
MEMO 

To: _L4^^l _ _ _ _ 

From: HoDert C. Frutn 
/ 

Subject: "Deeo Blue*’ C Compiler 

Attacned is a copy of my final report on the "Deep Blue" C compiler. 
Deep Blue C is due to be released oy A p X in December, and will be included 
in their next catalog. Please feel free to report your questions and 
commen t s to me. 

'If you need additional copies of the report, please see me for them. 
If you want a copy of the Deep Blue C compiler, then contact Gene PIagge 
(the Product manager for ARX) at 745-2124, as I cannot distribute copies of 
Deep Blue C. 



AN EVALUATION 

OF THE 

"DEEP BLUE" C COMPILER 

ROBERT C. FRUTH 

9-82 

REV. 0.1 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

s 

I. INTRODUCTION 

The C programming language was originally developed at Bell Labs in 

conjunction with the development of the UNIX operating system, which is 

written in C. As a programming language, C combines the structured code 

and data organization of a high-level language with the machine-leve1 

interface that is possible with assembly language. Because of its flexi¬ 

bility, C is preferred by many systems programmers and others who must be 

able to directly access the computer hardware. The C Programming Language 

by Kernighan and Ritchie is the standard reference for the C language. 

• 

"Deep Blue C" is a proper subset of version 7 of the full C programming 

language. The author is John Howard Palevich, who also authored the 

"Chameleon CRT Terminal Emulator". Palevich wrote the "Deep Blue C" 

compiler by making extensive modifications to the "Small-C" compiler 

written by Ron Cain and Brian Smith. In his documentation, Palevich noted 

that although Small-C is in the public domain, Deep Blue C is copyright 

protected. 

Writing and subsequently executing a program using Deep Blue C is not 

difficult. First, the programmer enters his source code into a file 

(default extension .C). Next, the source code is compiled into a tokenized 

form (default file extension .CCC), and then linked with various other 

files to form the executable file (extension .COM). These other files may 

be files containing compiled C source code, compiled library files, and/or 

files (default extension .OBJ) containing assembly language code that has 

been assembled using the macro-assembler. The file DBC.OBJ, which contains 

the Deep Blue C run-time module, must be one of the files that is linked. 

This evaluation of Deep Blue C was carried out using versions 0.0 and 0.1 

of the compiler, linker, and library files. Some of the features and bugs 

described in this paper may be changed in later revisions of Deep Blue C. 

Of course, I hope that the bugs will be changed. 



AN EVALUATION OF THE nDEEP BLUE11 C COMPILER 

5 

II. SUPPORTED FEATURES OF STANDARD C 

Deep Blue C supports most of the program structures of the standard C 

language. This syntax includes assignment statements, single branch 

(if-else) and multiple branch (switch-case) decision constructs, and 

do-until, while, and for loops. The ubreakn, "continue", "default", and 

"return" keywords are also supported. Deep Blue C supports almost all of 

the operators of standard C, including standard arithmetic, relational, 

logical, pointer, assignment, bitwise, conditional, and shift operators. 

These operators can be applied to three types of data: integers, charac¬ 

ters, and pointers. Variables in Deep Blue C may be any of these three 

types, and may be either internal or external (using the "extern" keyword). 

In addition, Deep Blue C supports one-dimensional arrays. The "#define" 

and "#include" compiler directives are also supported by Deep Blue C, thus 

allowing the user to define his own constants and to include a file 

(usually containing the user’s standard declarations for a program that is 

divided into several modules) in many different programs. However, Deep 

Blue C does not support all of the standard syntactical constructions that 

are possible using the #define directive, as will be discussed later. 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

5 

III. UNSUPPORTED FEATURES OF STANDARD C 

A. Floating Point Numbers 

Floating point numbers are not supported by Deep Blue C. Functions 

may not return floating point values, variables of the standard C 

types "float” and "double" are not supported, and floating point 

constants are not allowed. As a result. Deep Blue C does not support 

any trigonometric routines or other functions that return real values. 

For many applications, this absence of floating point numbers is not 

significant. However, for applications that require a substantial 

amount of mathematical processing and/or the use of real values, the 

lack of floating point numbers may be crucial. A user who requires 

floating point numbers for an application might be able to write 

software routines to overcome the lack of floating point numbers. The 

addition of a floating point package to a future revision of Deep Blue 

C could be very beneficial. 

B. Structures and Unions 

Deep Blue C does not support structures (similar to records in Pascal) 

or unions (comparable to variant records). The absence of structures 

is unfortunate, as structures allow the user to represent almost any 

type and amount of data without too much effort. Using structures and 

pointers, a user can easily build complex organizations of readily 

accessible data. The use of structures make programs that handle 

large amounts of data easy to design and code. However, the absence 

of structures does not prevent the using of large amounts of data, as 

structures are only one of several methods that can be utilized to 

represent and handle data. Nevertheless, structures are useful 

because they simplify the design and coding of complex data represen¬ 

tations. Programs written using structures are usually easier to read 

and understand. In ray opinion, structures are one of the best reasons 

for using C as a language for programming. 

-3- 



i 

AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

1. 

HI. UNSUPPORTED FEATURES OF STANDARD C 

B. Structures and Unions — (Cont*) 

The lack of unions in Deep Blue C is not nearly as critical as the 

lack of structures. Unions permit the user to combine two or more 

similar structures into one structure with one or more variant fields. 

The supporting of unions would be convenient for the user, at a cost 

of necessitating some additional code in the object files for the 

user's programs. However, the question of unions is meaningless, 

since structures are not supported. 

