A COMPUTE! Books Publication $42.95

The AtariBASIC

A complete explanation of the inside workings of Atari
BASIC, along with the original source code. For
intermediate and advanced programmers.

Bill Wilkinson
Kathleen O'Brien
Paul Laughton

cccecceccccccccccccccccccccceec

From COMPUTE! Books and
Optimized Systems Software, Inc.

The Atari BASIC

SOURCE
BOOK

Compiled by Bill Wilkinson
Optimized Systems Software, Inc.

With the assistance of
Kathleen O'Brien and Paul Laughton

COMPUTE! Publico’rions,lnc.@

A Subsidiary Of American Broadcasting Companies, Inc

ATARI is a registered trademark of Atari, Inc.

COMPUTE! Books is a division of COMPUTE! Publications, Inc., a subsidiary of
American Broadcasting Companies, Inc.

Editorial mailing address is:
PO Box 5406

Greensboro, NC 27403 USA
(919) 275-9809

Optimized Systems Services, Inc., is located at:
10379 Lansdale Avenue

Cupertino, CA 95014 USA

(408) 446-3099

All reasonable care has been taken in the writing, testing, and correcting of the text and
of the software within this book. There is, however, no expressed or implied warranty
of any kind from the authors or publishers with respect to the text or software herein
contained. In the event of any damages resulting from the use of the text or the soft-
ware in this book, or from undocumented or documented manufacturer’s changes in
Atari BASIC made before or after the publication of this book, the authors or publishers
shall be in no sense liable.

Copyright © 1983 text, COMPUTE! Publications, Inc.

Copyright © 1978, 1979, 1983 program listings, Optimized Systems Software, Inc. All
rights reserved.

Reproduction or translation of any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

Printed in the United States of America

ISBN 0-942386-15-9

10987654321

Table of Contents

Publisher’'s Foreword \Y
AknowWlodEmeits . ssnsevosissasensasrsavnasss s s snaes vii
Prefatie); sonomass & aasmmass & @ fRmes 5 5 e H B ELEe o 5 e ix
Part One: Inside Atari BASIC
1 Atari BASIC: A High-level Language Translator 1
2 Internal Design Overview 7
3 NISHDET LIBREE, o oonm v s vuvwmn v vem smmesrms s 1mse s 2 13
4 Prograto BT «osvsoreepwrsrs seonsmsps s ossammns s 25
§ The Pre-omipller csvssssssnsirssanassssssissssdme s 33
6 ExecutionOverviewt 49
7 Exeoufe EXOIOSSION « v vr vunenvsss romsmssssvsanwnns s bb
8 Execufion Boundary Conditions: . :csssss0sessusssss 71
9 Program Flow Control Statements................... 75
10 Tokenized Program SaveandLoad 81
11 The LIST and ENTER Statements 85
12 Atari Hardware Control Statements 91
13 External Datal/O Statements 95
14 Internal I/O Statements, 103
15 Miscellaneous Statements 105
16 Initialization 109

Introductionto Part TWo 113
1 Hexadecimal Numbers............. 115
2 PEEKingand POKEIingcooiiio.... 119
3 Listing VariablesinUse 123
4 Variable Values........... 125
5 Examining the StatementTablecoivciesssrsssnss 129
6 Viewingthe Runtime Statk . csrssenssvsssssscnnsavs 133
N ©10- (T (8 0] (<) S 135
8 What Takes Precedence? 137
9 UsingWhatWeKnow 139

Part Three: Atari BASIC Source Code

Source Code LISHNg « o ssssvvsivisnsanusssssasassasvsses 143

Appendices

A MacrosinSourceCode. 273
B TheBugsin Atari BASIC ..cqiisvmessvismnasssmnnmass 275
C Labels and Hexadecimal Addresses.................. 281
TGN b5 cetirals ceastinsn s Tello i sl d o Beed s 024 56 Bl 2 SV m o et ToE g e 285

iv

»

Publisher’s
Foreword

It’s easy to take a computer language like Atari BASIC for
granted. But every PEEK and POKE, every FOR-NEXT loop
and IF-THEN branch, is really a miniprogram in itself. Taken
together, they become a powerful tool kit. And, as Atari
owners know, there are few home-computer languages as
powerful and versatile — from editing to execution — as Atari
BASIC.

With this book, the Atari BASIC tool kit is unlocked. The
creators of Atari BASIC and COMPUTE! Publications now offer
you, for the first time, a detailed, inside look at exactly how a
major computer manufacturer’s primary language works.

For intermediate programmers, the thorough and careful
explanations in Parts 1 and 2 will help you understand exactly
what is happening in your Atari computer as you edit and run
your programs.

For advanced programmers, Part 3 provides a complete
listing of the source code for Atari BASIC, so that your machine
language programs can make use of the powerful routines built
into that 8K cartridge.

And for programmers at all levels, by the time you're
through studying this book you'll feel that you’ve seen a whole
computer language at work.

Special thanks are due to Bill Wilkinson, the creative force
behind Atari BASIC and many other excellent programs for
Atari and other computers, for his willingness to share
copyrighted materials with computer users. Readers of
COMPUTE! Magazine already know him as a regular
columnist, and in this book he continues his tradition of clear
explanations and understandable writing.

CCCCCCCCCCCCCCCCCeCCCcccecccd-

Acknowledgments

As far as we know, this is the first time that the actual source
listing of a major manufacturer’s primary computer language
has been made available to the general public.

As with our previous COMPUTE! Publications book Inside
Atari DOS, this book contains much more than simply a source
listing. All major routines are examined and explained. We
hope that when you finish reading this book you will have a
better understanding of and appreciation for the design and
work which go into as sophisticated a program as Atari BASIC.

This book is the result of the efforts of many people. The
initial credit must go to Richard Mansfield of COMPUTE!
Publications for serving as our goad and go-between. Without
his (and COMPUTE!’s) insistence, this book might never have
been written. Without his patience and guidance, the contents
of this book might not have been nearly as interesting.

To Kathleen O’Brien and Paul Laughton must go the lion’s
share of the authoring credits. Between them, they have done
what I believe is a very creditable job of explaining a very
difficult subject, the internal workings of Atari BASIC. In fact,
Part I of this book is entirely their work. Of course, their ability
to explain the listing may not be so surprising. After all,
between them they wrote almost all of the original code for
Atari BASIC. So, even though Paul and Kathleen are not
associated with Optimized Systems Software, we were pleased
to have their invaluable help in writing this book and hope that
they receive some of the credit which has long been due them.

Mike Peters was responsible for taking our old, almost
unreadable copies of the source code diskettes for Atari BASIC
and converting them to another machine, using another
assembler, and formatting the whole thing into an acceptable
form for this book. This isn’t surprising either, since Mike
keypunched the original (yes, on cards).

And I am Bill Wilkinson, the one responsible for the rest of
this book. In particular, I hope you will find that a good
amount of the material in Part II will aid you in understanding
how to make the best use of this book.

vii

The listing of Atari BASIC is reproduced here courtesy of
OSS, Inc., which now owns its copyright and most other
associated rights.

viii

Preface

In 1978, Atari, Inc., purchased a copy of Microsoft BASIC for
the 6502 microprocessor (similar to the version from which
Applesoft is derived). After laboring for quite some time, the
people of Atari still couldn’t make it do everything they wanted
it to in the ROM space they had available. And there was a
deadline fast approaching: the January 1979 Las Vegas
Consumer Electronics Show (CES).

At that time, Kathleen, Paul, Mike and I all worked for
Shepardson Microsystems, Inc. (SMI). Though little known
by the public, SMI was reasonably successful in producing
some very popular microcomputer software, including the
original Apple DOS, Cromemco’s 16K and 32K BASICs, and
more. So it wasn’t too surprising that Atari had heard of us.

