Wordmark Systems

MyDOS 4.50

Technical User Guide

For Atari Home Computers

By
Charles Marslett &
Robert Puff

© Wordmark Systems 1988

MYDCS Versi on 4 Technical User Guide

Revi si on 4.50

for Atari Hone Conputers

Copyright (C) 1988 by WORDMARK Systens and the authors:

This software

Charles Marslett
2705 Pi newood Dr.
Garl and, TX 75042
Cl'S: 73317, 3662
UseNet : CHASM@XI LLER. DALLAS. TX. US

and

Robert Puff

Suite 222

2117 Buffal o Rd.

Rochester, NY 14624
GEni e: BOB. PUFF

may be freely used and distributed provided that

this copyright notice is left intact, and provided that:

(1) The source code in nmachine readable formis provided with
any binary distribution, or nade avail able at no additional cost
to the recipients of the binary distribution.

(2) A binary version of a derivative work may be sold for a
reasonabl e distribution charge (less than $50), and the
source code in machi ne readable format nust be avail abl e.

(3) A derivative work may not inpose and restriction on the free
di stribution of the source code.

MYDOS Techni ca

Manua

page 1 Versi on 4.50

V. THE MENU COWANDS: The MEM SAV feature

VWhenever the DOS nenu is entered, MYDOS will | oad DUP. SYS from
drive 1. | f DUP. SYS cannot be found on drive 1, it will look for it
on drive 2, 3, etc... until it finds it.

Loadi ng DUP. SYS will overwite a good chunk of |ower nenory, and
will wpe out the data in nost | anguages. Here's where MEM SAV cones
into play. Wwen this feature is enabled (by going to the nmenu and
pressing "N' and [RETURN], then "B" to exit back), the nenory that
DUP. SYS would overwite is saved to the file "MEM SAV' on drive 1
(may be drive 8 if you use one of the RAMBOOT prograns on the disk).
It then loads the DUP.SYS. Wen you press "B" to return, or if you
use the "N' command of the menu, MYDOS will |oad back in the MEM SAV,
thus restoring the overwitten nenory. The result is your program
remains intact.

V. FILE MANAGER FUNCTI ONS PROVI DED THROUGH C O

MYDOS supports all ClOcalls supported by ATARI DCS 2, with the
following nodifications to the OPEN (Function code 3) and the FORMAT
(Function code 254) functions. Three additional ClO functions have
been added: MAKE DI RECTORY (Function code 34 & 42), SET DI RECTORY
(Function code 41) and LOAD MEMORY (Function code 39 & 40).

The OPEN function in ATARI DOS 2 does not use the data provided
in the AUX2 byte, but in MYDOS when the AUX1 byte is 8 (the file is
opened for creation or replacenent), the AUX2 byte contains two flags
that control the file format, and whether it will be created | ocked
or not.

If AUX2 bit 2 is set, the file will be witten in MYDCS 4
format, and nmay contain sectors beyond absolute sector 1023. Such a
file may not (easily) be read by DOSes ot her than MYDCS. This is the
only format used with high capacity disks. If AUX2 bit 5 is set, the
file will be witten with the "LOCKED' bit in the directory set
initially. This is provided for use by nmulti-tasking functions (such
as a print spooler, sequential file pre-reading function or other
enhancenents one might want to nake to the standard OS or DCS
provi ded functions).

The FORVAT function in ATARI DOS 2 does not provide for any
variations to the standard di sk usage: in MYDOS the contents of the
AUX1 and AUX2 bytes are used to specify the nunber of sectors on the
disk being formatted, and whet her the di sk needs to be formatted by
the controller as well as needing directory initialization. Bit 7 of
AUX1 is set to skip the physical formatting of the entire disk
surface when it is not required, and bits 6-0 of AUX1 and all of AUX2
are used to specify the nunber of sectors on the disk being created
(if all 15 bits are zero, the disk is assuned to be the size defined
by the drive configuration). This pernits fornatting a single sided
di skette on double sided drives, for exanple. Be careful when using

MYDOS Techni cal Manual page 2 Version 4.50

this feature.

To load (and possibly execute) a programfile, MYDOS provides
the CIO function 39 call. CIO function 40 will do the sane; it was
included for conpatibility with prograns written for SpartaDOS. From
BASIC you can |load and execute a program by executing the line: XIO
39, #3, 4, 0, "D MYPROG OBJ". Any inactive IOCB can be used, and if
AUX1=4 both the INIT and the RUN entries will be executed. If AUX1=5,

the RUN entry wll be executed; if AUX1=6, the INIT entry will be
executed; and if AUX1=7, the file will be | oaded wi thout executing
either entry point. Any other values of AUX1L will return an error

code and do not hi ng.

Another XlIO call, XIO 34, has been added to create a directory.
CIO function 42 perforns exactly the same thing, and has been
provided for conpatibility with prograns witten for SpartaDC0S. Wen
a directory is created, the nane used nust not match any existing
file or directory inits parent (for exanple if the directory to be
created is naned "Dl: TEST>BUGS", there can be no other directory in
the main directory naned "TEST" nor a file named "TEST" there.