C. Functions Returning Non-integers 

In the current version of Deep Blue C, functions may only return 

integers. When first considered, this convention seems unworkable, 

but with the exception of floating point numbers, it can be worked 

with fairly easily. In order to return pointers and arrays, the 

address of the pointer or array should be returned instead of the 

actual pointer or array. Instead of returning characters, the 

numerical values of the characters should be returned. Returning 

structures, if they were supported, would be accomplished by returning 

the address of the appropriate structure rather than the structure 

itself. The calling routine would have to know what type of structure 

is at the address being returned. If floating point numbers were 

implemented in a future revision of Deep Blue C, then functions would 

have to be able to return floating point values, otherwise much of the 

usefulness of floating point numbers would be wasted, and trigonometric 

functions and other routines that return real values could not be 

supported. 

-4- 



AN EVALUATION OF THE nDEEP BLUE" C COMPILER 

III. UNSUPPORTED FEATURES OF STANDARD C - (Cont') 

D. Multi-dimensional Arrays 

The lack of multi-diraensional arrays is not as significant as it first 

seems. In the standard C language, a two-dimensional array is by 

definition a one-dimensional array composed of one-dimensional arrays. 

Thus, a set of one-dimensional arrays can readily be used in lieu of a 

single multi-dimensional array. The addition of multi-dimenstional 

arrays to a future revision of Deep Blue C should be given relatively 

low priority. 

E. Unsupported Keywords 

In addition to those keywords already mentioned, some others that Deep 

Blue C does not support deserve comment. 

goto: The goto statement in C is similar to the goto statement in 

Pascal, both in its syntax and in the desirability of not using it. I 

do not consider the absence of the goto statement to be a great 

loss. 

typedef: When used in a declaration, the typedef keyword adds a new 

name for an existing type without creating a new type. The primary 

reasons for using the typedef keyword are to enhance program portability 

and the writing of machine-independent code, and to help make programs 

more readable. In addition, when teamed with explicit type casting 

(described in section III, part F), this keyword provides an excellent 

way of improving program security, especially in multi-user or multi¬ 

process environments. Supporting the typedef keyword would enhance 

Deep Blue C, but the absence of it is not particularity critical, 

unless explicit type casting is supported. 

-5- 



I 

AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

1. 

Ill. UNSUPPORTED FEATURES OF STANDARD C 

E. Unsupported Keywords - (Cont1) 

unsigned: When used in an declaration for an integer variable, the 

keyword unsigned makes that variable an unsigned integer quantity. 

The sign bit in this variable is then treated the same as any other 

bit. Positive integers of a larger magnitude than is possible when 

using signed variables could be employed if this keyword was supported 

register: The register keyword is also used in variable declarations. 

It is employed to advise the compiler that this particular variable 

will be used often and thus should be kept in a register as much as 

possible. In terms of the Atari 800 and the 6502 microprocessor, the 

absence of the register keyword probably saves more memory space than 

using it would save, due to the limited number of registers available, 

static: Static variables may be separated into two classes. The 

first class are variables defined in the main program outside of any 

subroutine (i.e. function). These global variable are known to the 

main program and all of its subroutines, and are "static" in that they 

are active during the entire period of program execution. They do not 

require the use of the static keyword in their declarations. The 

other class of static variables do have the static keyword used in 

their declarations, and remain in existence rather than "coming and 

going" each time the block of code where they are declared is executed 

When used in a section of code,, a static variable of this class 

provides permanent storage within that section of code, and is not 

known to any other section of code. Because Deep Blue C does not 

support the static keyword, only the first class of static variables 

may be employed with the present version. The addition of the static 

keyword to a future revision of Deep Blue C would allow the useful 

second class of static variables to be utilized. 

-6- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

III. UNSUPPORTED FEATURES OF STANDARD C - (Cont*) 

F. Unsupported Operators 

As described in section II, Deep Blue C supports almost all of the 

operators of standard C. Two of the four unsupported operators are 

used with structures. These are the -> (right arrow) and the . (dot) 

operators. The absence of these operators is insignificant, since 

structures are also unsupported. If structures were implemented in a 

later revision of Deep Blue C, then these two operators should be 

implemented as well. The third unsupported operator is the "sizeof" 

operator. In standard C, the expression "sizeof (object)" returns 

the size of "object" in bytes, where "object" can be either a simple 

variable, an array, or a structure. Supporting the sizeof operator 

would be convenient for the user, but the absence of this operator can 

be eased through user-written software. The fourth and last unsupported 

operator is explicit type casting, which makes it possible to force an 

expression to be of a specific type. When used in tandem with the 

typedef keyword, this operation is useful both as a way of disguising 

data structures and as a means of increasing program security, especially 

in multi-user and multi-process environments. Explicit type casting 

can also be used for these two purposes without the use of the typedef 

keyword, and probably should be given medium priority in a revision of 

Deep Blue C. 

i 

G. Other Unsupported Features 

Several other features of standard C are unsupported by Deep Blue C. 

One of these is the standard C library function "exit". When called 

and executed, exit terminates program execution. Exit would be a 

useful feature to have and probably should be supported. 

-7- 



AN EVALUATION OF THE nDEEP BLUE" C COMPILER 

III. UNSUPPORTED FEATURES OF STANDARD C 

G. Other Unsupported Features - (Cont') 

As was stated earlier, the ,,#definen compiler directive is not fully 

supported. The macro substitution governed by the use of this directive 

is supported as defined in standard C, but the passing of arguments to 

the resulting macro is not supported. Defining macros using this 

directive allows the user replace a section of C source code with one 

word. This usage is very beneficial in cases where the section in 

question is used several times and putting it into a subroutine is not 

feasible, and when space for the source file is limited. The means to 

pass arguments to macros increases the usefulness of the macros, and 

not having this ability is a hindrance. Fully supporting the #define 

compiler directive in a future revision of Deep Blue C should be 

accomplished if possible. 