And they asked us: Did we want to try to fix Microsoft
BASIC for them? Well, not really. Did we think we could write
an all-new BASIC in a reasonable length of time? Yes. And
would we bet a thousand dollars a week on our ability to do so?

While Bob Shepardson negotiated with Atari and I wrote
the preliminary specifications for the language (yes, I'm the
culprit), time was passing all too rapidly. Finally, on 6 October
1978, Atari’s Engineering Department gave us the okay to
proceed.

The schedule? Produce both a BASIC and a Disk File
Manager (which became Atari DOS) in only six months. And,
to make sure the pressure was intense, they gave us a $1000-a-
week incentive (if we were early) or penalty (if we were late).

But Paul Laughton and Kathleen O’Brien plunged into it.
And, although the two of them did by far the bulk of the work,
there was a little help from Paul Krasno (who implemented the
transcendental routines), Mike Peters (who did a lot of
keypunching and operating), and me (who designed the
floating point scheme and stood around in the way a lot). Even
Bob Shepardson got into the act, modifying his venerable
IMP-16 assembler to accept the special syntax table mnemonics
that Paul invented (and which we paraphrase in the current
listing via macros).

X

Atari delivered the final signed copy of the purchase order
on 28 December 1978, two and a half months into the project.
But it didn’t really matter: Paul and Kathy were on vacation,
having delivered the working product more than a week
before!

So Atari took Atari BASIC to CES, and Shepardson
Microsystems faded out of the picture. As for the bonus for
early delivery — there was a limit on how much the incentive
could be. Darn.

The only really unfortunate part of all this was that Atari
got the BASIC so early that they moved up their ROM
production schedule and committed to a final product before
we had a chance to do a second round of bug fixing.

And now? Mike and I are running Optimized Systems
Software, Inc. And even though Paul and Kathleen went their
own way, we have kept in touch enough to make this book
possible.

_ ®
v
=
O
=
<
a

 EE NN ENNENENNENNENNENNENNENNHN-EHNHSN-NZHXNRE N]

How Atari

BASIC Works

toocooototcCtCCrCOCCCCCCCCOER® OC

Chapter One

Atari BASIC:

A High-Level Language
Translator

The programming language which has become the de facto
standard for the Atari Home Computer is the Atari 8K BASIC
Cartridge, known simply as Atari BASIC. It was designed to
serve the programming needs of both the computer novice and
the experienced programmer who is interested in developing
sophisticated applications programs. In order to meet such a
wide range of programming needs, Atari BASIC was designed
with some unique features.

In this chapter we will introduce the concepts of high level
language translators and examine the design features of Atari
BASIC that allow it to satisfy such a wide variety of needs.

Language Translators

Atari BASIC is what is known as a high level language translator.
A language, as we ordinarily think of it, is a system for
communication. Most languages are constructed around a set

of symbols and a set of rules for combining those symbols.

The English language is a good example. The symbols are
the words you see on this page. The rules that dictate how to
combine these words are the patterns of English grammar.
Without these patterns, communication would be very
difficult, if not impossible: Out sentence this believe, of make
don't this trying if sense you to! If we don’t use the proper
symbols, the results are also disastrous: @twu?2 yeggopt
gjsiem, keorw?

In order to use a computer, we must somehow
communicate with it. The only language that our machine
really understands is that strange but logical sequence of ones
and zeros known as machine language. In the case of the Atari,
this is known as 6502 machine language.

When the 6502 central processing unit (CPU) ““sees’” the
sequence 01001000 in just the right place according to its rules
of syntax, it knows that it should push the current contents of

1

Chapter One s s e e S

the accumulator onto the CPU stack. (If you don’t know what
an ““accumulator”” or a “’CPU stack”” is, don’t worry about it.
For the discussion which follows, it is sufficient that you be
aware of their existence.)

Language translators are created to make it simpler for
humans to communicate with computers. There are very few
6502 programmers, even among the most expert of them, who
would recognize 01001000 as the push-the-accumulator
instruction. There are more 6502 programmers, but still not
very many, who would recognize the hexadecimal form of
01001000, $48, as the push-the-accumulator instruction.
However, most, if not all, 6502 programmers will recognize the
symbol PHA as the instruction which will cause the 6502 to
push the accumulator.

PHA, $48, and even 01001000, to some extent, are
translations from the machine’s language into a language that
humans can understand more easily. We would like to be able
to communicate to the computer in symbols like PHA; but if
the machine is to understand us, we need a language translator
to translate these symbols into machine language.

The Debug Mode of Atari’s Editor/Assembler cartridge, for
example, can be used to translate the symbols $48 and PHA to
the ones and zeros that the machine understands. The
debugger can also translate the machine’s ones and zeros to
$48 and PHA. The assembler part of the Editor/ Assembler
cartridge can be used to translate entire groups of symbols like
PHA to machine code.

Assemblers

An assembler — for example, the one contained in the
Assembler/Editor cartridge — is a program which is used to
translate symbols that a human can easily understand into the
ones and zeros that the machine can understand. In order for
the assembler to know what we want it to do, we must
communicate with it by using a set of symbols arranged
according to a set of rules. The assembler is a translator, and
the language it understands is 6502 assembly language.

The purpose of 6502 assembly language is to aid program
authors in writing machine language code. The designers of
the 6502 assembly language created a set of symbols and rules
that matches 6502 machine language as closely as possible.

This means that the assembler retains some of the

IS e snessssmmews (_hapter One

disadvantages of machine language. For instance, the process
of adding two large numbers takes dozens of instructions in
6502 machine language. If human programmers had to code
those dozens of instructions in the ones and zeros of machine
language, there would be very few human programmers.

But the process of adding two large numbers in 6502
assembly language also takes dozens of instructions. The
assembly language instructions are easier for a programmer to
read and remember, but they still have a one-to-one cor-
respondence with the dozens of machine language
instructions. The programming is easier, but the process
remains the same.

High Level Languages

High level languages, like Atari BASIC, Atari PILOT, and Atari
Pascal, are simpler for people to use because they more closely
approximate human speech and thought patterns. However,
the computer still understands only machine language. So the
high level languages, while seeming simple to their users, are
really much more complex in their internal operations than
assembly language.

Each high level language is designed to meet the specific
need of some group of people. Atari Pascal is designed to
implement the concept of structured programming. Atari
PILOT is designed as a teaching tool. Atari BASIC is designed
to serve both the needs of the novice who is just learning to
program a computer and the needs of the expert programmer
who is writing a sophisticated application program, but wants
the program to be accessible to a large number of users.

Each of these languages uses a different set of symbols and
symbol-combining rules. But all these language translators
were themselves written in assembly language.

Language Translation Methods
There are two different methods of performing language
translation — compilation and interpretation. Languages which
translate via interpretation are called interpreters. Languages
which translate via compilation are called compilers.
Interpreters examine the program source text and simulate
the operations desired. Compilers translate the program source
text into machine language for direct machine execution.

Chapter One romaimssiin e s i sa——

The compilation method tends to produce faster, more
efficient programs than does the interpretation method.
However, the interpretation method can make programming
easier.

Problems with the Compiler Method

The compiler user first creates a program source file on a disk,
using a text editing program. Then the compiler carefully
examines the source program text and generates the machine
language as required. Finally, the machine language code is
loaded and executed. While this three-step process sounds
fairly simple, it has several serious “‘gotchas.”’

Language translators are very particular about their
symbols and symbol-combining rules. If a symbol is
misspelled, if the wrong symbol is used, or if the symbol is not
in exactly the right place, the language translator will reject it.
Since a compiler examines the entire program in one gulp, one
misplaced symbol can prevent the compiler from
understanding any of the rest of the program — even though
the rest of the program does not violate any rules! The result is
that the user often has to make several trips between the text
editor and the compiler before the compiler successfully
generates a machine language program.

