

From COMPUTE! Books and
Optimized Systems Software, Inc.

The AtarrBASIC

SOURCE
800

Compiled by Bill Wilkinson
Optimized Systems Software, Inc.

With the assistance of
Kath leen O'Brien and Paul Laughton

ATARI is a registered trademark of Atari. Inc.

COMPUTE! Books is a division of COMPUTE! Publications, Inc., a subsidiary of
American Broadcasting Companies, Inc.

Editorial mailing address is :
PO Box 5406
Greensboro, NC 27403 USA
(919) 275-9809

Optimized Systems Services, Inc., is loca ted at:
10379 Lansdale Avenue
Cupertino, CA 95014 USA
(408) 446-3099

All reasonable care has been taken in the wri ting, tes ting, and correcting of the text and
of the software within this book. There is, however, no expressed or implied warranty
of any kind from the authors or publishers with respect to the text or software herein
contained . In the event of any damages resulting from the use of the text or the soft­
ware in this book, or from undocumented or documented manufacturer's changes in
Atari BASIC made before or after the publication of this book, the authors or publishers
shall be in no sense liable.

Copyright © 1983 text, COMPUTEr Publica tions, Inc.
Copyright © 1978, 1979, 1983 program lis tings, Optimized Systems Software, Inc. All
righ ts reserved .

Reproduction or translation of any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act wi thout the permission of the copyright
owner is unlawful.

Printed in the United States of America

ISBN 0-942386-15-9

10 9 8 7 6 5 4 3 2 1

ii

(

Table of Contents
Publisher's Foreword. .. v
Acknowledgments Vll

Preface. IX

Part One: Inside Atari BASIC

1 Atari BASIC: A High-level Language Translator. 1
2 Internal Design Overview .. 7
3 Memory Usage. .. 13
4 Program Editor 25
5 The Pre-compiler .. 33
6 Execution Overview .. 49
7 Execute Expression. .. 55
8 Execution Boundary Conditions. 71
9 Program Flow Control Statements. 75

10 Tokenized Program Save and Load 81
11 The LIST and ENTER Statements 85
12 Atari Hardware Control Statements 91
13 External Data 110 Statements 95
14 Internal 110 Statements 103
15 Miscellaneous Statements 105
16 Initialization 109

Part Two: Directly Accessing Atari BASIC

Introduction to Part Two 113
1 Hexadecimal Numbers 115
2 PEEKing and POKEing 119
3 Listing Variables in Use 123
4 Variable Values 125
5 Examining the Statement Table 129
6 Viewing the Runtime Stack 133
7 Fixed Tokens 135
8 What Takes Precedence? 137
9 Using What We Know 139

Part Three: Atari BASIC Source Code

Source Code Listing 143

iii

Appendices

A Macros in Source Code 273
B The Bugs in Atari BASIC 275
C Labels and Hexadecimal Addresses 281

Index 285

iv

Publisher's
Foreword

It's easy to take a computer language like Atari BASIC for
granted. But every PEEK and POKE, every FOR-NEXT loop
and IF-THEN branch, is really a miniprogram in itself. Taken
together, they become a powerful tool kit. And, as Atari
owners know, there are few home-computer languages as
powerful and versatile - from editing to execution - as Atari
BASIC.

With this book, the Atari BASIC tool kit is unlocked. The
creators of Atari BASIC and COMPUTE! Publications now offer
you, for the first time, a detailed, inside look at exactly how a
major computer manufacturer's primary language works.

For intermediate programmers, the thorough and careful
explanations in Parts 1 and 2 will help you understand exactly

• what is happening in your Atari computer as you edit and run
your programs .

For advanced programmers, Part 3 provides a complete
listing of the source code for Atari BASIC, so that your machine
language programs can make use of the powerful routines built
into that 8K cartridge.

And for programmers at all levels, by the time you're
through studying this book you'll feel that you've seen a whole
computer language at work.

Special thanks are due to Bill Wilkinson, the creative force
behind Atari BASIC and many other excellent programs for
Atari and other computers, for his willingness to share
copyrighted materials with computer users . Readers of
COMPUTE! Magazine already know him as a regular
columnist, and in this book he continues his tradition of clear
explanations and understandable writing.

v

Acknowledgments

As far as we know, this is the first time that the actual source
listing of a major manufacturer ' s primary computer language
has been made available to the general public.

As with our previous COMPUTEt Publications book Inside
Atari DOS, this book contains much more than simply a source
listing. All major routines are examined and explained. We
hope that when you finish reading this book you will have a
better understanding of and appreciation for the design and
work which go into as sophisticated a program as Atari BASIC.

This book is the result of the efforts of many people. The
initial credit must go to Richard Mansfield of COMPUTEt
Publications for serving as our goad and go-between . Without
his (and COMPUTEt's) insistence, this book might never have
been written . Without his patience and guidance, the contents
of this book might not have been nearly as interesting.

To Kathleen O'Brien and Paul Laughton must go the lion's
share of the authoring credits. Between them, they have done
what I believe is a very creditable job of explaining a very
difficult subject, the internal workings of Atari BASIC. In fact,
Part I of this book is entirely their work. Of course, their ability
to explain the listing may not be so surprising. After all,
between them they wrote almost all of the original code for
Atari BASIC. So, even though Paul and Kathleen are not
associated with Optimized Systems Software, we were pleased
to have their invaluable help in writing this book and hope that
they receive some of the credit which has long been due them.

Mike Peters was responsible for taking our old, almost
unreadable copies of the source code diskettes for Atari BASIC
and converting them to another machine, using another
assembler, and formatting the whole thing into an acceptable
form for this book. This isn't surprising either, since Mike
keypunched the original (yes, on cards).

And I am Bill Wilkinson, the one responsible for the rest of
this book. In particular, I hope you will find that a good
amount of the material in Part II will aid you in understanding
how to make the best use of this book.

vii

The listing of Atari BASIC is reproduced here courtesy of
055, Inc., which now owns its copyright and most other
associated rights .

viii

Preface
In 1978, Atari, Inc., purchased a copy of Microsoft BASIC for
the 6502 microprocessor (similar to the version from which
Applesoft is derived) . After laboring for quite some time, the
people of Atari still couldn't make it do everything they wanted
it to in the ROM space they had available. And there was a
deadline fast approaching: the January 1979 Las Vegas
Consumer Electronics Show (CES).

At that time, Kathleen, Paul, Mike and I all worked for
Shepardson Microsystems, Inc. (SMI) . Though little known
by the public, SMI was reasonably successful in producing
some very popular microcomputer software, including the
original Apple DOS, Cromemco's 16K and 32K BASICs, and
more. So it wasn't too surprising that Atari had heard of us.

And they asked us : Did we want to try to fix Microsoft
BASIC for them? Well, not really . Did we think we could write
an all-new BASIC in a reasonable length of time? Yes . And
would we bet a thousand dollars a week on our ability to do so?

While Bob Shepardson negotiated with Atari and I wrote
the preliminary specifications for the language (yes, I'm the
culprit), time was passing all too rapidly. Finally, on 6 October
1978, Atari's Engineering Department gave us the okay to
proceed.

The schedule? Produce both a BASIC and a Disk File
Manager (which became Atari DOS) in only six months. And,
to make sure the pressure was intense, they gave us a $1000-a­
week incentive (if we were early) or penalty (if we were late).

But Paul Laughton and Kathleen O'Brien plunged into it.
And, although the two of them did by far the bulk of the work,
there was a little help from Paul Krasno (who implemented the
transcendental routines), Mike Peters (who did a lot of
keypunching and operating), and me (who designed the
floating point scheme and stood around in the way a lot). Even
Bob Shepardson got into the act, modifying his venerable
IMP-16 assembler to accept the special syntax table mnemonics
that Paul invented (and which we paraphrase in the current
listing via macros) .

ix

Atari delivered the final signed copy of the purchase order
on 28 December 1978, two and a half months into the project.
But it didn't really matter: Paul and Kathy were on vacation,
having delivered the working product more than a week
before!

So Atari took Atari BASIC to CES, and Shepardson
Microsystems faded out of the picture . As for the bonus for
early delivery - there was a limit on how much the incentive
could be. Darn.

The only really unfortunate part of all this was that Atari
got the BASIC so early that they moved up their ROM
production schedule and committed to a final product before
we had a chance to do a second round of bug fixing.

And now? Mike and I are running Optimized Systems
Software, Inc. And even though Paul and Kathleen went their
own way, we have kept in touch enough to make this book
possible.

x

Chapter One

Atari BASIC:
A High-Level Language

Translator

The programming language which has become the de facto
standard for the Atari Home Computer is the Atari 8K BASIC
Cartridge, known simply as Atari BASIC. It was designed to
serve the programming needs of both the computer novice and
the experienced programmer who is interested in developing
sophisticated applications programs. In order to meet such a
wide range of programming needs, Atari BASIC was designed
with some unique features.

In this chapter we will introduce the concepts of high level
language translators and examine the design features of Atari
BASIC that allow it to satisfy such a wide variety of needs.

Language Translators
Atari BASIC is what is known as a high level language translator.

A language, as we ordinarily think of it, is a system for
communication. Most languages are constructed around a set
of symbols and a set of rules for combining those symbols .

The English language is a good example. The symbols are
the words you see on this page. The rules that dictate how to
combine these words are the patterns of English grammar.
Without these patterns, communication would be very
difficult, if not impossible : Out sentence this believe, of make
don't this trying if sense you to! If we don't use the proper
symbols, the results are also disastrous: @twu2 yeggopt
gjsiem, keorw?

In order to use a computer, we must somehow
communicate with it. The only language that our machine
really understands is that strange but logical sequence of ones
and zeros known as machine language. In the case of the Atari,
this is known as 6502 machine language.

When the 6502 central processing unit (CPU) "sees" the
sequence 01001000 in just the right place according to its rules
of syntax, it knows that it should push the current contents of

1

Chapter One

the accumulator onto the CPU stack. (If you don't know what
an "accumulator" or a "CPU stack" is, don't worry about it.
For the discussion which follows, it is sufficient that you be
aware of their existence.)

Language translators are created to make it simpler for
humans to communicate with computers. There are very few
6502 programmers, even among the most expert of them, who
would recognize 01001000 as the push-the-accumulator
instruction. There are more 6502 programmers, but still not
very many, who would recognize the hexadecimal form of
01001000, $48, as the push-the-accumulator instruction.
However, most, if not all, 6502 programmers will recognize the
symbol PHA as the instruction which will cause the 6502 to
push the accumulator.