In addition to the #define and #include compiler directives already 

discussed, standard C defines a set of directives which control 

conditional compilation. These directives include n#if", n#ifdefn, 

n#ifndef", M#else", and "fAendif11, and are not currently supported by 

Deep Blue C. By making use of these directives, the programmer may 

compile selected sections of his source code. This feature is particu¬ 

larly useful for setting apart and selectively compiling code that is 

to be used as a debugging aid, and for writing code that is to be run 

on different machines or under different operating systems. The 

employing of conditional compilation as an aid for debugging is 

probably the more valuable of these two uses. Conditional compilation 

should be added to a future revision of Deep Blue C if the resources 

involved would allow it to be implemented. 

-8- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

III. UNSUPPORTED FEATURES OF STANDARD C 

G. Other Unsupported Features - (Cont1) 

Another unsupported feature is the capacity to use command-line 

arguments in order to pass parameters to a program when it first 

begins executing. For a user oriented machine like the 800, the 

absence of command-line arguments is insignificant, since programs can 

easily prompt the user for input. 

The last unsupported feature of standard C which I will discuss is the 

explicit initialization of variables when they are declared. This 

feature enhances program readibility and is convenient for the program¬ 

mer, and so would be nice to have supported. However, the initial- 

variables when they are declared probably does not decrease 

of generated object code, and thus probably should not be 

priority in future revisions of Deep Blue C. 

ization of 

the amount 

given high 

I 

-9- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS 

In several ways, the features and functions of Deep Blue C that are 

specific to the hardware of the 800 are similar to the corresponding 

features and functions of Atari Basic. For example, both Basic and Deep 

Blue C have a machine-level interface provided by the execution of a 

function called "usr". The execution of these two "usr" functions is 

approximately equivalent. Each accepts a mandatory argument, which gives 

the address of a machine language subroutine, followed by one or more 

optional arguments, which are parameters to be passed on to that subroutine. 

Both functions employ a similar stack structure, and the machine language 

subroutines in both have to pull the input arguments off the stack (using 

PLA's) before returning to the calling program, so that the top two bytes 

of the stack contain the return address. However, Deep Blue C has an 

additional interface with machine language that Basic does not have. By 

defining a function written in Deep Blue C using the statement "asm 

number;" instead of the standard function definition, "$( <statements> 

$)", the machine language routine located at address "number" is executed. 

This routine is assembled at address "number" using the assembler of the 

user’s choice, and the resultant object file (mandatory extension .OBJ) 

must be linked with the other required files by the linker. (in the 

current version, this means that the name of the object file, with the 

extension .OBJ, must be included in the appropriate link file.) The 

parameters that are passed to the Deep Blue C function are pushed onto the 

stack when the asm statement is executed, and thus are passed on to the 

machine language routine. By using this construction, a user may easily 

include machine language routines in a program written in Deep Blue C. In 

particular, machine language routines that are executed more than once 

should especially be included using this mehtod, as these routines are 

readily executed repeatedly by calling the Deep Blue C function that 

contains the asm statement. 

-10- 



AN EVALUATION OF THE nDEEP BLUE" C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS - (Cont1) 

Deep Blue C and Atari Basic are also similar in the way input, output, and 

graphics are handled. In fact, the I/O and graphics routines for Deep 

Blue C have been modeled after those of Atari Basic, and access the 

hardware of the 800 on about the same level as the Basic routines. 

John Palevich1s movivation for this similarity is straightforward. The C 

language differs from most other programming languages in that it has no 

standard built-in I/O functions. As a result, every version of C has its 

own specific I/O functions. Most, if not all. Atari 800 user are familiar 

with the I/O and graphics functions of Atari Basic, and so Palevich used 

these familiar and easily understood routines as a base for developing the 

I/O and graphics functions for Deep Blue C. In some respects, this 

decision is unfortunate, as the Basic graphics functions interact with the 

hardware on a fairly abstract and distant level. However, programmers 

employing Deep Blue C can define their own I/O and graphics functions 

using the asm keyword described earlier. Although there are some differences 

between the I/O and graphics routines of Atari Basic and those of Deep 

Blue C, a programmer who already knows the Basic functions should have no 

problems with the corresponding routines of Deep Blue C. 

The graphics and I/O routines for Deep Blue C are contained in four 

library files: AIO, Printf, Graphics, and PMG. These files are presented 

in two forms of the Deep Blue C distribution disk, both as Deep Blue C 

source code (extension .C), and as compiled source code (extension .CCC). 