From BASIC, the XIO 34 call is "Xl O 34, #iocbh, 8, 0, dirname",
where "iocb" is any available unit number, and "dirname" is the name
of the new directory (it does not end with a trailing ":" or ">").

The final function added to those provided by ATARI DOS 2 is Xl O
41, to define the default directory. The default directory is that
which wll be searched for a file if the file name begins with "D "
In ATARI DOCS 2 this default directory is always "D1:" but in MYDCS,
the default directory can be any root or subdirectory on any disk in
the system The buffer address passed to C1Oin the XIO 41 call is
the address of a string that contains the default directory nang,
termnated with either an end of line ($9B) or a null byte ($00). The
directory will be accessed before returning to the calling program so
that an error in specifying the directory will be reported as early
as possi bl e.

VI. Cl O FUNCTI ON CODES PROVI DED BY MYDOS 4. 50

Functi on code 3, OPEN

The open function uses the buffer address to point to an ATASCI |
string term nated with a non-al phanumeric character or wldcard. This
string is the nane of the file to be accessed or created. A good
termnator for this string is either a null ($00) or an end of line
($9B).

The AUX1 byte defines the usage of the file: 4 for input, 6 for
directory data reading, 8 for creating/replacing output, 9 for
creating/ appendi ng out put and 12 for i nput/update (without
extension). The AUX2 byte is used when a file is replaced or created,
and contains two significant bits: bit 2 set causes the MYDCS format
to be used even if the diskette is a 40 track single sided diskette;

MYDOS Techni cal Manual page 3 Version 4.50

and bit 6 set results in the file being LOCKed initially w thout and
additional CIO call. For input, update or directory access AUX2 is
i gnored, and the length is always ignored. In normal use, AUX2 is set
to zero enul ati ng ATARI DOS 2 usage

MYDOS does not |eave partially full sectors when appending to a
file. This has two positive effects on prograns which open files in
append nmode: the open wll fail if the file cannot be appended to
rather than the close (in ATAR DOS), and the file size will not
change if a file appended to is copied to another disk (in ATARI DOS
it may grow snaller).

Function code 5, GET RECORD

The get record function reads a |line of data into a buffer, the
buffer being defined by its starting address and |l ength. The line is
defined as the data bytes in the file up to an end of |ine character
($9B) or until the buffer is full, whichever occurs first. The line
is alsotermnated if the end of the file is read. All record I/Ois
buffered in MyDOS, so record transfers are necessarily slower than
unbuffered I/0

No other fields of the 1OCB are referenced or needed. Note that
the ATARI ROM CS supports single byte I/O through the accunul ator if
the buffer length is set to 0. In this case, GET RECORD and CGET
CHARACTERS function exactly the sanme way.

Function code 7, GET CHARACTERS

The get characters function reads a fixed nunber of bytes froma
file into a buffer, the buffer being defined by its address and
length (two 16-bit nunmbers in the 10CB). The only cases where the
buffer is not always filled is if the end of the file is read, or the
file cannot be read withut error. As is the case with get record
calls, a single byte may be read into the accunul ator by setting the
length field to zero. A get <character CIO call wll perform
unbuffered /0O if the buffer is |longer than 256 bytes (ATARI DCS 2
sets a simlar threshold at 128 bytes). For this reason a single |ong
input is considerably faster than several short ones.

Only the buffer address and length in the IOCB are used by the
get characters function.

Functi on code 9, PUT RECORD

The put record command will wite a single line to an out put
file: the Iline defined by the starting address of the buffer and
either the length of the buffer if no end of line ($9B) bytes are
encountered, or the first end-of-line byte. Only the buffer address
and length in the 10CB are used in this comrand.

MYDOS Techni cal Manual page 4 Version 4.50

Function code 11, PUT CHARACTERS

The put characters command will wite the contents of a buffer
defined by its address and length (in the 10OCB) to a file opened for
output. Unless an error occurs, the entire buffer is always witten
to the file unless the wite is to an output/update file and the end
of the file is reached or the wite is to an output/append or create
file and the disk has filled. Only the buffer address and | ength
fields in the 10OCB are used when the put character function is used.
The single byte put character (using the Aregister as data) is
supported by setting the length bytes to O.

Function code 12, CLCSE A FI LE

To term nate use of a file (and for an output file, to wite the
i nconmplete buffer to the disk) the 10CB used to access the file
should be closed. This is done by setting the function code in the
IOCB to 12 and calling GO The close function does not use any of
the data in the I OCB for any purpose what soever.

Function code 13, READ STATUS

The read status command is issued to an unopened I OCB, with the
buffer address that of a file nanme string. |If the file is not
present, that error condition is returned, if it is |ocked, that
error condition is returned; otherwi se, a normal conpletion code is
returned. Only the function code and the buffer address in the | OCB
are needed.

