
FOR and WHILE, and the jumping statement is GOTO. The POP statement is also
included because it directly affects the execution of the other three.

FOR / STEP / NEXT

Format: FOR avar=aexpl TO aexp? [STEP aexp~J
[statenents]
NEXT avar

The FOR statement is used to repeat a group of statements a specified number of
times. It does this by initializing the loop variable (avar) to the value aexpl. Each
time the NEXT avar statement Is encountered, avar is incremented by aexp3 if the
STEP option is used. If this option is not used, avar is incremented by 1. When
avar becomes greater than aexp2, the loop stops executing, and the program
proceeds to the statement Immediately following the NEXT avar. You can control
whether or not a FOR loop will execute at least once (a la Atari BASIC) using
SET 3,aexp.

FOR loops can be nested (one FOR loop within another). In this case, the
Innermost loop is completed before returning to the outer loop. The following
program is an example of nesting (notice how LIST indents loops to show the
statements within a loop):

10 for K=l To J
78 Pr i nt .i!M!l!X!JA "'. "'ill'" "; K
38 for V=l To 5 Step 2
48 Print· t Y Loop: ";Y;
58 lint Y
68 Print
78 lint II
88 End

The outer loop will complete three passes (X=l to :l). However, before this first
loop reaches its NEXT X statement, the program gives control to the inner loop.
Note that the NEXT statement for the inner loop must precede the
NEXT statement for the outer loop. In the example, the inner loop's number of
passes is determined by the STEP statement (STEP 2). Using this data, the
computer must complete three passes through the inner loop before the inner loop
counter (y) becomes greater than 5. The following is the output of this program
when it Is RUN:

Cilt!l!l:H 1
V Loop: 1 Y

ra:tlllJ ill 2
Loop: J V Loop: 5

V Loop: 1 V Loop: J V Loop: 5
CMi!i!JiiI J

Y Loop: 1 Y Loop: J Y Loop: 5

BASIC XE Reference Manual Page 59

WHILE/ENDWHILE Looping and Jumping Statements

WHILE / END WHILE

Fonnat: WHILE aexp
[statements]
ENrMIiLE

WHILE allows you a looping statement which continues execution conditionally.
So long as aexp is non-zero (It can be either positive or negative), Rll statements
between WHILE and ENDWHILE will be executed. Before each pass through the
statements in the loop, aexp is evaluated to determine whether loop execution
should continue or not. For example, WHILE 1 will execute forever, Rnd
WJlILE 0 will never execute. The following program is an example oC the
WHILE loop:

189 RMax=S:CMax=8:Currow=e:CUrCOI=8:found=e:Target=e
185 DiM "atrix(RMax,CMax)
118 While Currow<RMax And (Mot found)
128 Curcol=8
139 While CurcoJ(CMax And (Not found)
149 If "atriX(CurroW,CurCOJ)=Target Then found=!
158 Curcol=Curcol+1
169 EndWhil e
179 Currow=Currow+l
189 Endwhile
1'9 If found:Print "found ";Target;" at ";
288 Print ""atriX(";CUrrow-1;",";CurcOI-1;")"
218 ElSe :Print Target;" not found"
229 Endi f

Page 60 BASIC XE Reference Manual

Looping and Jumping Statements GOTO

GOTO (G.)

Fonnat: OJTO llneno

The GOTO command Is used to jump unconditionally to another part of the program
by specJ!ying a target line number (Hneno). Because there Is no way to return
from a GOTO, the statements which follow It will never be executed, unless of
course another GOTO jumps back to them. The following example program shows
several uses of GOTO:

188
111
128
138
HI
158
161
281
211
228
231
248
258
268
278
288
H8
388
311
328
338

Tr!/auin:118
Input "Gilll! ... a nUMl!r fro .. 1 to ,) ",Luck!/
If LUCkl/(1 Thl!n 118
If LUCkl/)' Thl!n Goto 118
If LUCkl/()Int(LUckI/J Thl!n Goto Trl/again
Print ,Print
Goto 218+LuCk!/*18
R... *** CHOO~E A NORD ***
LUCkl/$:"fitch":Goto 388
LUCk!/$:"PiPPin":Goto 388
Luc k!/$: .. ttandr i 11": Goto 388
LUCkI/S:"Zl!itgl!ist":Goto JI8
LuCk!/$:"Zlot!/":Goto 388
Luck!/S:"frI!5hl!t":Goto 381
LUCk!/$:"Cr05ier":Goto 388
LUCk!/S: .. lIroUgha :lioto 381
LUCk!/$:"Abattoir":lioto 388
Print .. Your lUCk,! crossword PUZZle word is:"
Tab (35-Len(Luc kl/$'J /2
Inll.rSI! :Print LUCkl/$:Mor .. aJ :print
lioto Trl/again

Note: any GOTO statement that jumps to a preceding line may result In an endless
loop.

Note: using anything other than
renumbering using RENUM difficult.
improved.

BASIC XE Reference Manual

a numeric constant for Hneno will make
However, readability may be markedly

Page 61

POP l.ooping and Jumping Statements

POP

Format: POP

To understand what POP does, we need to take a little journey Inside I1ARIC Xr. to
find out more about how loops work. When I1ASIC XF: sees a FOR, WHILE, or
GOSUB, It saves away Its current position In the program. That way, when it
reaches the NEXT, ENDWHrLE, or RETURN, It w1l1 know where to go back to.
Also, LOCAL saves the previous value of an aVllr when you make it private so that
it can later be restored. The place where I1ASIC: XE sav(>s these things Is call.,d
the program stack, Rnd Is really just a list. Putting something on the stRck Is
called 'pushing', and taking something orr is called 'popping', hence the command
POP suggests that It takes something off the stack. This Is exactly what It does,
and is very useful when you want

11 to jump out of a loop before It has executed its specified number of times,
2) to get out of a subroutine (GOSUB) which does not give control back to the

main program through the use of a RETURN, or
3) to restore the previous values of LOCAL avars, thus ending a

LOCAL region without an EXIT.

Warning: If you POP too many or too few Items off the stack It will cause an error
(13, 16, or 28, dependent upon what you left at the top of the stack).

The following examples illustrate these uses of POP:

18 for 1=1 To ,
21 Print I;
31 LocU I
41 I=R~ndoM(ll,"J
51 , Print" : ";1;
&I PoP
78 Print II : ";1
.1 lint I
'I ReM lines 21 and 31 May be swapped

1111 Print "lIt line 1111"
1111 Gosub 211
121 Print "lIt line 121"
131 End
1'1 ReM •••••••••• 11111111111111 •• 11 •••• 11.11 •••
2111 Print" At line ZII"
2111 Gosub 311
221 Print" lit line 2211"
2311 I;oto 211
2'1 ReM •••• 11 ••••••••• 11111111111111111111111111.1111
381 Print" At line 318"
318 for 1=1 To 5
328 Print" lit line 328"
338 If 1=1 lind flag Then Pop :Pop :Return
348 lint I
351 Print" lit line 358"
361 flag=1
378 Return

Page 62 BASIC XE Reference Manual

Conditional Statements IF/THEN

Conditional Statements

The statements discussed in this chapter allow you to execute parts of your
program only If the conditions you specify have been met. The conditional
statements are IF/THEN, IF/ELSE/ENDIF, and ON.

IF / THEN

Format: IF aexp THEN Illneno I
!statement[:statement ••• J

The IF/THEN conditional Is used when you want to execute a group of statements
only If certain conditions are met. These conditions may be either arithmetic or
logical. If the aexp following the IF Is true (non-zero), the program executes the
THEN part of the statement. If, however, aexp Is false (zero), the rest of the
statement Is ignored and program control passes to the next numbered line. When
THEN Is followed by a Ilne number (Uneno), execution continues at that program
line It aexp is true. Note: Uneno must be a constant (not an expression).

Several IF/THEN conditionals may be nested on the same line. In the example,
181 If K=5 Th.n R=':If Y=3 Th.n Goto 288
the statement R=9 wlll be executed if X=5, while the statement GOTO 200 will be
executed only if X=5 and Y=:l.

The following program demonstrates the IF/THEN conditional:

188 Graphics 8;Prin1 "If DE...,"
118 Input "fn1.r VUu. 1. .3» ",II
128 If 11=1 Th.n Print "On."
138 If 11=2 Th.n Print "Two"
141 If II=J Th.n Prin1 "Thr.,"
lSI If 11<1 Or 11)3 Th.n Print • .. 4o\'1.ft_'I1I1I.'
168 Go10 111
178 End

BASIC XI! Reference Manual Page 63

IF/ELSE/ENDIF

Fonnat: IF aexp
[s ta t611en ts 1
[ELSE
[stat611entsJ]
ENDIF

Conditional Statements

IF / ELSE / ENDIF

BASIC XE makes available an exceptionally powerful conditional capability via
IF / ELSE / ENDIF. If the expression aexp Is true (non-zero) then all the
statements between aexp and ELSE wl11 be executed, while the statements
between ELSE and ENDIF will be Skipped. If aexp is false (zero), then the
statements between aexp and ELSE wl11 be skipped, and those between ELSE and
ENDIF wl11 be executed . If ELSE is not used, this conditional acts just like a
multHlne IF/THEN with IF and ENDIF as delimiters.

Caution: the keyword THEN Is not part of the syntax of this conditional.

The following program illustrates IF / ELSE / ENDIF:

188 If 1<2
118 Print "This ";
128 If 2)3
138 Print "COMPuter ";
148 If 3(4
158 Print "is ";
168 Else
178 Print "broken!"
188 Endif
1'8 Else
288 Print "prOgraM ";
218 If 4)5
228 Print "is a-";
238 If 5(6
248 Print "boo-boo"
258 Endif
268 Else
278 Print "works ";
288 If 6>7
2'8 Print "poorly."
388 Else
318 Print "gr.at!"
328 Endif
338 Endi f
348 Endif
358 Else
368 Print "Kablooey!I!!!"
378 Endif

Page 64 BASIC XE Reference Manual

Conditional Sta tem en ts

Fonnat:

ON

ON aexp \('.()TO /linenolf,lineno2 .•• J
mSUB

ON

Note: GOSUB and GOTO may not be abbreviated when used in conjunction with
ON.

The ON statement allows conditional jumps and subroutine calls. The condition is
determined by aexp. If it is negative, an error results. If it is non-negative,
aexp is rounded to the nearest integer, and program control is channelled
according to the following table:

value Control goes to
0 Statement after ON
1 linenol
2 I ineno2

N linenoN
>N Statement after ON

"N" is the last line number in the list of Uneno's following the GOTO or GOSUB.
When ON/GOSUB is used, control returns to the statement foHowing t he
ON/GOSUB after the subroutine RETURNs.

The following program demonstrates the 0 N statement, both with GOTO and
GOSUB:

188 Graphics 2:Print #6;'1lfiM_J4 fILE RUIUfER"
118 Print #6
128 print 1161''0 run basiC x~ fil@":Print #6
138 Print fil"f) diSk dir.ctor\l":Print #6
148 Print 1t6;'~ quit"
158 Input "Vour Choic.? ",Pick
168 On ((Pick)3) Or (Pick:8" Goto 158
178 If Pick:3 Th~n Graphics 8:End
188 On Pick liosub 288,388
1'8 On Pick Goto 158,188
288 Trap 28.
218 Input "fil. lIaM? ",ff
228 If findtf$ ":",8':8:T$:"D:",f$
2311 fist' ITf:f$
248 f:ndi f
2S8 If findn$,",BKE",":8 Th.n T$:T$,",BIIE"
268 Print "Running ";T$;"",";:Run T$
278 R.turn
28 1 Trap 't Print "1t4.Mili'''.U''iErr(B)
n8 Rnurn
388 GraphiCs 8:Print "/Ill fill!s with' ,BilE' Extl!nd.r:"
311 Trap 368
328 Print IDir "D:*.BKE"
338 Print :Print "Press Hl!ID for Mnu"
348 If Pe.kt$d81f)&1 Tht'n 348
lS8 R.turn
368 Trap 8
378 If Err(8) 0136 Tht'n Print "lh.Miiili,I.#";ErrC8'
388 Cont

BASIC XE Reference Manual Page 65

Space For Your Notes Conditional Statements

Space For Your Notes

Page 66 BASIC XE Reference Manual

Handling Errors

H andllng Errors

TRAP
ERR

The statements and function In this chapter allow you to detect and resolve
run-time errors without causing program execution to halt. Tncluded are the
TRAP statement, the ERR function, and a discussion of the error handling
applications of CONT and STOP.

Format: TRAP Iineno
Example: 100 TRAP 2000

TRAP (T.)

The TRAP statement is used to direct the program to a specified line number If an
error Is detected. Without a TRAP the program stops executing when an error Is
encountered and displays an error message on the screen.

TRAP works for any error that may occur after it (the TRAP statement) has been
executed, but once an error has been detected and trapped, it Is necessary to reset
the error trapping with another TRAP statement. This resetting TRAP should be
done at the beginning of the error handling routine, to insure that the TRAP is
reset after each error.

To find out the error number and the line number on which the error occured, use
ER R, as described in the following section.

TRAP maybe disabled by executing a TRAP statement with an lineno value of 0 or
greater than 32767.

Examples of TRAP may be found in the program on the following page.

f ERR

Format: ERR(aexp)

This function allows you to find out the error number and line on which the error
occurred when you are writing your own error trapping routines. Using an aexp of
o will return the error number of the last run-time error, and an aexp of 1 will
return the program line on which the error occured. The results of using other
values of aexp are undefined.

Examples of ER R may be found in the program on the following page.

BASIC XII: Reference Manual Page 67

A Program Example Using TRAP and ERR
Using STOP and CONT in Error Handling

A Program Example Using TRAP and ERR

188 Deg
118 Print "Angle Sine CoSecant"
128 for 1=8 To 188 Step 15
131 Print Using"1mU U,"","", ",I,Sin(!),
U8 Trap 288
158 Print Using "mmu,~',1I5in(!)
168 lint I
178 End
188 ReM we get to line 281 if
1'8 ReM Sin(I) is equal to zero!
288 Print "undefined"
211 50to Err(1)+11

Using STOP It: CONT In Error Handling

lfandllng Errors

CONT can be very USE'ful In error handling because you need not fool around with
line numbers to continue program execution, In the abovE' example, exeC'ution
continues on the line following the error through the use of Ell R(1) and a GOTO.
If CONT Is used Instead, line 210 becomes much simpler:
218 Cont

The use of STO P In €'Tror handling Is limited but very useful. In fact, It Is not
error handllng at all; It Is error creation. When you are devE'loping a program, you
can put STOPs where the program should nE'ver see them. If you get a "Stopped at
Hneno", then you know you're doing something wrong.

Page 6R BASIC XE Reference Manual

Handling Strings

Randllng St rings

ASC , CRR$
LEN

This chapter discusses the functions In BASIC XE that are designed to make
manipulating string data quick and easy.

f ASC

Format: ASC(sexp)
Exmnple: 100 A=ASC(A$)

ASC returns the ATASCII numeric value of the first character In sexp. If A$=
"ABC", then ASC(A$) returns 65, and ASC(A$(2» returns 66.

Note: Appendix A contains a table of ATASCrr codes and characters.

Format: CHR$(aexp)
Examples: PRINT CHR$(65)

100 A$=Clffi$(65)

CRR$ returns the character (In string format) represented by tho ATASCII
numeric code aexp. Only one character is returned. In the above examples, the
letter A is returned. Using the ASC and CHR$ functions, the following program
prints the upper case and lower case letters of the alphabet:

11 for C=I To 25
21 Print Chr$CAscC"A")+C),Chr$(Asc("a") +C)
JI ."xt C

Note: there may be only one STR$ or CJJR$ in a logical comparison beoause
BASIC XE uses a single buffer to create the temporary string which both of these
functions use (e.g., IF CHR$(A)=CIIR$(B) ••• is always true, whether A and Jl are
equal or not.

f LEN

Format: LEN(sexp)

The LEN function returns the character length of sexp. This Information may thon
be printed or used later In a program. Tho length of a string variable Is simply the
element number of the last character currently in the string. Rtrlngs have a length
of 0 until charaoters have been stored in them.

BASIC XE Reference Manual Page 69

FIND
ADR

Format:
Example:

Handling Strings

f FIND

FIND(sexpl, sexp2, aexp)
PRINT F INO("ABCDXXXABC", "RC" ,N)

FIND Is an efficient, speedy way of determining whether any given substring is in
any given master string. FIND will search sexpl, starting at position aexp+l, for
the substring sexp2. If sexp2 is found, the function returns the position where it
was found, relative to the beginning of sexpl. If sexp2 is not found, a 0 is
returned.

In the example above, the following values would be PRINTed:
2 If N = 0 or 1
9 if N>=2 and N<9
o If N>=9

The following example shows an easy way to have a vector dependent upon a menu
choice:

18 Input ''!Bhange, ~ase, or [Jist? ",AS
28 On find("CEL",A$Cl,l),8) Goto 188.288.388
38 60to 18

This example Illustrates how changes to aexp can affect the results of FIND:
18 Input "A string, please - ",A$
28 for 5t=8 To Len[AS)-2
38 f=findCAS."A".5t)+1
48 If f=1 Then Print ""either 'AB' nor 'AC' wl!rl! found" End
58 If ASCf,f) ="B" Thl!n Print "found 'AB' at pos. U";f-l 5t=5t+l
68 If ASCf.f)="C" Thl!n Print "found 'AC' at pos. U";f-l 5t=5t+1
78 .. nt 5t

Format:
Examples:

ADR(sexp)
ADR(A$)
ADR(B$(5; »

f ADR

ADR returns the memory address of the string sexp. Knowing the address enables
you to use It In USR routines, BGET, BPUT, etc.

Warning: If you are in EXTENDed mode, ADR("strlng") returns an Improper value
bf)cause the string constant is copied out of the banked program memory Into a
temporary area. Because it's within a single statement,
J=Usr [Adr ("". L. Inc har stri ng"))
works. but
T=Adr("M.L. in char string") :J=Usr(l)
won't because It's two statements. If you use ADR("string") as In the first case
only, you can SET 15,1 so that BASIC XE won't force an error.

Page 70 BASIC XI'! Reference Manual

Handling Strings

Format:
Examples:

LEFT$(sexp, aexp)
10 A$=LEFT${"ABCDE",~)
20 PRINT LEFT$("ABCD" ,5)

LEFT$, MID$
RIGHT$

The LEFT$ function returns the leftmost aexp characters of the string sexp. If
aexp is greater than the number of characters in sexp, no error occurs and the
entire string sexp is returned .

In the first example, A$ is equated to "ABC", and in the second example, the
entire string" ADCD" is printed.

Format:
Example:

MID${sexp,Rexpl,aexp2)
A$=MID${" ADCDEFG", 2, 4)

MID$ allows you to get a substring from the middle of another string. The sub
string retrieved starts at the aexpl th character of sexp, and is aexp2 characters
long. If aexpl equals 0 an error occurs (since there is no oth character in a
string); if aexpl is greater than the LEN length of sexp, no error occurs (and no
characters are returned). aexp2 may be any positive integer, but if its value
makes the substring go beyond the LEN length of sexp, then the substring returned
ends at the end of sexp.

In the above example, A$ is equated to "DC DE".

Forma t:
F.xAmple:

RIGHT$(sexp,aexp)
A$=RIGHT$("123456",4)

r RIGHT$

The RIGHT$ function returns the rightmost aexp characters of sexp. If aexp Is
greRter than the number of characters In sexp, then the entire string sexp is
returned.