In order to use the routines contained in these library files in his 

program, the user must link the compiled form of the desired library file 

with the other required files, also in compiled firm, to form the executable 

file (extension .COM). Thus, the user need only link those library files 

which contain routines used in his source program. Unfortunately, when a 

library file is included in a link, the entire file is used, regardless of 

how many of the routines contained in that library file are used in the 

-11- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS - (Cont') 

program. As a result, the library file ultimately occupies the same 

amount of space in the executable file irrespective of whether the user's 

program uses zero, one, two, or all of the routines contained in that 

file. For example, the minimal program shown below occupied 35 sectors on 

the disk when linked with the library file AIO.CCC, and only 17 sectors 

when AIO.CCC was not included in the link. Both the large and the small 

versions of the program executed correctly. 

main () 

$( 

$) 

Since AIO.CCC occupies 19 disk sectors, it is obvious that all of AIO.CCC 

was included in the executable (.COM) file, even though the minimal 

program doesn't use any of the routines contained in AIO.CCC. (The loss 

of one sector (17 + 19 = 36 = 35 + 1) can be attributed to the two files 

actually occupying a number of disk sectors and a fractional part of one 

additional sector.) If the linker were modified so that it searched the 

named library files and only extracted the routines used in the user's 

source code, then the user's programs in their executable form would 

require less disk space. This modification would result in a substantial 

reduction in the number of disk sectors occupied by the user's executable 

files. In the example above, the executable file for the program would 

occupy only 17 sectors regardless of whether or not the program was linked 

with the library file AIO.CCC, or with any other library file for that 

matter. Implementing searchable library files would not be too difficult, 

and would primarily involve modifying the linker so that it treated each 

library file as a collection of separately extractable functions, rather 

than as a whole file. The cost of implementing this feature would be very 

small when compared with the amount of disk space its implementation would 

save. 

-12- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS - (Cont') 

The Deep Blue C graphics and I/O routines are distributed among the four 

library files according to the similar purposes and uses of the routines. 

The first library file, AIO, contains functions that allow the user to 

open, close, read from, and write to files. These functions are all very 

similar to the analogous Basic functions. In addition, the contents of 

AIO include routines that perform string functions (copy, length, finding 

a substring within a string, and returning the decimal or hexadecimal 

value of a string), filename normalizing, uppercase to lowercase and 

lowercase to uppercase conversions, and memory accessing. The memory 

access routines include functions for peeking and poking both bytes and 

words, clearing a block of memory, and moving a memory block from one 

location to another. AIO also contains the "usr" function described 

earlier. 

Printf, the second library file, contains the "standard" C formatted 

output function, "printf", and a related output routine. Printf is not a 

part of the standard C language, which has no defined input or output, but 

rather is a part of the standard library of routines that are accessible 

from C. Using printf, the user can easily specify the format for the 

output of program data. The standard library of routines also includes 

the formatted input function "scanf", which Deep Blue C does not support 

at this time. Both scanf and printf are discussed in detail in The C 

Programming Language, by Kernighan and Ritchie. 

The third library file, Graphics, contains functions that control the 

graphics and sound hardware of the Atari 800. These routines are modeled 

after the analogous functions of Atari Basic, and include "graphics", 

"color", "setcolor", "plot", "drawto", "position", "sound", "locate", and 

"fill" (similar to Basic XIO). Each of these functions operates in almost 

the same way as its Basic counterpart. In addition, this library file 

-13- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS - (Cont*) 

contains functions for reading the values returned by game controllers 

such as joysticks and paddles. These functions are "paddle", "ptrig", 

"stick", "strig", "vstick", and "hstick". Vstick and hstick return the 

vertical and horizontal components of the joysticks. All of the other 

functions operate like the equivalent Basic functions. Graphics also 

includes the function "rnd", which accepts an argument "n", and returns a 

random integer between 0 and n-1. 

Deep Blue C also supports a set of functions for manipulating player/missile 

and character set graphics. The library file PMG contains these functions, 

which are described more completely in the Deep Blue C documentation. 

Briefly, the character set routines permit the user to fetch both the 

current and the original fonts for ATASCII characters, and to store new 

fonts for characters. The functions for the player/missile graphics allow 

the user to initialize the player graphics, set the color, width, and 

resolution of the players, fetch the address of the players* memory area, 

clear this memory area, move the players within player memory (and thus on 

the screen), and flush the player memory when the players are no longer 

needed. In addition, PMG contains a pair of functions which can be used 

to detect player to player and player to playfield collisions. All of 

these functions help make player/missile graphics seem less mysterious to 
i i 

the user, at the expense of "direct" contact with the controlling hardware 

registers and player memory itself. Unfortunately, PMG does not seem to 

include any routines for initializing and using the missiles (as opposed 

to the players). Unless I am in error, the routines currently existing in 

PMG only access the registers and memory locations that control the 

players and not those that control the missiles. In addition, because 

these functions hide the specific registers from the user, the only way to 

enable the fifth player seems to be by directly accessing memory. Thus, 

the user who employs these functions to use players in his program has to 

-14- 



AN EVALUATION OF THE nDEEP BLUE1' C COMPILER 

IV. ATARI SPECIFIC FEATURES AND FUNCTIONS - (Cont') 

include separate code for using the missiles. This omission of functions 

that handle the missile graphics is unfortunate, for it defeats the entire 

purpose of having and using the player/missile graphics functions. The 

intent behind the player/missile graphics functions is good, but unless 

some modifications are made so that the functions can control the missiles, 

they will be of limited use. If this analysis of the player/missle 

functions is incorrect, then the Deep Blue C documentation must be changed 

to correctly describe the operation and effect of these functions. 

In addition to the four library files, the Deep Blue C disk includes an 

extremely important file, DBC.OBJ. This file contains the Deep Blue C 

runtime package, comprising the runtime routines and the "C-code" inter¬ 

preter that every program needs in order to execute properly. The runtime 

routines include the 6502 code for the functions in the four library files 

which use the "asm1* keyword, and subroutines written in 6502 that perform 

the multiply and divide operations. The C-code interpreter is needed 

because the linker produces pseudo-code rather than 6502 code. If the 

linker produced 6502 code, then the resulting object code would exceed the 

amount of available memory. Hence, the decision was made to have the 

linker produce pseudo-code, which requires the presence of an interpreter 

when it is executed. Thus, the file DBC.OBJ must be included in every 

link of a Deep Blue C program, or else the program in question will not 

execute. 