Function code 32, RENAME A FI LE

The renane function is passed a character string (pointed to by
the buffer address in the 10CB), the first part of the string being a
file name identifying the file or files to be renaned. Follow ng a
single invalid character (one invalid in the file name, that is) a
simple file name nust also be present: this second file name cannot
include any drive or directory nanes. An exanple, using a conma as
the invalid character, is "D2: TEST>PGQVE>A. OUT, ZCPY" which wi |l change
t he string needed to access the file "D2: TEST>PGVG>A QUT" to
"D2: TEST>PGMS>ZCPY" -- Note that only the last file nane (if
subdirectories are wused) can be changed; to change "PGWS' to
"MLPROGS", the buffer nmust contain "D2: TEST>PGVS, MLPROGS"

WIld card characters should appear only in the part of the file

nane following the last ":" or ">", and their effect is best
described by an exanmple. The string "D2: TEST: *.*,* XYZ" will rename
all the files in the TEST directory, maki ng each extension ".XYzZ". |f

the directory had the files "ATEST. BAS', "LOG', and "REPORT. XYZ" in
it, the result would be a directory with "ATEST. XYZ", "LOG XYZ" and
"REPORT. XYZ" init.

MYDOS Techni cal Manual page 5 Version 4.50

Function code 33, DELETE A FILE

The delete function renoves any files that match the file nane
string pointed to by the buffer address in the IOCB. Files |ocked
will not be deleted, so nust be unlocked before being renoved, and
subdirectories that are not enpty (that have a file in then) cannot
be deleted. If either case is attenpted, the corresponding error code
is returned. Oherwise, the files are removed and their data areas
are returned to the free space on the disk. Files that have been
deleted may be "undeleted" by various utility prograns ONLY if the
data has not been overwitten. If you wite to the disk after you
have just deleted a file on that disk, chances are that you wll not
be able to recover the file.

Functi on code 34, MAKE DI RECTORY

The rmake directory function will create a new subdirectory on a
disk (it is not used to create the first directory, that is the "root
directory” identified by the drive specification "D1:", for exanple).
It is called through CIO by storing the address of the new
directory's nane in the I10OCB buffer address and setting up AUX1 and
AUX2 as for an open call (see Function code 3), nornmally AUX1=8 and
AUX2=0. This function has no effect on the current default directory;
and if it is desired to nake the newly created directory the default
one, the program nust nake a set directory call (Function code 41)
followng the make directory <call (the order is very inportant,
because the default directory cannot be set to a nonexistent
directory). CIO function code 42 nmay also be used to access this
function; the paraneters are the sane.

Function code 35, LOCK FILE

A file can be "locked" so that it may not be nodified or del eted
i nadvertently, by <calling CO wth the lock function. The buffer
address is wused to point to a file nanme string that identifies the
files on the disk to be locked. The only file nodification that can
be perfornmed on a locked file is to unlock it. The lock function can
be requested for a file already |ocked, and it will return no error
(unlike other file nodification calls to C1 O, but the status of the
file will not have been changed.

Function code 36, UNLOCK FI LE

The unlock function is identical to the Iock function except
that 1is re-enables the nodification or deletion of an unl ocked file.
A file that is not | ocked can be unlocked with no error returned and
no change in the file's status.

MYDOS Techni cal Manual page 6 Version 4.50

Function code 37, PONT TO PCSITION IN FILE

The point function is passed the 3-byte disk address to be
positioned to in the twelfth through fourteenth bytes of the 10CB. On

return, the next byte read fromthat 10CB will be the one that was
read or witten next after the corresponding note function was
executed. A point call to ClOcan only be made if the file can be
used for input: that is, if it is opened for input or update

processing. The first two bytes of the disk address are a sector
nunber (in low byte [/ high byte format) and the third is the byte
(offset) within the sector

If a file is being appended to (opened wi th AUX1=9), a point
function call made before closing the file may return an unexpected
error (this cannot happen with the note function, however).

A problemcan occur if the file being pointed tois in the |ast
half of a 16 Megabyte disk: Atari BASICs do not allow sector nunber
to be greater than 32767. A solution is to use the follow ng BASIC
substitute for the PONT statement (with attention paid to the fact
the the two AUX bytes nust match the two used to open the file):

OPEN #K, AUX1, AUX2, " D5: BI G-I LE"

NOTE #K, SECTOR, BYTE
POKE 844+16* K, ASC{ CHR$(SECTOR)) : POKE 845+16*K, | NT(SECTOR/ 256)
POKE 846+16*K, BYTE: XI O 37, #K, AUXL, AUX2, " D: "

Function code 38, NOTE POSITION IN FILE

The note function returns in the twelfth through fourteenth
bytes of the IOCB a 3-byte disk address that nay be used at a later
time to reposition the file wusing the point function. The note
function can be used on files open for input, output, update or
appending. The three bytes returned are the |ow byte of the sector
address, the high byte of the sector address, and the byte (offset)
within the sector, in that order.