In the above example, A~. is equated to "345fl".

BASIC XI': Reference Manual Page 71

VAL, STR$

Fonnat:
EXlmple:

VAL(sexp)
100 A=VAL(A$)

f VAL

H andllng Strings
HEX$

VA L returns the numeric value represented by a string, providing that the string is
Indeed a string representation of a number (I.e. is a digit string). Using this
function, the computer can perform arithmetic operations on strings as shown in
the following example program:

18 8$="18881"
288='qr'Val'8$»
31 Print "Th. Squar. Root Of ",8$," is ";8

Note: VA L does not permit the use of an sexp thAt does not start with a digit (i.e.,
that cannot be Interpreted as a number). It can, however, Interpret floating point
numbers (e.g., VAL("lE5") would return the number 100,000). Also, non-numeric
characters following a valid digit string will be ignored (e.g.,
VAL("100ABC") returns 100).

Note: VA L . will convert hex digit strings.!!. they begin with a "$". (You can
disallow this via SET 13,0).

Format:
Example:

STR(aexp)
A$=STR$(650)

STR$ returns the string form of aexp. The above example would return the actuAl
number 650, but as the string "650".

Warning: may be only one STR$ or only one CHR$ in a logical comparison. See
CRR$ for more info.

Format: HEX$(aexp)
Exrenples: PRINT HF,X$(5000)

PRINT "$"jRIGHT$(HEX$(32) ,2)

The HEX$ function will convert aexp to a four digit hexaciecimal number in string
fonnat (the second eXAmple shows how to get A two digit hex number).

Note: no dollar sign ($) is placed in front of the hex digit string.

Page 72 BASIC XE Reference Manual

Using the Game Controllers

Using the Game Controllers

PADDLE, PTRIG
PEN, STICK

The functions discussed In this chapter allow you to access the paddle, joystick,
and light pen easily and quickly.

Fonnat:
Example:

PADDLE(aexp)
PRINT PADDLE(3)

f PADDLE

The PADDLE function returns the current value of the paddle In port aexp (0-3).
The value returned will be between! and 22~, Inclusive, with the value Increasing
as the paddle knob Is turned counterclockwise.

f PTRIG

Fonnat: PTRIG(aexp)
Example: 100 IF PTRIG(1)=0 THEN PRINT "Missile Fired!"

PTRIG returns a 0 it the trigger button of the paddle In port aexp (0-3) Is pressed.
Otherwise, it returns a value of 1.

f PEN

Format: PEN(aexp)
EX!n1pl e: PRINT "light pen at ";PEN(O);",";PEN(1)

The PEN function simply reads the A TA RI light pen registers and returns their
contents. If aexp is 0, the horizontal position Is returned; If aexp Is 1, the vertical
position Is returned.

f STICK

Fonnat: STICK(aexp)
Example: 100 PRINT STICK(l)

The STICK function returns the position value of the joystick In port aexp (0-1), as
defined In the following diagram:

*
81." 6

1.1.., 1.5 7

1.3

BASIC XI!: Reference Manual Page 73

HSTICK , VSTICK
STRIG

Format: HSTICK(aexp)

Using the Game Controllers

f HSTICK

The HSTIC K function returns an easily usable code for horizontal movement of a
given joystick. aexp is simply the number of the joystick port (0-1), and the values
returned (and their meanings) are as follows:

-1 if the joystick is pushed left
o if the joystick is centered

+1 if the joystick is pushed right

Here is an example of HSTICK in use:

18 L~t Dir=Hstick(8)
28 If Dir=-l Th.n Print "\+ Ll'n"
38 If Dir=8 Thl'n Print ". StoPPl'd"
48 If Dir=1 Thl'n Print ", .. Right"
58 &oto 18

f VSTICK

Format: VSTICK(aexp)

The VSTICK function returns an easily usable code for vertical movement of a
given joystick. aexp is simply the number of the joystick port (0-1), and the values
returned (and their meanings) are as follows:

- 1 if the joystick is pushed down
o if the joystick is centered

+1 If the joystick is pushed up

Here is an example of VSTICK in use:

18 ll't Dir=Vstick(8)
28 If Dir=-1 Th.n Print "\' Down"
38 If Dir=1 Th~n Print ". Stopp.d"
48 If Oir=1 Th~n Print "", Up"
58 Goto 11

r STRIG

Formnt: STRIG(aexp)
Exrunple: 100 IF STRIG(l)=0 THEN PRINT "Fire Torpedo"

The STRIG function works the same as the PTRIG function, except that it is used
with the joysticks instead of the paddles. aexp specifies the joystick port (0-1).

Page 74 BASIC XE Reference Manual

Graphics

Graphics

Introducing Atarl Graphics
Mode 0

This chapter describes the BASIC XE statements that allow you to manipulate the
wide variety of screen graphics available on the Atari personal computers. Before
going Into the graphics commands, a little background about the modes available
would be useful.

Introducing A tarl Graphics

The table below summarize s the g raphics modes available via BASIC XE. A quick
glance down the "Type" column will show you that the Atarl supports two types of
graphics, text and grid. In text graphics e ach pixel represents an A TA sell
character, while In the grid modes a pixel r e presents a box of color. The size of a
pixel depends upon the graphics mode. In all graphics modes, position 0,0 Is at the
upper left corner of the graphics area; moving right Increases the column value,
and moving down Increases the row value . The diagram at the end of this section
Illustrates this coordinate system visually.

If you look at the column headings In the table, you will notice two" Rows"
columns. "Split Rows" is the numbcr of rows when you are using the graphics mode
In conjunction with a text window, and "Full Rows" refers to the number of rows
when used without the text window.

Following the tabl e are short descriptions of these graphics modes.

Mode Type
--0- Text

1 Tex t
2 Text
3 Grid
4 Grid
5 Gri d
6 Gr id
7 Grl<l
8 Grid
9 Gr 1<1

10 Gr i d
11 Grid
12
13
14
15

Text
Te x t
Grid
Grid

Co I \JT1ns
40
20
20
40
80
80

160
1 60
320

80
80
80
40
40

HO
160

SpIlt Full
Rows Rows Colors
NTA 24 -----r:T

20
10
20
40
40
80
AO

160
N/A
N/A
N/A

20
10

160
lAO

24
12
24
48
48
96
96

1 92
1H2
19?
192

24
12

t 92
192

5
5
4
2
4
2
4
1.5

16
9

16
4-5
4-5

2
4

Mode 0: this mode is the 1 color, 2 luminance (brightness) de fault mode for Atarl
Personal Computers. It contains a 24 line by 40 character screen matrix. The
default margin settings of 2 and 39 allow 38 characters per line. Margins may be
changed by POKElng LIJIARGN and RMARGN (82 and 83). ~omesystemshave
different margin default settings. The color of the characters Is determined by
the background color. Only the luminance of the characte rs can be different.

BASIC XE Reference Manual Page 75

Introducing Atari Graphics
Modes 1 thru R, 12 thru 15

Graphics

Modes 1 and 2: these two 5-color modes are text modes. Characters in morle 1 are
twice the width of those in mode 0, but Ilre the same height, while those in mode 2
are twice the width and twice the height of those in mode O. In the split-screen
mode, PRINT will print data in the text window, and PRINT #6 will print data in
the mode 1 or 2 graphics window.

The default colors depend on the type of character Input, as defined in the
following table:

Character Type
0 •• 9 & A •• Z
Cntl Chrs & a •• z
Inverse 0 •• 9 & A .. Z
Inverse CntI Chrs & a •. z
Playfleld and Harder

SETCOWR
Register

o
1
2
3
4

Note: see SETCOLO R to change character colors.

Default Color
Orange
Light Green
Dark Hlue
Red
III ack

Unless otherwise specified, all characters are displayed In uppercase non-Inverse
form. To print lowercase letters and graphics characters, use a POKE $2F4,$E2.
To return to upper case, use POKE $ZF4,$EO.

Modes 3, 5, 7, and 15: these four 4 color grid modes are also split-screen displays
In their default state, but may be changed to full screen by adding 16 to the mode
number. Modes 3, 5, and 7 differ only in grid size. In mode 15 the pixels are
smallest, thereby giving the highest resolution.

Modes 4, 6, and 14: these three 2-color grid modes have an aclvantage over the
4-color grid modes In that they require less RAM space. Therefore, they may be
used when only two colors are neeclecl and RAM is getting crowded.

Mode 8: this grid mode gives the highest resolution of all. As It takes a lot of RAM
to obtain this kind of resolution, it can only accommodate a maximum of one color
and two different luminances, as mode O.

Modes 12 and 13: these two text modes are very special. Instead of using single
bits within a characters definition In the character set to determine how to
represent that character, they use bit pRirs and interpret them as colors, as
follows:

Hit SETCOLOR
Image Register
~ --4--

01 0
10 1
11 2 / 3*

* If the character Is In inverse video, register 3 Is used, otherwise register 2 Is
used. This enables you to have 5 color on the screen at one time, although you
may have only 4 colors in a single character.

Page 76 BASIC XE Reference Manual

Graphics Introducing Atarl Graphics
Modes 9, 10, and 11

Modes 9,10, and 11: these are the GTIA modes, lind ar" somewhat different trom
all the other modes. Note that these modes do not allow a text window. Mode 9 is
a one color, 16 luminance mode. The main color Is set by the background color,
and the luminance values are determin ed by the Information In the screen memory
Itselt. Each pixel Is four bits wide, Rllowlng tor 16 differ ent values (0-15). These
values are Interpreted as the luminance of the bllse color for thRt pixel. Mode
11 Is similar to mode 9 In thRt the color Information Is In the screen memory itself,
but the Information for each pIxel Is Interpreted as a color Instead of a luminance.
Thus there are 16 colors, all of the same luminance. The luminance is set by the
luminance of the background color (default is 6). Mode 10 is somewhat of a
crossbreed of the other two GTIA modes and the normal modes in that it offers
lots of colors (like the GTJA modes) and uses the color registers (like the normRI
modes). However, since mode 10 allows 9 colors, it must use the player color
registers as well as the other color registers. The following table shows how the
pIxel values rela te to the color registers and what BASIC XE command maybe
used to set each color register.

Pixel System Reg. BASIC XE
Value Register Addr Statement
-0- PCOLRO 704 PMCOLOR 0, Rexp

1 PCOLRI 705 PMCOLOR l,aexp
2 PCOLR2 706 PMCOLOR 2,aexp
3 PCOLR3 707 PMCOLOR 3, aexp
4 COLORO 708 SETCOLOR O,Rexp
5 COLORl 709 SETCOLOR l,aexp
6 COLOR 2 710 SETCOLOR 2,aexp
7 COLOR3 711 SETCOLOR 3,aexp
8 COLOR4 712 SETCOLOR 4,aexp

"upper Lef't (9.9)

GRAPHXC5 ..

Tex't Window

BASIC XE Reference Manual Page 77

GRAPHICS
SETCOLOR

Fonnat:
Example:

GRAPHICS aexp
GRAPIIICS 2

GRAPHICS (GR.)

Graphics

The GRAPHICS statement is used to select one of the graphics modes discussed
above. It automatically opens the graphics area of the screen (S:) on channel #6 .
As a result of this, It is not necessary to specify a channel number when you want
to PRINT to the text window, since It is still open on channel #0. aexp Is the
mode number as used in the table at the start of this chapter, and must be positive.

Modes 0, 9, 10, and 11 are full-screen display only, while modes 1. through R ore
default to split-screen displays. To override the split-screen, add 16 to the mode
number (aexp). Adding 32 prevents GRAPHICS from clearing the screen memory.

Fonnat:
Exampl e :

StTCOLOR (SE.)

SETCOLOR aexp1,aexp2,aexp~

100 SETCOLOR 0,1,4

StTCOLOR is used to set the hue and luminance of one of the color registers.
aexpl is the number of the color register (values 0-4 legaJ) , aexp2 is the hue (see
following table), and aexp3 is the luminance (0-14, even numbers only, are valid).
the larger aexp3 is, the brighter the color. The following table shows the
aexp2 values and corresponding colors:

aexp2 Color aexp2 Color
0 Gray 8 Rlue
1 Gold 9 Light Rl ue
2 Orange 10 Turquoise
3 Red-Orange 11 Green-BI ue
4 Pink 12 Green
fi Violet 13 Yellow-Green
R Blue-Violet 14 Orange-Green
7 III ue 15 Light Orange

Note: actual colors wlll vary with type and adjustment of TV or monitor used.

The following table shows the default values for the five StTCOLOR registers:

Reg Value Color LtJ'Tl Color
-0- $28 -2- -8- Orange

$CA 12 10 Green
2 $~4 9 4 Dark Blue
~ $46 4 6 Pink-Red
4 $00 0 0 Black

StTCOLOR uses values 0 to 4 to specify the color register, while COLOR uses
dlCCerent values. Translation between the two can be confusing, so careful study
of the tAble on the following page is advised.

Page 78 BASIC XE Reference Manual

Graphics SETCOLOR/COLOR Table
COLOR

SETCOLOR / COLOR Table

COLOR
GR Hod. value

e
and til COTOR

lex v~ ue
wlnd~s piCks

~~r
PLOT,

1,2 DRAW,
.tc

~, J~ ~
~ ,6, 14 l

8 l
8 f .15

9 ~Icks ix.1
Lum

Fonnat:
Exanples:

SE. Description
reg and Comments GR Hode

~
~haracter L~minance
F Color & har Hu.

Border Color

i e .. 9, A'tf 18
a .. z, CN A .. Z

~t:~A Bfo~J··g a d or er

1 Pixel Plxe
ix, ~Ixe , PF, & Border

11
8 Pixel
4 Pi xel , PF, & Border

~ P~X~I Lumin.ncy P olorb PIX. Hue
Bor er C lor

4 PF & ~or~tr Color, Hue 0 a Pixels 12,13
NOT~I R~?4 rum ORt d

WI h xf Lum 0
ge I fin aLum .

COLOR (C.)

COLOR aexp
110 COLOR ASC("A")
COLOn 3

COLOR SE. Description
value reg an d Comlllt n t s

..I!
PF and Border

rut
Pixel Plxe
Pixel 8 Plxe

5, I I Plxe
6'1 i Pixe l
~!. 1 ~Ixe Ixe

!Ic~~ EF & ?or~rr COI~r, 4
U 0 a I xe •

Ixet NO~E: R~94 ~u. ~td
Hut wi Ih Ix tl Hu. 0 e .• 5 get final Hut.

COT OR y 8it ~air Bl 'I I I r I ptc~~ 2 81 Pair 11/ if chr
chr ~s N~RHAL v d,? to 3 ita i r 11, I chr

bW: ~? INV~RSi video.
4 It Pllr 8

etc

The COLO R statement lets you choose which color wl11 be used Cor all subsequent
PLOTs and DR A WTOs. The aexp value chooses the color and so must be n positive
Integer 0 •• 255. The color you get Is depend ent upon the graphles mode you're In,
as described In the table above.

Note: In text modes 0, J, and 2, the number can be from 0 through 255 fR bits) and
determines the character to be displayed (and its color In modes I "- 1.).

Note: when IlASle XE Is first powered up COLOR 0 is the default.

BASIC XR Reference Manual Page 79

PLOT, DRA WTO
POSITION, LOCATE

Fonnat:
EXll11pl e :

PLOT aexpl, aexp2
100 PLOT 5,5

Graphics

PLOT (PL.)

The PLOT command is used to plot a pixel in the graphics window. aexpl speclCles
the column (X-coordinate) of the pixel, and aexp2 specifies the row
(Y-coordinate). The color of the plotted point is determined by the last
COLOR statement executed. To change this color (and the color of the PLOTted
point) use SETCOLOR. Valid pixel coordinates are dependent on the graphics
mode being used. The range of points begins at (0,0), and extends to (columns in
mode)-l in the x direction, and (rows in mode)-l in the y direction.

Fonnat:
Example:

DRAWfO aexpJ, aexp?
100 DRAWTO 10,8

DRA WTO (DR.)

The D RA WTO statement draws a line from the current position of the graphics
cursor (set by a previous PLOT, POSITION, or DRAWTO) to the location
(aexpl,aexp2). aexpl represents the X coordinate (column) and aexp2 represents
the Y-coordlnate (row). The color of the line is determined by the last
COLOR statement.

Fonnat:
EXllllp Ie:

POSITION (POS.)

POSITION nexpl,aexp2
100 POSITION 0,0

POSITION places the invisible graphics cursor at the location (aexpl,aexp2) on the
screen, and may be used in all graphics modes. In mode 0 only, POSITION affects
the text cursor, not thc graphics cursor. --

Note: the cursor does not actually move untll the next command that uses the
cursor.

Fonnat:
Ex IIllp I e :

LOCATE (LOC.)

LOCATE aexpl,aexp2,avar
150 LOCATE l.t,15,X

The LOCATE statement retrieves the value of the pixel at coordinates
(aexpl,aexp2), and stores it in aver.

Page 80 BASIC XE Reference Manual

Graphics XIO Fill

XIO (X.) Fill

FOITnat: XIO 18,#6,0,0,"S:"

This special application of the XIO statement fills an area on the screen between
previously PLOTted and DRAWTOed bounds with a non-zero COLOR value. The
zeroes in the XIO are used as dummies, but are required. The following steps illus
trate the fill process:

1. Pick the COLOR.
2. PLOT bottom right corner.
~. DR A WTO upper right corner.
4. DRA WTO upper left corner.
5. POSITIO N the cursor at the lower left corner.
6. POKE address 765 with the fill COLOR value.
7. Make the XIO Fill call.

This method Is used to fill each horizontal line from top to bottom of the specified
area. The flll starts a t the left and proceeds across the line to the right un til It
reaches a pixel which contains non-zero data (w!ll wraparound if necessary). This
means that XIO FUl cannot be used to change an area which has been fll1ed in with
a non-zero value, liS the !ill will stop.

Warning: XIO Fill wl1l go Into an infinite loop If you attempt to put COLO R 0 on a
llne which has no non-zero pixels. Pressing <RREAK> or <SYSTEM llESET> can be
used to stop the fill jf this happens.

BASIC XE Reference Manual Page 81

Space For Your Notes Graphics

Space For Your Notes

Page 82 BASIC XE Reference Manual

Player/Misslle Graphics introducing P 1M Graphics

Player/Missile Graphics

This chapter describes the Bft SIC XE commands and functions used to access the
Atarl's Player-Missile Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMG") represent a portion of the Atari hardware totally
Ignored by Atari BASIC and Atarl as. Rven the screen handler (the S: device)
knows nothing about PM G.

BA SIC XE goes a long way toward remedying these omissions by adding seven PM G
statements and two PM G functions to the alreRdy c omprehensive Atari graphics.
In addition, four other statements and two functions have significant uses in PMG
and wlII be discussed In this chapter.

Introducing P/M Graphics

For a complete technical discussion of PMG, and to learn ot even more PMC
"tricks" than are Included In BASIC XE, read the Atarl document entitled" Atar!
400/800 Hardware Manual" (Atarl part number C0165fi5, Fev. t or later).

We stated above that the S: device driver knows nothing of PMC, and In a sense
this Is proper: the hardware mechanisms that Implement PMG are, for virtually all
purposes, completely separate and distinct from the "playfleld" graphics supported
by S:. For ex ample, the size, position, and color of players on the video screen are
completely Independ ent of the GRAPHICS mode currently active. In Atar! (and
now BASIC XE) parlance, a "player" Is simply a contiguous group of memory cells
displayed as a vprtical stripe on the screen. Sounds dull? Consider: each player
(there are tour) maybe "painted" In any of the 128 colors availsble on the Atarl
(see SETCOLOR tor spec ific colors). Within the vertical stripe , each hit set to I
paints the player's color in the corresponding pixel, while eac h bit set to 0 paints
no color at all! That Is, any 0 bit In a playe r stripe has no effect on the underlying
playfield display.