-15- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS 

In addition to the unsupported attributes of standard C that I have 

already identified as beneficial, there are several other desirable 

features that are not implemented. One of these is some method by which a 

program may transfer control from itself to another program. Such a 

"chaining" facility is currently implemented in both Atari Basic and Atari 

Pascal. To transfer control from one Basic program to another, a programmer 

simply inserts a "run" statement in the first program. Using the Pascal 

chaining facility is not difficult either, and basically consists of 

assigning the name of the appropriate external file to an internally 

declared file variable, resetting this file, and then calling the chain 

function to transfer control over to the program within this second file. 

Atari Pascal also has two methods for the two chained programs to communi¬ 

cate with each other: absolute variables and shared global variables. To 

perform the operation I have just described, Atari Pascal utilizes two 

keywords, "global", and "absolute", and three functions, "assign", "reset", 

and "chain". Global and absolute are both qualifiers used in variable 

declarations. Global variables are declared using the global keyword, and 

require the use of a linker option switch to insure that the variables are 

each placed in the same memory location in all of the programs that are to 

communicate with each other. The memory space for absolute variables is 

allocated at compile time, with the address of the variable being a part 

of the syntax of its declaration. Assign is a function that takes two 

arguments, one an internal file variable and the other the name of an 

external disk file, and associates the two arguments with each other. 

Internal file variables are a part of the syntax of standard Pascal, and 

are declared as identifiers of type "file". The reset function is a 

standard Pascal procedure which opens the file named in its parameter (a 

file variable) for reading by resetting the file pointer to the beginning 

of the file. Finally, the chain function performs the actual transfer of 

control from one program to the next. The chaining facility is useful 

-16- 



AN EVALUATION OF THE nDEEP BLUE” C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont') 

both for executing large programs which require more memory than is 

available, and for segmenting programs for purposes of modularity and 

maintenance. 

In order to implement a chaining facility in Deep Blue C, several features 

are needed. First, some method for two or more programs to communicate 

with each other is required. Either of the two methods used by Atari 

Pascal would be suitable, but each would necessitate major modifications 

to both the linker and the compiler. If shared global variables were 

used, then the keyword "global1* would have to be supported by the compiler 

and the linker would have to place the shared global variables in the same 

memory locations in each of the communicating programs. Using absolute 

variables would require that the compiler support a special syntax for the 

declaration of absolute variables, including the keyword "absolute", and 

that the compiler allocate memory space for absolute variables during 

compile time. The linker would have to recognize this memory allocation. 

Standard C does not support file variables, but these are not necessary, 

as the names of files can be contained in arrays of characters, preferably 

declared as pointers to characters (they are treated equivalently, but 

pointers to characters are a little faster). An assign function would not 

be required if the names of files were contained in pointers to characters 

The file containing the program to which control is to be transferred 

could be opened and reset for reading by calling either the "copen" or 

"open" functions, both of which are currently supported by Deep Blue C. 

Thus, an explicit reset function would not be needed. Finally, a function 

to perform the actual transfer of control would have to be implemented. 

This function could be very similar to the chain function of Atari Pascal, 

and would accept the name of a file as a parameter, transfer control to 

-17- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont1) 

the program contained in that file, and then execute that program. Thus, 

the implementation of program chaining in Deep Blue C would require 

complex modifications to be made to both the compiler and the linker. 

However, the benefits of having a chaining feature are greater than the 

cost of implementing it. Using the current version of Deep Blue C, 

programs may not be larger than the amount of available memory, which in 

the 800 is not a large quantity. After the implementation of chaining, 

however, program size would be limited only by the amount of available 

disk space. As a result, many large programs and lengthy applications 

could be implemented using Deep Blue C. The use of chaining would probably 

permit the compiler itself to be split into two or more separate files, 

resulting in more space for new features to be added to Deep Blue C. The 

implementation of a chaining facility in Deep Blue C would be difficult, 

but the benefits of having it would far outweigh the costs of its implemen¬ 

tation. 

Another desirable feature is included in many other implementations of the 

C language, especially those implementations of C running on the UNIX 

operating system. This feature is a program called "lint" which performs 

more rigorous type checking than the C compiler does. Lint got its name 

from its ability to pick "bits of fluff" from submitted C programs. In 
( 

addition to performing strong type checking, lint checks for such program¬ 

ing errors as variables that are either unused or uninitialized, arguments 

that are used inconsistently, and the using of a value returned by a 

function that does not actually return a value (but rather returns garbage). 

Given that most C compilers do not perform this kind of rigorous error 

checking, if is easily seen that having a program like lint available is 

very convenient for the programmer. The addition of a lint-like utility 

to the Deep Blue C compiler would greatly aid program development and 

result in a more complete programming system. 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont') 

Although the compiler has several helpful user-oriented features, an 

improvement in user interface is desirable. In the current version, the 

compiler displays the name of the function currently being parsed, prints 

rather cryptic error messages in response to the syntax errors that it 

finds, and rings a bell to alert the user that either the compilation is 

complete, or that an error has been found. The bell is only rung for the 

first error that the compiler finds. Unfortunately, the easiest way to 

determine that a compilation is proceeding smoothly is by listening to the 

numberous disk timeouts that occur during compilation. In order to keep 

the user aware of the progres of compilation, the compiler should display 

more than just the name of the function currently being parsed. The names 

of the functions that have been parsed previously should also remain on 

the screen. In addition, the compiler could print a special character on 

the screen for each line of source code as it is parsed. Atari Pascal 

displays a dot for each line of source code, and every 32 lines prints a 

count of the number of lines that have been scanned so far. As a result, 

the user is able to see that the compiler is continuing to proceed through 

the source code. Keeping the user informed of the progress of compilation 

is especially crucial with Deep Blue C, as the compiler is quite slow when 

compiling a program of any significant length. Reducing the time required 

to compile large programs would be major improvement, and should be given 
i * 

high priority in future revisions. 