PHA, $48, and even 01001000, to some extent, are
translations from the machine's language into a language that
humans can understand more easily. We would like to be able
to communicate to the computer in symbols like PHA; but if
the machine is to understand us, we need a language translator
to translate these symbols into machine language.

The Debug Mode of Atari's Editor/ Assembler cartridge, for
example, can be used to translate the symbols $48 and PHA to
the ones and zeros that the machine understands. The
debugger can also translate the machine's ones and zeros to
$48 and PHA. The assembler part of the Editor/ Assembler
cartridge can be used to translate entire groups of symbols like
PHA to machine code .

Assemblers
An assembler - for example, the one contained in the
Assembler/Editor cartridge - is a program which is used to
translate symbols that a human can easily understand into the
ones and zeros that the machine can understand. In order for
the assembler to know what we want it to do, we must
communicate with it by using a set of symbols arranged
according to a set of rules. The assembler is a translator, and
the language it understands is 6502 assembly language.

The purpose of 6502 assembly language is to aid program
authors in writing machine language code . The designers of
the 6502 assembly language created a set of symbols and rules
that matches 6502 machine language as closely as possible.

This means that the assembler retains some of the

2

Chapter One

disadvantages of machine language. Por instance, the process
of adding two large numbers takes dozens of instructions in
6502 machine language. If human programmers had to code
those dozens of instructions in the ones and zeros of machine
language, there would be very few human programmers.

But the process of adding two large numbers in 6502
assembly language also takes dozens of instructions. The
assembly language instructions are easier for a programmer to
read and remember, but they still have a one-to-one cor­
respondence with the dozens of machine language
instructions. The programming is easier, but the process
remains the same.

High Level Languages
High level languages, like Atari BASIC, Atari PILOT, and Atari
Pascal, are simpler for people to use because they more closely
approximate human speech and thought patterns . However,
the computer still understands only machine language. So the
high level languages, while seeming simple to their users, are
really much more complex in their internal operations than
assembly language.

Each high level language is designed to meet the specific
need of some group of people. Atari Pascal is designed to
implement the concept of structured programming. Atari
PILOT is designed as a teaching tool. Atari BASIC is designed
to serve both the needs of the novice who is just learning to
program a computer and the needs of the expert programmer
who is writing a sophisticated application program, but wants
the program to be accessible to a large number of users.

Each of these languages uses a different set of symbols and
symbol-combining rules . But all these language translators
were themselves written in assembly language.

Language Translation Methods
There are two different methods of performing language
translation - compilation and interpretation. Languages which
translate via interpretation are called interpreters. Languages
which translate via compilation are called compilers.

Interpreters examine the program source text and simulate
the operations desired. Compilers translate the program source
text into machine language for direct machine execution.

3

Chapter One

The compilation method tends to produce faster, more
efficient programs than does the interpretation method.
However, the interpretation method can make programming
easier.

Problems with the Compiler Method
The compiler user first creates a program source file on a disk,
using a text editing program. Then the compiler carefully
examines the source program text and generates the machine
language as required . Finally, the machine language code is
loaded and executed. While this three-step process sounds
fairly simple, it has several serious" gotchas."

Language translators are very particular about their
symbols and symbol-combining rules. If a symbol is
misspelled, if the wrong symbol is used, or if the symbol is not
in exactly the right place, the language translator will reject it .
Since a compiler examines the entire program in one gulp, one
misplaced symbol can prevent the compiler from
understanding any of the rest of the program - even though
the rest of the program does not violate any rules! The result is
that the user often has to make several trips between the text
editor and the compiler before the compiler successfully
generates a machine language program.

But this does not guarantee that the program will work. If
the programmer is very good or very lucky, the program will
execute perfectly the very first time. Usually, however, the user
must debug the program.

This nearly always involves changing the source program,
usually many times. Each change in the source program sends
the user back to step one: after the text editor changes the
program, the compiler still has to agree that the changes are
valid, and then the machine code version must be tested again .
This process can be repeated dozens of times if the program is
very complex.

Faster Programming or Faster Programs?
The interpretation method of language translation avoids many
of these problems. Instead of translating the source code into
machine language during a separate compiling step, the
interpreter does all the translation while the program is running.
This means that whenever you want to test the program you're
writing, you merely have to tell the interpreter to run it. If
things don't work right, stop the program, make a few
changes, and run the program again at once.

4

Chapter One

You must pay a few penalties for the convenience of using
the interpreter's interactive process, but you can generally
develop a complex program much more quickly than the
compiler user can.

However, an interpreter is similar to a compiler in that the
source code fed to the interpreter must conform to the rules of
the language. The difference between a compiler and an
interpreter is that a compiler has to verify the symbols and
symbol-combining rules only once - when the program is
compiled. No evaluation goes on when the program is
running. The interpreter, however, must verify the symbols
and symbol-combining rules every time it attempts to run the
program. If two identical programs are written, one for a
compiler and one for an interpreter, the compiled program will
generally execute at least ten to twenty times faster than the
interpreted program.

Pre-compiling Interpreter
Atari BASIC has been incorrectly called an interpreter. It does
have many of the advantages and features of an interpretive
language translator, but it also has some of the useful features
of a compiler. A more accurate term for Atari's BASIC
Language Translator is pre-compiling interpreter.

Atari BASIC, like an interpreter, has a text editor built into
it. When the user enters a source line, though, the line is not
stored in text form, but is translated into an intermediate code,
a set of symbols called tokens. The program is stored by the
editor in token form as each program line is entered. Syntax
and symbol errors are weeded out at that time.

Then, when you run the program, these tokens are
examined and their functions simulated; but because much of
the evaluation has already been done, the execution of an Atari
BASIC program is faster than that of a pure interpreter. Yet
Atari BASIC's program-building process is much simpler than
that of a compiler.

Atari BASIC has advantages over compilers and
interpreters alike . With Atari BASIC, every time you enter a
line it is verified for language correctness. You don't have to
wait until compilation; you don't even have to wait until a test
run. When you type RUN you already know there are no
syntax errors in your program.

5

-
-

-

Chapter Two

Internal Design
Overview

Atari BASIC is divided into two major functional areas: the
Program Constructor and the Program Executor. The Program
Constructor is used when you enter and edit a BASIC program.
The source line pre-compiler, also part of the Program
Constructor, translates your BASIC program source text lines
into tokenized lines . The Program Executor is used to execute
the tokenized program - when you type RUN, the Program
Executor takes over.

Both the Program Constructor and the Program Executor
are designed to use data tables. Some of these tables are
already contained in BASIC's ROM (read-only memory) .
Others are constructed by BASIC in the user RAM (random­
access memory). Understanding these various tables is an
important key to understanding the design of Atari BASIC.

Tokens
In Atari BASIC, tokens are the intermediate code into which
the source text is translated. They represent source-language
symbols that come in various lengths - some as long as 100
characters (a long variable name) and others as short as one
character (" +" or "_"). Every token, however, is exactly one
eight-bit byte in length.

Since most BASIC Language Symbols are more than one
character long, the representation of a multi-character BASIC
Language Symbol with a single-byte token can mean a
considerable saving of program storage space .

A single-byte token symbol is also easier for the Program
Executor to recognize than a multi-character symbol, since it
can be evaluated by machine language routines much more
quickly . The SEARCH routine - 76 bytes long -located at
$A462 is a good example of how much assembly language it
takes to recognize a multi-character symbol. On the other
hand, the two instructions located at $AB42 are enough to

7

Chapter Two

determine if a one-byte token is a variable. Because routines to
recognize Atari BASIC's one-byte tokens take so much less
machine language, they execute relatively quickly .

The 256 possible tokens are divided into logical numerical
groups that also make them simpler to deal with in assembly
language . For example, any token whose value is 128 ($80) or
greater represents a variable name . The logical grouping of the
token values also means faster execution speeds, since, in
effect, the computer only has to check bit 7 to recognize a
variable.

The numerical grouping of the tokens is shown below:

Token Value (Hex) Description
00-00 Unused
OE

OF

10-3C

3D-54

55-7F

80-FF

Floating Point Numeric Constant.
The next six bytes will hold its value.

String Constant.
The next byte is the string length.
A string of that length follows .

Operators.
See table starting at $A7E3 for specific
operators and values.

Functions.
See table starting at $A820 for specific
functions and values.

Unused.

Variables.

In addition to the tokens listed above, there is another set
of single-byte tokens, the Statement Name Tokens. Every
statement in BASIC starts with a unique statement name, such
as LET, PRINT, and POKE. (An assignment statement such as
"A = B + c," without the word LET, is considered to begin with
an implied LET.) Each of these unique statement names is
represented by a unique Statement Name Token.

The Program Executor does not confuse Statement Name
Tokens with the other tokens because the Statement Name
Tokens are always located in the same place in every statement
- at the beginning. The Statement Name Token value is
derived from its entry number, starting with zero, in the
Statement Name Table at $A4AF.

8

Chapter Two

Tables
A table is a systematic arrangement of data or information.
Tables in Atari BASIC fall into two distinct types: tables that are
part of the Atari BASIC ROM and tables that Atari BASIC
builds in the user RAM area.

ROM Tables
The following is a brief description of the various tables in the
Atari BASIC ROM. The detailed use of these tables will be
explained in subsequent chapters .
Statement Name Table ($A4AF). The first two bytes in each
entry point to the information in the Statement Syntax Table
for this statement . The rest of the entry is the name of the
statement name in ATASCII . Since name lengths vary, the last
character of the statement name has the most significant bit
turned on to indicate the end of the entry. The value of the
Statement Name Token is derived from the relative (from zero)
entry number of the statement name in this table.
Statement Execution Table ($AAOO). Each entry in this table
is the two-byte address of the 6502 machine language code
which will simulate the execution of the statement. This table is
organized with the statements in the same order as the
statements in the Statement Name Table. Therefore, the
Statement Name Token can be used as an index to this table.
Operator Name Table ($A7E3). Each entry comprises the
ATASCII text of an Operator Symbol. The last character of each
entry has the most significant bit turned on to indicate the end
of the entry. The relative (from zero) entry number, plus 16
($10), is the value of the token for that entry. Each of the entries
is also given a label whose value is the value of the token for
that symbol. For example, the If;" symbol at $A7E8 is the fifth
(from zero) entry in the table. The label for the";" token is
esc, and the value of ese is $15, or 21 decimal (1'-16+5).
Operator Execution Table ($AA70). Each two-byte entry
points to the address, minus one, of the routine which
simulates the execution of an operator. The token value, minus
16, is used to access the entries in this table during execution
time. The entries in this table are in the same order as in the
Operator Name Table.
Operator Precedence Table ($AC3F). Each entry
represents the relative execution precedence of an individual
operator. The table entries are accessed by the operator tokens,

9

Chapter Two

minus 16. Entries correspond with the entries in the Operator
Name Table . (See Chapter 7.)
Statement Syntax Table ($A60D). Entries in this table are
used in the process of translating the source program to tokens.
The address pointer in the first part of each entry in the
Statement Name Table is used to access the specific syntax
information for that statement in this table. (See Chapter 5.)