Why a vertical stripe? Pefer to the figure at the end of this section for a rough
Idea of the player concept. If we define a shape within the bounds of this stripe
(by changing some of the player's bits to 1 's), we may then move the stripe
anywhere horizontally by n simple register POKE (or via the PMMOVE state ment in
BASIC XE). We may mov e the player vertica lly by doing a simple circular shift on
the contiguous memory block representing the plnyer (again, the PMMOVE state
ment simplifies this process).

To aim pllfy:
A player Is act,lIally seen as a stripe on the screen 8 pixels wide by 128 (or
256, see below) pixels high. Within this stripe, you can POKE or
MOVE bytes to establish whnt Is essentially a tall, skinny picture (though
much of the picture m Ry consist of 0 bits, In which case the background
"shows through"). Using PMMOVE, you may then move this player to any
horizontal or vertical location on the screen.

BASIC XE Reference Manual Page R3

P/M Graphics Conventions Player/ ~'issilc Graphics

To complicate:
For each of the four players there is a corresponding "missile" available.
Missiles are exactly like players except that:

1) they are only 2 bits wide, and all four missile share a single block
of memory.
2) each 2 bit sub-stripe has an independE'nt horizontal position.
3) a missile always has the same color as its parent player.

Again, by using the BASIC XE statements (MISSILE and PMMOVE, for E'x am pie) ,
you the programmer need not be too aware of the mechanisms of PM G.

Upos db 1 .-- sg 1

J.6-" ~3Z
"pos Hpos

48-+ +-288

·:ii:· t--P1ayer Shape
- J. bi~s show

~"P.S.H. HZ~ 224p~·r
Playfield Area.t J.27 L-- 255

P/M Graphics Conventions

1. Players are numbered from 0 through a. Each player has a corresponding missile
whose number is 4 greater then that of its parent player, thus missiles are
numbered 4 through 7. In the BUMP function, the "playfields" Ilre actually the
colors as defined by SETCOLOR, but are 8 grater than the SETCOLOR register
value, and so are numbered 8 - 11.

~ There Is some Inconsistency In which way Is "up". PLOT, DRAWTO, etc. are
aware that 0,0 is the top left of the screen and that vertical position numbering
Increases as you go down the screen. PMMOVE and VSTICK, however, do only
relatlvl' screen positioning, and define "+" to be up and "-" to be down.

3. "pmnum" is an abbreviation for PlaYE'r-Missile Number and must be a number
from 0 to 3 (for players) or 4 to 7 (for missiles).

Page 84 BASIC XE Reference Manual

Player/ r,liss!le Graphics PMGRAPHICS

PMGRAPHICS (PMG.)

Fonnat: PMGRAPfJICS aexp
Ex Inlp I e: PMG. 2

This statement is used to enable or disable the Player/Missile Graphics system.
aexp should evaluate to 0,1, or 2, as follows:

o - Turn off PII1G .
1 - Enable PMG, single line resolution
2 - Enable PMG, double line resolution

Single and Double line resolution (hereafter refered to as "PH G Modes") refer to
the height which a byte In the player "stripe" occupies - either one or two
television scanllnes(GRAPHICS 7haspixels 2 scan lines high, like PMG.2, and
GRAPHICS 15 has pixels 1 scan line high, like PMG. 1). The secondary Implication
of single line versus double line resolution Is that single line resolution requires
twice as much memory space as double line - 256 bytes per player versus 128
bytes. The following diagram shows PMG memory usage in BASIC XE, but you
really need not be aware of the mechanics if you use the PMADR function:

Curr~nt GRAPH ICS Hod.

.$488

.$388

.$388

.$288

.$288

.$188

PHBASE

NOTE:

PHG. 2

PI aYH3

Playpr2

Playpr 1

Playpr9

H3 I H2 I Ht I He

HENTOP <$2E5) points
to the bottom of the
missihs.

BASIC XE Reference Manual

PHG.

Playpr3

Playpr2

PI and

Playpr9

Ht I H2 I H3 I H4

.$888

.$798

+$689

.$599

.$499

+$399

PHBASE

Page 85

PMCOLOR
PMMOVE

PMCOLOR (PMCO.)

Fonnat: !'MCOLOR pnmm,aexpl,aexp2
Example: PMCOLOR 2,12,8

Player/ Missile Graphics

PMCOLOR is identical to SETCOLOR in usage except tha t a P/M color register
rather than a playfield graphics color register is set to hue aexpl and luminance
aexp2. Note: there is no correspondence in PMG to the COLOR statement of
playfleld graphics - none is necessary since each player has its own color.

The example above would set player 2 and missile 6 to a medium (luminance R)
green (hue 12).

Note: PM G has ~ de!aul t colors set on power-up or < S YS TEM RES ET>.

PMMOVE

Fonnat: PMMOVE pnnum [,aexplJ [;aexp2]
Examples: PMMOVE 0,120;1

PMMOVE 1, RO
PMMOVE 4;-3

Once a player or missile hAs been "defined" (via POKE, MOVE, GET, BGRT, or
MISSILE), the truly unique features of PMG under RASIC XE maybe utilized. With
PM MOVE, you may position e a ch P/M shape anywhere on the screen Independently
In the blink of an eye. Because of the hardware implementation, though, there is a
dl!!erence In how horizontal and vertical positions are specified.

aexpl is taken to be the absolute position of the left edge of the "stripe" to be
displayed. This position ranges from 0 to 255, though the lowest and highest
positions in this range fire beyond the edges of the display screen. Note: changing
a playe r's width (see PMWIDTH) will not change the position of Its left edge, hut
will expand the playe r to the right.

aexp2 Is a relative vertical move ment specifier . Recall that a "stripe" of player Is
128 or 256 bytes of memory. Vertical movement must be accomplished by a c tual
movement of the bytes within the stripe - towards either higher memory (down the
screen) or lower memory (up the screen). RASlC XE allows you to specify a
v e rtical movement betwe en -255 (down 255 pixels) and +255 (up 255 pixels),
inclusive.

Note: the +/- convention on vertical movem ent conforms to the value returned by
VSTIC K. For example, PMMOVE 2;VSTICK(2) will move player 2 up or down (or
not move him) in accordance with the joystick position.

Note: SET 7,aexp may he used to tell PMMOVE whether a P/M should "wrap
around" (trom bottom of screen to top of screen or vice versa) or should disappear
as It scrolls or! the screen.

Page 86 BASIC XE Reference Manual

Player/ Missile Graphics

Fonnat:
Example:

MISSILE (MIS.)

MISSILE pmnum,aexpl,aexp?
MISSILE 4,48,~

MISSILE
PMWJDTH

The MISSILE statem ent allows an easy way for a parent player to "shoot" a missile.
pmnum is the missile number (4-7), aexpl specifies the absolute vertical position of
the beginning of the missile (0 Is the top of missile memory), and aexp2 specifies
the vertical height of the missile. For example, MISSILE 4,64,3 would place a
missile 3 PM G pixels high at pixel 64 from the top.

Note: MISSILE does not simply turn on the bits corresponding to the position
specified. Instead, the hits s pecified are exclusive-or'ed with the current missile
memory. This allows you to erase the previous missile pmnum when creating
another. For example:
18 Missil •• ,.8,1
28 Missilf ','1,1

The first statement creates a missile 1 PMG pixel high at vertical position 40. The
second statement erases the first missile while creating another 1 PM G pixel
missile at vertical position 4 t, thus giving the effect of a moving missile .

Fonnat:
Ex amp I e:

PMWIDTH pmntm , aexp
PMWIDTH I , ?

PMWJDTH (PMW.)

Just as PMGRAPHICs Allows you to select single or double pixel height,
PMWJDTH allows you to specify t he screen width of players and missiles.
However, where PMGRAPHICs selects the vertical resolution mod e for all players
and missiles, PMWJDTII allows the width of each player or missile to be specified
separately. aexp is used for the width and should have a value of 1, 2, or 4 -
representing the number of color clocks (equiVAlent to A pixel width In GR. 7) wide
each bit in a player definition will be.

Note: PMG.2 And PMWIDT II 1 combine to Allow eAch bit of A plAyer d e finition to
be equlvnlent In size to a GR. 7 pixel, while PMG. 1 And PMWJDTH 1 combine to be
equivalent to a GR. 15 pixel - not Altogether accidental occurences.

Note: although players may be made wider with PMWIDTII, the resolution then
sutters. Wider high-resolution "players" may be made by placing two or more
separate players side-by-slde (as In the second eXAmple program at the end of this
chapter).

BASIC XI Reference Manual PAge 87

PMCLR , BUMP
HlTCLR

Fonnat:
Example:

PMCLR pnnun
PMCLR 4

Player/Missile Graphics

PMCLR (PMC.)

PMCLR "clears" a player or missile area to all zero bytes, thus "erasing" the P/"'.
PMCLR Is aware of what PMG mode is active and clears only the appropriate
amount of memory. Caution: pmnum values 4 through 7 all produce the same
action - all missiles are cleared, not just the one specified. To clear a single
miSSile, try SET 7,0 : PMMOVE Nj255.

f BUMP

Fonnat: BUMP (pnnun, aex p)
Example: IF BUMP(4,l) THEN B=BUMP(0,8)

BUMP accesses the P/'" collision registers of the Atari and returns a 1 (collision
occurred) or 0 (no coil ision occurred) as appropriate Cor the pair of objects
specified. Note that the second parameter (aexp) mAy be either a player number
or playfield number (see the section on PM G conventions, above). Valid BUMPs:

Player to Player:
Player to Playfield:
Missile to Player:
Missile to Piayfield:

BUMP(O-3,O-~)

BLMP(O-~, 9-11)
RtIMP(4-7,O-3)
BUMP(4-7,R-ll)

Note: BUMP{p,p), where the p's are 0 through 3 and identical, always returns 0
(i.e. a player can't coliirle with Itself).

Note: we advise thAt you reset the collision rcgisters if you have not checked them
in a long time or after you are through checking them at any given point in a
program. You can do thIs using HITCLR.

HITCLR

Format: HITCLR
Example: 100 HITCLR

HITC L R resets the collision registers used by BUMP, thus avoiding spurious
collision readings. We suggest that you use HITCLR just before you do something
that might create a collision (move or create a PI/I, change the play!ield, etc.).
Alternatively, you could use HITCLR immediately after you check Cor collisions
(using BUMP).

Page 88 BASIC XE Reference Manual

Player/ Mlsslle Graphics

Format:
Ex IrnP I e:

PMADR(pnnun)
PO=PMAPR(O)

PMADR, Using POKE and PEEK with P/M's
Using MOVE, BGET and BPUT with P/M's

fPMADR

The PM AD R function returns the memory andress of any player or missile. It Is
useful when you wish to MOVE, POKE, BGET, etc., data to (or from) a player area.
Note: PMADR(m) - where m Is a missile number (4 through 7) - returns the same
address for all m IssUes.

UsIng POKE and PEEK with P/M's

One of the most common ways to put player data Into a player stripe may well be
to use POKE. In conjunction with PMADR, It Is easy to write understandable
player loading routines, for example:
11 for Loc:48 To 52
29 R.ad AIPok. PMadr(I)+Loc,A
JI .ut Loc
41 Da1a $',,$88,$FF,$88,$"

PEEK might be used to find out what data Is In a particular player location.

Using MOVE with P/M's

MOVE Is an efficient way to load a large player and/or move a player vertically by
a large amount. This ability to MOVE data either upwards or downwards allows for
interesting possibilities. Also, it would be easy to have several player shapes
contained in stripes and then MOVEd Into place at wll!. For example,
Kav. AdrCA$),PMadr(2),128
could mov e an entire douhle line resolution player from A$ to player 2, and
POk. P~drCl),$ff:KoV' PMadr(1),PMadrC1J+1,127
would fill player I's stripe with all "on" bits, creating a solid stripe on the screen.

Using BGET and BPUT with P/M's

As with MOVE, B6ET may be used to fill a player memory quickly with a player
shape. The difference is that BGET may obtain a player directly from the disk!
For example,
89.1 UJ,PMadrCI),$81
would get A PMG .2 mode player from the disk file OPENed on channel 3, and
89.1 U4,PMadr(4',$511
would fill all the missiles and players in PMG.I mode - with a single stAtement!

BPUT would probably be most commonly used during program development to save
a player shape (or shapes) to a file for iater retrieval by BGET.

BASIC XE Reference Manual Page 89

Using USR with P/M's Player/ "'Issil e Graphics
Two P/M Graphics Programs

Using USR with P/M's

Because of USR 's ability to pass parameters to an assembly language routine, PM G
functions (written in assembly language) can be Incorporated easily into to
BASIC XE. For example,
*=UsrCPMblink,PMadr(2) ,$81)
might call an assembly language program (at address PMB LIN K) to blink player 2,
whose size Is 12R bytes.

188
118
128
138
HI
15.
16.
178
111. n.
288
218
221
231
241
251
261
271
281
HI
388
318
328
UI
348
358
361
378
388
n8

.. " 418
428
438
448
.. 58
.. 68 47.
488

Two PI'" Graphics Programs

S.tcolor 2,8,8:R.M "Not.: still in 'R
PMgraphics 2:RpM "doublp linp rps"
Lpt Hidth=8:V= .. 8:ReM "initializing"
PMelr I:PMclr ":RI'M "clpar pla!ll'r I and .. iIIUI' I"
PMeolor ',13,8IRI'M "a nicp grppn pla!ll'r"
P=PMadrC.J:A ... "gpts addrl'ss of pla!ler 8"
for J=ptv To ptVt .. :RPM "a 5 Plp .. ent pla!lpr"

Rpad III:RpM "sep below for DATA sch ... p"
Poke J,III:ReM "actuall!l setting up"

Next I
for X:;:l To 121:RpM "pla!ler MOVPMent loop"

p_v, 8,X:RpM "Moves pta!ler horizontilll!l"
Sound I,Xtll,8,15IRp .. "just .. aking so .. e noise"

Nut X
Missilt! I,V,lIReM "a one-high Missile at top of pla!ler"
Missile 8,Vt 2,I:Re .. "another, in .. iddlt! of pla!ler"
Missile I,Vt",l:RpM "and at botto .. of pla!lpr"
for 11=127 To 255:R, .. " .. issilp MOveMl!n1 loop"

PM..oV' ",X:RPM "Moves Missile I"
Sound 1,255-11,11,15
If CX&n=7:ReM "euer!l eighth horiz, position"

MiSsile 8,V,5:ApM "!IOU haup to spe this to bPlipv, it"
Endif :RPM "!IOU could hau, had an ELSE, of course"

Next "
PMOU. 8,8:ReM "SO width dOl!'sn't change on scr.en"
Width=Wid1ht2:Ae .. "wl!"ll M8k. thp pla!ll!'r widl!'r"
Jf Width) .. Thl!'n Width=8
PMwidth I,Width:Re .. nth. n,w width"
PMClr .. :ReM "no Mor. Mis.iU"
'oto 211:ReM "do it all again"
R.M
RPM "**** thp pla!lpr's shapp DATA ****"
RPM" 8 .. 218421"

ReM "$" ., ,.1 " RPM "$8D. II "
AeM "Sff "
RI'M "SliD . _ . "
RI'M "$" 1., • .. 1 "
Data $',,$BD,$ff,$BD,$"

Notice how the data for the player shape is built up - draw a picture on an R-wlde
by n-high piece of grid paper, filling In whole cells. Call fIllf'd in cells '1.', and
empty cells '0'. Convert the l's and O's to hex notation and, viola! -- you have
your player.

This program will run noticably faster if you use multiple statements per line. It
was written as above for clarity, only.

Page 90 BASIC XE Reference Manual

Player/ Missile Graphics Two P/M Graphics Programs

A more complicated program, sparsely c ommented.

188
111
121
nl
UI
lSI
168
178
181
nl
288
218
228
238
248
251
261
271
281
2,.
381
UI
321
nl
UI
351
361
378
381
nl
488
411
UI
nl
441
451
41i1
471
... 1
UI
5 ..
511
521
531
541
551
5 lit
571

Griphics I:R~M "not n. cessary, just prettier"
PMgra,hics 2:PMClr I:PMelr 1
'etcolor 2,1,I:PMcolor B,12,8:PMColor 1,12,8
P8=PMadrl8J IP1=PMadrUJ IReM "addr's of 2 players"
U8=1i8IUold=U8IReM "starting vertical pos'n"
H8=118zReM "starting horizontal pos'n"
For loc=U8-8 To U8t71ReM "i 16-high double player"

Rnd K
Poke PBtloc,IntlK/$81BI'
Poke PltloC,K&$ff

Next lOC
ReM lIaniMate- it"
let Radius=48:Deg
Whi .. l : ReM "infinite loop!!"

C=RandoMl15J:PMcolor 8,C,8:PMColor 1,C,8
For IIng .. =8 To 355 Step 51ReM "in DEGrees, reMeMber"

Unev=U8+Radius* SinlllngleJ
Uehange=Unev-Uold:ReM "change in vpos"
Hnev=H8+Radius*Coslllngl eJ
PMMove I,Hn.v;Uchang':PMMoV' 1,Hnev+8;Uchange
R.M "Move tvo players together"
Uold=Unev
Sound 8,Hnev,18,12ISound 1,Unew,18,12

.ext lingle
ReM "just did a full circl.l"

EndWhi ..
R.M "1ft! b.tt.r NEUER g.t hl!r~!"
R.M "**** the fancy play~r DATA ****"
R.M " 84218421184218421
ReM "$13C8 •••••• • , • •.•••.
R ... "$8C38 ••.• • •.••• . • ••
At .. "$1888 " •• . • • '1' ...•. .. R ... "$2884 •• • • • ••••.•••• .•
ReM "$4182 •• •• . . • •••••••• .
R~ .. "SU72 . • •• _ •• _ •• • •
R ... "$eA51 • •.• • •• • , . • •• ••• •
ReM "$8E71 • .• . _ •. _ ... •
Re .. "$8181 • • • • I•
Rp .. "U8., • •• • ..•• 1 • • •• • • ••
ReM "$4812 '1' .•.. '1' ..•. '1' Re .. "S47U • . •. __ • • • •
Re .. "$2814 • .• ..••. • .•••• ••
RIP .. "$18B8 •.. • 1 •••. • .••
RI!" "$8C:r1 •••• • •. , •. • ••• •
RIP .. "SI3CI •.••• •••• • • •.•
RIP ..
Data $83CB,$BC3B,$1888,$2BB4,$4BI2,S4E72,$8I1S1,$8E71
Data $8811,$'81',S4812,$47E2,$2184,$1188,$8C38,$83C8

The fa c tor slowing thi s progrAm the most is the SIN anei COS bf'ing calculAted In
the movem ent loop. If these values were precal c ulated and placed In an array this
program would move!

BASIC XE Reference Manual Page 91

Space For Your Notes Player/Missile Graphics

Space For Your Notes

Page 92 BASIC XE Reference Manual

Sound SOUND

Sound

This chapter Is devoted to the SOUND statement, and shows how to access the
many forms of sound available on Atar! flome Computers.

SOUND (SO.)