The Compiler's error messages are obviously the error messages used in 

standard C. Even so, they are fairly cryptic, and could be improved. For 

example, for an undeclared variable, the message "must be lvalue" is 

displayed. This message does not tell the user that the variable is 

undeclared, but only that the identifier in question has been misused. 

-19- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont') 

Several additional features would make the compiler more convenient for 

the user. First, it would be very convenient if a user could go directly 

from the compiler to the linker without first having to go back to DOSi. 

Currently, when a compilation is completed, the user is given two choices: 

either entering the name of another file to compile, or returning to DOS. 

In order to use the linker, the user must return to DOS, and then perform 

a time consuming binary load of the file containing the linker. Unfortu¬ 

nately, going directly from the compiler to the linker probably will not 

be realized until after a chaining facility has been implemented. Second, 

it would be convenient for the user if the compiler would let him either 

continue or abort a compilation after an error has been found. Often, one 

syntax error in the source code will cause the compiler to print several 

error messages. Giving the user the option of either continuing or 

aborting could save him a considerable amount of time. The capability to 

abort a compilation could be easily implemented using the exit function, 

which is currently unsupported. The goto statement could also be employed 

for this purpose, but I do not recommend using it. Finally, it would 

greatly speed up program debugging, especially the debugging of large 

programs, if the user had the option of listing his source code and 

compiler’s error messages to the printer. In order to list this information, 

the compiler would first have to ask the user if he wanted his source code 

to be printed, then confirm that the printer (preferably an 80 column 

printer) was active, and finally send the source code and error messages 

to the printer during compilation. Adding this capability to the compiler 

would not be difficult, and would greatly aid the user. 

-20- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont') 

As a last comment about the compiler itself, I would like to note that the 

compiler (executable file CC.COM) is a very large program and that it 

'takes quite a while to load. If a chaining facility similar to the one I 

have described were implemented, then the compiler could be divided into 

two or more files, and the user would only need to load the first of these 

files. This would speed up the process of program development, especially 
i. i 

when the time spent debugging is considered. . 
i * * 

In general, I found that the Deep Blue C linker has better user interface 

than the compiler. The linker displays the names of all the files that 

are being linked together, printing each file name when that file is used. 

When the link is complete, the linker alerts the user by sounding a 

buzzer. If the link was successful, then the message "no errors" is 

printed; otherwise, a message explaining the unsuccessful link is printed. 

Usually, an unsuccessful link is caused by the existence of one or more 

undeclared variables or unknown functions resident in one or more of the 

linked files. The linker displayed enough information to allow me to 

follow the progress of the link. In addition, the linker has a convenient 

duplicate command that lets the user make copies of small files without 

going back to DOS. 

Like the compiler, the linker also could have some additional features 

added to it to help make it more convenient for the user. For example, it 

would save time if the user could execute compiled and linked programs 

without first having to return from the linker to DOS. Also, it would be 

convenient if the linker would print the contents of the user-specified 

link file (extension .LNK) on the screen before beginning the actual 

linking process and then ask the user if he wished to continue or abort 

the link. The user could thus examine the link file and perhaps determine 

that not all of the names of required files were included in the link 

-21- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 
I 

i 
i 

V. ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS ~ (Cont') 

file. If this were the case, the user could choose to abort the link. 

The ability to abort links could be added easily if the exit function were 

supported. 

The mandatory use of link files for linking programs is a restrictive 

requirement. Why not have the linker prompt the user for a file name or 

jfile names and allow the user to respond .by either entering the name of a 

link file or by entering the names of the files to be linked together? 

The user would also enter some sort of toggle (similar to the linker 

switches in Atari Pascal), so that the linker could determine whether the 

name of a link file or the names of files to be linked together had been 

entered. Giving the user this choice would permit him greater flexibility 

in linking his programs. If he wished, the user could use the editor to 

create a link file and then only have to enter one filename in response to 

the linker's prompt. Alternately, in response to the linker's prompt, the 

user could choose to enter the names of all the files that he wished to 

have linked. The first method saves time, whereas the second method saves 

a small amount of disk space (approximately one sector per link file) and 

allows the user to easily try different links. Although the first method 

would probably be used most of the time, the user should be able to employ 

either method. 
1 
I 

Having been accustomed to the disk swapping that is necessary with Atari 

Pascal, I was pleasantly surprised when I found that no such disk changing 

is necessary when using Deep Blue C with two disk drives. I received an 

additional surprise when I discovered that it is possible to compile, 

link, and run Deep Blue C programs using only one disk drive. Of course, 

using two drives is much more convenient, but it is possible to use Deep 

Blue C with a one drive system. In order to do so without a considerable 

amount of disk swapping, it is necessary to have all of the following 

-22- 



AN EVALUATION OF THE ’’DEEP BLUE" C COMPILER 

ADDITIONAL DESIRABLE FEATURES AND SOME OBSERVATIONS - (Cont') 

files present on the same disk: DOS.SYS, DUP.SYS, CC.COM, CLINK.COM, 

MEDIT, DBC.OBJ, AIO.CCC, GRAPHICS.CCC, PMG.CCC, and PRINTF.CCC. These 

files contain the disk operating system, compiler, linker, editor, linkable 

run-time interpreter, and the four library files. Unfortunately, these 

ten files occupy 494 sectors on the disk, leaving slightly more than 200 

sectors for the user to quickly fill with his source files (»C), link 

files (.LNK),'token files (.tCC), and executable files (.COM). A user 

employing a one drive system will have to spend a considerable amount of 

time copying files from one disk to another. In addition, the size of the 

user’s programs will be restricted, and the process of debugging programs 

will be even more difficult than it already is. Thus, although it is 

possible to use Deep Blue C with a one drive system, I do not recommend 

doing so. Using a two drive system is easier, more convenient, and saves 

much programmer time and energy. 