But this does not guarantee that the program will work. If
the programmer is very good or very lucky, the program will
execute perfectly the very first time. Usually, however, the user
must debug the program.

This nearly always involves changing the source program,
usually many times. Each change in the source program sends
the user back to step one: after the text editor changes the
program, the compiler still has to agree that the changes are
valid, and then the machine code version must be tested again.
This process can be repeated dozens of times if the program is
very complex.

Faster Programming or Faster Programs?

The interpretation method of language translation avoids many
of these problems. Instead of translating the source code into
machine language during a separate compiling step, the
interpreter does all the translation while the program is running.
This means that whenever you want to test the program you're
writing, you merely have to tell the interpreter to run it. If
things don’t work right, stop the program, make a few
changes, and run the program again at once.

4

A e - e gaersenawn] _hapier One

You must pay a few penalties for the convenience of using
the interpreter’s interactive process, but you can generally
develop a complex program much more quickly than the
compiler user can.

However, an interpreter is similar to a compiler in that the
source code fed to the interpreter must conform to the rules of
the language. The difference between a compiler and an
interpreter is that a compiler has to verify the symbols and
symbol-combining rules only once — when the program is
compiled. No evaluation goes on when the program is
running. The interpreter, however, must verify the symbols
and symbol-combining rules every time it attempts to run the
program. If two identical programs are written, one for a
compiler and one for an interpreter, the compiled program will
generally execute at least ten to twenty times faster than the
interpreted program.

Pre-compiling Interpreter

Atari BASIC has been incorrectly called an interpreter. It does
have many of the advantages and features of an interpretive
language translator, but it also has some of the useful features
of a compiler. A more accurate term for Atari’s BASIC
Language Translator is pre-compiling interpreter.

Atari BASIC, like an interpreter, has a text editor built into
it. When the user enters a source line, though, the line is not
stored in text form, but is translated into an intermediate code,
a set of symbols called tokens. The program is stored by the
editor in token form as each program line is entered. Syntax
and symbol errors are weeded out at that time.

Then, when you run the program, these tokens are
examined and their functions simulated; but because much of
the evaluation has already been done, the execution of an Atari
BASIC program is faster than that of a pure interpreter. Yet
Atari BASIC’s program-building process is much simpler than
that of a compiler.

Atari BASIC has advantages over compilers and
interpreters alike. With Atari BASIC, every time you enter a
line it is verified for language correctness. You don’t have to
wait until compilation; you don’t even have to wait until a test
run. When you type RUN you already know there are no
syntax errors in your program.

)

)

Chapter Two

Internal Design
Overview

Atari BASIC is divided into two major functional areas: the
Program Constructor and the Program Executor. The Program
Constructor is used when you enter and edit a BASIC program.
The source line pre-compiler, also part of the Program
Constructor, translates your BASIC program source text lines
into tokenized lines. The Program Executor is used to execute
the tokenized program — when you type RUN, the Program
Executor takes over.

Both the Program Constructor and the Program Executor
are designed to use data tables. Some of these tables are
already contained in BASIC’s ROM (read-only memory).
Others are constructed by BASIC in the user RAM (random-
access memory). Understanding these various tables is an
important key to understanding the design of Atari BASIC.

Tokens

In Atari BASIC, tokens are the intermediate code into which
the source text is translated. They represent source-language
symbols that come in various lengths — some as long as 100
characters (a long variable name) and others as short as one
character (" +"" or "’~"’). Every token, however, is exactly one
eight-bit byte in length.

Since most BASIC Language Symbols are more than one
character long, the representation of a multi-character BASIC
Language Symbol with a single-byte token can mean a
considerable saving of program storage space.

A single-byte token symbol is also easier for the Program
Executor to recognize than a multi-character symbol, since it
can be evaluated by machine language routines much more
quickly. The SEARCH routine — 76 bytes long — located at
$A462 is a good example of how much assembly language it
takes to recognize a multi-character symbol. On the other
hand, the two instructions located at $AB42 are enough to

Chapter Two (e e iny o e i) s]

determine if a one-byte token is a variable. Because routines to
recognize Atari BASIC's one-byte tokens take so much less
machine language, they execute relatively quickly.

The 256 possible tokens are divided into logical numerical
groups that also make them simpler to deal with in assembly
language. For example, any token whose value is 128 ($80) or
greater represents a variable name. The logical grouping of the
token values also means faster execution speeds, since, in
effect, the computer only has to check bit 7 to recognize a
variable.

The numerical grouping of the tokens is shown below:

Token Value (Hex) Description
00-0D Unused

OE Floating Point Numeric Constant.
The next six bytes will hold its value.

OF String Constant.
The next byte is the string length.
A string of that length follows.

10-3C Operators.
See table starting at $A7E3 for specific
operators and values.

3D-54 Functions.
See table starting at $A820 for specific
functions and values.

55-7F Unused.

80-FF Variables.

In addition to the tokens listed above, there is another set
of single-byte tokens, the Statement Name Tokens. Every
statement in BASIC starts with a unique statement name, such
as LET, PRINT, and POKE. (An assignment statement such as
““A=B+C,”" without the word LET, is considered to begin with
an implied LET.) Each of these unique statement names is
represented by a unique Statement Name Token.

The Program Executor does not confuse Statement Name
Tokens with the other tokens because the Statement Name
Tokens are always located in the same place in every statement
— at the beginning. The Statement Name Token value is
derived from its entry number, starting with zero, in the
Statement Name Table at $A4AF.

8

R s e e Chapter Two

Tables

A table is a systematic arrangement of data or information.
Tables in Atari BASIC fall into two distinct types: tables that are
part of the Atari BASIC ROM and tables that Atari BASIC
builds in the user RAM area.

ROM Tables

The following is a brief description of the various tables in the
Atari BASIC ROM. The detailed use of these tables will be
explained in subsequent chapters.

Statement Name Table ($A4AF). The first two bytes in each
entry point to the information in the Statement Syntax Table
for this statement. The rest of the entry is the name of the
statement name in ATASCII. Since name lengths vary, the last
character of the statement name has the most significant bit
turned on to indicate the end of the entry. The value of the
Statement Name Token is derived from the relative (from zero)
entry number of the statement name in this table.

Statement Execution Table ($AA00). Each entry in this table

is the two-byte address of the 6502 machine language code
which will simulate the execution of the statement. This table is
organized with the statements in the same order as the
statements in the Statement Name Table. Therefore, the
Statement Name Token can be used as an index to this table.
Operator Name Table ($A7E3). Each entry comprises the
ATASCII text of an Operator Symbol. The last character of each
entry has the most significant bit turned on to indicate the end
of the entry. The relative (from zero) entry number, plus 16
($10), is the value of the token for that entry. Each of the entries
is also given a label whose value is the value of the token for
that symbol. For example, the ;" symbol at $A7ES is the fifth
(from zero) entry in the table. The label for the **;"” token is
CSC, and the value of CSC is $15, or 21 decimal (1416 +5).
Operator Execution Table ($AA70). Each two-byte entry

points to the address, minus one, of the routine which
simulates the execution of an operator. The token value, minus
16, is used to access the entries in this table during execution
time. The entries in this table are in the same order as in the
Operator Name Table.

Operator Precedence Table (JAC3F). Each entry

represents the relative execution precedence of an individual
operator. The table entries are accessed by the operator tokens,

9

Chapter TWo | Somss s et v o e 5 e s

minus 16. Entries correspond with the entries in the Operator
Name Table. (See Chapter 7.)

Statement Syntax Table ($A60D). Entries in this table are

used in the process of translating the source program to tokens.
The address pointer in the first part of each entry in the
Statement Name Table is used to access the specific syntax
information for that statement in this table. (See Chapter 5.)