Format: SOUND aexpl,aexp2,aexp3,aexp4

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program
encounters another SOUND with the same aexpl or an END. aexplls the voIce on
which you want the sound produced, and r anges between 0 and 3, inclusive.
aexp2 Is the frequency (pitch) of the sound, and ranges between 0 and 255,
inclusive. The lower aexp2 Is, the higher the frequency. aexp3 Is a measure of the
sound's distortion (fuzziness). Valid numbers are 0 -14, even numbers only. A
value of 10 creates pure tones like a flute, and a 12 produces sounds similar to a
gultar. aexp4 Is the volume of the sound. Valid value s are 1 - 1.5; the lower the
number, the lower the volume.

Here Is a table for various musIcal notes using a distortion of 10:

Note: Low Notes High ~ote8
C 14 29 60 121 243
Il 15 3.1 64 128 255

Bb / All 16 33 6B In
A 17 ~5 72 144

Ab / Gil lR 37 76 15:1
G In 40 81 162

Gb / ril 21 42 R5 173
F 22 45 91 182
E 2~ 47 96 193

"b / nil 24 50 102 204
D 26 53 108 217

Db I cil 27 57 114 2~0

Middle C Is marked by a ".". This program plays a C scale using the above values:

18 Read A:lf A)255 Then End
28 Sound 8,A,18,18:Print A
38 for Wait=1 To 488:Mext Wait
48 &oto 18
58 Data 14,15,16,17,18,1',21,22,23,24,26,27,2',31, 33
68 Data 35,37,48,42,45,47,58,53,57,68,64,66,72,76,81
71 Data 65,'1,'6,182,188,114,121,128,136,144,153,162
81 Data 173,162,1'3,284,217,238,243,255,256

Notice that the DATA statement In line 80 ends with a 256, whic h Is outside of the
designated range. The 256 Is used as an end-of-data marke r.

BASIC XE Reference Manual Page 93

Space For Your Notes Sound

Space For Your Notes

Page 94 BASIC XE Reference Manual

Sorting A nays Introducing the Array Sorting Statements

Introducing the Array Sorting Statements

Rather than go directly into the descriptions of SORTUP and SORTDOWN, we
thought It best to begin with some comments and hints about their use, because
they have many foibles In common.

First and foremost, note that SORTUP and SORTDOWN can only be used to sort
arrays. In their simplest form they are extremely easy to use:- For example,
consider the following short program:

18 DiM Arra~$(5,28)
28 For 1=1 To 5:1npu1 "51ring) ",Arra~$(1;):Nex1 I
38 50r1up Arra~$
48 for 1=1 To 5:Prin1 Arra~$(1l):Nex1 I
58 Run

This program simply sorts 5 INPUTted strings and then shows the sorted order. At
this time, we would like to suggest that you type in this program and try it out
(Keep it around - we wlll use it more later). Give several different sets of words
as answers. Note how neatly it sorts the words into ascending order.

Or does it? Try entering some words in uppercase and some in lowercase. What
happens? Does it surprise you to find that "z 0 0" comes before" apple"? Actually,
the reason for this hehavior Is readlly understood--;;nce you reallze that
SORTUP works on characters using ATASClI ordering (see Appendix A for a Ilst of
A TA SClI codes).

Even if we restrict ourselves to the "printable" characters in the A TA SCIl set
(alphanumeric and standard symbols), we find no real help. Digits come hefore
uppercase letters which come hefore lowercase letters, hut symbols are Intermixed
in no real useful fashion. Because the effects of this hodgepodge ordering mAy not
be desirable in a sorted list, you may wish to limit a sort to a substring of the
string elements In a savar. For example, if you have a savar where each string
within it contains both a person's nome and their phone number, you may wish to
perform a sort based solely on names. Further, to ensure that the sorted order is
consistent, you may wish to ensure thnt the names are stored In uppercase only.

Fortunately, SORTUP and SORTDOWN offer you the ahility to sort based on suh
strings. And, whlle BASIC XE does not provide a built-in method of obtaining
uppercase, non-inverse strings, it isn't very hord to build a subroutine thot w111 do
the real work for you. For example, the following PROCEDURE converts all
characters in its svar parameter String$ (not a savar) to non-inverse, and converts
lowercase letters to uppercase: --

888 Procedure "To Upper" Using !S1ring$
811 Local I,TeMP
828 for 1=1 To Len(String$)
83. TeMP=ASC(String$(1,,&$7f
848 If TeMP)$68 And TeMP($7b Then Te~=TeMP&$5f
851 5tring$(I,I'=Chr$(TeMP'
861 Next I
878 Exit

BASIC XE Reference Manual Page 95

Introducing the Array Sorting Statements Sorting Arrays

For now, don ' t enter this subroutine. Instead, let's investigate the concept of
substrings, as mentioned above. ,lust change line 30 in that little program we
typed in earlier so that a LIST gives you the following:

18 DiM Arra~$(S,28]
28 for 1=1 To 5:Input "String) ",Arra~$(I;]:Next I
38 Sortup Arra~$ Using ;3,5
48 for 1=1 To 5:Print Arra~$(I;]:Next I
58 Run

Once again, enter some strings in response to INPUT's prompt. This time, though,
pay special attention to the third through fifth characters of each string. Notice
anything funny about the sorted order? That's right, it is hased solely on the
characters in those positions. If you have worked with H A SIC X E string arrays at
all yet, the notation in line 30 may be both familiar and confusing. Perhaps
changing line 40 to the following will clarify the meaning of line 30:
48 for 1 =1 TO 5:Print Array$(I;l,5),Arra~$(I;]:Next I

This little example should serve to remind YOIl that you may reference characters
within an element of a string array just as easily as you may reference them in an
ordinary string. The "magic" character is the semi-colon. It separates the array
element number from the desired character positions. (And, as the second usage of
Array$ in that same line shows, the semi-colon is always necessary when referring
to an element of a string array.) ---

Now, since the SO R TUP of line 30 refers to the entire savar Array~, thNe is no
need for the following parentheses (and, Indeed, they are not allowed). Instead,
the keyword USING tells HASIC XE that we will be working with only part of the
array and/or Its elements. In particular, the semi-colon following USING serves as
a reminder that the aexps following it should be used to define a substring of the
string clements in a savar.

There is one last eapahillty of the sorting statements which we will discuss before
moving on to other helpful hints. The program we have been working with seems
all flne and good if we want to enter exactly five elements into the array.
Suppose, though, that we did not know how many e lements we'd be working with.
Fear not, J1ASIC XE sha ll provide. Time for another exampl e:
19 DiM 5tring$(28,28)
28 for 1=1 To 28:Input " Str ing) ",String$(I;)
25 If Len(String$(I;]] Then Next I
38 Sort up StringS Using 1 To 1-1
48 for J=l To I-1:Print 5tring$(J;] :Next J
58 Run

The !Irst change you will notice is that the FOR loop on line 20 now INPUTs 20
strings. The second change is the insertion of line 25. Instead of blindly
continuing to ask for Input until 20 items have been entered, the program only goes
back for another if the lenv,th of the current string is non-zero. That means that
you may stop entering items at any time by hitting the RETURN key alone in
response to any INPUT prompt.

Page 96 BASIC XE Reference Manual

Sorting Arrays Introducing the Array Sorting Statements

And look at the SORTUP in line 30. eRn you guess what the Using 1 To 1-1 is for?
That's right, only the first \-1 elements of th" array will be sorted! And if, for
some reason, you wanted to never sort the first element of the array, you could
have written
J9 Sortup stringS Using 2 To 1-1

(Why would you ever do that? Well, maybe you kee p special infonnatlon about a
sllvar in its first element, thus having the actual oAta start at the second elem ent.)

Well, so much for sorting string arrays. We haven't yet mentioned how to sort
arithmetic arrays, but it's just as easy. You use the same statements,
SORTUP And SORTDOWN, but you use the name of an arithmetic Array AS the first
argument, like this:
sort up AU

Notice that Instead of following the array name by a dollar sign (as with string
arrays), you follow it by a pair of parentheses (to indicote that the array Is
arithmetic) . Since no element range was specified in our example, this statement
w!1l sort ~ elements of thc array AO.

If you don't want to sort the whole array, you can specify a range of elements to
sort, Just like we did when sorting string arrays. The following wlll sort el ements
3 through 5, Inclusive, of the Array TempO in descending order:
Sortdown T.MPC) Using 3 To 5

There are two restrictions to bear in mind when sorting arithmetic arrays. First,
you can't specHy substring indices (beclluse numbers don't have substrings).
Second, and more important, you can only sort arithmetic arrays, not matrices!
Thus, if you have the following DIMension line in your program-:---

18 DiM A(48),BC18,28',CC58)

you coulo use SORTUP and SORTDOWN to sort AO and CO, hut not BO, since it
hos two dimensions and so is a matrLx .

Finally, there are a couple of rules to keep in mind:
1) The ending element numher to he sorted must he greater than or equal to the

heginning element number (I.e, you can't sort elem,mts 3 TO 1),
2) Both element numbers must be within the DIMensioned hounos of t he array, Rnd
~) the previous two rules Rlso apply to the numbers you usc to specify a substring

range when sorting savars.

BASIC XX Reference Manual Page 97

SORTUP
SORTDOWN

Sorting Arrays

Fonnat:

EXlmples:

SORTUP / SORTDOWN

I SORTUP !array [USING [aexpI TO aexp2][;aexp3,aexp4]l
SORTOOWN

SORTUP Aarray
SORTOOWN Aarray USING Min TO Max
SORTUP Sarray$ USING ;1,4
SORTOOWN Sarray$ USING 5 TO 10

Note: the ;aexp3,aexp4 option may be used only when sorting saVars. You can
no t use it when sorting arithmetic arrays!

SORTUP sorts the elements of an array in ascending ATASCII or numeric order
(dependent upon the array's type), while SORTDOWN sorts in descending order. If
no element range aexp1 TO aexp2 is specified (1st and 3rd examples), all elements
are sorted.

If an element range is specified, both beginning and e nding elements must be
given, separated by the keyword TO. --

Note: If no ~ubstrlng jaexp3,aexp4 is specified (4 th example), the sorting is don!'
using the string elements in their entirety. If a substring is specified, both the
beginning and ending of the substring must be specified, separated by a com;;;a: If
an element range is not being used but a substring is, th!' keyword
USING must precede the substring-marking semicolon (~rd example).

Note: If a string element is shorter than the specified ending position of the
substring being used, the substring for that e lement will be shortened accordingly.
If two compared strings are equal, but one is longer than the other, the long!' r one
Is greater than the shorter one (e.g., "abc"<"abcd"). This Is intuitively correct as
well as being consistent with the other string comparisons ava ilable in BASIC XE.

Page 98 BASIC XE Reference Manual

Using Fixed Data In Your Program

Using Fixed Data in Your Program

DATA
READ

The three statements in this chapter allow you to insert and utilize fixed datil in
your BASIC XE programs. These statements are DATA, READ, and RESTORE.

DATA (D .)

Format: DATA adata [,adata]
EXmlples: 100 DATA 12,13,14,15 , 16

110 DATA Mike,Becky,Tommy,Kathleen
120 DATA "adllta wi th a , in it"

DATA Is used In conjunction with READ to Ilecess elements in a data list. A
DATA statement may be Rnywhere in a program, but it must contain at leRst as
many adata Items as used In the READ statement that accesses them; otherwise an
nNo DATA to READ n error(#6)!sdlsplayedonthescreen. When more than one
DATA statement Is used, the adata Items form a single list. For example, the first
two examples could just as well be combined Into

100 DATA 12,1~,14,15,16,Mike ,Aecky,Tommy,Kathleen

Note: all characters except comma (,) ami < R ETUR N> are legal In adata.
However, if you put adata In double quotes ("adatan), then Rll characters except
double quote (n) and <RETUR N> are allowed (as In the last example).

Format:
EXmlples:

READ vRr1 [,var? ••• 1
200 READ A,R,C,D,F.

READ

210 READ A$,B$,C$,D$,E$

The READ statement is used to r e trieve adata items in a DATA list, and store
them In program variables for use . When a READ is executed, the first available
adata Item is stored in varl, the second Is stored In var2, Rnd so on. The
adata item and the variable Into which It is to be stored must be of the same datR
type (arithmetic or string).

The following program sums R group of numbers using READ Rnc! DATA:

18 for 11 =1 To 5
28 R'.d DI~"+D
31 lIut ..
4 1 Print '''5 UM is "l "
51 End
61 Dat . 11 ,15,116,87, 4 7

BASIC XE Reference Manual Page 99

RESTORE

Format:
Examples:

RESTORE rlinenol
100 R.ESTORE
RESTORE X+2

Using Fixed Data in Your Program

RESTORE (RES.)

RASle XE uses an internal 'pointer' to keep track of the next adata item in the
DATA list to be READ. When used without the optionailineno, RESTORE resets
this pointer to the first adata item In the first DATA statement in the program.
When IIneno Is specified, RESTORE sets the pointer to the first adata item in the
DATA statement on the program line IIneno. This permits repetitive use of the
same adata items, as shown in the following example:

18 for N=2 To 1 5tpp -1
28 Rl!storl! 88+N
38 Rl!ad 11,8:"=11+8
48 Print "Totu is "iH
58 Next N
iii fnd
81 Data 3',15
112 Data 18.21

Page 100 BASIC XE Reference Manual

Accessing Memory Directly

Accessing Memory Directly

PEEK
POKE

The commands In this chapter allow you to access memory directly, and are very
useful when you want to inspect and/or modify Atarl variable s and routines. Each
of the commands in this chapter allows you to specify an optional bank number.
For a discussion of the meaning of this number, see EXTEND.

The statements discussed here are POKE, DPOKE, Rnd MOVE, and the functions
are PEEK and DPEEK.

f PEEK

Forma t: PEFK(aexp [,bank)
Examples: 1000 IF PEEK($4000,4)=255 THEN PRINT "Main J'JIemory $4000=255"

100 PRINT "Le ft Margin Is "; PEEK(R2)

PEEK Returns the value stored at memory location aexp. The address specified
must evaluate to an integer between 0 and 65535. The value returned will be a
decimal integer between 0 and 255, inclusive. This function allows you to examine
either RAM or ROM locations. Tn the first example above, PEEK Is used to
determine whether location $4000 In main memory contains the value 255. In the
second example, PEEK Is used to find the current left margin.

POKE

Format: POKE aexpl,aexp2 r ,bank)
Examples: POKE 82,10

100 POKE 82,20

The POKE statement puts the value aexp2 into memory location aexp1. aexpl may
range in value between 0 and 65535, Inclusive, And aexp2 has range 0 .. ?55. The
Cirst example changes the sc re f'n 's left margin from its default value of 2 to n ne w
value of 10. To restore the margin to its normal de fault position, press <S YSTFM
RESET>.

Note: PO K E cannot be used to alter !l OM locations.

While you are becoming familiar with this statement we adv ise that you flrst
PEEK at the memory location and write down the value before you POKE in a n e w
value. Then, If the POKE doesn't work as anticipated, you can POKE the original
value back in.

BASIC Xl'! Reference Manual Page 101

DPEEK , DPOKE
MOVE

Format: DPEEK(aexp [,bank])

Accessing Memory Directly

fDPEEK

Example: PRINT "Variable Name Table is at "jDPEEK($82)

DPEEK is very similar to the PEEK function, except that it allows you to find out
the two- byte valup. at the memory locations aexp and aexp+1. This is especinlly
useful when looking at locations which contain address information, as in the
above example. If you did this example using PEEKs, it would look like

Print "Uariabl~ MaIIll' Tabll' is at ";Pl'l'kU3."tPI'~kU3UJl-128

It's obvious that using DPEEK is much easier.

Format:
Example:

DPOKE

DPOKF. aexpl,aexp2 [,bank]
DPOKE 88,$8000

DPOKE is sim!lar to POKE, except that it allows you to put a two-byte value Into
memory locations aexpl and aexpl+1. aexp21s the value, and must be an integer
value 0 •• 65535, inclusive. In the above example, the address of the upper left-hand
corner ot the screen (this address is stored at locations 88 and 89) is changed to
$8000. To do this using POKEs you would need to clo an amazing amount of math
to get the right number into each of the two bytes.

Format:
Example:

MOVE

MOVE aexpl,Rexp2,aexp3 r ,bank]
MOVE $0000,$8000,$400

Caution: he careful with this commancl! MOVE will move any number of bytes from
any address to any ndclress at assembly language speed. No address checks ar!'
made! aexpl is the starting adclress of the block you want to move, aexp2 is the
starting address of the place where you WAnt the block movecl to, and aexp3 is the
length of the block. The sign of aexp3 (the length) determines the order in which
the bytes are moved, as follows:

Positive
(from)
(from+l)

-) (to)
-) (to+1)

Nega ti ve
(from+len-l) -) (to+len-l)
(from+len - 2) -) (to+len-2)

(from+len-ll -) (to+len-l) (from) -) (to)

When the length is positive, the destination block can overwrite lower part of the
source block. When the length is negative, the destination block can overwrite the
upper part of the source block.

Note: MOVE cannot automatically move memory between banks. To do so you must
first MOVE the block to main memory and then MOVE it to the other bank.

Page 102 BASIC XE Reference Manual

Arithmetic Functions

Arithmetic Functions

ABS , INT
SGN , SQR

The arithmetic functions supported by BASIC XE are ABS, INT, SGN, SOR, EXP,
LOG, CLOG, RND, and RANDOM. At the end of the chapter you will find a
program that shows these functions In use.

Format:
EXlrnple:

ARS(aexp)
A=ARS(-160)

f ABS

ABS returns the absolute (positive) value of aexp.

Format:
Examples:

INT(aexp)
I=INT(-3.445)
X=INT(14. 753)

fINT

INT returns the greatest integer less than or equal to aexp. This is true wh ether
the expression evaluates to a positive or negative number . Thus, In the first
e xample, -4 Is assigned to I, and 14 is assigned to X in the second example. Note :
this functlQn should not b e confused with the INT function on calculators which
simply truncates all decimal places. For those of you with a mathematical back
ground, you may think of INT as the" Floor" function.

f SGN

Format: SGN(acxp)
Example: JOO X=S(;N(-JOO)

SGN returns a -1 if aexp evaluates to 8 np.gativ e numher, A 0 if aexp evalUAtes to
0, or a lis aexp evalUAtes to a positive number.

Format: RQR(aexp)
Example: X=SQR(lOO)

SQR returns the square root of a exp. Note: aext> must be positive.

BASIC XI': Reference Manual Page 103

EXP , LOG, CLOG
RND,RANDOM

Format: EXP(aexp)
Example: PRINT EXP(3)

A rithm etlc Functions

f EXP

The EXP function r eturns the value of e (Approximately 2.71R28179), raised to the
power aexp (i.e ., eaexp) .

Format:
Example:

LOG(aexp)
A=LOG(20)

fLOG

The LOG function returns the natural logarithm (In) of aexp. LOG(O) gives an
error, and LOG(J) Is O.

Note: LOG and EXP are complementary functions (i .e., both LOG(EXP(n)) and
EXP(LOG(n» equal n, within the bounds of the accuracy of IlASIC XE's math
routines).

Format:
Example :

CI1lG(aexp)
A=CLOG(I 0)

f CLOG

The CLOG function returns the base lO logarithm (logIO) of aexp. CLOG(O) gives
an error, nnd CLOG(I) Is O.

r RHD

Forma t: RND(aexp)
Example: 10 X=RND(O)

RND returns a hardware-generated random number greater than or equal to 0, but
less than 1. aexp is a dummy and has no effect on the number returned, but is re
quired anyway.

f RANDOM

Format: RANf'()M(A!'xpl [,Acxp21)
Examples: X=RANDOM(!l9)

Y=RANDOM(IO, 20)

The RANDO M function r!'turns a random Integer depenclcnt upon aexpl and aexp2.
When aexpl alone is speciflecl (as in the first example), the value returnecl Is
between 0 and aexpl-l, inclusive. When both aexpl and aexp2 are specified (as in
the second example), the value returned is between aexpl and aexp2, inclusive.