-23- 



AN EVALUATION OF THE nDEEP BLUE1' C COMPILER 

VI. KNOWN BUGS AND ERRORS 

In the course of examining Version 1.1 of the Deep Blue C compiler, I have 

discovered several bugs. The most serious bug is resident in the file 

handler of both the compiler and linker. Each of these programs correctly 

produces the appropriate output file if there are no errors or other 

problems. However, if I some trouble is encountered when an attempt, is made 

to read the appropriate input file, both the compiler and the linker open 

the correct output file,'but then fail to close and delete it when the 

problems are encountered with the input file. For example, during an 

attempted link, the linker successfully opened the appropriate .LNK file, 

but was unable to open the .CCC file that was named within the .LNK file. 

The link was aborted, and the user was prompted for a new task. Unfortu¬ 

nately, the linker had already opened the appropriate .COM file, and did 

not close it. This file was not listed in the DOS disk directory, but did 

occupy an entry in the complete disk directory which was examined with the 

"fixdmp" utility. In addition, using this utility to perform a sector 

trace on the directory entry showed that it had several disk sectors 

linked to it. Thus, not only was the supposedly deleted file taking up a 

directory entry, it was also monopolizing an unknown number of sectors on 

the disk. Eventually, after several aborted links and compiles, the disk 

became filled with supposedly nonexistent files, and a disk utility such 

as fixdmp had to be utilized to remove this garbage. For a user who does 

not have fixdmp available, this bug would prevent effective use of the 

compiler. 

The three other bugs that I came across are not nearly as serious, but 

they all should be corrected before the compiler is released, as they 

prevent the compiler from fully using the hardware of the 800. First, the 

sound routine contained in the library file "Graphics" does not properly 

access voices 2 and 3, so that the user is limited to using only two of 

-24- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

VI. KNOWN BUGS AND ERRORS - (Cont') 

the four voices. Second, the routine called "pmgraphics", which is 

included in the library file "PMG", does not work if the parameter value 

is 2., This bug limits the uer of the pre-written player/missile graphics 
» 

routines to using single-line resolution player,/mi s s i le graphics only. In 

s ithe present version, this bug can be neutralized^ by poking the required 
i i 

values directly into the appropriate memory locations. The last bug is 

resident in the syntax analysis section of the compiler, which will not . , 

accept subroutines with the following general structure: 

$( 

if (x<3) x++; /*x is an integer variable declared*/ 

/*in the calling program.*/ 

$) 

This bug is not very serious, but it might be a indicator of additional 

errors in the compiler’s syntax analysis routines. 

The documentation supplied with Deep Blue C has at 

it. For the ’’plmove” routine, the character array 

octal numbers rather than decimal numbers as might 

documentation does not say anything about the type 
i 

In addition, some of the documentation needs to be 

greater amount of attention paid to details. 

least one error within 

’’shape” should contain 

be supposed, since the 

of integers required, 

rewritten, with a 

There are probably additional errors and bugs that I have not yet found. 

I will report on any new ones that I find. 



AN EVALUATION OF THE ’’DEEP BLUE” C COMPILER 

VII. TIME AND MEMORY CONSIDERATIONS 

Deep Blue C compares favorably with both Atari Basic and Atari Pascal when 

time and memory requirements are considered. I made my comparision using 

a simple player/missile graphics demonstration program translated into 

: each language. Rather than using quantitative methods for my analysis, I 
» 

just T>erf°rFieci visual compari sions . < The player/mi s s i le program was quite 

slow when written in Basic, but was significantly faster wheri translated 

into Loth Pascal and C, with the C version seeming to be slightly faster 

than the Pascal version. The Basic program occupied the smallest amount 

of space on the floppy disk. Both the Pascal and the C programs were 

significant larger (approximately 30 additional disk sectors), with the 

Pascal file requiring 9 fewer disk sectors than the C file. However, the 

C file contained both the compiled and linked C source code, as well as 

the Deep Blue C interpreter. Both the Basic and Pascal programs required 

the presence of interpreters, which were loaded into memory separately and 

were not a part of the program files. Because of the size of these 

interpreters (8K for Basic, 10K for Pascal), of the three high level 

languages, Deep Blue C required the smallest total amount of memory to 

execute the simple player/missile graphics program. In summary, these 

results show that Deep Blue C is faster than Basic, and at least as fast 

as Pascal (in this application). Deep Blue C also requires a smaller 

amount of memory (due to the relative sizes of the interpreters), at a 

cost of not supporting the full standard C language, and not including 

nearly as many features as are included in Atari Pascal. 

I did not perform any direct comparisions between Deep Blue C and 6302 

assembly language, but there is little doubt that using assembly language 

for development results in faster, more compact programs. However, using 

a high level language such as Deep Blue C for development has several 

beneficial effects. These include a shorter development cycle, portability 

from one machine to another that is easier to accomplish than it is with 

assembly language programs (when using two different processors), simpler 

program maintenance, and more convenient debugging. 