Functi on code 39, LOAD MEMORY

The | oad nenory function takes a file formatted in the ATARI DGCS
2 executable program format (generated by the "K' command, by the
assenbler/editor cartridge, by AMAC or MAC65, or by any of severa
conpilers for the ATARl conputers), and loads its contents into
nmenory as specified in the file. No offset control is provided and no
part of menory is protected from the I|oading process. The
initialization and execution addresses (if any) can be individually
enabled and disabled, to permt |oading and patching a programthen
witing it back to the disk for nornmal use.

To load a program into nenory, the address of the file nane
string is stored into the buffer address, and a value of 4, 5 6 or 7

MYDOS Techni cal Manual page 7 Version 4.50

is stored into the AUX1 field. If AUXL is 4, both the initialization
routines and the run address are executed after closing the | OCB, but
bef ore returning to the calling program If AUX1 is 5, the
initialization routines are disabled, but the programwll be run. I|f
AUXL is 6, the initialization routines will be run, but the program
execute address will be | oaded and ignored. If AUX1 is 7, the text of
the programw || be | oaded into nmenory, but no other activity will be
performed. ClIO function code 40 performs the exact sane function as
this (39).

Function code 41, SET DEFAULT DI RECTORY

The set directory command will use the contents of the buffer as
a file name and open the specified file, determning if that file is
a valid directory. If so, it will becone the new default directory.
File nanes of the form"D:..." will be assumed to be in the default
directory (which rmay be on any disk in the system and rmay be either
the root directory of that disk or a subdirectory).

Only the buffer address and the function code are significant
when setting the default directory.

Functi on code 254, FORMAT A DI SKETTE

The format function uses the contents of the buffer pointed to
by the buffer address to identify the drive containing the diskette
to be formatted. If both AUX1L and AUX2 are zero, the disk is
formatted according to the capacity data in the systemcontrol table
defined wusing the "O' command. If AUX2 bit 7 is set to 1, the format
operation is skipped and an enpty file systemis witten to the
di skette. (This assumes the disk is preformatted.) The remaining 15
bits of AUX1L and AUX2 are used as a 15 bit nunber to specify the
nunber of sectors available on the disk (permtting the use of the
last few sectors of a disk outside the file systemif desired). You
may format a di sk in enhanced density (MYDOS conpatible - not DOS 2.5
type format) by setting AUX1 to 1, and AUX2 to O.

VI1. D SK STRUCTURES SUPPORTI NG MYDCS 4. 50

MYDOS uses the first three sectors of a disk to hold sonme disk
information and the initial boot program if the drive contains
DOS. SYS and DUP. SYS. Sector $168 (and sectors $167, $166, $165, etc.
if the disk is formatted as a higher capacity di sk not conpatible
with ATARI DOS 2) is used to hold a bit map of avail able sectors and
several flag byte identifying the default format of files on the
disk. Sectors $169 through $170 contain main disk directory data,
identifying the files on the disk, their sizes and their starting
sect or number.

Note that this usage, when the diskette is a 719 sector vol unme
declared to be DOS 2 conpatible, is in fact exactly the sanme as ATARI

MYDOS Techni cal Manual page 8 Version 4.50

DOS 2 woul d make of the disk. The default single sided fornat differs
only in that sector 720 is not left out of the file systemin MyYDOS
but is wused to provide 708 free sectors on an enpty di skette rather
than 707. The only significant change made when the hi gh capacity
format is chosen are that enough sectors before sector $168 are
allocated to assign a bit for each sector that may be allocated for a
file or for use by the system (VICC sectors). The high capacity disk
directory may be read by ATARI DOS 2, but the data in the files can
only be accessed if it falls in the first 1023 sectors of the disk
and then only if the file nunber checking code in DOS 2 is disabled.
This fornmat allows MYDOS to support accessing disks of up to 65,535
sectors of 256 bytes each (approxinmately 16 Mytes).

Conpatibility with DOS 2.0 is further reduced if subdirectories
are used: to ATARI DOS, the subdirectories will appear to be sinple
files wth unreadable contents. The subdirectory's files will not be
accessible and the subdirectory can be danaged if it is witten to
(even by appending). For this reason disks sold to the genera
public, exchanged with friends, and so forth, should not contain
subdirectories unless there is reason to require that the disk be
used with MYDCS. A further problemw th exchangi ng diskettes is that
there are many different formats are used by vendors of double sided
di sk systens for the ATARI. For this reason, double sided di sks not
only require both conputers use MyYDOS, but also require that they use
the sane di sk system (PERCOM SWP, Astra, Supra or whatever).