RAM Tables
The tables that BASIC builds in the user RAM area will be
explained in detail in Chapter 3. The following is a brief
description of these tables:
Variable Name Table. Each entry contains the source
ATASCII text for the corresponding user variable symbol in the
program. The relative (from zero) entry number of each entry
in this table, plus 128, becomes the value of the token
representing the variable.
Variable Value Table. Each entry either contains or points
to the current value of a variable. The entries are accessed by
the token value, minus 128.
Statement Table. Each entry is one tokenized BASIC
program line . The tokenized lines are kept in this table in
ascending numerical order by line number .
Array/String Table. This table contains the current values
for all strings and numerical arrays. The location of the specific
values for each string and/or array variable is accessed from
information in the Variable Value Table .
Runtime Stack. This is the LIFO Runtime Stack, used to
control the execution of COSUB/RETURN and similar
statements.

Pre-compiler
Atari BASIC translates the BASIC source lines from text to
tokens as soon as they are entered . To do this, Atari BASIC
must recognize the symbols of the BASIC Language . BASIC
also requires that its symbols be combined in certain specific
patterns. If the symbols don't follow the required patterns,
then Atari BASIC cannot translate the line . The process of
checking a source line for the required symbol patterns is called
syntax checking.

BASIC performs syntax checking as part of the tokenizing
process. When the Program Editor receives a completed line of

10

Chapter Two

input, the editor hands the line to the syntax routine, which
examines the first word of the line for a statement name. If a
valid statement name is not found, then the line is assumed to
be an implied LET statement.

The grammatical rules for each statement are contained in
the Statement Syntax Table. A special section of code examines
the symbols in the source line, under the direction of the
grammatical rules set forth in the Statement Syntax Table . If
the source line does not conform to the rules, then it is reported
back as an error. Otherwise, the line is translated to tokens.
The result of this process is returned to the Program Editor for
further processing.

Program Editor
When Atari BASIC is not executing statements, it is in the edit
mode. When the user enters a source line and hits return, the
editor accepts the line into a line buffer, where it is examined
by the pre-compiler. The pre-compiler returns either tokens or
an error text line .

If the line started with a line number, the editor inserts the
tokenized line into the Statement Table . If the Statement Table
already contains a line with the same line number, then the old
line is removed from the Statement Table. The new line is then
inserted just after the statement with the next lower line
number and just before the statement with the next higher line
number.

If the line has no line number, the editor inserts the line at
the end of the Statement Table. It then passes control to the
Program Executor, which will carry out the statement(s) in the
line at the end of the Statement Table.

Program Executor
The Program Executor has a pointer to the statement that it is to
execute . When control is passed to the executor, the pointer
points to the direct (command) line at the end of the statement
table. If that statement causes some other line to be executed
(RUN, COTO, COSUB, etc.), the pointer is changed to the
new line . Lines continue to be executed as long as nothing
stops that execution (END, STOP, error, etc.). When the
program execution is stopped, the Program Executor returns
control to the editor.

11

Chapter Two

When a statement is to be executed, the Statement Name
Token (the first code in the statement) directs the interpreter to
the specific code that executes that statement. For instance, if
that token represents the PRINT statement, the PRINT
execution code is called. The execution code for each statement
then examines the other tokens and simulates their operations.

Execute Expression
Arithmetic and logical expressions (A + B, C/D + E, F < G, etc.)
are simulated with the Execute Expression code. Expression
operators (+ ,-, *, etc.) have execution precedence - some
operators must be executed before some others. The
expression 1 + 3*4 has a value of 13 rather than 16
because * had a higher precedence than + . To properly
simulate expressions, BASIC rearranges the expression with
higher precedence first.

BASIC uses two temporary storage areas to hold parts of
the rearranged expression. One temporary storage area, the
Argument Stack, holds arguments - values consisting of
constants, variables, and temporary values resulting from
previous operator simulations . The other temporary storage
area, the Operator Stack, holds operators. Both temporary
storage areas are managed as Last-In/First-Out (LIFO) stacks.

LIFO Stacks
A LIFO (Last In/First Out) stack operates on the principle that
the last object placed in the stack storage area will be the first
object removed from it. If the letters A, B, C, and D, in that
order, were placed in a LIFO stack, then D would be the first
letter removed, followed by C, B, and A. The operations
required to rearrange the expression using these stacks will be
explained in Chapter 7.

BASIC also uses another LIFO stack, the Runtime Stack, in
the simulation of statements such as GOSUB and FOR.
GOSUB requires that BASIC remember where in the statement
table the GOSUB was located so it will return to the right spot
when RETURN is executed. If more than one GOSUB is
executed before a RETURN, BASIC returns to the statement
after the most recent GOSUB.

12

Chapter Three

Memory Usage
Many of BASIC's functions are controlled by a set of tables
built in RAM not already occupied by BASIC or the Operating
System (OS) . Figure 3.1 is a diagram of memory use by both
programs. Every time a BASIC programmer enters a statement,
memory requirements for the RAM tables change. Memory use
by the as also varies. Different graphics modes, for example,
require different amounts of memory.

These changing memory requirements are monitored, and
this series of pointers keeps BASIC and the as from overlaying
each other in memory:

• High memory address (HMADR) at location $02E5
• Application high memory (APHM) at location $OOOE
• Low memory address (LMADR) at location $02E7
When a graphics mode requires larger screen space, the as

checks the application high memory address (APHM) that has
been set by BASIC. If there is enough roGm for the new screen,
the as uses the upper portion of space and sets the pointer
HMADR to the bottom of the screen to tell the application how
much space the as is now using.

BASIC builds its table toward high memory from low
memory. The pointer to the lowest memory available to an
application, called LMADR in the BASIC listing, is set by the
OS to tell BASIC the lowest memory address that BASIC can
use. When BASIC needs more room for one of its tables,
BASIC checks HMADR. If there is enough room, BASIC uses
the space and puts the highest address it has used into APHM
for as.

BASIC's operation consists primarily of building, reading,
and modifying tables. Pointers to the RAM tables are kept in
consecutive locations in zero page starting at $80. These tables
are, in order,

• Multipurpose Buffer
• Variable Name Table
• Variable Value Table
• String/Array Table

13

Chapter Three

• Statement Table
• Runtime Stack

BASIC reserves space for a buffer at LMADR. It then builds
the tables contiguously (without gaps), starting at the top of the
buffer and extending as far as necessary towards APHM. When
a new entry needs to be added to a table, all data in the tables
above is moved upward the exact amount needed to fit the new
entry into the right place.

Figure 3-1. Memory Usage

14

FFFF

EOOO

0800

0000

BFFF

AOOO

Operating System
ROM

Floating Point
ROM

Hardware Registers

Unused

BASIC ROM

Screen

<--HMADR

Free RAM

~---------~<-- APHM
BASIC
RAM
Tables

I----------~<-- LMADR

Operating System
RAM

0000 L-________ --.J

Chapter Three

Variable Name Table
The Variable Name Table (VNT) is built during the pre-compile
process . It is read, but not modified, during execution - but
only by the LIST statement. The VNT contains the names of the
variables used in the program in the order in which they were
entered .

The length of entries in the Variable Name Table depends
on the length of the variable name . The high order bit of the
last character of the name is on. For example, the ATASCII code
for the variable name ABC is 4142 43 (expressed in
hexadecimal). In the Variable Name Table it looks like this:

41 42 C3

The $ character of a string name and the (character of an
array element name are stored as part of the variable name. The
table entries for variables C, AA$, and X(3) would look like
this:

C C3
AA$ 41 41 A4
X(3) 58 A8

It takes only two bytes to store X(3) because this table stores
only X(.

A variable is represented in BASIC by a token. The value of
this token is the position (relative to zero) of the variable name
in the Variable Name Table, plus $80. BASIC references an
entry in the table by using the token, minus $80, as an index .
The Variable Name Table is not changed during execution time.

The zero page pointer to the Variable Name Table is called
VNTP in the BASIC listing.

Variable Value Table
The Variable Value Table (VVT) is also built during the pre­
compile process. It is both read and modified during execution.
There is a one-to-one correspondence in the order of entries
between the Variable Name Table and the Variable Value Table.
If XXX is the fifth variable in the Variable Name Table, then
XXX's value is the fifth entry in the Variable Value Table.
BASIC references a table entry by using the variable token,
minus $80, as an index .

Each entry in the Variable Value Table consists of eight
bytes. The first two bytes have the following meaning:

15

Chapter Three

1 2

type vnum

type = one byte, which indicates the type of variable
$00 for floating point variable
$40 for array variable
$80 for string variable

vnum = one byte, which indicates the relative position of the
variable in the tables

The meaning of the next six bytes varies, depending on the
type of variable (floating point, string, or array). In all three
cases, these bytes are initialized to zero during syntaxing and
during the execution of the RUN or eLR.

When the variable is a floating point number, the six bytes
represent its value.

When the variable is an array, the remaining six bytes have
the following format:

12345678

I I I : I : I : I
disp dim1 dim2

disp = the two-byte displacement into string/array space of
this array variable

dim 1 = two bytes indicating the first dimension value
dim2 = two bytes indicating the second dimension value

All three of these values are set appropriately when the array is
DIMensioned during execution.

When the variable is a string, the remaining six bytes have
the following meaning:

12345678

I I I : I : I : I
disp curl maxI

16

Chapter Three

disp = the two-byte displacement into string/ array space of
this string variable. This value is set when the string is
DIMensioned during execution.

curl = the two-byte current length of the string. This value
changes as the length of the string changes during
execution.

maxI = the two-byte maximum possible length of this string.
This value is set to the DIM value during execution.

When either a string or an array is DIMensioned during
execution, the low-order bit in the type byte is turned on, so
that the array type is set to $41 and the string type to $81.

The zero page pointer to the Variable Value Table is called
VVTP in the BASIC listing.