RAM Tables

The tables that BASIC builds in the user RAM area will be
explained in detail in Chapter 3. The following is a brief
description of these tables:

Variable Name Table. Each entry contains the source
ATASCII text for the corresponding user variable symbol in the
program. The relative (from zero) entry number of each entry
in this table, plus 128, becomes the value of the token
representing the variable.

Variable Value Table. Each entry either contains or points

to the current value of a variable. The entries are accessed by
the token value, minus 128.

Statement Table. Each entry is one tokenized BASIC
program line. The tokenized lines are kept in this table in
ascending numerical order by line number.

Array/String Table. This table contains the current values

for all strings and numerical arrays. The location of the specific
values for each string and/or array variable is accessed from
information in the Variable Value Table.

Runtime Stack. This is the LIFO Runtime Stack, used to
control the execution of GOSUB/RETURN and similar
statements.

Pre-compiler
Atari BASIC translates the BASIC source lines from text to
tokens as soon as they are entered. To do this, Atari BASIC
must recognize the symbols of the BASIC Language. BASIC
also requires that its symbols be combined in certain specific
patterns. If the symbols don’t follow the required patterns,
then Atari BASIC cannot translate the line. The process of
checking a source line for the required symbol patterns is called
syntax checking.

BASIC performs syntax checking as part of the tokenizing
process. When the Program Editor receives a completed line of

10

N e R ke Chapter Two

input, the editor hands the line to the syntax routine, which
examines the first word of the line for a statement name. If a
valid statement name is not found, then the line is assumed to
be an implied LET statement.

The grammatical rules for each statement are contained in
the Statement Syntax Table. A special section of code examines
the symbols in the source line, under the direction of the
grammatical rules set forth in the Statement Syntax Table. If
the source line does not conform to the rules, then it is reported
back as an error. Otherwise, the line is translated to tokens.
The result of this process is returned to the Program Editor for
further processing.

Program Editor

When Atari BASIC is not executing statements, it is in the edit
mode. When the user enters a source line and hits return, the
editor accepts the line into a line buffer, where it is examined
by the pre-compiler. The pre-compiler returns either tokens or
an error text line.

If the line started with a line number, the editor inserts the
tokenized line into the Statement Table. If the Statement Table
already contains a line with the same line number, then the old
line is removed from the Statement Table. The new line is then
inserted just after the statement with the next lower line
number and just before the statement with the next higher line
number.

If the line has no line number, the editor inserts the line at
the end of the Statement Table. It then passes control to the
Program Executor, which will carry out the statement(s) in the
line at the end of the Statement Table.

Program Executor

The Program Executor has a pointer to the statement that it is to
execute. When control is passed to the executor, the pointer
points to the direct (command) line at the end of the statement
table. If that statement causes some other line to be executed
(RUN, GOTO, GOSUB, etc.), the pointer is changed to the
new line. Lines continue to be executed as long as nothing
stops that execution (END, STOP, error, etc.). When the
program execution is stopped, the Program Executor returns
control to the editor.

11

Chapter Two e oo s s D s

When a statement is to be executed, the Statement Name
Token (the first code in the statement) directs the interpreter to
the specific code that executes that statement. For instance, if
that token represents the PRINT statement, the PRINT
execution code is called. The execution code for each statement
then examines the other tokens and simulates their operations.

Execute Expression

Arithmetic and logical expressions (A+B, C/D+E, F<G, etc.)
are simulated with the Execute Expression code. Expression
operators (+,-,*, etc.) have execution precedence — some
operators must be executed before some others. The
expression 1+3*4 has a value of 13 rather than 16

because * had a higher precedence than + . To properly
simulate expressions, BASIC rearranges the expression with
higher precedence first.

BASIC uses two temporary storage areas to hold parts of
the rearranged expression. One temporary storage area, the
Argument Stack, holds arguments — values consisting of
constants, variables, and temporary values resulting from
previous operator simulations. The other temporary storage
area, the Operator Stack, holds operators. Both temporary
storage areas are managed as Last-In/First-Out (LIFO) stacks.

LIFO Stacks

A LIFO (Last In/First Out) stack operates on the principle that
the last object placed in the stack storage area will be the first
object removed from it. If the letters A, B, C, and D, in that
order, were placed in a LIFO stack, then D would be the first
letter removed, followed by C, B, and A. The operations
required to rearrange the expression using these stacks will be
explained in Chapter 7.

BASIC also uses another LIFO stack, the Runtime Stack, in
the simulation of statements such as GOSUB and FOR.
GOSUB requires that BASIC remember where in the statement
table the GOSUB was located so it will return to the right spot
when RETURN is executed. If more than one GOSUB is
executed before a RETURN, BASIC returns to the statement
after the most recent GOSUB.

12

Chapter Three

Memory Usage

Many of BASIC’s functions are controlled by a set of tables
built in RAM not already occupied by BASIC or the Operating
System (OS). Figure 3.1 is a diagram of memory use by both
programs. Every time a BASIC programmer enters a statement,
memory requirements for the RAM tables change. Memory use
by the OS also varies. Different graphics modes, for example,
require different amounts of memory.

These changing memory requirements are monitored, and
this series of pointers keeps BASIC and the OS from overlaying
each other in memory:

e High memory address (HMADR) at location $02E5
e Application high memory (APHM) at location $000E
* Low memory address (LMADR) at location $02E7

When a graphics mode requires larger screen space, the OS
checks the application high memory address (APHM) that has
been set by BASIC. If there is enough room for the new screen,
the OS uses the upper portion of space and sets the pointer
HMADR to the bottom of the screen to tell the application how
much space the OS is now using.

BASIC builds its table toward high memory from low
memory. The pointer to the lowest memory available to an
application, called LMADR in the BASIC listing, is set by the
OS to tell BASIC the lowest memory address that BASIC can
use. When BASIC needs more room for one of its tables,
BASIC checks HMADR. If there is enough room, BASIC uses
the space and puts the highest address it has used into APHM
for OS.

BASIC’s operation consists primarily of building, reading,
and modifying tables. Pointers to the RAM tables are kept in
consecutive locations in zero page starting at $80. These tables
are, in order,

® Multipurpose Buffer
e Variable Name Table
e Variable Value Table
* String/Array Table

13

Chapter Three s

e Statement Table
e Runtime Stack

BASIC reserves space for a buffer at LMADR. It then builds
the tables contiguously (without gaps), starting at the top of the
buffer and extending as far as necessary towards APHM. When
a new entry needs to be added to a table, all data in the tables
above is moved upward the exact amount needed to fit the new
entry into the right place.

Figure 3-1. Memory Usage

FEFF
Operating System
ROM
E000
Floating Point
ROM
D800
Hardware Registers
D000
Unused
BFFF
BASIC ROM
A000
Screen
< HMADR
Free RAM
< APHM
BASIC
RAM
Tables
< LMADR
Operating System
RAM
0000

14

s s sermmserss. _hapter Three

Variable Name Table

The Variable Name Table (VNT) is built during the pre-compile
process. It is read, but not modified, during execution — but
only by the LIST statement. The VNT contains the names of the
variables used in the program in the order in which they were
entered.

The length of entries in the Variable Name Table depends
on the length of the variable name. The high order bit of the
last character of the name is on. For example, the ATASCII code
for the variable name ABC is 41 42 43 (expressed in
hexadecimal). In the Variable Name Table it looks like this:

41 42 C3

The $ character of a string name and the (character of an
array element name are stored as part of the variable name. The
table entries for variables C, AA$%, and X(3) would look like
this:

C 8

AA$ 41 41 A4

X(3) 58 A8
It takes only two bytes to store X(3) because this table stores
only X(.

A variable is represented in BASIC by a token. The value of
this token is the position (relative to zero) of the variable name
in the Variable Name Table, plus $80. BASIC references an
entry in the table by using the token, minus $80, as an index.
The Variable Name Table is not changed during execution time.

The zero page pointer to the Variable Name Table is called
VNTP in the BASIC listing.