Vill. MYDOS 4 MEMCRY MAP

The MYDOS 4.50 disk operating systemoccupies the area from
$0700 to $1IEE9 at all times, and when the menu is active, it also
occupies the area from $294A to $4331. In addition, the first 16
bytes of the floating point workspace ($D4 - $E3) are used by MyDOS
at that tine. Unlike ATAR DOS 2, MYDOS utility program (DUP. SYS)
also calls the floating point ROM entry points. The nonresident part
of MYDCS 4.50 starts |oading at $294A, reserving the area from $1EE9
to $2949 for disk buffers and drivers. Allocating three disk buffers
| eaves approxi mately 2500 bytes for resident drivers that will not be
overwitten by the nonresident portion of DOS (contained in DUP. SYS)

I X. CUSTOM ZI NG A SYSTEM DI SK

RAMIi sk Confi gur ati ons

The RAMIi sk driver included in MYDOS 4.50 is already configured
for the Atari 130XE conputer and uses its banked 64K bank of nenory
for the RAMIisk providing 499 free (single density, 128 byte)
sectors. The "O' command provides an easy way to alter the operation
of the RAMIisk driver for other common banked nenory systens. Mst
menory upgrades for the 800XL and 130XE use the sane mappi ng address
(the PORTB pins of the PIA chip in the conputer). A 128K RAMIi sk can
be used in an Atari 130XE using the |ast unused pin of that port with
no tradeoff (selecting the 64K bank is done with bit 6 of PORTB). I|f

MYDOS Techni cal Manual page 9 Version 4.50

you have such a system enter a "2" for the page sequence, or just
use the default sequence (answer "Y" to the question "Use default
page sequence...").

If, instead of adding one or two rows of 64K nmenory chips, the
enhancenent replaces the entire nenory of the conputer with a single
bank of 256K nenory chips, then the banked nmenory is a total of 192K
and 4 bits of the port nust be used to select the nmenmory bank. Oten
the bits used are bits 0 and 1 (as in the 130XE) along with bit 6 (as
in the expansion above) and bit 5 (used in the 130XE to contro
banki ng screen nmenory). Prograns that bank screen nenory (a very odd
proposition because of the difficulty of obtaining a useful sharing
of the banked nenory page bits between the screen nenory and the
program) will not work with this enhancement. This is the approach
used in the Newell Industries 256K upgrade for the Atari 800XL

If the enhancenent is done externally or to an Atari 800 (with
its internal expansion slots), a new dedicated register may be used
to map the 16K pages. The Axl on RAMPONER 128 card for the Atari 800
works this way. In such a system the pages are selected by witing a
page nunber to the napping address and no sharing of the 8 bit byte
is necessary. The address of the napping register is entered
explicitly and page sequence "5" is the proper sequence.

The page sequence table coded into MYDOS is actually one 32 byte
sequence table of nunbers to be stored in the napping register. MYDCS
4.50 has a feature that allows you to skip all this configuration
stuff, if the upgrade is XE conpatible. In the configuration, MYDCS
will create a custom page sequence for your nenory upgrade, and
update its pointers. |If you choose to enter our own page sequence,
the nunber of 16K pages determ nes the nunber of bytes to be used.
You may use one of the four built-in page sequences by entering a
si ngl e sequence number:

Seq. No. Page Val ues OR Val ue
0 E3, E7, EB, EF, C3, C7, CB, CF,
83, 87, 8B, 8F, A3, A7, AB, AF 00
1 C3, C7, CB, CF, 83, 87, 8B, 8F
E3, E7, EB, EF, A3, A7, AB, AF 00
2 A3, A7, AB, AF, C3, C7, CB, CF
E3, E7, EB, EF, 83, 87, 8B, 8F 00
5 00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 0A, 0B, 0C, 0D, OE, OF FF

As an exanple, if you want to use BASIC/ XE i n extended node (or use a
program that uses the standard XE banks: pages E3, E7, EB, and EF),
and you have a RAMBO XL upgrade, set your menory size to 128K, and
use the page sequence of:

or
C3, C7, CB, CF, 83, 87, 8B, 8F, 00
This will configure the RAMIisk to use only that part of the banked

menory not used by BASI T XE.

MYDOS Techni cal Manual page 10 Version 4.50

The file RAMBOOT. M65, the MAC/ 65 assenbl er source code for which
isinthe file RAMBOOT. AUT, is an AUTORUN. SYS file that sinulates the
operation of Atari DOS 2.5 and its RAMIisk. It "formats" the RAMII sk
and copies DUP.SYS to it, as well as setting the RAMIi sk unit nunber
and the unit used to access the DUP. SYS and MEM SAV files to 8.

By nodi fying the code in the source file and creating a nodified
AUTORUN. SYS file, the drive used to save MEM SAV and fetch DUP. SYS
can be nodified, other files than just DUP. SYS can be copied to the
RAMdi sk when the systemis booted, or any other operation could be
perfornmed that you find useful

Nunber of Files Open at Once

The nunber of files that nmay be sinultaneously open is set with
the same byte as in ATARI DOS 2: |ocation $0709 (decimal 1801). This
byte contains a nunmber from1l to 16 setting the nunmber of disk files
that may be open at the same time. Normally it is set to 3, the
smal | est nunber that supports all the functions in the MYDOS nenu.
Specifically, a copy from one disk file to another requires three
open disk files. The value in the distributed version of MYDOS 4.50
is three. To permt nore or fewer files open, use the "O command
followed by a RETURN. To pernmanently change the maxi num nunber of
files, use the "H' comand to wite a nodified MYDOS systemto a
di sk. Each file that may be open at one tinme requires the allocation
of a 256 byte buffer so setting this value to 7 (instead of 3) wll
cause MYDOS to be 1024 bytes |longer than before and the prograns
| oaded nust begin no lower than $22E9 (instead of $1EE9). In
corresponding fashion, by setting the value to 1, a BBS program can
be loaded in wth 512 bytes of additional menory if only one disk
file is ever open at one tine (comonly true of bulletin board
progr amns) .