Statement Table
The Statement Table, built as each statement is entered during
editing, contains tokenized forms of the statements that were
entered. This table determines what happens during
execution.

The format of a Statement Table entry is shown in Figure
3-2. There can be several tokens per statement and several
statements per line.

Figure 3-2. Format of a Statement Table Entry

I : I
Inurn lie n sle n s nt to ks eos slen Silt toks eos eol

Inurn = the two-byte line number (low-order, high-order)
llen = the one-byte line length (the displacement to the next

line in the table)
slen = the one-byte statement length (the displacement to

the next statement in the line)
snt = the one-byte Statement Name Token
toks = the other tokens that make up the statement (this

is variable in length)
eos = the one-byte end of statement token
eol = the one-byte end of line token

The zero page pointer to the Statement Table is called
STMTAB in the BASIC listing.

17

Chapter Three ______________ _

String/Array Table
The String/ Array Table (also called String/ Array Space) is
created and modified during execution. Strings and arrays can
be intermixed in the table, but they have different formats .
Each array or string is pointed to by an entry in the Variable
Value Table. The entry in the String/Array Table is created
when the string or array is DIMensioned during execution. The
data in the entry changes during execution as the value of the
string or an element of the array changes .

An entry in the String/ Array Table is not initialized to any
particular value when it is created. The elements of arrays and
the characters in a string cannot be counted upon to have any
particular value. They can be zero, but they can also be garbage
- data previously stored at those locations .

Array Entry
For an array, the String/ Array Table contains one six-byte entry
for each array element. Each element is a floating point
number, stored in raveled order. For example, the entry in the
String/Array Table for an array that was dimensioned as A(l,2)
contains six elements, in this order:

A(O,O) A(O,l) A(O,2) A(l,O) A(l, l) A(l,2)

String Entry
A string entry in the String/ Array Table is created during
execution, when the string is DIMensioned. The size of the
entry is determined by the DIM value. The "value" of the
string to BASIC at any time is determined by the data in the
String/ Array Table and the current length of the string as set in
the Variable Value Table.

The zero page pointer to the String/Array Table is called
STARP in the BASIC listing.

The Runtime Stack is created during execution. BASIC uses
this LIFO stack to control processing of FOR/NEXT loops and
COSUBs. When either a FOR or a COSUB statement is
encountered during execution, an entry is put on the Runtime
Stack. When a NEXT, RETURN, or a POP statement is
encountered, entries are pulled off the stack.

Both the FOR entry and the COSUB entry have a four-byte
header:

18

Chapter Three

type Inurn disp

type = one byte indicating the type of element
GOSUB type = 0
FOR type = non-zero

Inurn = the two-byte number of the line which contains the
statement (low-order, high-order)

disp = one byte indicating the displacement into the line in
the Statement Table of the token which caused this
stack entry.

The FOR-type byte is actually the token representing the
loop control variable from the FOR statement. (In the statement
FOR 1=1 to 10, I is the loop control variable.) So the FOR-type
byte will have a value of $80 through $FF - the possible values
of a variable token.

The FOR entry contains 12 additional bytes, formatted like
this:

1 2 3 4 5 6 7 8 9 10 11 12

I : : : : : I : : : : : I
sval step

sval = the six-byte (floating point) limit value at which to
stop the loop

step = the six-byte (floating point) STEP value to increment
by

The GOSUB entry consists entirely of the four-byte header.
The LIST and READ statements also put a GOSUB type entry
on the Runtime Stack, so that the line containing the LIST or
READ can be found again when the statement has finished
executing.

The zero page pointer to the Runtime Stack is called
RUNSTK in the BASIC listing.

19

Chapter Three ______________ _

Zero Page Table Pointers
The starting addresses of the tables change dynamically during
both program construction and program execution. BASIC
keeps the current start addresses of the tables and other
pointers required to manage memory space in contiguous zero­
page cells. Each pointer is a two-byte address, low byte first.

Since these zero page cell addresses remain constant,
BASIC is always able to find the tables. Here are the zero page
pointers used in memory management, their names in the
BASIC listing, and their addresses:

Multipurpose Buffer
Variable Name Table
VNT dummy end
Variable Value Table
Statement Table
Current Statement Pointer
String/ Array Table
Runtime Stack
Top of used memory

VNTP
VNTD
VVTP
STMTAB
STMCUR
STARP
RUNSTK
MEMTOP

Memory Management Routines

$80, $81
$82,$83
$84,$85
$86,$87
$88,$89
$8A, $8B
$8C, $80
$8E,$8F
$90,$91

Memory Management routines allocate space to the BASIC
tables as needed. There are two routines: expand, to add space,
and contract, to delete space. Each routine has one entry point
for cases in which the number of bytes to be added or deleted is
less than 256, and another when it is greater than or equal to
256.

The EXPAND and CONTRACT routines often move many
thousands of bytes each time they are called. The 6502
microprocessor is designed to move fewer than 256 bytes of
data very quickly. When larger blocks of data are moved, the
additional 6502 instructions required can make the process very
slow. The EXPAND and CONTRACT routines circumvent this
by using the less-than-256-byte fast-move capabilities in the
movement of thousands of bytes. The end result is a set of very
fast and very complex data movement routines.

All of this complexity does have a drawback. The infamous
Atari BASIC lock-up problem lives in these two routines. If an
EXPAND or CONTRACT requires that an exact multiple of 256
bytes be moved, then the routines move things from the wrong

20

Chapter Three

place in memory to the wrong place in memory, whereupon
the computer locks up and won't respond. The only way to
avoid losing hours of work this way is to SAVE to disk or
cassette frequently.

EXPAND ($A881)
Parameters at entry:

register
X

Y

A

the zero page address containing the pointer to
the location after which space is to be added
the low-order part of the number of bytes to
expand
the high-order part of the number of bytes to
expand

The routine creates a hole in the table memory, starting at a
requested location and continuing the requested number of
bytes.

The routine first checks to see that there is enough free
memory space to satisfy the request .

It adds the requested expand size to each of the zero-page
table pointers between the one pointed to by the X register and
MEMTOP. Then each pointer will point to the correct address
when EXPAND is done.

EXPAND then creates space at the address indicated by the
X register. The number of bytes required is contained in the Y
and A registers. (Y contains the least significant byte, while A
contains the most significant.) All data from the requested
address to the address pointed to by MEMTOP is moved
toward high memory by the requested number of bytes. This
creates a hole of the proper size.

The routine then sets Application High Memory (APHM)
to the value in MEMTOP. This tells the OS the highest memory
address that BASIC is currently using.

EXPLOW ($A87F)
Parameters at entry: ..

register
X

Y

zero page address containing the pointer to the
location after which space is to be added
number of bytes to expand (low-order byte only)

21

Chapter Three

This is an additional entry point for the EXPAND routine. It
is used when the number of bytes to be added to the table is
less than 256 .

. This routine first loads the 6502 accumulator with zero to
indicate the most significant byte of the expand length. It then
functions exactly like EXPAND.

CONTRACT ($A8FD)
Parameters at entry:

register
X

y

A

zero page address containing the pointer to the
starting location where space is to be removed
the low-order part of the number of bytes to
contract
the high-order part of the number of bytes to
contract

This routine removes a requested number of bytes at a
requested location by moving all the data from higher in the
tables downward the exact amount needed to replace the
unwanted bytes.

It subtracts the requested contract size from each of the
zero page table pointers between the one pointed to by the X
register and MEMTOP. Then each pointer will point to the
correct address when CONTRACT is done.

The routine sets application high memory (APHM) to the
value in MEMTOP to indicate to the OS the highest memory
address that BASIC is currently using.

The block of data to be moved downward is defined by
starting at the address pointed to by the zero-page address
pointed to in X, plus the offset number stored in Y and A, and
then continuing to the address specified at MEMTOP. Each
byte of data in that block is moved downward in memory by
the number of bytes specified in Y and A, effectively erasing all
the data between the specified address and that address plus
the requested offset.

CONTLOW ($A8FB)
Parameters at entry:

22

register
X the zero page address containing the pointer to

the location at which space is to be removed

Chapter Three

Y = the number of bytes to contract (low-order byte
only)

This routine is used to remove fewer than 256 bytes from
the tables at a requested location by moving all the data from
higher in the tables downward the exact amount needed to
replace the unwanted bytes.

This routine first loads the 6502 accumulator with zero to
serve as the most significant byte of the contract length. It then
functions exactly like CONTRACT.

Miscellaneous Memory Allocations
Besides the tables, which change dynamically, BASIC also uses
buffers and stacks at fixed locations.

The Argument/Operator Stack is allocated at BASIC's low
memory address and occupies 256 bytes. During pre-compiling
it is used as the output buffer for the tokens. During execution,
it is used while evaluating an expression. This buffer/stack is
referenced by a pointer at location $80. This pointer has several
names in the BASIC listing: LOMEM, ARGOPS, ARGSTK,
and OUTBUFF.

The Syntax Stack is used during the process of syntaxing a
statement. It is referenced directly - that is, not through a
pointer. It is located at $480 and is 256 bytes long.

The Line Buffer is the storage area where the statement is
placed when it is ENTERed . It is the input buffer for the edit
and pre-compile processes. It is 128 bytes long and is
referenced directly as LBUFF. Often the address of LBUFF is
also put into INBUFF so that the buffer can be referenced
through a pointer, though INBUFF can point to other locations
during various phases of BASIC's execution.

23

Chapter Four

Program Editor
The Atari keyboard is the master control panel for Atari BASIC.
Everything BASIC does has its origins at this control panel. The
Program Editor's job is to service the control panel and respond
to the commands that come from it .

The editor gets a line from the user at the keyboard; does
some preliminary processing on the line; passes the line to the
pre-compiler for further processing; inserts, deletes, or
replaces the line in the Statement Table; calls the Program
Executor when necessary; and then waits to receive the user's
next line input .

Line Processing
The Program Editor, which starts at $A060, begins its process
by resetting the 6502 CPU stack. Resetting the CPU stack is a
drastic operation that can only occur at the beginning of a
logical process. Each time Atari BASIC prepares to get a new
line from the user, it restarts its entire logical process .

Getting a Line
The Program Editor gets a user's line by calling CIO. The origin
of the line is transparent to the Program Editor. The line may
have been typed in at the keyboard or entered from some
external device like the disk (if the ENTER command was
given). The Program Editor simply calls CIO and asks it to put a
line of not more than 255 bytes into the buffer pointed to by
INBUFF ($F3) . INBUFF points to the 128-byte area defined at
LBUFF ($580).