Page 104 BASIC XI! Reference Manual

Arithmetic Functions An Example Program Using Arithmetic Functions

An Example Program Using Arithmetic Functions

581 Con501~=$d81f:5tart=$ll
518 Open #1,4,8,"K:"
52. T~5t=-2.71828183
531 Print :Print "WI! start with a value of ";Tl!st
548 T~st=AbsCTest)
558 print :Print "Its absolute vUue is ";T~st
56. Tl!st=IntCT~st)
571 Print :Print "And thl! int~gl!r part of that is ";Test
581 Test=5qrCTest)
5'1 Print ,Print "WhiCh has a squarl! root of ";T~st
681 Tl!St=TI!st/Z
Iil1 Print :Print "Hal f of that gives .. ;T~st
1i21 Print .. CreMeMber that nuMber, half 5QR(2U"
631 Tl!st=5gnCTest)
1i .. 1 Print ,Print "The '5GII' of that is ";Tl!st
651 Deg
lilil Test=AtnCTest)
1i71 Print :Print "Mhose ArcTangent of ";Test; .. is"
1i81 Test=Int(Test)
6'9 Print .. close. Corrl!ct rl!sult is "ITl!st; .. degrees"
799 Print :Print "The sine and cosinl! Of ";Tl!st; .. degrees:"
719 Print.. sine = ";5inCTest)
721 Print" cosine = ";Cos(Test)
73. Pr i nt .. [J ook at the nullll>er you rI!MeMbered]"
748 print :Print "hit .. ,,,,;.M for next part.~"1
758 While Pl!ek(Console)&5tart:Endwhile
769 GraphiCS 9
771 Test=clog(181'
781 Print "The COMMon (base 19) log of 1.1 is ";Test
7'1 Tlst=log(Test)
81. Print :Print "WhiCh has natural log of ";Test
818 Test=ExP(Test)
811 Print :Print "'e' is the base of the natural logs,"
831 Print.. and e to that power is ";Test
... 1 Print IPrint .. [which is pretty darn close to l]"
851 Print :Print "Hit any key to continue ;
869 Get IU, Key
871 Graphics 9
881 Print :Print "lIow Jets flip SOMe COins, using that"
8" Print.. Value as 1 greater than the MaxiMUM"
'II print.. pseUdo-randoM value we want,":Print
UI Count=9
'ZI While Abs(Count) (3
'31 If RandoM(Test):Count=Counttl:Print , .. Heads"
' .. I for V=lZ To 8 Step -8.Z:Sound B,18,Z,V:llext V
'58 Else :Count=Count-l:Print , ... m
'68 for V=15 To 8 Step -9.Z5:50und ',88,ll,V:llext V
n8 Endi'
78. Endwhill
"~I If Count}9:Print .. [H~ads won] ..
1 ••• Els~ :Print " Tails won]"
lUI Endif

BASIC XE Reference Manual Page 105

Space For Your Notes Arithmetic Functions

Space For Your Notes

Page 106 BASIC XE Reference Manual

Trigonometric Functions

Trlgonometlc Functions

DEG/RAD
COS, SIN, ATN

Discussed in this chapter are the trigonometic functions COS, SIN, and ATN, and
the statements DEG and RA D. Also included Is a table that shows you how to get
other trascendental trig functions using the ones provided.

DEG I RAD

Format: DEG
RAD

These two statements allow you to specify whether the angles used in the trig
functions are in DEGrees or RADians. Note: BASIC XE defaults to radians. Also,
all trig functions following a DEG or RAD are performed using that angle
measurement untll the mode is changed by another RAD or DEG, respectively.

f COS

Format: COS(aexp)
EXa'Tlple: 100 PRINT COSiO)

COS returns the cosine of aexp. The operation is done in radians or degrees,
dependent upon whether DEG or RAD has been most recently used.

f SIN

Format: SIN(aexp)
EX!Il1pl e: 100 X=SIN(O)

The SIN function returns the sine of aexp. Thc operation Is done In degrees or
radians, dependent upon whether DEG or RAD has been most recently used.

Format:
EX!mple:

ATN(Rcxp)
100 X=ATN(1)

f ATN

ATN returns the arctangent (Tan-I) of aexp. The operation Is done In degrees or
radians, dependent upon whether DEG or RAD has been most recently used.

BASIC IE Reference Manual Page 107

A Table of Derived Functions Trigonometric Functions

A Table of Derived Functions

The following table lists some of the trigonometric and hyperbolic functions you
can derive from the arithmetic and trigonometrIc functions available in nA~"C XI':.
The term "x" is the value on which you wIsh to perform the derived function, Rnd is
simply an aexp. Also, you will see" C" in some of the functions. This is a constant
dependent upon whether the angles are measured in degrees or radians. C=90 in
DEGree mode, and C=1.5707~633 (pil2) in RADian mode.

Trigonometric Function
Tangent
Cotangent
Secant
Cosecant
ArcSine (Sin-I)
ArcCosine (Cos-I)
ArcCotangent (Cot-I)
ArcSecant (Sec-I)
ArcCosecant (Csc- I)

Hyperbolic Function
SineH
CoslneH
TangentH
CotangentH
SecantH
CosecantH
ArcSlneH (SinH-I)
Arc('.()sineH (CoslI- I)
ArcTangen tH (TanH- J)
ArcCotangentH (C~tH-l)
ArcSecantH (Secp-I)
ArcCosecan tH (CscH- 1)

Page 108

Derivation
SIN(x)/COS(x)
COS(x)/SIN(x)
I/COS(x)
l/SIN(x)
ATN(x/S0R(1-x"2»
-ATN(x/SQR(I-x"2»+C
ATN(x)+C
ATN(SQR(x"2-1»)+(SGN(x-l)*C)
ATN(1/SQR(x"2-1»+(SGN(x-l)*C)

ner i va t I on
(Exp(xl-EXP(-x»/2
(EXP(x)+EXP(-x»/2
-EXP(-x)/(EXP(x)+EXP(-x»*2+1
EXP(-x)/(EXP(x)-EXP(-x»*2+1
2/(EXP(x)+EXP(-x»
2/(EXP(x)-EXP(-x»
LOG(x+S0R(x"2+1»
LOG(x+SQR(x"?-l))
LOG((1+x)/(1-x»/2
LOG«x+1)/(x-1»/2
LOG«(SQR(1-x"2)+lA/ x)
LOG ((SGN(x) *SQR(x 2+1)+1) Ix)

BASIC XE Reference Manual

RASIC XE and Machine Language Subroutines

BASIC XE and Machine Language Subroutines

GOSUB
RETURN

A subroutine Is simply a piece of a program that accomplishes a single task. This
means that a program is really just a bunch of subroutines strung together. Rut
what If you want to execute the SAme subroutine Il bunch of times? You coulcl
type It In every time you want to use it, but that could mean a lot of boring typing.
The solution Is to use one of RASIC XE's special subroutlnc calls. They all allow
you to write a subroutine once, and then have it get executed several times In
different parts of your program.

How you get a subroutine executecl (l.e., how you call a subroutine) <:\epends upon
the type of subroutine you are using. The GOSUB subroutine structure lets you
call a BASIC subroutine by line number, the USR function lets you call R machine
language subroutine by address, and PROCEDURE allows you to call a BASTC
subroutine by name! Since each of these subroutinc structures is different, they
are discussed in depth In separate sections, starting with the easiest to
understand, GOSUB.

GOSUB (GOS.)

Format: roSUB Iineno

GOSUB allows you to 'call' Iln unnamecl subroutine written In RASTC XP..
Hneno specifies the starting line number of the subroutine. A GOSUB subroutine
must end with a RETURN or EXIT (If you use LOCAL avars within the subroutine)
so that program execution may continue with the statement after the GOSUB.

To prevent accidental triggering of a subroutine whose code follows the main
program, place an END statement between the end of the program and the start of
the subroutine.

Caution: Like the FOR and WHILE statements, GOSUB uses the program stack to
save Its return lineno. If the subroutine is not allowed to complete normally (e.g.,
you exit via a GOTO) the return Hneno must be POPped off the stack or It wlll
cause an error. Also,l! you use LOCAL avars within a GOSUB subroutine and do
not exit via EXIT, you ~ POP the previous avar values off the stack yourself.

RETURN (RET.)

Format: Iineno RETURN

RETURN Is used to exit a GOSUB subroutine that does not contnln LOCAL avars.
If the subroutine does use LOCAL, you must end it with an EXIT.

When you RETURN from a GOSUB, program execution continues Ilt the statement
after the GOSUB call.

BASIC XE Reference Manual Page 109

Introducing PROCEDURE and
Its Related Statements

DASIC XF. and Machine Language Subroutines

Introducing PROCEDURE and its Related Statements

Before descrIbing the individual statements used to create and call named
subroutines, we present an introduction to them because they are interdependent,
and we felt that having a small but effective demonstration of their use would
make it easier to understand the later definitions.

If you have programmed at all in any dialect of RASIC, you have used the
GOSUB ... RETURN construction. For example, you might see a program like the
followIng (ThIs program Is for .demonstration purposes only, but It Is a fairly
amusing little thing to spring on an unsuspecting friend):

29 Viii ue=188
39 "in=18:"ax='I:Gosub 199
49 Result1=MuM
59 "in=18*Ualue:Max='8*Value:Gosub 198
69 Result2=MuM
79 If Result2)Value*Resultl Then '8
89 Print "You appear to be conseryatiye":End
'9 Print "You seeM read9 to take riSkS":End
188 ReM "The Subroutine"
118 Print :Print "Please give Me a nuMber between"
128 Print ·"in;" and ";Max;
1:11 Input ", inclusive) ",MUM
141 If MuM>="in And MUM{=MaX Then Return
151 InYl!rse :Print "Can't 90U rl!ad? That nuMber is"
168 Print" out of thl! rangl' I gay!! 90U. ":MorMilI
178 Goto 189

In a small program like this one, the GOSUB may be just fine. As programs get
larger, though, lines like GOSUB 3250 become less and less meaningful. Atarl
BASIC (and thus HASlC XE) allows you to do something like this:

18 Ll't Gl!tinrangl!=198
28 Viii ue=188
38 "in=18IMax='9:Gosub G!!tinrange

ny giving a name to the subroutine, we can make our code more readable. A
disadvantage to this method is that BASIC XE (In common with Atari J1A~IC)
allows only 128 unique variable names. Using a variable name as a subroutine
name diminishes the pool of avallable nam es. This, then, is the first advantage of
RASIC XC's new procedures: we use string constant to name them, so we need
waste no variable names! Look at the listing opposite -

Page 110 BASIC XE Reference Manual

RASIC XE and Machine Language Subroutines Introducing PROCEDURE and
Its Related Statements

21 a",,=181
JI Cill "'I!t In R~ngl!" Using 11,'1 To Rl!su1tl
51 CUI "'I!t In Rangl!" Using 11*TeMP,'I*TI!"" To RI!sult2
71 If R.5U1t2<TI!MP*RI!SUltl:T!lPI!$="conserY~tiYI!"
81 Elsl! IT!lPI!$="~ risk takl!r"
'I Udif
'5 print Using "YoU SI!I!M to bl! ~XXXXXXXXXXX/.",T!lpl!$:End
181 Procl!durl! "'I!t In Rangl!" Using "in,"ax
111 Loc~l TI!MpITeMP=1I!t'8
121 Mhil. TeMP("in Or TeMP)"ax
IJI If TeMP()le t 'I:Print
148 Inverse :print "C~n·t !IOU read? That nu er is''
158 Print" out of the range I gave !IOU. ":lIor .. ~1
161 Endif
171 Print :print "PU~5e give M ~ nuMber bl!twen"
181 Print "in;" ~nd ";"ax;
1'1 Input ", inclusive) ",T • ..,
288 EndWhile
211 EXit n ..

Contused? Not too surprising. Let's take a look at the new lines a step at a time.
First, In line 30, note the CALL to the PROCEDURE named "Get In Range". See
how clear accessing this subroutine Is, since we can use any characters we like in
the name string. That's pretty easy, right?

But what about the USING that appears In both the PROCEDURE Rnd
CALL statements? In llne 30, we are 'using' values of 10 and 90. But In line 100,
we are 'using' the variables Min and Max. Isn't that neat? We didn't have to
assign the values 10 and 90 to Min and Max before we called the subroutine:
CALL does the work tor us! This Is called 'passing parameters' to a procedure.

It gets better. Notice the EXIT statement of line 210. It allows the procedure to
return a value (the contents of Temp) to the CALL. The value is placed into the
variable that follows the TO in the CALL statement (Resultl, In this case). That's
reasonable, right? If you can 'pass' parameter values, you should be able to
'return' parameter values. But doesn't using the variable Temp in the procedure
subroutine wreak havoc on Its later use In the main program (e.g., In line 50)?

Ah, but there's line 110, with Its deceptively simple-looking LOC AL Temp state
ment. Ry using it we have created a 'private' copy of Temp for use In the
procedure. Any changes to Temp between the LOCAL and the EXIT won't affect
Its value In the rest of the program. Wow!

The example we just worked through uses all of the new pror.edure-orlented
statements: PROCEDURE, CALL, and EXIT. By no means, though, did we use all
of the capabilities of these statements.

BASIC IE Reference Manual Page 111

PROCEDURE B A STC X B and Machine Language Subroutines

PROCEDURE (PROC.)

Fonnat: PROCEDURE pnlrne [US ING rvarl [, rvar2 ... JJ
Examples: 1000 PROCEDURE "Calculate Pay" USING lfours,Rate,lTaxtable()

387 PROCEDURE "Print Msg" USING lMsg$
4040 PROCEDURE "Qui t"

Note: If rvar is an mvar, svar, or savar, It must be preceded by an exclamation
point m. See rvar in the glossary for more info.

The PROCEDURE statement is the nucleus around whIch named subroutines in
BASIC XE are built. It defines the beginnIng of a subroutine which will be
terminated by EXIT, and executed vIa CALL.

pname Is the name oC the PROCEDURE, and is sImply a valid string constant. Tn
the examples above you can see that spaces have been used in the pnames to add
clarIty to the program. As a matter of good programming style, you use nam es
that descrIbe what the PROCEDURE does, shortening them only if you begIn to
r un out of memory.

When you CALL a PROCEDURE, the return lineno Is pushed onto the BASIC XE
stack so that execution can continue with the statement following the CALL when
the PROCEDURE is done.

If you pass parameters to the PROCEDURE (via USING), CALL will push the
current 'values' of rvarl, rvar2,... onto the stack, then put the pexpl,
pexp2, ... 'values' (see CALL) into the receiving variables, and finally pass control
to the PROCEDURE. This is a faIrly straightforward process when the rvars are
avars, hecause the 'valucs' pushed onto the stack are simply numcric constants.
TAke the following set of statements as an example:

18 Junk=28
28 Call "TeS1" Using 12*17
38 Prin1 Junk
48 End
78 Procedure "Test" Using JUnk
88 Print Junk
'8 Exit

Tn this example, when the PROCEDURE named "Test" at line 70 is CALLpd, the
current value o f the rvar Junk (2(1, as assigned in line 10) is pushed on the stack.
Then the value of the pexp (12 *17, or 204) is copIed into Junk. Any subsequent
references to Junk within the PROCEDURE wllJ find thAt it contains this new
value. For example, thp PRINT on Jlne RO will display the value 408. When the
EXIT on line ~O is executed, it will rpstore Junk to its prior value of 20, thus the
PRINT on line 30 will display the VAlue 20.

AIl that this means is that USING (when used in conjunction with CALL And
PROCEDURE) does an implicit LOCAL. The purpose of this might not be
perfectly clear. Thanks to the ImplicIt LOCAL, we can reuse the variable name
Junk in our procedure and so conserve on names (rem ember , we are allowed only
128) without worrying about changIng it within the procedure. The second
advantage is more difficult to see from this simplistic example: we are able to pass
values into the procedure without knowing wha t VAriable names Are used within it.

Page 112 BASIC XE Reference Manual

B A SIC X E and Machine Language Subroutines PROCEDURE

The example In the previous section shows this feature to some advantage, anrl
demonstrates how the resultant code can be both smaller and more readable.

When the rvars are not avars (I.e. they're mvars, svars, or savars), the methodology
Is the same, but the results are more complex. The difficulty lies In uncierstandlng
just what the 'value' that gets pushed on the stack is. A journey inside RASIC XF.
Is required to answer this question. In BASIC XF. thevalue of any variable is the
contents of Its entry In the Variable Value Table . This table reserves eight (8)
bytes per variable - a flag byte, the variable's number (O .. 1?7), and six bytes of
'information' •

For simple avars, the 'information' is the numeric value of the variable. For svars,
savars, and mvars , the flag byte Indicates that the 'information' is the address and
characteristics of the actual data. For example, an svar needs Information about
Its address, Its DIM length, And its current LEN length. The string data itself is
located at the given address . The 'Information' for both mvars and savars consists
of an address and two DIMensions.

Thus, when CALL pushes the 'value' of a rvar that's a svar, savar, or mvar on the
stack, It Is pushing this special information. Similarly, when CA LL copies a pexp
that's a svar, savar, or mvar into one of these types of rvars, It Is not copying the
actual string or array. Instead, It is copying the special information. This is the
reason that rvar and pexp require the! prefix when they refer to these types of
variables. Consider this sequence:

18 Fun$="Swi_ing is fun.":I($="Ri9ht?"
28 Call "What Fun" Using ! funS
38 print fun$,I($
48 End
58 ReM "The Procedure"
61 Procedure "What Fun" Using !I($
78 Print fun$,M$
88 I($U,5J="Laugh" '8 Exit

Hopefully, you will actually try this Uttle program. If so, you will find that line 70
shows that, as we have described above, the 'value' of Fun$ has been copied Into
X$. The PRINT In Une 70 will d isplay

5wiMMing is fun.

The real surprise comes when the PRINT in line 30 is executed (following th"
successful EXIT In Une 90). The resultant display is
Laughing i5 fun. Right?

Do you see why? If the 'value' of Fun$ is copied to X$, th"n the address of
Fun$ is now In X$'s e ntry In the Variable Value Tabl". Thus, nny change we make
to X$ affects affects th" contents of Fun$. Complicated, yes?

A similar action place takes place when a sava.r or mvar is passed as a parameter -
changes to the rvar within the PROCEDURE will affect the pexpvariable in the
CALL.

Technical Note: in computer lingo, avars passed to a procedure via a 'call by
value', while the other types of variables are passed via a 'call by reference'.

BASIC XE Reference Manual Page 113

B A SIC X E and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Notes and Warnings Regarding PROCEDURE

Note: BASIC XE Insists that paired pexps and rvars be of the same type. For
example, the following will cause error 24 ("USIN G Type Mismatch"):

488 Call "Dh Ro!" Using 33

728 Proc~dur~ "Dh Ro!" Using !AS

Note: BASIC XE does not make sure that you have the same number of rvars as
pexps In a CALL to a PROCEDRE. If a CALL does pass too many pexps, the extra
ones are Ignored. If It passes too few, a value of zero is assigned to all remaining
rvars parameters. This, in turn, can cause a type mismatch, since only aVRrs may
receive a numeric value . Exception: If the CALL passes no parameters, RASIC XE
does nothing at all to the parameter passing area. This lson purpose, since passing
parameters takes time. Thus, even a PROCEDURE expecting only numeric
parameter(s) may report a mismatch error, since it attempts to obtain those
parameters from the miscellaneous data left In the parameter area. Generally, we
recommend passing the correct number of parameters unless you have a specific
purpose which can use the "default" feature to a real advantage.