Controlling the Disk Drives Accessed by MYDGCS

Li ke ATARI DOS 2, MYDCS automatically identifies the disk drives
that are present when booted up initially and any tinme it is
reinitialized (sone prograns do this on exiting to the DOS, and it is
always done if the RESET key is pressed). MYDOS 4.50 is distributed
with drives 1 and 2 configured, all others are omtted in order to
speed up the booting process. To nodify the maxi mum confi guration
MYDOS will use, invoke the "O' conmand for each drive to be added to
(or renmoved from the system Pressing the RESET key will then use
this value to redefine the system to configure the drive(s). To
permanently change the nmaxinmum drive configuration, use the "H'
conmand, witing a new copy of MYDCS back to the system disk.

Sel ecting or Disabling Wite-with-Verify

MYDOS 4.50 is distributed with the wite-with-verify disabl ed.
Most drives are very reliable, and will never give you a problem |If

MYDOS Techni cal Manual page 11 Version 4.50

however, sonething happens (such as dust, a scratch in the oxide
coating, or sone other problem that may have arisen since the
di skette was formatted), the error might not be detected. In short,
if you are working wth sonething that you want to be absolutely
positive that is perfectly saved, enable the verify. This will cause
the drive to read back each sector after it has been witten, taking
about three times the tine normally taken on a wite w thout verify.

The byte at location $0779 (1913 decimal) controls all wite
operations to the disk. |If +the value "poked" into it is $57 (87
decimal), then all wites will be read back to verify the action was
successful. If the value "poked" into $0779 is $50 (80 decimal) then
wites will be assuned successful, and will be perforned in about one
third the wusual time. Note that this address is not the same as in
MYDOS 4.0 and 4.1 (where it was $0770 or 1904 decimal). This byte is
defined, along wth the count of the nunber of buffers to be
allocated when the file nanager is initialized, whenever the "O
conmand is invoked with no drive specified (only a RETURN is entered
in response to the drive nunber query). To permanently alter it,
rewite MYDOS back to the disk using the "H' comuand after changing
it.

X. DI SK DRI VE | NTERFACE (via SIO

The physical disk drives and diskettes are external to the ATARI
hone conputers and the ones supported by MDOS 4 are nornally
attached to the "serial interface connector” on the right side or
back of the conputer. H gh capacity or "hard" disks may al so be
connected to the parallel port of 800XL and 130XE conputers. The
software in the operating system (OS ROWs) to access the devices
attached to either connector is call the "serial I/Odriver" or SIO
for short. The MYDOS disk operating systemuses this |ower |eve
driver to pass all comands and information to and fromthe physica
disk drive. Several commands were defined by ATARI to conmunicate
with the 810 disk drive and nbst vendors of high performance di sk
systens for the Atari have adopted a slightly extended version of

this set of conmands. MYDOS will operate with any disk systemthat
supports the original 810 set, but the full set of commands is
required to support all the functions. An additional function

necessary to perform automatic density selection is that the drive
should automatically identify the density of a diskette inserted in
it if the first operation is a read of sector 1 (this is necessary if
the drive is to boot either a double or single density diskette).

The mninum set of disk drive functions to support MYDOS (or
ATARI DOS 2 for that matter) are

Devi ce Uni t Conmand Direction Byte Ct. Aux Bytes Function

$31 Drive# $21 From Drive 128/256 0 FORMAT DI SK
$31 Drive# $50 To Drive 128/ 256 1to 720 WRITE(no vfy)
$31 Drive# $52 From Drive 128/256 1 to 720 READ

$31 Drive# $53 From Dri ve 4 0 READ STATUS
$31 Drive# $57 To Drive 128/ 256 1to 720 WRITE(verify)

MYDOS Techni cal Manual page 12 Version 4.50

An additional command to format a disk in enhanced density is:
$31 Drive# $22 From Drive 128 0 FORVAT DI SK

The byte count is always 128 for a single density drive, and is
128 for the first three sectors (1, 2, and 3) of a double density
drive. Al other sectors on a double density drive are 256 bytes
I ong.

The FORMAT function is always called with a sector nunber in the
range of 4 to 720. It expects 128 bytes froma single density drive
and 256 bytes froma double density drive.

The first byte returned by the READ STATUS command i s expected
to indicate the sector size -- if bit 5is a1l (bit 7 is the sign
bit) then the sectors are |large (256 bytes), otherw se, they are
smal | (128 bytes).