The OS's screen editor, which is involved in getting a line
from the keyboard, will not pass BASIC a line that is longer
than 120 bytes . Normally, then, the 128-byte buffer at LBUFF is
big enough to contain the user's line.

Sometimes, however, if a line was originally entered from
the keyboard with few blanks and many abbreviations, then
LISTed to and re-ENTERed from the disk, an input line may be
longer than 128 bytes. When this happens, data in the $600
page is overlaid. A LINE TOO LONG error will not necessarily

25

Chapter Four

occur at this point. A LINE TOO LONG error occurs only if the
Pre-compiler exceeds its stack while processing the line or if
the tokenized line OUTBUFF exceeds 256 bytes. These
overflows depend on the complexity of the line rather than on
its actual length.

When CIO has put a line into the line buffer (LBUFF) and
the Program Editor has regained control, it checks to see if the
user has changed his mind and hit the break key. If the user did
indeed hit break, the Program Editor starts over and asks CIO
for another line.

Flags and Indices
In order to help control its processing, the Program Editor uses
flags and indices. These must be given initial values.

CIX and COX. The index CIX ($F2) is used to access the user's
input line in the line buffer (LBUFF), while COX ($94) is used to
access the tokenized statement in the output buffer
(OUTBUFF) . These buffers and their indices are also used by
the pre-compiler. The indices are initialized to zero to indicate
the beginning of the buffers.

DIRFLG. This flag byte ($A6) is used by the editor to remember
whether a line did or did not have a line number, and also to
remember if the pre-compiler found an error in that line.
DIRFLG is initialized to zero to indicate that the line has a line
number and that the pre-compiler has not found an error.

MAXCIX. This byte ($9F) is maintained in case the line contains
a syntax error. It indicates the displacement into LBUFF of the
error. The character at this location will then be displayed in
inverse video. The Program Editor gives this byte the same
initial value as CIX, which is zero.
SVVNTP. The pointer to the current top of the Variable Name
Table (VNTD) is saved as SVVNTP ($AD) so that if there is a
syntax error in this line, any variables that were added can be
removed. If a user entered an erroneous line, such as 100
A=XAND B, the variable XAND would already have been
added to the variable tables before the syntax error was
discovered. The user probably meant to enter 100 A = X AND B,
and, since there can only be 128 variables in BASIC, he
probably does not want the variable XAND using up a place in
the variable tables. The Program Editor uses SVVNTP to find
the entry in the Variable Name Table so it can be removed.

26

Chapter Four

SVVVTE. The process used to indicate which variable entries to
remove from the Variable Value Table in case of error is
different. The number of new variables in the line
(SVVVTE,$Bl) is initialized to zero. The Program Pre-compiler
increments the value every time it adds a variable to the
Variable Value Table . If a syntax error is detected, this number
is multiplied by eight (the number of bytes in each entry on the
Variable Value Table) to get the number of bytes to remove,
counting backward from the most recent value entered.

Handling Blanks
In many places in the BASIC language, blanks are not
significant. For example,

100IFX=6THENGOT0500

has the same meaning as

100 IF X = 6 THEN GOTO 500.

The Program Editor, using the SKIPBLANK routine
($DBA1), skips over unnecessary blanks .

Processing the Line Number
Once the editor has skipped over any leading blanks, it begins
to examine the input line, starting with the line number. The
floating point package is called to determine if a line number is
present, and, if so, to convert the ATASCII line number to a
floating point number. The floating point number is converted
to an integer, saved in TSLNUM for later use, and stored in the
tokenized line in the output buffer (OUTBUFF) .

The routine used to store data into OUTBUFF is called
:SETCODE ($A2C8). When :SETCODE stores a byte into
OUTBUFF, it also increments COX, that buffer's index.

BASIC could convert the ATASCII line number directly to
an integer, but the routine to do this would not be used any
other time. Routines to convert ATASCII to floating point and
floating point to integer already exist in BASIC for other
purposes. Using these existing routines conserves ROM space.

An interesting result of this sequence is that it is valid to
enter a floating point number as a line number . For example,
100.1, 10.9, or 2.05E2 are valid line numbers. They would be
converted to 100, 11, and 205 respectively.

If the input line does not start with a line number, the line
is considered to be a direct statement. DIRFLG is set to $80 so

27

Chapter Four

that the editor can remember this fact. The line number is set to
32768 ($8000). This is one larger than the largest line number a
user is allowed to enter. BASIC later makes use of this fact in
processing the direct statement.

Line length. The byte after the line number in the tokenized
line in OUTBUFF is reserved so that the line length (actually
the displacement to the next line) can be inserted later. (See
Chapter 2.) The routine :SETCODE is called to reserve the byte
by incrementing (COX) to indicate the next byte.

Saving erroneous lines. In the byte labeled STMSTRT, the
Program Editor saves the index into the line buffer (LBUFF) of
the first non··blank character after the line number. This index
is used only if there is a syntax error, so that all the characters
in the erroneous line can be moved into the tokenized line
buffer and from there into the Statement Table.

There are advantages to saving an erroneous line in the
Statement Table, because you can LIST the error line later. The
advantage is greatest, not when entering a program at the
keyboard, but when entering a program originally written in a
different BASIC on another machine (via a modem, perhaps).
Then, when a line that is not correct in Atari BASIC is entered,
the line is flagged and stored - not discarded. The user can
later list the program, find the error lines, and re-enter them
with the correct syntax for Atari BASIC.

Deleting lines. If the input line consists solely of a line number,
the Program Editor deletes the line in the Statement Table
which has that line number. The deletion is done by pointing to
the line in the Statement Table, getting its length, and calling
CONTRACT. (See Chapter 3.)

Statement Processing
The user's input line may consist of one or more statements .
The Program Editor repeats a specific set of functions for each
statement in the line.

Initializing
The current index (COX) into the output buffer (OUTBUFF) is
saved in a byte called STMLBD. A byte is reserved in
OUTBUFF by the routine :SETCODE. Later, the value in

28

Chapter Four

STMLBD will be used to access this byte, and the statement
length (the displacement to the next statement) will be stored
here.

Recognizing the Statement Name
After the editor calls SKBLANK to skip blanks, it processes the
statement name, now pointed to by the input index (CIX). The
editor calls the routine SEARCH ($A462) to look for this
statement name in the Statement Name Table. SEARCH saves
the table entry number of this statement name into location
STENUM.

The entry number is also the Statement Name Token value,
and it is stored into the tokenized output buffer (OUTBUFF) as
such by :SETCODE. The SEARCH routine also saves the
address of the entry in SRCADR for use by the pre-compiler.

If the first word in the statement was not found in the
Statement Name Table, the editor assumes that the statement
is an implied LET, and the appropriate token is stored. It is left
to the pre-compiler to determine if the statement has the
correct syntax for LET.

The editor now gives control to the pre-compiler, which
places the appropriate tokens in OUTBUFF, increments the
indices CIX and COX to show current locations, and indicates
whether a syntax error was detected by setting the 6502 carry
£lag on if there was an error and clearing the carry flag if there
was not. (See Chapter 5.)

If a Syntax Error Is Detected
If the 6502 carry £lag is set when the editor regains control, the
editor does error processing.

In MAXCIX, the pre-compiler stored the displacement
into LBUFF at which it detected the error. The Program Editor
changes the character at this location to inverse video.

The character in inverse video may not be the point of error
from your point of view, but it is where the pre-compiler
detected an error. For example, assume you entered X = YAND
Z. You probably meant to enter X= Y AND Z, and therefore
would consider the error to be between Y and AND. However,
since YAND is a valid variable name, X = YAND is a valid
BASIC statement .

The pre-compiler doesn't know there is an error until it
encounters B. The value of highlighting the error with inverse

29

Chapter Four _______________ _

video is that it gives the user an approximation of where the
error is . This can be a big advantage, especially if the input line
contained multiple statements or complex expressions.

The next thing the editor does when a syntax error has
been detected is set a value in DIRFLG to indicate this fact for
future reference. Since the DIRFLG byte also indicates whether
this is a direct statement, the error indicator of $40 is ORed with
the value already in DIRFLG.

The editor takes the value that it saved in STMSTRT and
puts it into CIX so that CIX now points to the start of the first
statement in the input line in LBUFF. STMLBD is set to indicate
the location of the first statement length byte in OUTBUFF. (A
length will be stored into OUTBUFF at this displacement at a
later time.)

The editor sets the index into OUTBUFF (COX) to indicate
the Statement Name Token of the first statement in OUTBUFF,
and stores a token at that location to indicate that this line has a
syntax error. The entire line (after the line number) is moved
into OUTBUFF. At this point COX indicates the end of the line
in OUTBUFF. (Later, the contents of OUTBUFF will be moved
to the Statement Table .)

This is the end of the special processing for an erroneous
line. The process that follows is done for both correct and
erroneous lines.

Final Statement Processing
During initial line processing, the Program Editor saved in
STMLBD a value that represents the location in OUTBUFF at
which the statement length (displacement to the next
statement) should be stored. The Program Editor now retrieves
that value from STMLBD . Using this value as an index, the
editor stores the value from COX in OUTBUFF as the
displacement to the next statement.

The Program Editor checks the next character in LBUFF. If
this character is not a carriage return (indicating end of the
line), then the statement processing is repeated. When the
carriage return is found, COX will be the displacement to the
next line. The Program Editor stores COX as the line length at a
displacement of two into OUTBUFF.

30

Chapter Four

Statement Table Processing
The final tokenized form of the line exists in OUTBUFF at this
point. The Program Editor's next task is to insert or replace the
line in the Statement Table.

The Program Editor first needs to create the correct size
hole in the Statement Table. The editor calls the GETSTMT
routine ($A9A2) to find the address where this line should go
in the Statement Table. If a line with the same line number
already exists, the routine returns with the address in
STMCUR and with the 6502 carry flag off. Otherwise, the
routine puts the address where the new line should be inserted
in the Statement Table into STMCUR and turns on the 6502
carry flag. (See Chapter 6.)

If the line does not exist in the Statement Table, the editor
loads zero into the 6502 accumulator. If the line does exist, the
editor calls the GETLT.! routine ($A9DD) to put the line length
into the accumulator. The editor then compares the length of
the line already in the Statement Table (old line) with the
length of the line in OUTBUFF (new line).

If more room is needed in the Statement Table, the editor
calls the EXPLOW ($A87F; see Chapter 3). If less space is
needed for the new line, it calls a routine to point to the next
line (GNXTL, at location $A9DO; see Chapter 6), and then calls
the CONTLOW ($A8FB; see Chapter 3).