Note: you must be careful when changing the value of a svar passed as a
parameter. Recall that the length of a svar Is found in Its Variable Value Tabl e
entry, and that the entryls copied intact to the PROCEDURE's rvar. If you then
change the length of the rvar string within the procedure, It will indeed change
the rvar's length in the table. However, when you EXIT, the rvar entry is
not automatically copied back to the pexp used in the CALL! This can produce
some bizarre results. To de monstrate - modify line 80 of the last example program
to read
88 KS="Laugh":Print H$

Not surprisingly, the new PRINT in line 80 shows us that the contents of X$ are
simply "Laugh" . However, look at the display resulting from line ~O:
Laughing is fun. Right?
Do you see the problem? Changing X$ in line RO changed the contents of Fun$,
but it did not change the length of Fun$. Presumably, this could be a feature
under theMght ci rc umstances, but there are stranger consequences possible. For
example, try c hanging line RO to read
88 XS="HXX"
Now line ~O's PRINT will display
KXX~ing is fun. Right?
which is almost surely not we wanted.

One solution to this situation Is simply to avoid changing a passed string within a
procedure block. This may not be satisfactory, though, so we have provided
another mechanism which you can use to circumvent the problem. Change lines 20
and 90 in the original program to read
28 Cill J "What fun" Us i ng ! funS To ! funS
'8 [xit IHS

Using the TO guarantees that the complete new "value" of X$ will be copied back
to Fun$. On this same topic, you may be relieved to know that this difficulty with
length does not exist with mvars or savars.

Page 114 BASIC XI: Reference Manual

BASIC XE and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Warning: one way to get in real trouble with either strings or arrays Is to pass one
back (via EXIT) which was not passed In (via CALL). Fxamlne the following
program excerpt:

181 Call "Oops" To !A$
118 Call "Oops" To !a$
128 Print A$,a$:End
388 Procl'durl' "Oops"
318 Input "T\lPl' 50Mthing)
328 Exit !Linl'$

",Linl!$

If you type In and RUN this program, giving dltferent responses when you are
prompted, you will be surprised at the results of the PRINT of line 120: A$ and
B$ will be Identical (up to the length of the shorter), taking on the value of the
second INPUT. If you recall our discussion of what actually gets passed when a
string or array Is Involved, this seemingly bizarre result can be explained.

When Llne$ gets passed back, what Is actually transferred is Its Variable Value
Table entry, Clrst to A$, and then to B$. Rut the table entry consists (amonR other
things) of LINE$'s andress. Thus you end up with a\1 three variables pointing to
the same piece of memory!

The proper solution Is to pass a string both In via USING and back out via EXIT.
For savars and mvars, you need only pass the value In, slnceRnythlng the
PROCEDURE does these variable types is properly reflected In the original
variable.

The only way you can get In trouble with arrays Is If you pass an unDIMensioned
array to a procedure which then DIMensions it. Unless you pass back the "value"
via EXIT (similar to the fix for strings just given above), the space DIMensioned
within the procedure is lost, since no variable's entry will refer to It after the
EXIT is executed.

Warning: PROCEDURE must be the first statement on a line. CALL cannot find a
PROCEDURE If is not at the beginning of a line. Strange nncl wonrlrous (and
woefully unpredictable) things can happen if you violate this rule. Similarly, you
should never allow a program to "fall through" to a PROCEDURE. Always make
sure that the program Immediately preceding each PROCEDURE Clnishes with a
GO TO, STOP, END, RETURN, or EXIT. Wc recommend grouping all procedures at
one spot in your program, precedecl by an END stat.ement.

BASIC XE Reference Manual Page 115

EXIT BASIC XE and Machine Language Subroutines

EXIT

Format: EXIT [pexpl r ,pexp2 •••]]
Examples: 390 EXIT 10*~axvalue

799 EXIT Flag,!Names$
24990 EXIT !Inverse() ,Rows ,Columns
835 EXIT

Note: if pexp Is an mvar, svar, or savar, it must be preceded by an exclamation
point (l). See pexp in the glossary for more more info.

If you have bpen reading this manual front to back you have encountered several
examples of the statement EXIT by now. If you have not, we refer you to the
three previous sections for some illustrative examples.

EXIT pprforms the following three functions:
1) If there are any variables on the stack (i.e., If you passed parameters or used

LOCAL) EXIT restores them to their proper places in the Variable Value Table.
2) If the re are any pexps aftpr the EXIT, It places them into the rvars following

the TO in the CALL statement.
3) EXIT checks to see whether the current subroutine was Invoked via CALL or

GOSUB. If it was a GOSUB, EXIT simulates the action of a RETURN.

Warning: no error will result if an EXIT statement tries to pass pexps back to a
GOSUB. Instead, they are simply Ignored. Similarly, If you pass back too many
pexps to a CALL, the excess ones will be Ignored. This design allows a single
PROCEDURE to serve more than one function, returning more values to some
CALLers than to others. Remember, though, that all rvars expected by the
TO portion of a CALL statement must be matched by type by the pexps of EXIT.

Warning: because POP Is smart enough to pop variable 'vRlues' off the stack, you
can leRve subroutines with LOCAL avars and/or parameters without using EXIT.
You must, however, make sure that you POP all variables off the stack, as well as
POPping the return lineno. -

Page 116 BASIC XE Reference Manual

BASIC XE and Machine Language Subroutines CALL

CALL

Fonnat: CALL cname [USING pexp1[,pexp2 •••]] [TO rvar[,rvar •••]]
Examples: 10 CALL "Test"

720 CALL "Totals" USING !Values() TO Sun
800 CALL "Get Nun" TO Nunber
100 CALL Proc$ USING 7,!A$ TO Result

Note: If rvar or pexp Is an mvar, svar, or savar, it must be preceded by an
exclamation point (l). See rvar and pexp In the glossary fo;-;:nore more info.

The CALL statement has been both discussed and demonstrated earller in this
chapter. In this section, then, we wlll not dwell on such things as the mechanics of
parameter passing. Rather we wlII discuss the subtleties of the CALL statement
itself.

First, unlike a PROCEDURE statement, the name specified by a CALL may be a
svar Instead of being a string constant (see the last of the ahove example llnes).
However, you have no other choice of fonnat than that shown. You may use
n"lther a substring nor an element of a string Rrray as a CALLed name. This Is not
"ii.ilii1ierous restriction, though, since the great bulk of your CALLs will probably
be made with string constants. For those rare occasions when you wish to choose
one of several PROCEDUREs based on the value of some Index, may we suggest a
program fonnat similar to the following:

38 Input "Iii". 11M! an Ind.x) ".Ind.x
48 •• IIM!$:proc$(Ind.x;J;Call •• ~$

Note: the name that you CALL with (whether constant or variable) must match
exactly that given In a PROCEDURE statement. All characters are considered In
the match, with upper case, lower case, and Inverse video all distinct.

Caution: we remind you of the possible problem associated with using a svar as a
pexp: If Its length Is modified In the procedure, the change is not reflected in the
svar unless TO is used. Similarly, any array that's not DIMensioned at the time of
the CALL should receive the same treatment.

Technical Note: the number of I"vels you may nest CALLs Is limited only by the
amount of FREe memory left for stack use. Like GOSUB and WIHLE, CALL uses
four (4) bytes of stack space, and each parameter passed occupies 1.2 bytes.

Note: CALLs are slow In comparison to GOSUB I1neno In FAST mode. f1owever,
when compared to norr;;al GOSUBs in slow mode, they may actually be just a bit
faster If they don't pass parameters. Parameter passing can, Indeed, slow things
down remarkably. Rut, when you compare It to the method of doing several assign
ments before a GOSUB, followed by one or more afterward, it may actually save
time In some situations.

BASIC XE Reference Manual Page 117

USR

Format:
Exampl e:

USR(aexpl[,aexp2 ••• J)
100 RES=USR(ADDR,A*2)

BASIC XE and Machine Language Subroutines

f USR

The USR function returns the result of a machine-language subroutine.
aexpl must be an integer, and is used as the address of the machine language
routine to be performed. The input arguments aexp2, aexp3, ... Are optional, and
are used as parameters to the machine language subroutine. These aexps must be
between 0 and 65535, and will he rounded to the nearest positive integ<'r if they
are fractional. They are then pushed on the hardware stack in the reverse of the
order given, so the machine language program may then pUlJ them In proper
forward order. AdditlonalJy, a one byte count of parameters is pushed onto the
stack last, and must be popped by the USR routine. This maybe changed using the
SET 8,aexp. --

Also, If all argum en ts Are properly pulJed from the stack, then the US R routine
may return to RASIC XE simply by executing an RTS instruction. Finally, the
routine may return a single I6-bit value to RASIC XE (as the "value" of the
function) by placing a result in FIlO and FRO+I ($D4 and $D5) before returning.

Note: see ADR if your mAchine language subroutine is in a string, as this might be
problematic if you are in EXTENDed mode.

The following example uses a USR routine to ASL a number (thc nrgument to the
USR routine) and then return that value to BASIC XE.

BASIC XE statement:

lCasJ=Usr($68I,II)

USR routine at $680:

191 PlA
11. e"" 111
121 8ME fill)
131 PlA
149 TAli
158 PlA
168 ASl A
17. HA $1)4
189 TIIA
U8 AOl A
288 5TA $05
218 fill) RTS

Page 118

;liet II of para..etl!rs
;If not 1 Ell IT

"58
save it
l58
ASl l58
5ave it
Get "58
ROl it to get c arrll
salle it

BASIC XE Reference Manual

Appendix A A T ASCII Characters and Codes
NORMAL Video

NORMAL Video

2!.5. !!!! lli Kel;:strokt ~ !!!! lli Kel;:stroke

8 $98 • CTRL A 64 $49 OJ SHIFT OJ
I $81 .. CTRL 65 $41 A A
2 $82 I CTRL 8 66 $42 8 8
3 $83 J CTRL C 67 $43 C C
4 $84 -t CTRL 0 6B $44 0 0
5 $85 , CTRL E 69 $45 E E
6 $86 I CTRL F 79 $46 F F
7 $87 \ CTRL G 71 $47 G G
B $9B A CTRL H 72 $48 H H
9 $89 • CTRL I 73 $49 I I

18 $9A ~ CTRL J 74 $4A J J
II $9B CTRL K 75 $49 K K
12 $8C CTRL L 76 $4C L L
13 $90 CTRL H 77 $40 t1 H
14 $9E CTRL N 78 $4E N N
IS $8F • CTRL 0 79 $4F 0 0
16 $18 + CTRL P 89 $59 P P
17 $11 r CTRL Q 81 $51 Q Q
18 $12 - CTRL R 82 $52 R R
19 $13 + CTRL S 83 $53 S S
28 $14 • CTRL T 84 $54 T T
21 $15 • CTRL U 85 $55 U U
22 $16 I CTRL V 86 $56 V V
23 $17 I CTRL W 87 $57 W W
24 $18 CTRL X 8B $58 X X
25 $19 t CTRL Y 89 $59 Y Y
26 $IA CTRL Z 99 $SA Z Z
27 $18 IIr ESC ESC 91 $5B [SHI FT [
2B . $IC t ESC CTRL t 92 $5C \ SHIFT \
29 $10 ~ ESC CTRL • 93 $50 1 SHIFT l
38 $IE t ESC CTRL t 94 $5E SHIFT A

31 $IF ., ESC CTRL ., 95 $5F SHIFT _
32 $28 sP~Ct SPACE BAR 96 $69 • CTRL
33 $21 SHIFT ! 97 $61 a II
34 $22 . SHIFT • 9B $62 b b
35 $23 " SHIFT II 99 $63 C C
36 $24 $ SHIFT $ 199 $64 d d
37 $25 % SHIFT % 191 $65 e t
3B $26 & SHIFT & 192 $66 f f
39 $27 , SHIFT ' 193 $67

~ ~ 48 $2B SHIFT 184 $68
41 $29 SHIFT 185 $69 i i
42 $2A * * 186 $6A j j
43 $28 + + 187 $69 k k
44 $2C

!. !. 18B $6C , ,
45 $20 199 $60 m m
46 $2E ; i 118 $6E n n
47 $2F III $6F 0 0
4B $39 8 9 112 $78 P P 49 $31 I I 113 $71 q q
58 $32 2 2 114 $72 r r
51 $33 3 3 115 $73 s s
52 $34 4 4 116 $74 t t
53 $35 5 5 117 $75 u u
54 $36 6 6 liB $76 v v
55 $37 7 7 119 $77 w iii
56 $38 B 8 128 $7B x x
57 $39 9 9 121 $79 y y
58 $3A SHIFT 122 $7A z z
59 $38

~ 123 $78 t CTRL I
68 $3C 124 $7C I SHIFT I 61 $30 = c 125 $70 1\ ESC SH FT CLEAR
62 $3E)) 126 $7E • ESC BK SP
63 $3F ? SHIFT ? 127 $7F • ESC TA8

BASIC XE Reference Manual rage A-I

A TASCII Characters and Codes Appendix A
INVERSE Video

INVE RSE Video

E!E. !!.!.! Chr Keystroke E!E. Hex Chr Keystroke

128 $88 t:; It-N CTRL 192 $C9 iii It-N SHIFT i
129 $81 ~ ItN CTRL A 193 $CI

m
It-N A

139 $82 It-N CTRL B 194 $C2 It-N B
131 $83 ~ It-N CTRL C 195 $C3 ~ It-N C
132 $84 It-N CTRL 0 196 $C4 It-N 0
133 $B5 :1 It-N CTRL E 197 $C5 (j It-N E
134 $B6 ~ It-N CTRL F 198 $C6 (j It-N F
135 $87 It-N CTRL G 199 $C7

m
It-N G

136 $8B ~ It-N CTRL H 288 $C8 It-N H
137 $89 r ItN CTRL I 291 $C9 IJ It-N I
138 $BA ., It-N CTRL J 282 $CA !J It-N J
139 $8B ~ It-N CTRL K 283 $CB ~ It-N K
148 $8C ItN CTRL L 284 $CC It-N L
141 $80 • It-N CTRL H 285 $CO Ii It-N H
142 $8E • It-N CTRL N 286 iCE !:J It-N N
143 $8F

~
It-N CTRL 0 287 $CF

I
It-N 0

144 $98 ItN CTRL P 288 $D8 It-N P
145 $91 It-N CTRL Q 289 $Dl It-N Q
146 $92 ItN CTRL R 218 $D2 It-N R
147 $93 " It-N CTRL S 211 $D3 It-N S ..
148 $94 [] It-N CTRL T 212 $D4 () It-N T
149 $95 .. It-N CTRL U 213 $D5 m ItN U
158 $96 J It-N CTRL V 214 $06

~
It-N V

151 $97 INV CTRL W 215 $D7 It-N W
152 $98 II It-N CTRL X 216 $D8 INV X
153 $99 i INV CTRL Y 217 $D9 ~ It-N Y
154 $ 9A

EHL
It-N CTRL 2 2J8 $DA . ~ It-N 2

155 $9B RETURN 219 $DB I It-N SHIFT [
J56 $9C n ESC SHIFT DELETE 229 $DC ItN SHIFT \
157 $90 n ESC SHIFT INSERT 221 $00 ItN SHIFT I
158 $9E II ESC CTRL TAB 222 $OE I It-N SHIFT A

159 $9F i ESC SHIFT TAB 223 $DF • It-N SHIFT _
168 $A9 It-N SPACE BAR 224 $E9 0 It-N CTRL
161 $Al ! It-N SHIFT! 225 $El ~ It-N &
162 $A2 It-N SHIFT' 226 $E2 [lI It-N b
163 $A3 ItN SHIFT II 227 $E3 Ii It-N c
164 $A4 ri It-N SHI FT $ 228 $E4 III It-N d
165 $A5

m
It-N SHI FT /. 229 $E5 m It-N f

166 $A6 ItN SHIFT at 238 $E6

~
It-N f

167 $A7 B It-N SHIFT' 231 $E7 It-N ~ 169 $A8 It-N SHIFT 232 $EB It-N
169 $A9 !! It-N SHIFT 233 $E9 D It-N i
178 $M ... ItN * 234 $EA ., It-N j
171 $AB II ItN • 235 $EB B It-N k 172 $AC It-N I 236 $EC It-N 1
173 $AD l1li It-N - 237 $ED ~ It-N m
174 $AE II It-N . 23B $EE Ii] It-N n
175 $AF

I
It-N / 239 $EF

I
It-N 0

176 $B8 It-N 9 249 $F9 l~ P 177 $BI It-N 1 241 $Fl
178 $B2 ItN 2 242 $F2 It-N ~
179 $B3 It-N 3 243 $F3 It-N s
lB8 $B4 liN 4 244 $F4 II It-N t
181 $B5 0 It-N 5 245 $F5 ~ ItN u
lB2 $B6

~ It-N 6 246 $F6 It-N v
lB3 $B7 It-N 7 247 $F7 Ii It-N w
lB4 .BB m It-N 9 24B $FB It-N x
lB5 $B9 ~ It-N 9 249 $F9 ro It-N y
196 $BA I It-N SHI FT 259 $FA

H
It-N 2

lB7 $BB It-N • 251 $FB It-N CTRL •
lBB . BC It-N t 252 $FC It-N SHIFi'~ IB9 $BO a It-N = 253 $FD [3 It-N ESC CT L 2
198 $BE tl It-N) 254 $FE U ESC CTRL DELETE
191 $BF i It-N SHI FT ? 255 $FF Il ESC CTRL INSERT

Page A-2 BASIC XE Reference Manual

Appendix B

BASIC XE Memory Map

BASIC XE Memory Map
$0000 - LOMEM

Below you will find a table containing the low memory locations used by
BASIC XE. In the descriptions you wlll find the abbreviations 'AtB' and 'BXE'.
They stand tor'Atari RASIC' and 'BASIC XE',respectively.

Most of these locations are docum ented only because they are used to delimit
areas in the memory maps on the following pages. The only locations that might be
of use to you are LOMEM, STOPLN, Ell BRAV, and PTARW . These, however, are
associated with RASIC XI': commands as follows, so you need never use PEEK or
POKE:

LOMEM
STOPLN
Ell RSA V
PTABW

LOMEM
ERR(1)
ER R(O)

SET 1,aexp

Note : unless otherwise specified, all zero page locations $80 - $FF are used by
BASIC XE.

Locatlon(s) Lahel
$E-$F APPMIII

$20-$2F ZIOCB
$43 -$4 9 FMSZPG
$80, $81 LOOThI
$82,$83 VNTP
$84, $R5 VNTO
$86, $R7 VVTP
$88,$89 STMTAR
$8A, $SR STMCUR
~ 8C, $eO STAIlP
$8E,$8F IlUNSTK
$90,$91 MTh1TOP
$BA,$BB sronN
$C3 ERIlSAV
$C9 PTADW
$CR-$nl
$04-$09 FRO
$[0-$E5 Fill

M80-$57F

$580-$67F

$680-$6FF

$700-LOMEM

Usage
System pointer to free memory.
Temporary storage for Floating Point routines.
Temporary sto rage for Floating Point routines.
Low memory po in ter.
Variable name table pointer.
Pointer to the end of variable name table plus one .
Variable value table pointer.
Statement table pointer.
Current statement pointer.
mvor, svar, and savar value table pointer.
Runtime stack pointe r.
High memory pointer.
Line number at which the program stopped.
The number of the most recent error.
Number of columns between tab stops.
lln us ed hy nXE! !
Floating point r eg ister O.
Floating point register 1.
Used by RXE for various purposes. Caution: some
AtR programs use this area during RUN. BXE pro
grams that use only AtR commands can do this also,
but those tho t take advantage of t he new commanrls
may not use this space.
Normaliy unused by BXE, but INPUT or ENTER from an
external device can wipe it out.
Unused by RXE!! we suggest that you use this area
Cor your USR routines.
nos and any other device handlers (R:, etc.) reside
here. The LOMEM statement can change the size oC
this space.