Variable Value Table

The Variable Value Table (VVT) is also built during the pre-
compile process. It is both read and modified during execution.
There is a one-to-one correspondence in the order of entries
between the Variable Name Table and the Variable Value Table.
If XXX is the fifth variable in the Variable Name Table, then
XXX's value is the fifth entry in the Variable Value Table.
BASIC references a table entry by using the variable token,
minus $80, as an index.

Each entry in the Variable Value Table consists of eight
bytes. The first two bytes have the following meaning:

15

Chaptey Thieo oo sesmmsim) s

type vnum

type = one byte, which indicates the type of variable
$00 for floating point variable
$40 for array variable
$80 for string variable
vnum = one byte, which indicates the relative position of the
variable in the tables

The meaning of the next six bytes varies, depending on the
type of variable (floating point, string, or array). In all three
cases, these bytes are initialized to zero during syntaxing and
during the execution of the RUN or CLR.

When the variable is a floating point number, the six bytes
represent its value.

When the variable is an array, the remaining six bytes have
the following format:

. 2 314567 '8
| I [

l | |
disp diml dim2

disp = the two-byte displacement into string/array space of
this array variable

dim1 = two bytes indicating the first dimension value

dim2 = two bytes indicating the second dimension value

All three of these values are set appropriately when the array is
DIMensioned during execution.
When the variable is a string, the remaining six bytes have

the following meaning;:

1 2 3 4 5 6 7 8
| I |

| | |

disp curl maxl

16

s s veses mesemeesssswry Chapter Three

disp = the two-byte displacement into string/array space of
this string variable. This value is set when the string is
DIMensioned during execution.

curl = the two-byte current length of the string. This value
changes as the length of the string changes during
execution.

maxl = the two-byte maximum possible length of this string.

This value is set to the DIM value during execution.

When either a string or an array is DIMensioned during
execution, the low-order bit in the type byte is turned on, so
that the array type is set to $41 and the string type to $81.

The zero page pointer to the Variable Value Table is called
VVTP in the BASIC listing.

Statement Table

The Statement Table, built as each statement is entered during
editing, contains tokenized forms of the statements that were
entered. This table determines what happens during
execution.

The format of a Statement Table entry is shown in Figure
3-2. There can be several tokens per statement and several
statements per line.

Figure 3-2. Format of a Statement Table Entry

|
Inum llen slen snt toks eos slen snt toks eos eol

Inum = the two-byte line number (low-order, high-order)

llen = the one-byte line length (the displacement to the next
line in the table)

slen = the one-byte statement length (the displacement to
the next statement in the line)

snt = the one-byte Statement Name Token

toks = the other tokens that make up the statement (this
is variable in length)

eos = the one-byte end of statement token

eol = the one-byte end of line token

The zero page pointer to the Statement Table is called
STMTARB in the BASIC listing.

17

Chapter Three o s S)

String/Array Table

The String/Array Table (also called String/ Array Space) is
created and modified during execution. Strings and arrays can
be intermixed in the table, but they have different formats.
Each array or string is pointed to by an entry in the Variable
Value Table. The entry in the String/Array Table is created
when the string or array is DIMensioned during execution. The
data in the entry changes during execution as the value of the
string or an element of the array changes.

An entry in the String/Array Table is not initialized to any
particular value when it is created. The elements of arrays and
the characters in a string cannot be counted upon to have any
particular value. They can be zero, but they can also be garbage
— data previously stored at those locations.

Array Entry
For an array, the String/Array Table contains one six-byte entry
for each array element. Each element is a floating point
number, stored in raveled order. For example, the entry in the
String/Array Table for an array that was dimensioned as A(1,2)
contains six elements, in this order:

A(0,0) A(0,1) A(0,2) A(1,0) A(1,1) A(1L2)

String Entry
A string entry in the String/Array Table is created during
execution, when the string is DIMensioned. The size of the
entry is determined by the DIM value. The ““value’” of the
string to BASIC at any time is determined by the data in the
String/Array Table and the current length of the string as set in
the Variable Value Table.

The zero page pointer to the String/Array Table is called
STARP in the BASIC listing.

The Runtime Stack is created during execution. BASIC uses
this LIFO stack to control processing of FOR/NEXT loops and
GOSUBs. When either a FOR or a GOSUB statement is
encountered during execution, an entry is put on the Runtime
Stack. When a NEXT, RETURN, or a POP statement is
encountered, entries are pulled off the stack.

Both the FOR entry and the GOSUB entry have a four-byte
header:

18

E——— s (_hapter Three

|
L
type Inum disp

type = one byte indicating the type of element
GOSUB type =0
FOR type = non-zero
Inum = the two-byte number of the line which contains the
statement (low-order, high-order)
disp = one byte indicating the displacement into the line in
the Statement Table of the token which caused this
stack entry.

The FOR-type byte is actually the token representing the
loop control variable from the FOR statement. (In the statement
FORI=1to 10, Iis the loop control variable.) So the FOR-type
byte will have a value of $80 through $FF — the possible values
of a variable token.

The FOR entry contains 12 additional bytes, formatted like
this:

1 2 3 4 5 6 7 8 9 10 11 12

sval step
sval = the six-byte (floating point) limit value at which to
stop the loop
step = the six-byte (floating point) STEP value to increment

by

The GOSUB entry consists entirely of the four-byte header.
The LIST and READ statements also put a GOSUB type entry
on the Runtime Stack, so that the line containing the LIST or
READ can be found again when the statement has finished
executing.

The zero page pointer to the Runtime Stack is called
RUNSTK in the BASIC listing.

19

Chapter Three e e oo s fod o

Zero Page Table Pointers
The starting addresses of the tables change dynamically during
both program construction and program execution. BASIC
keeps the current start addresses of the tables and other
pointers required to manage memory space in contiguous zero-
page cells. Each pointer is a two-byte address, low byte first.
Since these zero page cell addresses remain constant,
BASIC is always able to find the tables. Here are the zero page
pointers used in memory management, their names in the
BASIC listing, and their addresses:

Multipurpose Buffer $80, $81
Variable Name Table VNTP $82, $83
VNT dummy end VNTD $84, $85
Variable Value Table VVTP $86, $87
Statement Table STMTAB $88, $89
Current Statement Pointer ~ STMCUR $8A, $8B
String/Array Table STARP $8C, $8D
Runtime Stack RUNSTK $8E, $8F
Top of used memory MEMTOP $90, $91

Memory Management Routines

Memory Management routines allocate space to the BASIC
tables as needed. There are two routines: expand, to add space,
and contract, to delete space. Each routine has one entry point
for cases in which the number of bytes to be added or deleted is
less than 256, and another when it is greater than or equal to
256.

The EXPAND and CONTRACT routines often move many
thousands of bytes each time they are called. The 6502
microprocessor is designed to move fewer than 256 bytes of
data very quickly. When larger blocks of data are moved, the
additional 6502 instructions required can make the process very
slow. The EXPAND and CONTRACT routines circumvent this
by using the less-than-256-byte fast-move capabilities in the
movement of thousands of bytes. The end result is a set of very
fast and very complex data movement routines.

All of this complexity does have a drawback. The infamous
Atari BASIC lock-up problem lives in these two routines. If an
EXPAND or CONTRACT requires that an exact multiple of 256
bytes be moved, then the routines move things from the wrong

20

[EEERNeS S T s s wemeereamemen (_hapter Three

place in memory to the wrong place in memory, whereupon
the computer locks up and won’t respond. The only way to
avoid losing hours of work this way is to SAVE to disk or
cassette frequently.

EXPAND ($A881)
Parameters at entry:

register
X = thezero page address containing the pointer to
the location after which space is to be added
Y = thelow-order part of the number of bytes to
expand
A = thehigh-order part of the number of bytes to
expand

The routine creates a hole in the table memory, starting at a
requested location and continuing the requested number of
bytes.

d The routine first checks to see that there is enough free
memory space to satisfy the request.