The auxiliary bytes are treated as an address to a sector on the
di skette, and range from1l to 720 (when in DOS 2 conpati bl e node) or
from1l to 65,535 (when accessing large capacity disk drives).

The addi ti onal functions used to configure disk drives
dynam cally are

Devi ce Uni t Conmand Direction Byte Ct. Aux Bytes Function

$31 Drive# $4E From Dri ve 12 1 to 720 READ CFG
$31 Drive# $4F To Drive 12 1to 720 WRI TE CFG

These conmands are used to configure the drives identified as
configurable when the conputer is booted: if there is a possibility
that a drive does not support these functions, it should be defined
as not configurable (such as the Atari 810). These commands are used
by the "P* command, pernitting reconfiguration of a disk drive on
demand - to format a diskette, for exanple. (To format a disk on an
Indus drive, issue the "P" command to manual |y change the density on
the drive, then issue the "I" comand).

The individual bytes transferred by these comrands are defined
as follows:

byte 0: Tracks per side (40 for a standard di sk drive)
byte 1: Disk Drive Step Rate (as defined by Western Digital)
byte 2: Sectors/Track -- high byte (usually 0)
byte 3: Sectors/Track -- |ow byte(18 for standard di skettes)
byte 4: Side Code (0=single sided, 1=double sided)
byte 5: Disk Type Code --

bit 2: O=single density, 1=double density

bit 1: 0=5 1/4 inch diskette, 1=8 inch diskette drive
byte 6: High byte of Bytes/Sector (0 for single density)
byte 7: Low byte of Bytes/Sector (128 for single density)
byte 8: Translation contro

bit 7: 1=40 trk. disk /O on an 80 trk. drive

MYDOS Techni cal Manual page 13 Versi on 4.50

bit 6: Always 1 (to indicate drive present)

bit 1: 1=Handle sectors 1, 2, and 3 as full size sectors

bit 0: 1=Sectors number 0-17 (for example), not 1-18
bytes 9-11 are not used by MYDOS (see the drive docunentation as

to how they are to be set -- usually zeroes)

MYDOS 4.50 (unlike version 3 of MYDOS) always issues a read
configuration command before witing the configuration to the drive
and the contents of bytes 9-11 are witten exactly as they were
previously read (so they will be unchanged).

An additional change in the usage of this command occurs when a
hi gh capacity drive (hard disk) is configured. The configuration data
for such a drive is very conplex and is usually built into the drive
controller or witten to a "magic" |ocation on the disk. To support
partitioning of very large drives (larger than 16 Megabytes), MYDCS
issues a wite configuration command with the nunber of sectors per
track set to nunber of sectors on the disk (as defined in the "O
conmand) and the nunber of tracks set to 1. Al high capacity disks
are large sector drives (using 256 byte sectors).

Xl . RAMI SK | NTERFACE

The driver built into MYDOS is intended to elinminate the need
for a "driver" to use common RAMIi sks. The required characteristics
of the hardware can be nost easily described by explaining what is
done to access a "sector" of information in the extended RAM

(1) The sector nunber is divided by 128, and the
remai nder is then nultiplied by 128 and added
to 16384 to get the starting address of the
sector in nmenory (it will be between $4000 and $7F00).
(2) The quotient is used to index into a page table
with one entry for each 16K that can be napped
into the menory area from $4000 to $7FFF.
(3) The value fromthe page table is "AND'ed with the
contents of the mapping register, and rewitten
to the mapping register.
(4) The data is noved to(from) the area addressed above
from(to) the sector buffers at the high end of MYDGCS.
(5) The mapping register is restored to its
non- mappi ng state by "OR'ing the restore value with
the mapping register and rewiting the result
to the mapping register.

Note that this design forces the RAMIisk to be single density
and no |larger than 4 negabytes (256 pages of 16384 bytes each). Qut
of that, MYDCOS can only accommpdate 1 negabyte, because its table is
only 64 bytes |ong.

As you can see, the parameters are the nmappi ng register address

($CFFF for Axlon boards and $D301 for the Atari 130XE), the val ue
"OR'ed into the register to reset the systemback to normal ($FF for

MYDOS Techni cal Manual page 14 Version 4.50

the Axlon and $00 for the Atari 130XE types), and the actual map
val ues. These values are determined by first identifying the bits in
the mapping register to be left unchanged and setting themto "1" in
each of the register values. Second, the remaining bits are filled in

with all the |legal conbinations of nmapping bits. The values for the
Newel | I ndustries 256K upgrade (which uses the 130XE mappi ng, nore or
less) are given here as an exanple -- future versions of this board

and other menory expansion products are not necessarily going to use
t he sane desi gn.