BASIC XE Reference Manual Pnge R-l

BASIC XE Memory Map
Low Memory - Standard

App~nclix 11

Low Memory - Standard

The diagrams on this and the facing page show how BASIC XP. uses memory
between LOMEM and the start of cartridge memory ($ A 000). The diagram on this
page shows how memory Is used if you do not use the EXTEND statement, and the
one opposite shows the memory configuration In EXTENDed mode.

RAM
$A999

GR. RAM ------------
PHIL RAM -----------

$9999 J"
$8998 1
APPHHI ------------

ruSI C XE
~n ,me tack

RLI'lSTK ------------
$7999

mvar,
svar,
savar,

STARP
Space

$6999

Your
$5998

BASIC XE

$<1999

Program

$3999

STHTAB ------------
liar Valuts

WTP ------------
liar Namts

IAfTP ----------- U11EH

Page B-2 BASIC XE Reference Manual

Appendix B

$ABBB

$9898

$8899

$7888

$6889

APPHHI
$5888
RltoISTK

$'1898

$3889
STARP
WTP

IMTP
LCI1EN

RAM

GR. RAN .------------PHG. RAM ------------
~

FRE (8)

ruS{C XE
~n Ime tack

~-----------

mvar,
sval" ,
savar
Space

val" Valufs

~-----------val" Names
~-----------BXE BuHtr ------------,

Low Memory - EXTENDed

The Ext~nded RAM

~ ~

FRE(1>

Your

BASIC XE

Program

Bank 8 Bank 1

4- $388 byte BuHel".

BASIC XE Reference Manual

RASIC XE Memory Map
Low Memory - EXTENDed

in a 138XE

~

Bank 2 Bank 3

Page Jl-~

BASIC XE Memory Map
High Memory

Appendix R

High Memory

The diagram on this page shows the memory configuration from the start of
cartridge memory to $FFFF (the end of Address space). Those areAS labelled
'R ASIC XE Extensions' are used hy RA SIC XB only when you have booted using the
disk extensions. --

Atari Reserved

$F999
Opera t i ng by

Syshm Atari

Standard Ch
$E9ge

rae hI' Se ts
Atari's BASIC XE

Floating Pt. Extensions

GTIA, POKEY, and PIA

$099B
International Char. Se t

Atari
BASIC XE

Operat i ng
RAM

.CBBe
System

Unusable

Atar i BASIC XE BASIC XE
$Bgee

BASIC Extensions Cartridge

SA99B

Page B-4 BASIC XE Reference Manual

Appendix C Compatablllty with Atarl BASIC

Compatablllty with Atarl BASIC

Generally, B A SIC X E Is totally com patable with A tarl B A SIC. Virtually all
programs you have written In AtarlllASIC will execute properly under llASIC XE.
However, t here are a few subtle differences between the two B A :>ICs, Rnd some of
these can affect whether a program will lond and run or not. This appendix
presents a list oC known differences, but we can't guarantee that it covers all the
dlrterences.

Variable Names

When you SAVE or CSAVE a program In Atari BASIC, and then LOAD or CLOAD It
Into DASIC XE, you will never encounter a conflict in variable name usage. If,
however, you LIST a program from Atari BASIC, and try to ENTER it Into
BASIC XE, you might discover that BA~IC XE wlll not accept some lines that you
know are legal In Atari BASIC.

The reason, of course, Is that llASIC XE has a much larger list of commands than
does Atarl BASIC, and in neither BA~IC can you start a variable nAme with a
command nam e unless you precede it with LET. To illustrate how this can create a
problem, consider this program line thAt's valid in AtArl J1ASIC:

188 IIUHIIER=7

Because HUM Is a BASIC XE statement the above line will look like
188 lIult IIl!r=7
to DASIC XE. Since your program probably doesn't have a variable named Ber, the
expression Ber=7 will evaluate to zero, thus making the original statem ent turn
Into
181 lIult I
which Is certainly not what you intended!

In most cases variable name conflicts will result In syntax errors, but io this parti
cular case (and a few others) the result appears valid to BASIC XE, thus creating
possibly dlsasterous consequences.

How can you detect and fix such prohlems? The easiest way Is to examine a
BASIC XE LISTing of the program, and, thanks to BASIC XE's program formotter,
the discrepancies will stick out.

Remember, however, tha t even LET will not allow you to lise function names as
variable names, so you need to change variable names that b egin with (or match) a
BASIC XE function name to something else (e.g., change BUMP to DMP or VB UMP).

BASIC XE Reference Manual Page C-l

Compatabtlity with Atari BASIC Appenoix C

Programs that RUN Too Fast

One of the reasons you bought BASIC XE In the first place was probably its speed.
ffowever, little did you realize that some of your BA SIC programs (most likely
games) would RUN too fast! The only solution to this is to put oelays In your
program. You can 00 this easily by CALLIng a PROCEDURE that waits for some
time, dependent upon the vallie you pass it, as follows:

lBBB Procl!dur l! " Wait " Us i ng Ti MI!
1818 Loc al TI!~
lB28 for TI! Mp:l To Ti Ml!l Nl!xt TI! MP
1131 Exit

Now, just insert CALLS to this routine where you need to waste some time:
lB8 call " Wait" Using 2B

Memory Confiicts

BASIC XE attempts to c onform to all memory location usage published in any or all
of the following books:

Atarl BASIC Reference Manual, by Atarl, Inc.
De ReA tari, by Chris Cra wford el alia
Mapping the Atarl, from COMPUTE! Books
Master Memory Map, by Educational Softwarc, Inc.

A few programs writte n by extemely knowledgeable Individuals have made use of
one or more of the following unpublished facts about Atarl TlASIC:

.1) Atari BASIC uses c ertain memory locations only at certain times,
2) Certain zero-page locations have specifll meoing to Atari BASIC, And
3) Certain subroutines internal to Atari llAglC begin at certain addresses in

the c artridge.

Obviously, we couldn't have actd!'d speed and features to Tl ASIC XE without adding
code and making more us!' of the memory reserved for BASH-;. Althour;h we kept
changes to a minimum, we can't possibly be held responslhlp for conflicts created
by programs that depend use such methods to accomplish their task. They were
created specifically for use with Atari BASIC, and must remain that way.

Automatic String DIMensioning

BASIC XE will automatically DIMension strings to 40 characters for you, and this
should have no effect on your Atarl BASIC programs, but, If you really want to
Insure total compatibility, use SET 11,0.

Indented LISTIngs

When B A SIC XE LISTs a program it Automatically Indents control structures (FO R,
WHILE, etc.). This C!an be a problem If you LIST an Atarl BASIC program with
extemely long lines and then try to ENTER it into BASIC XE. '\'0 solve problems
that arise from this, us€' SET 12,0.

Page C-2 BASIC XE Reference Manual

Appendix D Data Space In Extended Memory

Data Space In Extended Memory

When you use RASIC XI': with an Atarl 130 XI': computer, there are three ways to
use the "extra" 64K bytes of II AM memory which this machine gives you. AItho\l!(h
you can use only one of these ways at a time, the flexibility Is nice and may allow
you to write some Interesting programs. You shoulcl already be familiar with two
of these ways:

1) You can use BASIC)1'E's EXTEND command to give yourself a 64K program
workspace without affecting a data space of 301(bytes or more, or

2) You can boot with a D OS that allows you to use this memory as a sup€'r-fast
RamDlsk ("tarl DOS 2.5 Is a good example).

This Appendix will introduce you to the third way to use this memory.

If you don't use the memory for large programs, and If you don't use it for a
Ram Disk, then BASIC YE allows you to use It for your own purposes. In fact,
BASIC XE has several statements and functions which were designed to help you
use this memory. If you will refer to the descriptions In this manual of the
following commands, you will find that each allows you to specify an optional bank
number:

MOVE
BGET
BPUT

POKE
DPOKE
PEEl(
DPEEK

The bank numbers that can be used with these commands are lllustrated In
Appendix B. Not shown In that diagram is Bank 4, which is simply the "main"
memory from $4000 to $7FFF. BASIC XE assigns it this bank number for your
convenience, but In any of these commands "Rank 4" is assumecllf no bank number
is given.

With the exception of MOVE, all of these commands can be used easlly and safely
to store or retrieve data In any of the extended mf!mory, so long as neither
BASIC XE nor DOS Is trying to use the memory at the same time. For example,
you could copy a small disk file by
1) OPENing the rue with Its original disk Inserted,
7.) using BGET to read It Into one of the banks,
3) eLOSEing and reOPENing the file after Inserting another disk, and
4) using BPUT to write the file from the extended bank. If the file Is longer than

16K bytes, you could use 2, ~, or even nil 4 banks to hold It while waiting for
the disks to be swapped.

Use of the MOVE statement requires a littl!' more care, though. The bank number
you specify for a MOVE refers to both the source and destination addresses. Thus
a command of the form --
Move $.000,$5000,$200,3
would move 512 ($200) hytes from location $4000 In bank 3 to location $5000 In
bank 3. This Is often exactly what you want and will probably make you gloriously
happy. But consider a command like this:
Move Adr(Goodlea'>,$.OOO,Len(Goodlea$>,2
This Is dangerous and probably wlll not work!

BASIC XE Reference Manual Page D-1

Data Space In Extended Memory Appenolx D

If you refer to the memory map of Appendix B .Agaln, you will note that it is
possible (or even probable) that R ASIC XE will store your strings and arrays
somewhere in the address range $4000 through $7FFF in main memory. Assume,
for the moment, that the string Goodies$ is stored at address $6050. The above
MOVE command would try to move bytes from location $6050 In bank? to location
$4000 In bank 2. Almost certainly not what you wanted.

How can you avoid this problem? First, always MOVE any object that Is located In
main memory from MOOO to $7FFF to an intermediate location that Is outsloe
those bounds. Then MOVE from the intermediate location to the appropriate bank.
What intermediate areas are available? If you are writing your own program from
scratch, then there are several good locations available, If you wiII refer to
Appendix B again. If you aren't using It for any other purpose, page 6 of memory
($600 to $6FF) Is a good spot. Note that this limits your MOVEs to 256 bytes each.
This may require a little work on your part, such as In this routine:
910 For Loc=O To Len(X$) Step 256
920 Move Adr(X$)+Loc,$600,256
930 Move $600,$4000+Loc,256,3
940 Next Loc

(There is a naw in the above program: if X$ is -- for example -- 10 characters
long, thEm the first set of MOVEs will move 246 bytes too much. If this could
cause a problem, your program would have to check for this situation and make a
shorter MOVE on the last section of each string.)

The program titled "SHOWPIC" on page D-5 shows another good location to use for
a MOVE buffer: the graphics screen memory. In this program, the screen memory
Is used to actuaIIy hold pictures, but there Is no reason you couldn't use excess
memory In this area (between A PPM III and HIM EM) for any purpose you choose.

To help get you started using extended memory In new ways, we bere explain the
"SHOW PIC" program, step by step. As Its name Implies, It shows pictures. In fact,
It will show up to eight pictures In slide show fashion, and its big feature is the
speed at which It shows them.

To use the program, you need two or more picture files that have been saved In
what Is known as "~Icro-Illustrator" format. The first 76RO bytes (40 bytes per
line by 192 lines) of a file In this format are simply a dump of either a
GRAPHICS 24 (which is 8+16, a full screen two color mode) or GRAPHICS :n (a
full screen also, 15+16) screen memory. Most popular drawing programs for Atarl
8-blt computers either use this format or provide a means of using it. For
example, standard KOAla Pad and Atar! Artist software use a condensed format,
but both allow you to produce a Micro-JIlustrator file by pressing
"Control-Shift-Insert" (push the Insert key while holding down both the Control
and Shift keys). Doing this always produces a file of the name "PICTUll E," so you
must go to DOS and rename the file before you save another picture on the disk In
the same way.

Since picture files In this format are large, we suggest putting the program
"SHOW PIC" on a disk with nothing but DOS and the pictures. The picture flies
may use any 8-character name, but all must have the extension ".PIC" in order for
"SHOW PIC" to find them. The paragraphs that begin on the following page explain
the workings of "SHOW PIC" In some detail, and the numbers used are those of the

Page D-2 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory

lines being explained.

180 The string Flle$ Is used only to read a line from the directory. The
string array FUes$ wll1 hold the names of up to eIght flies.

190 As noted above, a "Micro-Tllustrator pIcture Is simply 7RIIO bytes
"dumped" from screen memory.

200 The states of the Start, Select, and Option keys are found by PEEKing
location $DOIF. If the Start key Is pressed, the least significant bIt ($01)
of the location wlIl be zero.

240 We will read a portion of the directory of the disk in drive 1. Feel free
to change the drIve number and/or the filename extension.

250 We wlll read In a maximum of 8 file names.

260,270 As we read In a !IIename, we ch'lck It. If there are fewer than II picture
!lies on the cllsk, we will read the line which tells how many free sectors
there are. If we find that line, we exit from the FO R loop early.

280,290 Because the dlrec tory listing form at does not produce standard file
names, we must build 8. proper name for later use by OPEN. Again, you may
change the drive number and/or filename extension !(you wish .

300,310 Regardless of how we exit the loop, we successfully read In one fewer
than the value of the loop variable.

320 Even when you read the directory, you must close the file.

360,370 We chose a full screen black and white picture. We also chose colors
which looked good on our monitor. If you are using color pictures, change
to GRAPHICS 31 and use appropriate SETCOLORs.

380,390 We will read In only as many files as we found in the directory.

400 This one statement reads In the entire picture! Location $511 contains
address of the beginning of screen memory (I.e., the address of the byte for
POSITION 0,0). See any good Atari memory map book.

440 We put pictures 1 and 2 In bank 0, pictures ~ And 4 In bank 1, etc.

450,460 If It's an odd-numbered picture, we put It In the lower half of the hAnk.
Even-numbered ones go to the top of the b~nk.

470 As explained above, this MOVE is safe because screen memory Is located
above $7FFF. If you use a program which somehow lowers HIMEM, this
might not work!

480,490 Finish up with this !lie and loop for the next one.

500 A t this point, all the pictures have been read In from disk And saved In
various parts of extended memory.

BASIC XI'! Reference Manual Page D-3

Data Space in Extended Memory Appendix D

530 Just initialization. See lines 600 through 6:10.

570 Remember that a WHILE loop executes so long as the expression
following WHILE is true. But a constant other than zero is always true. 80
we loop until the user hits BREAK or RESRT.

600-620 This Is a little sneaky. Every time we get to line 600, Pic will be equal
to Oldpic, so the WHILE loop w!1l execute at least once. BA SIC XE's
RANDOM function conveniently chooses a valid picture number. Then we
go back up to the top of the WHILE loop to find out if we picked a diffNent
picture. If not, we try again.

630 And this ensures that the loop of lines 600 to 620 will execute at least
once next time.

670-700 Does this code look almost the same as that in lines 440 to 470? It
should. The only difference is that now we are moving from the extended
memory into the screen memory.

740 As long as you hold the Start key down, R A SIC XE w!1l loop on this line.
Remember, the "a" symbol means "bit-wise AND," so the test here is of a
single bit in the console register.

750 The end of the "forever" loop.

Finally, a last hint of another direction to explore. Although this program used
BGET to move a picture into screen memory and then MOVEd the picture into
extended memory, you can also use BGET to read directly into extended mE-mory.
It won't look as pretty as the flies are beIng read in, but you could remove line 400
and change line 470 to read as follows:
470 Bget #l,Address,PIcsize,Bank

The fast slIde show portion of the program Is unaffected, because the pictures are
still In the memory locations where It expects them. And, If you hit Break but
want to continue the show, just type in the following line:
GRAPHICS 24:00T0 500
to use the default colors. Or add SETCOLORs before the GOTO if you wish.

Page D-4 BASIC XE Reference Manual

Appendix D Data Space in Extended Memory
SHOWPIC Program

188 A~M •••••••••••••
111 R~M * *
128 A~M * SHOMPIC *
131 A~M * *
148 R~M •••••••••••••
lSI R~M

SHOWPIC Program

161 R~M s.t Up bufffrs, arra~s, constants
171 AUI
181 DiM FilfS$(8,21),Fil~$(28)
1'1 Picsizf=41*1'2
288 Consolf=$dllf:Start=$81
218 AfM
221 AfM find all th~ picturfs fil~s
231 A~M
241 Opfn IIl,6,1,"Dl:*.PIC"
258 For Pic=l To 8
268 Input IIl,Fil~$
278 If fiU$U,2)O"" Thfn Pop:Cioto JII
288 FiltPs$ (Pic J) ="Dl:", Fi I~$ n, 11)," "
2'8 Fil.s$(PicJFind(Fil~s$(PiC;)," ",I"=".PIC"
381 .~xt PiC
311 Naxpic=Pic-l
321 CIOSf III
338 R.III
3.1 R.M r •• d in all thf fil~s
351 AfM
361 GraphiCs 2.
371 5~tcolor 2,6,1:5~tcolor .,6,8:5~tcolor 1,6,8
388 for Pic=l To "axpic
3" Op.n IIl,.,8,Fil~s$(Pic;'
488 89.t· IIl,Dpffk($58),PicSiZf
418 RfM
.21 AfM MDY~ pictur~ into ~xt~nd~d M~Mor~
431 AfM
441 Bank=Int((Pic-l'/2J
.58 Addr.ss=$.881
468 If Pic&1=8 Thfn Addrfss=$6188
471 ~Yf DP~~k($58"AddrfSS,PiCSiz~,Bank
481 Clos. III
.,8 uxt Pic
581 R~M
511 RfM now show th~ pictUres
521 AlPM
538 OldPic=I:Pic=1
5.8 R~M
551 RfM VIP want to do thiS fOrfYfr
561 RfM
571 ... i If 1
581 •• M b~ sur. w. don't show sa~ onf
5" RfM. twic~ in a row
618 ... ilf Pic=OldpiC
618 Pic=RandoM(l,~xpic'
628 End""il.
638 Oldpic=PiC
1141 R ...
651 R~M MDY. frOM ~xt~ndfd M~MDr~ to scr~en
668
671 Bank=Int(CPic-1J/2J
681 Addrfss=$.818
6'8 If Pic&l=1 Thfn Addrfss=$6811
788 ~Y. Addrfss,DPffk($58),PiCSiZ.,BBnk
718
721 Rf .. allow USfr to look at onf
731
741 Nhilf P.fk(ConsoleJ&Start=I:EndWhilf
7S1 EndWhU.