Now that we have the right size hole, the tokenized line is
moved from OUTBUFF into the Statement Table at the location
indicated by STMCUR.

Line Wrap-up
After the line has been added to the Statement Table, the editor
checks DIRFLG for the syntax error indicator . If the second
most significant bit ($40) is on, then there is an error .

Error Wrap-up
If there is an error, the editor removes any variables that were
added by this line by getting the number of bytes that were
added to the Variable Name Table and the Variable Value Table
from SVVNTP and SVVVTE . It then calls CONTRACT ($A8FD)
to remove the bytes from each table.

Next, the editor lists the line. The Statement Name Token,
which was set to indicate an error, causes the word "ERROR"

31

Chapter Four

to be printed . An inverse video character indicates where the
error was detected. The editor now waits for you to enter
another line.

Handling Correct Lines
If the line was syntactically correct, the editor again examines
DIRFLG. In earlier processing, the most significant bit ($80) of
this byte was set on if the line was a direct statement. If it is not
a direct statement, then the editor is finished with the line, and
it waits for another input line .

If the line is a direct statement, earlier processing already
assigned it a line number of 32768 ($8000), one larger than the
largest line number a user can enter. Since lines are arranged in
the Statement Table in ascending numerical order, this line will
have been inserted at the end of the table . The current
statement pointer (STMCUR-$8A, $8B) points to this line.

The Program Editor transfers control to a Program Executor
routine, Execution Control (EXECNL at location $A95F), which
will handle the execution of the direct statement. (See
Chapter 6.)

32

Chapter Five

The Pre-compiler
The symbols and symbol-combining rules of Atari BASIC are
coded into Syntax Tables, which direct the Program Pre­
compiler in examining source code and producing tokens. The
information in the Syntax Tables is a transcription of a meta­
language definition of Atari BASIC.

The Atari BASIC Meta-language
A meta-language is a language which describes or defines
another language. Since a meta-language is itself a language, it
also has symbols and symbol-combining rules - which define
with precision the symbols and symbol-combining rules of the
subject language.

Atari BASIC is precisely defined with a specially developed
meta-language called the Atari BASIC Meta-language, or
ABML. (ABML was derived from a commonly used compiler­
technology meta-language called BNF.) The symbols and
symbol-combining rules of ABML were intentionally kept very
simple .

Making Up a Language
To show you how ABML works, we'll create an extremely
simple language called SAP, for Simple Arithmetic Process.
SAP symbols consist of variables, constants, and operators .

• Variables: The letters A, B, and Conly .
• Constants: The numbers 1,2,3A,5,6,7,8, and 9 only.
• Operators: The characters +, -, *, I, and! only. Of

course, you already know the functions of all
the operators except /I! 1/. The character! is a
pseudo-operator of the SAP language used
to denote the end of the expression, like the
period that ends this sentence.

The grammar of the SAP language is precisely defined by
the ABML definition in Figure 5-1.

33

Chapter Five

Figure 5-1. The SAP Language Expressed in ABML

SAP
< expression>
< operation>

<value>
< constant >
<variable>

< operator>

< expression > !
< value> < operation > I
< operator > < expression>

. - < constant> I < variable>
11213 1415161718 19
AlBIC
+ I - I * I I

The ABML symbols used to define the SAP language in Figure
5-1 are :

is defined as

I or

< > label

34

terminal
symbols

Whatever is on the left of : = is defined as
consisting of whatever is on the right of : =,
and in that order.
The symbol I allows choices for what
something is defined as . For instance, in the
sixth line < variable> can be A or B or C.
If I does not appear between two symbols,
then there is no choice. For example, in the
second line < expression> must have both
< value> and < operation> , in that order,
to be valid.
Whatever comes between < and> is an
ABML label. All labels, as non-terminal
symbols, must be defined at some point,
though the definitions can be circular ­
notice that < operation> is part of the
definition of < expression> in the second
line, while in the third line < expression>
is part of the definition of < operation> .
Symbols used in definitions, which are not
enclosed by < and > and are also not one
of the ABML symbols, are terminal symbols
in the language being defined by ABML. In
SAP, some terminal symbols are A, !, B, *,
and 1. They cannot be defined as consisting
of other symbols - they are themselves the
symbols that the SAP language manipu-

Chapter Five

lates, and must appear exactly as they are
shown to be valid in SAP. In effect, they are
the vocabulary of the SAP language.

Statement Generation
The ABML description of SAP can be used to generate
grammatically correct statements in the SAP language. To do
this, we merely start with the first line of the definition and
replace the non-terminal symbols with the definitions of those
symbols. The replacement continues until only terminal
symbols remain. These remaining terminal symbols constitute
a grammatically correct SAP statement .

Since the or statement requires that one and only one of the
choices be used, we will have to arbitrarily replace the non­
terminal with the one valid choice .

Figure 5-2 illustrates the ABML statement generation
process.

Figure 5-2. The Generation of One Possible SAP
Statement

(1) SAP < expression> !
(2) SAP - < value> < operation> !
(3) SAP - < variable> < operation> !
(4) SAP - B < operation> !
(5) SAP - B < operator> < expression> !
(6) SAP B * < expression> !
(7) SAP - B*<value> <operation> !
(8) SAP - B* < constant> < operation>!
(9) SAP B*4< operation>!

(10) SAP - B * 4 < operator> < expression> !
(11) SAP - B*4+ <expression>!
(12) SAP B*4+ < value> < operation> !
(13) SAP - B*4+ < variable> < operation>!
(14) SAP B*4+C<operation> !
(15) SAP - B*4+C!

In (2), < value> < operation> replaces < expression>
because the ABML definition of SAP (Figure 5-1) defines
< expression> as < value> < operation> .

In (3), the non-terminal < value> is replaced with

35

Chapter Five _______________ _

< variable> . The definition of < value> gives two choices for
the substitution of < value>. We happened to choose
< variable> .

In (4), we reach a terminal symbol, and the process of
defining <value> ends. We happened to choose B to replace
< variable> .

In (5), we go back and start defining < operation> . There
are two choices for the replacement of < operation> , either
< operator> < expression> or nothing at all (since there is
nothing to the right of I in the second line of Figure 5-1). If
nothing had been chosen, then (5) would have been: SAP: = B!
The statement B! has no further non-terminals; the process
would have been finished, and a valid statement would have
been produced. Instead we happened to choose
< operator> < expression> .

The SAP definition for < expression> is
< value> < operation> . If we replace < operation> with its
definition we get:

< expression> : = < value> < operator> < expression>

The definition of < expression> includes < expression>
as part of its definition. If the < operator> < expression>
choice were always made for < operation> , then the process
of replacement would never stop. A SAP statement can be
infinitely long by definition. The only thing which prevents us
from always having an infinitely long SAP statement is that
there is a second choice for the replacement of < operation> :
nothing.

The replacements in (5) and (10) reflect the repetitive
choices of defining < expression> in terms of itself. The choice
in (15) reflects the nothing choice and thus finishes the
replacement process.

Computerized Statement Generation
If we slightly modify our procedure for generating statements,
we will have a process that could be easily programmed into a
computer. Instead of arbitrarily replacing the definition of non­
terminals, we can think of the non-terminal as a COSUB.
When we see < X > : = < Y > < Z > , we can think of < Y > as
being a subroutine-type procedure:

36

(a) Co to the line that has <Y> on the left side.
(b) Process the definition (right side) of < Y > .

Chapter Five

(c) If while processing the definition of < Y >, other non­
terminals are found, COSUB to them.

(d) If while processing the definition of < Y > we
encounter a terminal, output the terminal symbol as the
next symbol of the generated statement .

(e) When the definition of < Y > is finished, return to the
place that < Y > was called from and continue.

Since ABML is structured so that it can be programmed, a
fascinating exercise is to design a simple English sentence
grammar with ABML, then write a BASIC program to generate
valid English sentences at random. The randomness of the
sentences would be derived by using the RND function to
select from the definitions or choices. An example of such a
grammar is shown in Figure 5-3. (The programming exercise is
left to you.)

Figure 5-3. A Simple English Sentence Grammar in ABML

SENTENCE
< subject>

<verb>
<adverb>

<object>

<noun>

< adjective>

: = < subject> < adverb> < verb> < object> .
: = The < adjective> < noun>
: = eats I sleeps I drinks I talks I hugs
: = quickly I silently I slowly I viciously I
lovingly I sadly I
: = at home I in the car I at the table I at
school I < subject>
: = boy I girl I dog I programmer I computer
I teacher

: = happy I sad I blue I light I round I smart
I cool I nice I

Syntactical Analysis
The process of examining a language statement for
grammatical correctness is called syntactical analysis, or
syntaxing.

Statement verification is similar to statement generation.
Instead of arbitrarily choosing which or definition to use,
however, the choices are already made, and we must check to
see whether the statement symbols are used in valid patterns.
To do this, we must process through each or definition until we
find a matching valid terminal symbol.

The result of statement generation is a valid, grammatically
correct statement, but the result of statement verification is a

37

Chapter Five

statement validity indication, which is a simple yes or no. Either
the statement is grammatically correct or it is not. Failure
occurs when some statement symbol cannot be matched with a
valid terminal symbol under the rules of the grammar.

The Reporting System
To use the pass/fail result of statement verification, we must
build a reporting system into the non-terminal checking
process. Whenever we, in effect, COSUB to a non-terminal
definition, that non-terminal definition must report its pass/fail
status.

A fail status is generated and returned by a non-terminal
definition when it finds no matching terminal for the current
statement symbol. If the current statement symbol is B and the
< constant> definition in the SAP language is called, then
< constant> would report a fail status to the routine that
called it.

A pass status is returned when a terminal symbol is found
which matches the current statement symbol. If our current
statement symbol had been 7 instead of B, then < constant>
would have reported pass.

Whenever such a match does occur, we return to the
statement, and the next symbol to the right becomes the new
current symbol for examination and verification.

Cycling Through the Definitions
In SAP, the < constant> definition is called from the < value>
definition. If < constant> reports fail , then we examine the
next or choice, which is < variable>. The current symbol is B,
so < variable> reports pass.

Since at least one of the or choices of < value> has
reported pass, < value> will report pass to its caller. If both
< constant> and < variable> had reported fail, then
< value> would report fail to its caller .

The caller of < value> is < expression> . If < value>
reports pass, < operation> is called. If < operation> reports
pass, then < expression> can report pass to its caller. If either
< value> or < operation> reports fail, then < expression>
must report fail, since there are no other or choices for
< expression> .