It adds the requested expand size to each of the zero-page
table pointers between the one pointed to by the X register and
MEMTOP. Then each pointer will point to the correct address
when EXPAND is done.

EXPAND then creates space at the address indicated by the
Xregister. The number of bytes required is contained in the Y
and A registers. (Y contains the least significant byte, while A
contains the most significant.) All data from the requested
address to the address pointed to by MEMTOP is moved
toward high memory by the requested number of bytes. This
creates a hole of the proper size.

The routine then sets Application High Memory (APHM)
to the value in MEMTOP. This tells the OS the highest memory
address that BASIC is currently using.

EXPLOW ($A87F)
Parameters at entry:

register
X = zero page address containing the pointer to the
location after which space is to be added
Y = number of bytes to expand (low-order byte only)

21

Chapter Thiree e s s oo o o

This is an additional entry point for the EXPAND routine. It
is used when the number of bytes to be added to the table is
less than 256.

This routine first loads the 6502 accumulator with zero to
indicate the most significant byte of the expand length. It then
functions exactly like EXPAND.

CONTRACT ($A8FD)
Parameters at entry:

register
X = zero page address containing the pointer to the
starting location where space is to be removed
Y = thelow-order part of the number of bytes to
contract
A = the high-order part of the number of bytes to
contract

This routine removes a requested number of bytes at a
requested location by moving all the data from higher in the
tables downward the exact amount needed to replace the
unwanted bytes.

It subtracts the requested contract size from each of the
zero page table pointers between the one pointed to by the X
register and MEMTOP. Then each pointer will point to the
correct address when CONTRACT is done.

The routine sets application high memory (APHM) to the
value in MEMTOP to indicate to the OS the highest memory
address that BASIC is currently using.

The block of data to be moved downward is defined by
starting at the address pointed to by the zero-page address
pointed to in X, plus the offset number stored in Y and A, and
then continuing to the address specified at MEMTOP. Each
byte of data in that block is moved downward in memory by
the number of bytes specified in Y and A, effectively erasing all
the data between the specified address and that address plus
the requested offset.

CONTLOW ($A8FB)
Parameters at entry:

register
X = the zero page address containing the pointer to
the location at which space is to be removed

22

EEEEess e eeseassemsss Chapter Three

Y = the number of bytes to contract (low-order byte
only)

This routine is used to remove fewer than 256 bytes from
the tables at a requested location by moving all the data from
higher in the tables downward the exact amount needed to
replace the unwanted bytes.

This routine first loads the 6502 accumulator with zero to
serve as the most significant byte of the contract length. It then
functions exactly like CONTRACT.

Miscellaneous Memory Allocations
Besides the tables, which change dynamically, BASIC also uses
buffers and stacks at fixed locations.

The Argument/Operator Stack is allocated at BASIC’s low
memory address and occupies 256 bytes. During pre-compiling
it is used as the output buffer for the tokens. During execution,
it is used while evaluating an expression. This buffer/stack is
referenced by a pointer at location $80. This pointer has several
names in the BASIC listing: LOMEM, ARGOPS, ARGSTK,
and OUTBUFF.

The Syntax Stack is used during the process of syntaxing a
statement. It is referenced directly — that is, not through a
pointer. It is located at $480 and is 256 bytes long.

The Line Buffer is the storage area where the statement is
placed when it is ENTERed. It is the input buffer for the edit
and pre-compile processes. It is 128 bytes long and is
referenced directly as LBUFF. Often the address of LBUFF is
also put into INBUFF so that the buffer can be referenced
through a pointer, though INBUFF can point to other locations
during various phases of BASIC's execution.

23

¢

¢

« €«

¢

(

(

(

(

(

€ €«

(

(

(

¢

« € € C

Chapter Four

Program Editor

The Atari keyboard is the master control panel for Atari BASIC.
Everything BASIC does has its origins at this control panel. The
Program Editor’s job is to service the control panel and respond
to the commands that come fromiit.

The editor gets a line from the user at the keyboard; does
some preliminary processing on the line; passes the line to the
pre-compiler for further processing; inserts, deletes, or
replaces the line in the Statement Table; calls the Program
Executor when necessary; and then waits to receive the user’s
next line input.

Line Processing

The Program Editor, which starts at $A060, begins its process
by resetting the 6502 CPU stack. Resetting the CPU stack is a
drastic operation that can only occur at the beginning of a
logical process. Each time Atari BASIC prepares to get a new
line from the user, it restarts its entire logical process.

Getting a Line

The Program Editor gets a user’s line by calling CIO. The origin
of the line is transparent to the Program Editor. The line may
have been typed in at the keyboard or entered from some
external device like the disk (if the ENTER command was
given). The Program Editor simply calls CIO and asks it to put a
line of not more than 255 bytes into the buffer pointed to by
INBUEFF ($F3). INBUFF points to the 128-byte area defined at
LBUFF ($580).

The OS’s screen editor, which is involved in getting a line
from the keyboard, will not pass BASIC a line that is longer
than 120 bytes. Normally, then, the 128-byte buffer at LBUFF is
big enough to contain the user’s line.

Sometimes, however, if a line was originally entered from
the keyboard with few blanks and many abbreviations, then
LISTed to and re-ENTERed from the disk, an input line may be
longer than 128 bytes. When this happens, data in the $600
page is overlaid. A LINE TOO LONG error will not necessarily

25

Chapler Four resmsmeeswsmse s wssmr i, i s

occur at this point. A LINE TOO LONG error occurs only if the
Pre-compiler exceeds its stack while processing the line or if
the tokenized line OUTBUFF exceeds 256 bytes. These
overflows depend on the complexity of the line rather than on
its actual length.

When CIO has put a line into the line buffer (LBUFF) and
the Program Editor has regained control, it checks to see if the
user has changed his mind and hit the break key. If the user did
indeed hit break, the Program Editor starts over and asks CIO
for another line.

Flags and Indices
In order to help control its processing, the Program Editor uses
flags and indices. These must be given initial values.

CIX and COX. The index CIX ($F2) is used to access the user’s
input line in the line buffer (LBUFF), while COX ($94) is used to
access the tokenized statement in the output buffer
(OUTBUFF). These buffers and their indices are also used by
the pre-compiler. The indices are initialized to zero to indicate
the beginning of the buffers.

DIRFLG. This flag byte ($A6) is used by the editor to remember
whether a line did or did not have a line number, and also to
remember if the pre-compiler found an error in that line.
DIRFLG is initialized to zero to indicate that the line has a line
number and that the pre-compiler has not found an error.

MAXCIX. This byte ($9F) is maintained in case the line contains
a syntax error. It indicates the displacement into LBUFF of the
error. The character at this location will then be displayed in
inverse video. The Program Editor gives this byte the same
initial value as CIX, which is zero.

SVVNTP. The pointer to the current top of the Variable Name
Table (VNTD) is saved as SVVNTP ($AD) so that if there is a
syntax error in this line, any variables that were added can be
removed. If a user entered an erroneous line, such as 100
A=XAND B, the variable XAND would already have been
added to the variable tables before the syntax error was
discovered. The user probably meant to enter 100 A=X AND B,
and, since there can only be 128 variables in BASIC, he
probably does not want the variable XAND using up a place in
the variable tables. The Program Editor uses SVVNTP to find
the entry in the Variable Name Table so it can be removed.

26

s rssresaeeees. Chapter Four

SVVVTE. The process used to indicate which variable entries to
remove from the Variable Value Table in case of error is
different. The number of new variables in the line
(SVVVTE,$B1) is initialized to zero. The Program Pre-compiler
increments the value every time it adds a variable to the
Variable Value Table. If a syntax error is detected, this number
is multiplied by eight (the number of bytes in each entry on the
Variable Value Table) to get the number of bytes to remove,
counting backward from the most recent value entered.