-26- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

VIII. CONCLUSION 

Deep Blue C should be a solid addition to the product line of the Atari 

Program Exchange (APX). Although it only supports a proper subset of the 

full C programming language, Deep Blue C supports that subset extrememly 

well. Atari users who are familiar with Basic should be able to learn 

Deep Blue C with a minimum of confusion if they use a reference such as 

The C Programming Language by Kernighan and Ritchie. The similarity 

between the input/output and graphics functions of Atari Basic and those 

of Deep Blue C should be an additional aid to learning. 

Several elements of the user interface of Deep Blue C need to be improved. 

The compiler needs to display additional information so that the user can 

follow the progress of compilation more readily. This aspect of the 

compiler's user interface is especially crucial because of the slow speed 

of the current version of the Deep Blue C compiler. At present, the 

easiest way to follow the progress of compilation is to listen to the 

numerous disk drive timeouts. In future revisions, the speed of compilation 

should be improved, if possible. The linker currently displays sufficient 

information for the process of linking to be followed, so that improving 

the user interface of the linker is not as imperative. However, the 

linker should be modified so that the use of link files (extension 

.LNK) is not mandatory. In addition, the documentation for Deep Blue C 

probably should be re-organized and an index or table of contents added. 

Several sections could also be more detailed in their descriptions and 

explanations. Of course, the bugs that I have described and any others 

that are present should be fixed. 

The subset of the C language that Deep Blue C supports should satisfy 

those users who learn C as a result of Deep Blue C being offered as an APX 

product. However, the limitations of the subset will frustrate some 

users, especially those programmers who already know C. In particular. 

-27- 



AN EVALUATION OF THE nDEEP BLUE" C COMPILER 

VIII. CONCLUSION ~ (Cont1) 

the lack of such features as floating point numbers and structures will 

limit some users’ creative energies. Several currently unsupported 
» ... . . . j 

features should definitely be implemented in future revisions of Deep Blue 

C. In addition to floating point numbers and structures, these include 
i 1 - 

the two operators that operate specifically on structures (-> and dcjt) , 
. j. . • * i 

searchable library files, and allowing functions to return non-integer \ 

values. Some users might also find an implemented chaining facility 

useful, especially if one of the two methods I have described to pass 

variables from program to program was also supported. In spite of the 

absence of these particular features and the other drawbacks I’ve discussed 

Deep Blue C is a well-thought out product that will probably perform 

better than expected in the marketplace. 

As I have discussed. Deep Blue C has several advantages over the other 

high-level languages that are currently available for the Atari 800. 

These advantages are primarily in the area of time and memory requirements. 

Deep Blue C is comparable with Atari Pascal when speed of execution is 

considered, and is significantly faster than Atari Basic. The interpreter 

for Deep Blue C is much smaller than both the Pascal and Basic interpreters 

and thus programs written in Deep Blue C generally require less memory. 

In addition. Deep Blue C has two methods for including assembly language 

routines in a program, and is a more structured language than Basic. 

However, Deep Blue C supports only a subset of the full C programming 

language, and the limitations if the subset will prohibit the use of Deep 

Blue C for some applications. In particular, applications which require 

the use of floating point numbers, easily structured data (using structures 

chaining from one program to another, or any of the other unsupported 

features which I have described cannot be implemented using Deep Blue C. 

However, Deep Blue C is a good language to use for applications which do 

not require the compact code and fast execution of assembly language and 

thus can be implemented in a high level language, and only require features 

that are currently supported. 

-28- 



AN EVALUATION OF THE "DEEP BLUE” C COMPILER 

i 
i 

VIII. CONCLUSION - (Cont') 

In order for Deep Blue C to be used as an internal development language, 

several improvements should be made. First, unless the compiler can be 

modified to perform significantly faster compilations. Deep Blue C should 

be present on the Data General, with the capability for full uploading 
* 

from and downloading to the 800. A utility, such as the "lint" utility 

which has been discussed,) should also be available in order to ease ’the 

process of debugging Deep1 Blue C programs. Second, searchable library 

files must be implemented, so that only those routines that are used in a 

program will be extracted for the libraries. The implementation' of this 

feature will result in a decrease in the memory required to execute 

compiled and linked Deep Blue C programs. Finally, Deep Blue C should be 

revised so that it supports some of the more desirable unsupported features. 

These include a floating point package, complete with a full library of 

trigonometric and related routines, and the support of floating point 

variables and constants and user-written functions that return floating 

point values. Other practical features include a chaining facility such 

as the one discussed, global or absolute variables so that two programs 

can communicate with each other, and the supporting of structures and the 

two operators that specifically operate on them. Additional features that 

are not supported at present could be implemented as the need or desire of 

them arises. In spite of the limitations caused by the absence of some 

very important features, many applications could be written in Deep Blue 

C, and thus Deep Blue C should be given careful consideration as a language 

to be used for development. 

-29- 



AN EVALUATION OF THE "DEEP BLUE" C COMPILER 

k 

I 

» 

IX. ADDITIONAL INFORMATION 

As I mentioned in the introduction, the standard reference for the C \ 

language is Th<e C Programming Language, by Brain W. Kernghan and Dennis M. 

Ritchie (published by Prentice-Hall, copyright 1978 by Bell Labs);. There 

are also a number of other books available. In addition, the documentation 

supplied with the Deep Blue C compiler is a good source of information, 

and th£ source code for Deep Blue C, is available and may be consulted in 
■ -f 

desparate cases. ,2 
' ‘ '• 1 . . } 

-30- 