The definition of < operation> contains a special pass/fail
property. If either < operator> or < expression> reports fail,

38

Chapter Five

then the or choice must be examined. In this case the or choice
is nothing. The or nothing means something special: report pass,
but do not advance to the next symbol.

The final pass/fail report is generated from the first line of
the definition. If < expression> reports pass and the next
symbol is !, then SAP reports pass. If either one of these
conditions has a fail status, then SAP must report fail to
whatever called SAP from outside the language .

Backing Up
Sometimes it is necessary to back up over symbols which have
already been processed. Let's assume that there was a
definition of the type < X > : = < Y > 1< Z > . It is possible that
while < Y > is attempting to complete its definition, it will find
a number of valid matching terminal symbols before it
discovers a symbol that it cannot match. In this case, < Y >
would have consumed a number of symbols before it decided
to report fail. All of the symbols that < Y > consumed must be
unconsumed before < Z > can be called, since < Z > will need
to check those same symbols.

The process of unconsuming symbols is called backup.
Backup is usually performed by the caller of < Y > , which
remembers which source symbol was current when it called
< Y > . If < Y > reports fail , then the caller of < Y > restores the
current symbol pointer before calling < Z > .

Locating Syntax Error
When a final report of fail is given for a statement, it is often
possible to guess where the error occurred. In a left-to-right
system, the symbol causing the failure is usually the symbol
which follows the rightmost symbol found to be valid . If we
keep track of the rightmost valid symbol during the various
backups, we can report a best guess as to where the failure­
causing error is located. This is exactly what Atari BASIC does
with the inverse video character in the ERROR line.

For simplicity, our example was coded for SAP, but the
syntactical analysis we have just described is essentially the
process that the Atari BASIC pre-compiler uses to verify the
grammar of a source statement. The Syntax Tables are an
ABML description of Atari BASIC. The pre-compiler, also
known as the syntaxer, contains the routines which verify
BASIC statements.

39

Chapter Five

Statement Syntax Tables
There is one entry in the Syntax Tables for each BASIC
statement. Each statement entry in the Syntax Table is a
transcription of an ABML definition of the grammar for that
particular statement. The starting address of the table entry for
a particular statement is pointed to by that statement's entry in
the Statement Name Table.

The data in the Syntax Tables is very much like a computer
machine language . The pseudo-computer which executes this
pseudo-machine language is the pre-compiler code. Like any
machine language, the pseudo-machine language of the Syntax
Tables has instructions and instruction operands. For example,
an ABML non-terminal symbol is transcribed to a code which
the pre-compiler executes as a type of "COSUB and report
pass/fail" command.

Here are the pseudo-instruction codes in the Syntax Tables;
each is one byte in length.

Absolute Non-Terminal Vector

Name: ANTV
Code: $00

This is one of the forms of the non-terminal COSUB. It is
followed by the address, minus 1, of the non-terminal's
definition within the Syntax Table. The address is two bytes
long, with the least significant byte first.

External Subroutine Call

Name: ESRT
Code: $01

This instruction is a special type of terminal symbol
checker. It is followed by the address, minus I, of a 6502
machine language routine. The address is two bytes long, with
the least significant byte first. The ESRT instruction is a deus ex
machina - the" god from the machine" who solved
everybody'S problems at the end of classical Creek plays.
There are some terminals whose definition in ABML would be
very complex and require a great many instructions to describe.
In these cases, we go outside the pseudo-machine language of
the Syntax Tables and get help from 6502 machine language
routines - the deus ex machina that quickly gives the desired

40

Chapter Five

result. A numeric constant is one example of where this outside
help is required.

ABMLor

Name: OR
Value: $02

This is the familiar ABML or symbol (I). It provides for an
alternative definition of a non-terminal.

Return

Name : RTN
Value: $03

This code signals the end of an ABML definition line.
When we write an ABML statement on paper, the end of a
definition line is obvious - there is no further writing on the
line . When ABML is transcribed to machine codes, the
definitions are all pushed up against each other. Since the
function that is performed at the end of a definition is a return,
the end of definition is called return (RTN).

Unused (Codes $04 through $OD are unused.)

Expression Non-Terminal Vector

Name: VEXP
Value: $OE

The ABML definition for an Atari BASIC expression is
located at $A60D . Nearly every BASIC statement definition
contains the possibility of having < expression> as part of it.
VEXP is a single-byte call to < expression> , to avoid wasting
the two extra bytes that ANTV would take . The pseudo­
machine understands that this instruction is the same as an
ANTV call to < expression > at $A60D .

Change Last Token

Name : CHNG
Value: $OF

This instruction is followed by a one-byte change to token
value . The operator token instructions cause a token to be
placed into the output buffer. Sometimes it is necessary to
change the token that was just produced. For example, there
are several = operators . One = operator is for the assignment

41

Chapter Five _______________ _

statement LET X = 4. Another = operator is for comparison
operations like IF Y =5 . The pseudo-machine will generate the
assignment = token when it matches = . The context of the
grammar at that point may have required a comparison = token.
The CHNC instruction rectifies this problem.

Operator Token

Name: (many)
Value: $10 through $7F

These instructions are terminal codes for the Atari BASIC
Operators. The code values are the values of each operator
token. The values, value names, and operator symbols are
defined in the Operator Name Table (see Chapter 2) .

When the pseudo-machine sees these terminal symbol
representations, it compares the symbol it represents to the
current symbol in the source statement. If the symbols do not
match, then fail status is generated. If the symbols match, then
pass status is generated, the token (instruction value) is placed
in the token output buffer, and the next statement source
symbol becomes the current symbol for verification.

Relative Non-Terminal Vectors

Name: (none)
Value: $80 - $BF (Plus)

$CO - $FF (Minus)

This instruction is similar to ANTV, except that it is a single
byte. The upper bit is enough to signal that this one-byte code
is a non-terminal COSUB . The destination address of the
COSUB is given as a position relative to the current table
location. The values $80 through $BF correspond to an address
which is at the current table address plus $00 through $3F. The
values $CO through $FF correspond to an address which is at
the current table address minus $01 through $3F .

Pre-compiler Main Code Description
The pre-compiler, which starts at SYNENT ($AIC3), uses the
pseudo-instructions in the Syntax Tables to verify the
correctness of the source line and to generate the tokenized
statements.

42

Chapter Five

Syntax Stack
The pre-compiler uses a LIFO stack in its processing. Each time
a non-terminal vector ("GOSUB") is executed, the pre­
compiler must remember where the call was made from. It
must also remember the current locations in the input buffer
(source statement) and the output buffer (tokenized statement)
in case the called routine reports fail and backup is required.
This LIFO stack is called the Syntax Stack.

The Syntax Stack starts at $480 at the label SIX. The stack is
256 bytes in size. Each entry in the stack is four bytes long. The
stack can hold 64 levels of non-terminal calls. If a sixty-fifth
stack entry is attempted, the LINE TOO LONG error is
reported. (This error should be called LINE TOO COMPLEX,
but the line is most likely too long also.)

The first byte of each stack entry is the current input index
(CIX) . The second byte is the current output index (COX). The
final two bytes are the current address within the syntax tables.

The current stack level is managed by the STKLVL ($A9)
cell. STKLVL maintains a value from $00 to $FC, which is the
displacement to the current top of the stack entry.

Initialization
The editor has saved an address in SRCADR ($96). This
address is the address, minus 1, of the current statement's
ABML instructions in the Syntax Tables. The current input
index (CIX) and the current output index (COX) are also preset
by the editor.

The initialization code resets the syntax stack manager
(STKLVL) to zero and loads the first stack entry with the values
in CIX, COX, and CPC - the current program counter, which
holds the address of the next pseudo-instruction in the Syntax
Tables.

PUSH
Values are placed on the stack by the PUSH routine ($A228).
PUSH is entered with the new current pseudo-program
counter value on the CPU stack. PUSH saves the current CIX,
COX, and CPC on the syntax stack and increments STKL VL.
Next, it sets a new CPC value from the data on the CPU stack.
Finally, PUSH goes to NEXT.

43

Chapter Five _______________ _

POP
Values are removed from the stack with the POP routine
($A252). POP is entered with the 6502 carry flag indicating
pass/fail. If the carry is clear, then pass is indicated. If the carry is
set, then fail is indicated.

POP first checks STKLVL. If the current value is zero, then
the pre-compiler is done. In this case, POP returns to the editor
via RTS . The carry bit status informs the editor of the pass/fail
status.

If STKLVL is not zero, POP decrements STKLVL.
At this point, POP examines the carry bit status. If the carry

is clear (pass), POP goes to NEXT. If the carry is set (fail), POP
goes to FAIL.

NEXT and the Processes It Calls
After initialization is finished and after each Syntax Table
instruction is processed, NEXT is entered to process the next
syntax instruction.

NEXT starts by calling NXSe to increment epe and get the
next syntax instruction into the A register. The instruction
value is then tested to determine which syntax instruction code
it is and where to go to process it.

If the Syntax Instruction is OR ($02) or RTN ($03), then exit
is via POP. When POP is called due to these two instructions,
the carry bit is always clear, indicating pass.

ERNTV. If the instruction is RNTV ("GOSUB" $80 - $FF),
then ERNTV ($A201) is entered. This code calculates the new
epe value, then exits via PUSH.

GETADR. If the instruction is ANTV ($00) or the deus ex
machina ESRT ($01) instruction, then GETADR is called.
GETADR obtains the following two-byte address from the
Syntax Table.

If the instruction was ANTV, then GETADR exits via
PUSH.

If the instruction was ESRT, then GETADR calls the
external routine indicated. The external routine will report
pass/fail via the carry bit. The pass/fail condition is examined at
$AIFO. If pass is indicated, then NEXT is entered. If fail is
indicated, then FAIL is entered.

TERMTST. If the instruction is VEXP ($OE), then the code at
$AIF9 will go to TERMTST ($A2A9), which will cause the code

44

Chapter Five

at $A2AF to be executed for VEXP. This code obtains the
address, minus 1, of the ABML for the < expression> in the
Syntax Table and exits via PUSH.

ECHNG. If the instruction was CHNG ($OF), then ECHNG
($A2BA) is entered via tests at $A1F9 and $A2AB. ECHNG will
increment CPC and obtain the change-to token which will then
replace the last previously generated token in OUTBUFF.
ECHNG exits via RTS, which will take control back to NEXT.