Bits: 7 6 5 4 3 2 1 0
1 x x x x x 1 1 First, set bits 7, 1 &0
in all the mapping val ues
1 0 0 0 0 0 1 1 These are the 12 (of 32)
1 0 0 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 0 0 1 1 1 1
11 0 0 0 0 1 1
11 0 0 0 1 1 1
11 0 0 1 0 1 1
11 0 0 1 1 1 1
111 0 0 0 1 1
111 0 0 1 1 1
111 0 1 0 1 1
111 0 1 1 1 1

Lastly, since the mapping register at $D301 can be read as well
as witten, it can be left exactly as it was before we used it by
"OR'ing the initial value wth zero (leaving it unchanged). The
sequence is then: 83, 87, 8B, 8F, C3, C7, CB, Cr, E3, E7, EB, EF, O.

MYDOS Techni cal Manual page 15 Versi on 4.50

XI'1l. ERRCR CODES AND THEI R SOURCES

3 Last byte of file read, next read will return EOF (MYDOS)

128 Break Abort (OS ROMW)

129 | OCB al ready open (OS ROWb)

130 No such device defined in the system (0OS ROVs)

131 Wite-only 10OCB, cannot read (OS ROWs)

132 Invalid command (OS ROVs)

133 Device or File not open (OS ROVs)

134 Invalid I OCB reference (OS ROV)

135 Read-only 1 OCB, cannot wite (OS ROW)

136 Attenpt to read past end of file (MYDOS)

137 Truncated record (OS ROWs)

138 Devi ce Timeout (OS ROVs)

139 Devi ce NAK (serial bus failure, OS ROW)

141 Cursor out of range for graphics node (OS ROWb)

142 Data frane overrun (serial bus failure, OS ROW)

143 Data frame checksumerror (serial bus failure, OS ROW)

144 Device I/O error (in peripheral hardware, OS ROMW)

146 Function not provided by handler (OS ROW)

147 I nsufficient RAM for graphics node sel ected (OS ROW)

160 Invalid Unit/Drive Nunber, zero or greater than 7 (both
MYDOS and OS ROMWb)

161 No sector buffer available, too many open files (MYDOS)

162 Disk full, cannot allocate space for output file (MYDOS)

163* Wite protected or systemerror - disk is not readabl e (MYDOS)

164 File nunmber in link does not natch the file's directory
| ocation (MYDOS)

165 Invalid file name (MYDOS)

166 Byte not within file, invalid PO NT request (MYDOS)

167 File | ocked, cannot be altered (MYDQOS)

168 Invalid I OCB (MYDOS and OS ROVb)

169 Directory full, cannot create a 65-th entry in a directory
-- entries may be used for "lost" as well as real
files (MYDOS)

170 File not in directory, cannot be opened for input (MyDOS)

171 | OCB not open (MYDOS and OS ROWE)

172* File or directory of sane nane already exists in parent
directory, cannot create (MYDQOS)

173 Bad di skette or drive, cannot format diskette (MYDOS)

174* Directory not in parent directory (MyDOS)

175* Directory not enpty, cannot delete (MYDOS)

180* Not a binary file

181* Invalid address range for loading a binary file, END<BEG N

(MYDOS)

* -- New error codes, not present or different in Atari DOS 2.

Most error codes are identical to those returned from ATARI DGCS
2; the differences result fromthe expanded capabilities of MYDCS.
Specifically, Error 164, indicating a file nunber ms-match, only
occurs if the fileis witten in DOS 2 or DOS 2.5 format. Errors 180
and 181 can only occur when XIO 39 (or 40) is invoked to load a file.

MYDOS Techni cal Manual page 16 Version 4.50

Errors 172 and 175 apply to creating and deleting directories and
have no ATARI DOS 2 equivalent; error 174 applies to accessing files
in subdirectories, so it also has no ATARI DOS 2 equivalent. Error
code 173 serves the sane function as it did in ATARI DCS 2, but is
returned nore often (to identify bad diskettes nore reliably).

MYDOS Techni cal Manual page 17 Versi on 4.50

	MyDOS 4.50 - Technical User Guide (Cover)
	© 1988 Wordmark Systems
	IV. Menu Commands: MEM.SAV Feature
	V. File Manager Functions Through CIO
	VI. CIO Function Codes Provided by MyDOS 4.50
	3 - OPEN
	5 - GET RECORD
	7 - GET CHARACTERS
	9 - PUT RECORD
	11 - PUT CHARACTERS
	12 - CLOSE A FILE
	13 - READ STATUS
	32 - RENAME A FILE
	33 - DELETE A FILE
	34 - MAKE DIRECTORY
	35 - LOCK FILE
	36 - UNLOCK FILE
	37 - POINT TO POSITION IN FILE
	38 - NOTE POSITION IN FILE
	39 - LOAD MEMORY
	41 - SET DEFAULT DIRECTORY
	254 - FORMAT A DISKETTE

	VII. Disk Structures Supporting MyDOS 4.50
	VIII. MyDOS 4 Memory Map
	IX. Customizing a System Disk
	RAMDisk Configurations
	Number of Files Open at Once
	Controlling the Disk Drives Accessed by MyDOS
	Selecting of Disabling Write-with-Verify

	X. Disk Drive Interface (via SIO)
	XI. RAMDisk Interface
	XIII. Error codes & Their Sources