Handling Blanks
In many places in the BASIC language, blanks are not
significant. For example,

100 IFX=6THENGOTO500
has the same meaning as
100 IF X = 6 THEN GOTO 500.

The Program Editor, using the SKIPBLANK routine
($DBA1), skips over unnecessary blanks.

Processing the Line Number

Once the editor has skipped over any leading blanks, it begins
to examine the input line, starting with the line number. The
floating point package is called to determine if a line number is
present, and, if so, to convert the ATASCII line number to a
floating point number. The floating point number is converted
to an integer, saved in TSLNUM for later use, and stored in the
tokenized line in the output buffer (OUTBUFF).

The routine used to store data into OUTBUFF is called
:SETCODE ($A2C8). When :SETCODE stores a byte into
OUTBUFF, it also increments COX, that buffer’s index.

BASIC could convert the ATASCII line number directly to
an integer, but the routine to do this would not be used any
other time. Routines to convert ATASCII to floating point and
floating point to integer already exist in BASIC for other
purposes. Using these existing routines conserves ROM space.

An interesting result of this sequence is that it is valid to
enter a floating point number as a line number. For example,
100.1, 10.9, or 2.05E2 are valid line numbers. They would be
converted to 100, 11, and 205 respectively.

If the input line does not start with a line number, the line
is considered to be a direct statement. DIRFLG is set to $80 so

27

Chapter Four om0 e

that the editor can remember this fact. The line number is set to
32768 ($8000). This is one larger than the largest line number a
user is allowed to enter. BASIC later makes use of this fact in
processing the direct statement.

Line length. The byte after the line number in the tokenized
line in OUTBUFF is reserved so that the line length (actually
the displacement to the next line) can be inserted later. (See
Chapter 2.) The routine :SETCODE is called to reserve the byte
by incrementing (COX) to indicate the next byte.

Saving erroneous lines. In the byte labeled STMSTRT, the
Program Editor saves the index into the line buffer (LBUFF) of
the first non-blank character after the line number. This index
is used only if there is a syntax error, so that all the characters
in the erroneous line can be moved into the tokenized line
buffer and from there into the Statement Table.

There are advantages to saving an erroneous line in the
Statement Table, because you can LIST the error line later. The
advantage is greatest, not when entering a program at the
keyboard, but when entering a program originally written in a
different BASIC on another machine (via a modem, perhaps).
Then, when a line that is not correct in Atari BASIC is entered,
the line is flagged and stored — not discarded. The user can
later list the program, find the error lines, and re-enter them
with the correct syntax for Atari BASIC.

Deleting lines. If the input line consists solely of a line number,
the Program Editor deletes the line in the Statement Table
which has that line number. The deletion is done by pointing to
the line in the Statement Table, getting its length, and calling
CONTRACT. (See Chapter 3.)

Statement Processing

The user’s input line may consist of one or more statements.
The Program Editor repeats a specific set of functions for each
statement in the line.

Initializing

The current index (COX) into the output buffer (OUTBUFF) is

saved in a byte called STMLBD. A byte is reserved in
OUTBUFF by the routine :SETCODE. Later, the value in

28

e e rrmeeeaen Chapter Four

STMLBD will be used to access this byte, and the statement
length (the displacement to the next statement) will be stored
here.

Recognizing the Statement Name

After the editor calls SKBLANK to skip blanks, it processes the
statement name, now pointed to by the input index (CIX). The
editor calls the routine SEARCH ($A462) to look for this
statement name in the Statement Name Table. SEARCH saves
the table entry number of this statement name into location
STENUM.

The entry number is also the Statement Name Token value,
and it is stored into the tokenized output buffer (OUTBUFF) as
such by :SETCODE. The SEARCH routine also saves the
address of the entry in SRCADR for use by the pre-compiler.

If the first word in the statement was not found in the
Statement Name Table, the editor assumes that the statement
is an implied LET, and the appropriate token is stored. It is left
to the pre-compiler to determine if the statement has the
correct syntax for LET.

The editor now gives control to the pre-compiler, which
places the appropriate tokens in OUTBUFF, increments the
indices CIX and COX to show current locations, and indicates
whether a syntax error was detected by setting the 6502 carry
flag on if there was an error and clearing the carry flag if there
was not. (See Chapter 5.)

If a Syntax Error Is Detected
If the 6502 carry flag is set when the editor regains control, the
editor does error processing.

In MAXCIX, the pre-compiler stored the displacement
into LBUFF at which it detected the error. The Program Editor
changes the character at this location to inverse video.

The character in inverse video may not be the point of error
from your point of view, but it is where the pre-compiler
detected an error. For example, assume you entered X=YAND
Z. You probably meant to enter X=Y AND Z, and therefore
would consider the error to be between Y and AND. However,
since YAND is a valid variable name, X=YAND is a valid
BASIC statement.

The pre-compiler doesn’t know there is an error until it
encounters B. The value of highlighting the error with inverse

29

Chapter Four ommmssossoevan s 5mm | S

video is that it gives the user an approximation of where the
error is. This can be a big advantage, especially if the input line
contained multiple statements or complex expressions.

The next thing the editor does when a syntax error has
been detected is set a value in DIRFLG to indicate this fact for
future reference. Since the DIRFLG byte also indicates whether
this is a direct statement, the error indicator of $40 is ORed with
the value already in DIRFLG.

The editor takes the value that it saved in STMSTRT and
puts it into CIX so that CIX now points to the start of the first
statement in the input line in LBUFF. STMLBD is set to indicate
the location of the first statement length byte in OUTBUFEF. (A
length will be stored into OUTBUFF at this displacement at a
later time.)

The editor sets the index into OUTBUFF (COX) to indicate
the Statement Name Token of the first statement in OUTBUFF,
and stores a token at that location to indicate that this line has a
syntax error. The entire line (after the line number) is moved
into OUTBUFF. At this point COX indicates the end of the line
in OUTBUFF. (Later, the contents of OUTBUFF will be moved
to the Statement Table.)

This is the end of the special processing for an erroneous
line. The process that follows is done for both correct and
erroneous lines.

Final Statement Processing

During initial line processing, the Program Editor saved in
STMLBD a value that represents the location in OUTBUFF at
which the statement length (displacement to the next
statement) should be stored. The Program Editor now retrieves
that value from STMLBD. Using this value as an index, the
editor stores the value from COX in OUTBUFF as the
displacement to the next statement.

The Program Editor checks the next character in LBUFF. If
this character is not a carriage return (indicating end of the
line), then the statement processing is repeated. When the
carriage return is found, COX will be the displacement to the
next line. The Program Editor stores COX as the line length at a
displacement of two into OUTBUFF.

30

s ELs e esessssn (hapter Four

Statement Table Processing

The final tokenized form of the line exists in OUTBUFF at this
point. The Program Editor’s next task is to insert or replace the
line in the Statement Table.

The Program Editor first needs to create the correct size
hole in the Statement Table. The editor calls the GETSTMT
routine ($A9A2) to find the address where this line should go
in the Statement Table. If a line with the same line number
already exists, the routine returns with the address in
STMCUR and with the 6502 carry flag off. Otherwise, the
routine puts the address where the new line should be inserted
in the Statement Table into STMCUR and turns on the 6502
carry flag. (See Chapter 6.)

If the line does not exist in the Statement Table, the editor
loads zero into the 650? accumulator. If the line does exist, the
editor calls the GETLL routine ($A9DD) to put the line length
into the accumulator. The editor then compares the length of
the line already in the Statement Table (old line) with the
length of the line in OUTBUFF (new line).