BASIC XE Reference Manual Page 1)-5

Data Space In Extended Memory
Space For Your Notes

Space For Your Notes

Page 0-6

Appendix n

BASIC XE Reference Manual

Appendix E Error Situations
Numbers 1 - 9

Error Situations

Whenever something that BASIC XE wasn't expecting happens, BASIC XF. will stop
whatever It's doing and give an error (unless, of course, you TRAP the error). An
explanatory message will accompany the error number If you have booted with the
extensions disk, otherwise the error number alone will be displayed. All errors
that Involve RASIC XE directly have personalized error messages, but some
obscure system errors simply produce the messaRe "(See Manua!)". This are errors
like #173 (can't format disk), and occur very rarely. The "(See ~~anuall" does not
necessarily mean this manual, but the manual for the device or subsystem that
produces the error.

Error

1

Screen Message and Further Description

BREAK key not TRAPped
While SET 0,1 was specified, the user hit the <RREAK> key. This
TRAPable error gives the RASIC XE programmer total system control.

2 Memory Full
You have used all available memory. You can't enter any more
statements, nor can you define any more variables.

3 Value Out of Range
An expression or variable evaluates to an Incorrect value. For example,
it" a value 0-7 is required, and you use a negative number or a number
greater than 7, an error 3 will occur (e.g., SETC. 99,0,0).

4 Too Many Variables
No more variables can be defined. The maximum number of varillbles Is
128.

5 Access Past String DIM
You tried to Access a character beyond thc DIMensioned length of a
string.

6 No DATA to READ
A READ statement 15 executed after the last adata Item in the last
DATA statement has already been read.

7 Val> 32767
BASIC XF. encountered a line number larger than ;\?-767. Some other
commands (e.g., POINT) can also produce this error.

8 INPUT/READ Type Mismatch
The INPUT or READ statement did not receive the type of data
(arithmetic or string) It expected.

9 DIMensioning
Either you tried to reDIMension an already DIMensioned var, or used an
unDIMensioned variable as though it were DIMensioned.

BASIC XE Reference Manual Page F.-I

Error Situations
Numbers 10 - 20

Appendix E

Error

10

11

12

13

Screen Message and Further Description

Expression too Complex
An expression is too complex for BASIC XE to handle. The solution is to
break the calculation into two or more IlASIC XF. statemcnts.

Overflow/UnderFlow
The floating point routines have produced a number that is either too
large or too small.

Line Not Found
The target lineno of a GO TO, GOSUB, or IF/THEN does not exist.

NEXT without FOR
A NEXT avar was encountered without a corresponding FOR avar.
Note: Improper use of POP could cause this error.

14 Line Too Long or Complex
The progam line just entered is either longer or more complex than
BASIC XE can handle. Thc solution is to break the line into mUltiple
lines by putting fewer statements on a line, or by evaluating the
expression in multiple statements.

15 Line Not Found
The line containing a GOSUB or FOR was deleted after it was executed
but before the RETURN or NEXT was executed. This can happen if,
while running a program, a STOP is executed after the GOSUB or FOR,
then the line containing the statement is deleted, then you type
CONT and the program tries to execute the RETURN or NEXT.

16 RETURN without GOSUB
A RETURN was encountered when execution Is not in a GOSUB routine.
Note: improper use of POP could also cause this error.

17 Bad Line
You tried to RUN a program that had a line with an already-markerl
syntax error on It (I.e. It has the "ER ROil -" on it). Note: the SAVElng
of a line that contains a SyntRX error can be useful when debugging your
program, but don't forget to change It before RUNning again.

18 Not a Number
If the sexp in a VAL does not start with a number, this message number
Is generated. For example, VAL("ABC") would cause this error.

19 Too Big to LOAD
The program you're trying to LOAD is larger than available memory.
This could happen if you have used LOMEM to change the address at
which the BASIC XE tables start, or If you're LOADing using a nos
different from the one used when the program was SAVEd.

20 Invalld Channel #
If the device number given in an I/O statement is greater than 7 or less
than 0, then this error is issued.

Page E-2 BASIC XE Reference Manual

Appendix E Error Situations
Numbers 21 - 40

Error

21

Screen Message and Further Description

File Not LOAD fonnat
This error results If you try to LOAD a file that was not created by
SAVE.

22 USING String Too Big
This error occurs if the entire format string in a
PRINT USING statement is longer than 255 characters. It also occurs if
a single format field is longer than 59 characters.

23 USING Value Too Big
The value of an aexp In a PRINT USING statement is greater than or
equal to 1 E+50.

24 USING Type Mismatch
The format field In a PRINT USING statement and the corresponding
exp to be output using that format are not of the same data type
(arithmetic or string).

25 RGET DIM Mismatch
A string being retrieved by RGET has a different DIMensioned length
than the string variable to which It is to be assigned.

26 RGET Type Mismatch
The record element being retrieved by RGET and the variable to which
It is assigned are not of the same data type.

28 Invalid Structure
The end of a control struct.ure like ENDIF or ENDWHILE was
encountered without a corresponding IF or WHILE.

29 P/M /I Out of Range
An Ulegal player/missile number. Pl ayers must be numbered from 0-3
and missiles from 4-7.

30 P/M Graphics not Active
You attempted to use a PMG statement before Initializing P/M's via
PMG.l or PMG. 2.

32 ENTER not TRAPped
End of ENTER. This Is the error resulting from using a SET 9,1.

34 Can't NUM/RENUM
aexp1 or aexp2 In a RENUM or NUM statement evaluated to zero.

35 Can't NUM/RENUM
When RENUMbering, the maximum line number (32767) was exceeded.

40 String Type Mismatch
You attempted to use an svar as an savar, or visa versa.

BASIC XE Reference Manual Page E-;l

Error Si tua tions
Numbers 65 - 147

Appendix E

Error

65

100

Screen Message and Further Description

EXTENDed Memory Not Available
You tried to LOAD an EXTENDed program or use the
EXTEND statement on a computer that doesn't have extended memory.

Extensions not Installed!
You used a command avialable only If you hoot with the disk extensions.
See How to Boot BASIC XE in the introduction for a list of these
commands.

129 Channel Already OPEN
You are trying to OPEN a CIO channel that is already OPEN.

130 No Device Handler
CIO could not find the device you specified in Its device table.

131 Write Only
You are trying to read from a CIO channel that was OPENed for writing
only.

132 Bad Device Cmd
The I/O command you issued does not exist for the device. This can
happen if your XIO command or OPEN mode Is wrong.

133 Channel Not OPEN
You tried to use a CIO channel that you haven't yet OPENed.

135 Read Only
You are trying to write to a CIO channcl that was OPENed for reacling
only.

136 End-Of-Flle
There is no more data In the file you are reading.

138 Device Timeout
The device you tried to access did not respond within Its allotted time.

139 Device N A K
The device does not acknowledge.

141 Screen Position
You triecl to access a position not valid In the current graphics mode.

144 Device Done
Either the I/O operation you attempted didn't execute properly, or you
tried to write to a write-protected disk.

145 Invalid GR Mode
You attempted to use a graphics mode that doesn't exist.

147 No Memory for GR Mode
You don't have enough room for the graphics mode you specified.

Page E-4 BASIC XE Reference Manual

Appendix E

Error Screen MessagE' anel Further Description

160 Invalid Drive it

Error SI tua tlons
Numbers 160 - 171

DOS does not recognize the drivE' number you gavE'. This can hAppen if
you specified an Illegal drive numher or If the drive Is not on.

161 Too Many OPEN Files
DOS does not have any more buffers available on which to OPEN files.

162 Disk Full
There Is no room for more data on the disk.

165 Bad File Name
You used an lJIegal disk file name. See your DOS manual for legal file
names.

167 File PROTECTed
You tried to write to a PROTECTed file.

169 DIRectory Full
The disk directory Is full, so you can't create any new flies.

170 FUe Not Found
DOS can't find the CIte you specified on the disk.

171 Bild Point Value
You attempted to POINT to a non-existent place on the disk, or you did
not 0 PEN the file In update mode (I2).

BASIC XE Reference Manual Page E-5

Error SI tua tions
Space For Your Notes

Page E-6

Space For Your Notes

App<>ndix E

BASIC XE Reference Manual

Index
avar

INDEX

Underlined page numbers refer to sections where the term is defined.

96

*

+

as bitwise OR 19-20, 21
in PRINT USING format 47,49
with PROCEDURE parameters

7, 112-117

precedIng I/O channel 41-42
in PRINT USING format 47-49

after svar or savar 9, 12
in hexadecimal constant 23
in L VA R variable 11st 37
in PRINT USING format 47,49

as bitwise EO R 19-20, 21
In PRINT USING format 47,49

as bitwise AND 19-20, 21
in PRINT USING format 47-49

as multiply operator 19, 21
In PRINT USING format 47-48
in filespec string 57

as plus operator 19-20, 21
in PRINT USING format 47-49

for string concatenation 17
spacing in I/O 4~

in PRINT USING format 47- 49

as minus operator 19-20, 21
as unary minus 23
in PRINT USING format 47-50
In PRINT USING format 47-49

as divide operator 19, 21
in PRINT USING format 47, 50

spacing in I/O 42
savar element 12
with SORTUP/SORTDOWN 96, 98

< less than operator 20,21
<= less or equal operator 20,21
<> not equal operator 20,21

BASIC XB Reference Manual

in variable assignment 16-17
as equal operator 20,21

> greater than operator 20,21
>= greater or equal operator 20,21
? as filespec character 57
" exponentiation operator 19, 21

A BS - absolute value 17, 103
adata- ATASCIIdata 5 -
AD R - address of variable 70

with BPUT and BGET 51
with USR calls 118
and SET 15,aexp 36

Alphanumeric 5, 95
AND -logical AND operator 19-21
aop - arithmetic operator 5, 19
Arithmetic -

Assignment 16
BCD Storage 23
Condant 24, 61, 63
Expressions 24
Floating Point fl, 23
Matrices 10-11
Operators 19-20
Variables 9

Arrays 5
Arithmetic 10
String 7, 12
DIMensioning 13
Assignment 16
with RGET 53
as PROCEDURE parameters

113-117
Sorting 95-98

ASC - ATASCIIvalue 24, fog
Assignment to variables 16-17
ATASCII 5,7.9,69,75,95, 9R
ATN - Arctangent 107, lOR
Automatic DIMensioning 12, 1~

see also SET
avar - Arithmetic variable 2.,!

assignment 16
In expressions 24
as LOCAL variable 14, 111,

112-113, 116

Page I-I

BCD
EXTENDed mode

BCD
see Binary Coded Decimal

BGET 51
withADR 70
with PMADR 89

Binary Coded Decimal 23, 52
Blnaryoperators 5, 19-20, 21
Bitwise operators - 19-20, 21

AND (al 19-20
OR (!) 19-20
EOR (%) 19-20

BLOAD 54
BPUT 51

withADR 70
with PMADR 89

Brackets 3
BREAK key 4

Trapping 35
BSAVE 2,54
BUMP 84,88
BYE 39 -

CALL 2,110-111,117
in TRACE mode 33

Channel for I/O 2.1 41-42
CRR, 69
CLOAD 29,30
CLOG - baselo logarithm 103,.!Q,!
CLOSE

an OPEN channel 43
done by LPRINT 45

C L R - clear all variables 35, 37
cname- CALLed name~, 117
COLOR 79

reglstm:s 77
values 78
SETCOLOR relationship 79
when PLOTting 80
when filling 81

Concatenating Strings 17
Conditional

Expression 20
StatE'ments 60, 63-64, 65

Constant
see String Constant
and Arithmetic Constant

CONT n, 33 67-68
COS - cosine 107
CP 39
CSA VE 29, lQ.

Page 1-2

DATA 99,100
and SET 5,aexp 35

Data I/O 47
Deferred Mode 4
DEG 107, lOR
DEL 2,25,26, 32

Index

Derived Trigonometric Functions lOS
Device 5,41

Storing programs to 29-30
OPENing Bnd CLOSElng 42-43

DIM D
Arrays and Strings 10,12,13
auto DIM size 36
DIM size and RPUT/RGET 52-53
DIM within PROCEDURE J.15

DIR 57
Direct Mode 4
Disk File 41
DOS

Disk Operating System 2,41,
51, 55, 57, 58

command 39
DPEEK 101,102
DPOKE 101,ili
DRAWTO 80-

setting the COLOR 79
with fill 81

ELSE 64
END 31,93,109,115
ENDIF64
ENDWHILE 60, 62
ENTER 29 -

to clear variable table 9
In FAST mode 32
SET 5,aexp 35
SET 9,aexp 36

ERASE 57,58
ERR fl7, flS-
Error Handling 33, 67-fl8
Error Messflge 35
Execute Mode 4
EXIT 2, Jl 0-lll, 116

and LOCAL 14-=15
from a GOSUB 109

exp 5, 20
EXp-:: exponential 103,104
Expression 5,23-24 --

ArithmetIC ~
String 24

EXTEND 4, 32, 35,38
EXTENDed Mode 3s,-51,101

BASIC XE Reference Manual

Index

FAST 2,31,32
filespec 6, 41-42
Fill with XIO 56,81
Fill character -

In PRINT USING 47-48
FIND 70
Floating Point 6, n
FO R 26, 35-36, 59

POP within FOR loop 62
FRE 35,37
Functions

Arithmetic 103, 104, 105
Game Controller 7~, 74
P 1M Graphics 88, 89
String 69, 70, 71, 72
Trigonometric J 07, 108

GET 45, 56
Glossary 5-7
GOSUB 109

ON ••• GoSUB 65
RENUMbering 2f
In FAST mode 32
leaving with PO P 62
with LOCAL 14-15
EXITing il GOSUB 116

GOTO 27, 31-13,61, 68
ON ... GOTO 65

GRAPHICS 78, 8s
Graphics 31;-41, 51, 75, 78

Mode 75-76, 79 -

Hexadecimal Constant !!, 36, 72
HEX$ 72
HITCLR 2, SS
HSTICK 74

IF 63-64
Indentation 26, 35, 36
INPUT 24, 35,44, 52, 56

Custom Prompt 44
Default Prompt 35,44
Reprompt 44

INT J 03
Integers 6, 19, 101-102

hexadecimal Integers 23
INVERSE 50

LEFT$ 71
LEN 16, 53, 69, 71
LET 17 -
lIneno 6, 29

see 8lso LIne Number

BASIC XE Reference Manual

FAST
Numeric Constant

Line Number 4, 6
LIST range -26, 29
RENUMbering 27
autoNUMber 25
and FAST 32
In TRACE mode 33
error line 68
with GOTO <1(GOSUB 61, J09
withIF ... THEN 63
with ON 65
wlthTRAP 67
with RESTORE 100

LIST 9, 25, 26, "7, 29, 32, 36
Literal String -

see String LI teral
LOAD 29,30,32
LOCAL 2,9,14

POPping LOCALs 62
with GOSUB 109
Implicit LOCALs 11l-112
and EXIT 111\

LOCATE 80
LOG - natural logarithm J 04
Logical Operator 6, 17-19, 20
LOMEM 35, 37 -
Loops 32, 35, 59, 60
lop 6, 20, 21, 24
LPRINT42, 45,50
LVAR 2, :12, 35,E

Matrix Variable 6, 9-11
DIMensioning 13
assIgning 11\
as PROCEDURE parameter 97

MID$ 71
MISSILE 84-86, 87
Modes -

Graphics 78, 79
Operating 4
P 1M Graphics 83

MOVE 2, 89, 102
mvar .!' 10, 24,53, 112

NEW 9,25
NEXT 59,""62
NORMAL 50
NOT 17,20,21
NOTE 55-
NUM 4-;25
Numeric Constant

see Arithmetic Constant

Page 1-3

ON
Statement

ON 27,65
OPEN 4T, 42, 45, 56

status of OPENed channel 55
Operating Modes 4
Operators 5,6,19

Arithmetic-19-20
Bitwise 19-20
Logical 20
Precedence 21

OR 19,~, 21

PADDLE 73
PEEK 89, 101, 102
PEN 73 -
pexp 6, 112, 114, 115, 116
PLOT-79, 80, 81
P/M Graphics 83-85, 90

Conventions 84
Fifth Player 36
Modes 85
Wraparound 86, R8

PMADR 85,89
PMCLR R8 -
PMCOLOR 77,86
PMGRAPHICS 85
PMMOVE 83-84, 86, 88
pmnum 7,84,89-
PMWIDTH86, 87
pname 7,112
POINT 55
POKE 89,101, 102
POP 62, lii'9,'""116
POSITION 80
PRINT 35,43, 45, 46, 50, 76
PRINT USING 36,46,47
PROCEDURE 2, 14, 110-115, 1.12
Program --

Editing 25-27
Entry 25-27, 29, :In
Execution 31-33
Formatting 26, 35, 36
Line 4, 7
I/O 29-30

PROTECT 57
PTRIG 73
PUT 45

RAD 107
RANDOM 104
READ 99-100
relational operators ~, 21, 24
REM 27
RENAME 58

Page 1-4

RENUM 2,27,61
RESTORE 100
RETURN 15,62,65,109,110,
RGET 2,44,53 --
RIGHT$ 71 -
RND 104
RPUT 2, 44, 52
RUN 30, 31, ~2
rvar 1, Iff, 114, 117

savar 7, 12
DIMensioning 13
assigning 1 7
in expressions 24
sorting 95 - 9R

Index

as parameters 112-11:1, 116, 117
SA VE 25, 30, 32
SET -

table 35-36
o -<BREAK> key trapping 35
1 -PRINT tabs 43
2 -INPUT prompt char 35
3 -FOR loops 59
4 -INPUT reprompting 44
5 -LIST Cormat 26-27
6 -print error messages 35
7 -p/M wraparound 86, 88
8 -PHA oC USR arguments 118
9 -ENTER trapping 29
10-5th player enable 36
ll-autoDIM 12-13
12-lndentation of LIST 36
13-VAL wi hex constant 7?,

14-USING format overflow 47
15-ADR wi literal string 70

SETCOLOR 76-77,78, 79-80, 84
sexp 7,16,17,23,2'4"
SGN 103 -
SIN 107
SORTDOWN 2, !In, 98
SORTUP 2,95,98 -
SOUND 93 -
SQR 103
Statement 7

Assignment 16-17
Conditional 63-65
DATA 99-100
Data I/O 41-46,47-56
Disk File 57-58
Graphics 75-Rl
Loops 59-62
P/M Graphics 83-91
Program Editing 25-27

BASIC XE Reference Manual

Index

Statement (contd.)
Program Execution 31-33
Program I/O 29-30
Sorting 95-98
Subroutine 109-118

STATUS 55
STEP 59
STICK 73
STOP 33, 68
STU 72
STRIG 74
String

Array see savar
Assignment 16-17
AutoDIMenslonlng 12,13
AutoDIM Size 36
Concatenation 17
Constant 23, 44
Expressions 24
as filespec 42
Functions 69-72
as PROCEDURE name 110-112,

117
Substrings 16
Variables 12

lIVar 7, 12
assigning 16-17
in expressions 24
ss PROCEDURE parameters 112,

116-117
SYS 35,.:!!

BASIC XE Reference Manual

TAB
statement 46
function 46
tab stops 35, 43

THEN 63,64
TO -

with FOR 59
with SORT 97,98

Statement
XIO

with CALL 111014-116, 117
with EXIT 116 --

TRACE :n,33
TRACEOFF3!,33
TRAP 31,35-36;-44,47,21.

UNPROTECT 57
USING

with PRINT 47
with CALL and PROC. 111-112,

117
with SORT 96, 98

USR 36, 70, 90,.!.!!!.

VAL 36,72
var 7 -
Variables 7,!l

Arithmetic 9
LOCAL variables 14-15
Matrix 10-11
Maximum number 9
Names 9
String 12
Types of 9

VSTIC K 74, 84, 86

WHILE 26, 36, 60, 62

XIO 55,~, 81

Page I-~

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160