If more room is needed in the Statement Table, the editor
calls the EXPLOW ($A87F; see Chapter 3). If less space is
needed for the new line, it calls a routine to point to the next
line (GNXTL, at location $A9D0; see Chapter 6), and then calls
the CONTLOW ($A8FB; see Chapter 3).

Now that we have the right size hole, the tokenized line is
moved from OUTBUFF into the Statement Table at the location
indicated by STMCUR.

Line Wrap-up
After the line has been added to the Statement Table, the editor

checks DIRFLG for the syntax error indicator. If the second
most significant bit ($40) is on, then there is an error.

Error Wrap-up
If there is an error, the editor removes any variables that were
added by this line by getting the number of bytes that were
added to the Variable Name Table and the Variable Value Table
from SVVNTP and SVVVTE. It then calls CONTRACT ($A8FD)
to remove the bytes from each table.

Next, the editor lists the line. The Statement Name Token,
which was set to indicate an error, causes the word ““"ERROR"’

31

Chapter Four e i s o

to be printed. An inverse video character indicates where the
error was detected. The editor now waits for you to enter
another line.

Handling Correct Lines

If the line was syntactically correct, the editor again examines
DIRFLG. In earlier processing, the most significant bit ($80) of
this byte was set on if the line was a direct statement. If it is not
a direct statement, then the editor is finished with the line, and
it waits for another input line.

If the line is a direct statement, earlier processing already
assigned it a line number of 32768 ($8000), one larger than the
largest line number a user can enter. Since lines are arranged in
the Statement Table in ascending numerical order, this line will
have been inserted at the end of the table. The current
statement pointer (STMCUR—$8A, $8B) points to this line.

The Program Editor transfers control to a Program Executor
routine, Execution Control (EXECNL at location $A95F), which
will handle the execution of the direct statement. (See
Chapter 6.)

32

Chapter Five

The Pre-compiler

The symbols and symbol-combining rules of Atari BASIC are
coded into Syntax Tables, which direct the Program Pre-
compiler in examining source code and producing tokens. The
information in the Syntax Tables is a transcription of a meta-
language definition of Atari BASIC.

The Atari BASIC Meta-language

A meta-language is a language which describes or defines
another language. Since a meta-language is itself a language, it
also has symbols and symbol-combining rules — which define
with precision the symbols and symbol-combining rules of the
subject language.

Atari BASIC is precisely defined with a specially developed
meta-language called the Atari BASIC Meta-language, or
ABML. (ABML was derived from a commonly used compiler-
technology meta-language called BNF.) The symbols and
symbol-combining rules of ABML were intentionally kept very
simple.

Making Up a Language

To show you how ABML works, we’ll create an extremely
simple language called SAP, for Simple Arithmetic Process.
SAP symbols consist of variables, constants, and operators.

e Variables: The letters A, B, and C only.

* Constants: The numbers 1,2,3,4,5,6,7,8, and 9 only.

® Operators: The characters +, -, *, /, and ! only. Of
course, you already know the functions of all
the operators except ““!””. The character ! is a
pseudo-operator of the SAP language used
to denote the end of the expression, like the
period that ends this sentence.

The grammar of the SAP language is precisely defined by
the ABML definition in Figure 5-1.

33

Chapter Five nmmsos s c v e oy DS

Figure 5-1. The SAP Language Expressed in ABML

SAP := <expression>!
<expression> := <value> <operation> |
<operation> := <operator> <expression>
<value> := <constant> | <variable>
<constant> := 1|2|3]|4|5]|6]|7|8]9
<variable> := A|B|C
<operator> := + |- |* |/

The ABML symbols used to define the SAP language in Figure
5-1 are:

is defined as

or

< > label

34

terminal
symbols

Whatever is on the left of : = is defined as
consisting of whatever is on the right of : =,
and in that order.

The symbol | allows choices for what
something is defined as. For instance, in the
sixth line <variable > can be A orB or C.

If | does not appear between two symbols,
then there is no choice. For example, in the
second line <expression > must have both
<value> and <operation>, in that order,
to be valid.

Whatever comes between < and > is an
ABML label. All labels, as non-terminal
symbols, must be defined at some point,
though the definitions can be circular —
notice that <operation> is part of the
definition of <expression> in the second
line, while in the third line <expression>
is part of the definition of <operation>.
Symbols used in definitions, which are not
enclosed by < and > and are also not one
of the ABML symbols, are terminal symbols
in the language being defined by ABML. In
SAP, some terminal symbols are A, {, B, *,
and 1. They cannot be defined as consisting
of other symbols — they are themselves the
symbols that the SAP language manipu-

e e e s sensessmasss (hapier Five

lates, and must appear exactly as they are
shown to be valid in SAP. In effect, they are
the vocabulary of the SAP language.

Statement Generation

The ABML description of SAP can be used to generate
grammatically correct statements in the SAP language. To do
this, we merely start with the first line of the definition and
replace the non-terminal symbols with the definitions of those
symbols. The replacement continues until only terminal
symbols remain. These remaining terminal symbols constitute
a grammatically correct SAP statement.

Since the or statement requires that one and only one of the
choices be used, we will have to arbitrarily replace the non-
terminal with the one valid choice.

Figure 5-2 illustrates the ABML statement generation
process.

Figure 5-2. The Generation of One Possible SAP
Statement

(1) SAP := <expression>!
(2) SAP := <value> <operation>!
(3) SAP := <variable> <operation>!
(4) SAP := B<operation>!
(5) SAP := B<operator> <expression>!
(6) SAP := B*<expression>!
(7) SAP := B*<value> <operation>!
(8) SAP := B*<constant> <operation>!
(9) SAP := B*4<operation>!
(10) SAP := B*4<operator> <expression>!
(11) SAP := B*4+ <expression>!
(12) SAP := B*4+ <value> <operation>!
(13) SAP := B*4+ <variable > <operation>!
(14) SAP := B*4+C<operation>!
(15) SAP := B*4+Cl!

In (2), <value> <operation> replaces <expression>
because the ABML definition of SAP (Figure 5-1) defines
<expression> as <value > <operation>.

In (3), the non-terminal <value > is replaced with

35

Chapter Five masmsememnommsmme st o e @ i

<variable > . The definition of <value> gives two choices for
the substitution of <value>. We happened to choose
<variable>.

In (4), we reach a terminal symbol, and the process of
defining <value> ends. We happened to choose B to replace
<variable >.

In (5), we go back and start defining <operation>. There
are two choices for the replacement of <operation>, either
<operator > <expression> or nothing at all (since there is
nothing to the right of | in the second line of Figure 5-1). If
nothing had been chosen, then (5) would have been: SAP : =B!
The statement B! has no further non-terminals; the process
would have been finished, and a valid statement would have
been produced. Instead we happened to choose
<operator > <expression>.

The SAP definition for <expression> is
<value> <operation>. If we replace <operation > with its
definition we get:

<expression> := <value> <operator> < expression >

The definition of <expression> includes <expression>
as part of its definition. If the <operator > < expression >
choice were always made for < operation>, then the process
of replacement would never stop. A SAP statement can be
infinitely long by definition. The only thing which prevents us
from always having an infinitely long SAP statement is that
there is a second choice for the replacement of <operation> :
nothing.

The replacements in (5) and (10) reflect the repetitive
choices of defining < expression> in terms of itself. The choice
in (15) reflects the nothing choice and thus finishes the
replacement process.

Computerized Statement Generation

If we slightly modify our procedure for generating statements,
we will have a process that could be easily programmed into a
computer. Instead of arbitrarily replacing the definition of non-
terminals, we can think of the non-terminal as a GOSUB.
When we see <X> :=<Y><Z>, we can think of <Y> as
being a subroutine-type procedure:

(a) Go to the line that has <Y > on the left side.
(b) Process the definition (right side) of <Y >.

36

PR remesre s s, Chapter Five

(c) If while processing the definition of <Y >, other non-
terminals are found, GOSUB to