SRCONT. The Operator Token Instructions ($10-$7F) are
handled by the SRCONT routine . SRCONT is called via tests at
$A1F9 and $A2AD. SRCONT will examine the current source
symbol to see if it matches the symbol represented by the
operator token. When SRCONT has made its determination, it
will return to the code at $A1FC. This code will examine the
pass/fail (carry clear/set) indicator returned by SRCONT and
take the appropriate action. (The SRCONT routine is detailed
on the next page.)

FAIL
If any routine returns a fail indicator, the FAIL code at $A26C
will be entered. FAIL will sequentially examine the
instructions, starting at the Syntax Table address pointed to by
CPe, looking for an OR instruction.

If an OR instruction is found, the code at $A27D will be
entered . This code first determines if the current statement
symbol is the rightmost source symbol to be examined thus far.
If it is, it will update MAXCIX. The editor will use MAXCIX to
set the inverse video flag if the statement is erroneous. Second,
the code restores CIX and COX to their before-failure values
and goes to NEXT to try this new OR choice.

If, while searching for an OR instruction, FAIL finds a RTN
instruction, it will call POP with the carry set. Since the carry is
set, POP will re-enter FAIL once it has restored things to the
previous calling level.

All instruction codes other than OR and RTN are skipped
over by FAIL.

45

Chapter Five

Pre-compiler Subroutine Descriptions

SRCONT ($A2E6)
The SRCONT code will be entered when an operator token
instruction is found in the Syntax Tables by the main pre­
compiler code. The purpose of the routine is to determine if the
current source symbol in the user's line matches the terminal
symbol represented by the operator token. If the symbols
match, the token is placed into the output buffer and pass is
returned. If the symbols do not match, fail is returned.

SRCONT uses the value of the operator token to access the
terminal symbol name in the Operator Name Table. The
characters in the source symbol are compared to the characters
in the terminal symbol. If all the characters match, pass is
indicated.

TNVAR, TSVAR ($A32A)
These deus ex machina routines are called by the ESRT
instruction. The purpose of the routines is to determine if the
current source symbol is a valid numeric (TNVAR) or string
(TSVAR) variable. If the source symbol is not a valid variable,
fail is returned.

When pass is indicated, the routine will put a variable token
into the output buffer. The variable token ($80-$FF) is an index
into the Variable Name Table and the Variable Value Table,
plus $80.

The Variable Name Table is searched. If the variable is
already in the table, the token value for the existing variable is
used. If the variable is not in the table, it will be inserted into
both tables and a new token value will be used .

A source symbol is considered a valid variable if it starts
with an alphabetic character and it is not a symbol in the
Operator Name Table, which includes all the reserved words.

The variable is considered to be a string if it ends with $;
otherwise it is a numeric variable. If it is a string variable, $ is
stored with the variable name characters.

The routine also determines if the variable is an array by
looking for (. If the variable is an array, (is stored with the
variable name characters in the Variable Name Table. As a
result, ABC, ABC$, and ABC(n) are all recognized as different
variables.

46

Chapter Five

TNCON ($A400)
TNCON is called by the ESRT instruction. Its purpose is to
examine the current source symbol for a numeric constant,
using the floating point package . If the symbol is not a numeric
constant, the routine returns fail.

If the symbol is a numeric constant, the floating point
package has converted it to a floating point number. The
resulting six-byte constant is placed in the output buffer
preceded by the $OE numeric constant token. The routine then
exits with pass indicated.

TSCON ($A428)
TSCON is called by the ESRT instruction. Its purpose is to
examine the current symbol for a string constant. If the symbol
is not a string constant, the routine returns fail.

If the first character of the symbol is ", the symbol is a
string constant. The routine will place the string constant token
($OF) into the output buffer, followed by a string length byte,
followed by the string characters.

The string constant consists of all the characters that follow
the starting double quote up to the ending double quote. If the
EOL character ($9B) is found before the ending double quote,
an ending double quote is assumed. The EOL is not part of the
string. The starting and ending double quotes are not saved
with the string. All 256 character codes except $9B (EOL) and
$22 (") are allowed in the string.

SEARCH ($A462)
This is a general purpose table search routine used to find a
source symbol character string in a table .

The table to be searched is assumed to have entries which
consist of a fixed length part (0 to 255 bytes) followed by a
variable length ATASCII part. The last character of the ATASCII
part is assumed to have the most significant bit ($80) on. The
last table entry is assumed to have the first ATASCII character
as $00.

Upon entry, the X register contains the length of the fixed
part of the table (0 to 255). The A, Y register pair points to the
start of the table to be searched. The source string for
comparison is pointed to by INBUFF plus the value in CIX.

Upon exit, the 6502 carry flag is clear if a match was found,
and set if no match was found. The X register points to the end

47

Chapter Five _______________ _

of the symbol, plus 1, in the buffer. The SRCADR ($95) two­
byte cell points to the matched table entry. STENUM ($AF)
contains the number, relative to zero, of the matched table
entry.

SETCODE (A2C8)
The SETCODE routine is used to place a token in the next
available position in the output (token) buffer. The value in
COX determines the current displacement into the token
buffer. After the token is placed in the buffer, COX is
incremented by one. If COX exceeds 255, the LINE TOO
LONG error message is generated.

48

Chapter Six

Execution Overview
During the editing and pre-compiling phase, the user's
statements were checked for correct syntax, tokenized, and put
into the Statement Table. Then direct statements were passed
to the Program Executor for immediate processing, while
program statements awaited later processing by the Program
Executor.

We now enter the execution phase of Atari BASIC. The
Program Executor consists of three parts: routines which
simulate the function of individual statement types; an
expression execution routine which processes expressions (for
example, A+B+3, A$(1,3), "HELP", A(3)+7.26E-13); and the
Execution Control routine, which manages the whole process.

Execution Control
Execution Control is invoked in two situations. If the user
has entered a direct statement, Execution Control does some
initial processing and then calls the appropriate statement
execution routine to simulate the requested operation. If the
user has entered RUN as a direct statement, the statement
execution routine for RUN instructs Execution Control to start
processing statements from the beginning of the statement
table.

When the editor has finished processing a direct statement,
it initiates the Execution Control routine EXECNL ($A95F) .
Execution Control's job is to manage the process of statement
simulation.

The editor has saved the address of the statement it
processed in STMCUR and has put the statement in the
Statement Table . Since this is a direct statement, the line
number is $8000, and the statement is saved as the last line in
the Statement Table .

The fact that a direct statement is always the last statement
in the Statement Table gives a test for the end of a user's
program.

The high-order byte of the direct statement line number
($8000) has its most significant bit on. Loading this byte ($80)

49

Chapter Six _______________ _

into the 6502 accumulator will set the minus flag on. The line
number of any program statement is less than or equal to
$7FFF. Loading the high order byte ($7F or less) of a program
line number into the accumulator will set the 6502 minus flag
off. This gives a simple test for a direct statement.

Initialization
Execution Control uses several parameters to help it manage
the task of statement execution.

STMCUR holds the address in the Statement Table of the
line currently being processed.

LLNGTH holds the length of the current line .
NXTSTD holds the displacement in the current line of the

next statement to process.
STMCUR already contains the correct value when

Execution Control begins processing. SETLNI ($B8IB) is called
to store the correct values into LLNGTH and NXTSTD.

Statement Execution
Since the user may have changed his or her mind about
execution, the routine checks to see if the user hit the break
key. If the user did hit BREAK, Execution Control carries out
XSTOP ($B793), the same routine that is executed when the
STOP statement is encountered. At the end of its execution,
the XSTOP routine gives control to the beginning of the editor.

If the user did not hit BREAK, Execution Control checks to
see whether we are at the end of the tokenized line. Since this
is the first statement in the line, we can't be at the end of the
line. So why do the test? Because this part of the routine is
executed once for each statement in the line in order to tell us
when we do reach the end of the line . (The end-of-line
procedure will be discussed later in this chapter.)

The statement length byte (the displacement to the next
statement in the line) is the first byte in a statement. (See
Chapter 3.) The displacement to this byte was saved in
NXTSTD. Execution Control now loads this new statement's
displacement using the value in NXTSTD.

The byte after the statement length in the line is the
statement name token. Execution Control loads the statement
name token into the A register. It saves the displacement to the
next byte, the first of the statement's tokens, in STINDEX for
the use of the statement simulation routines.

50

Chapter Six

The statement name token is used as an index to find this
statement's entry in the Statement Execution Table. Each table
entry consists of the address, minus I, of the routine that will
simulate that statement. This simulation routine is called by
pushing the address from the table onto the 6502 CPU stack
and doing an RTS. Later, when a simulation routine is
finished, it can do an RTS and return to Execution Control.
(The name of most of the statement simulation routines in the
BASIC listing is the statement name preceded by an X: XFOR,
XRUN, XLIST .)

Most of the statement simulation routines return to
Execution Control after processing.

Execution Control again tests for BREAK and checks for the
end of the line . As long as we are not at end-of-line, it
continues to execute statements. When we reach end-of-line, it
does some end-of-line processing.

End-of-line Handling in a Direct Statement
When we come to the end of the line in a direct statement,
Execution Control has done its job and jumps to SNX3. The
READY message is printed and control goes back to the
Program Editor .

End-of-line Handling during Program Execution
Program execution is initiated when the user types RUN.
Execution Control handles RUN like any other direct
statement. The statement simulation routine for RUN initial­
izes STMCUR, NXTSTD, and LLNGTH to indicate the first
statement of the first line in the Statement Table, then returns
to Execution Control. Execution Control treats this first
program statement as the next statement to be executed,
picking up the statement name tokens and calling the
simulation routines.

Usually, Execution Control is unaware of whether it is
processing a direct statement or a program statement. End-of­
line is the only time the routine needs to make a distinction.

At the end of every program line, Execution Control gets
the length of the current line and calls GNXTL to update the
address in STMCUR to make the next line in the Statement
Table the new current line. Then it calls TENDST ($A9E2) to
test the new line number to see if it is another program line or a
direct statement. If it is a direct statement, we are at the end of
the user's program.

51

Chapter Six _______________ _

Since the direct statement includes the RUN command that
started program execution, Execution Control does not execute
the line . Instead, Execution Control calls the same routine that
would have been called if the program had contained an END
statement (XEND, at $B78D). XEND does some end-of­
program processing, causes READY to be printed, and returns
to the beginning of the editor.

If we are not at the end of the user's program, processing
continues with the new current line .

Execution Control Subroutines

TENDST ($A9E2)
Exit parameters: The minus flag is set on if we are at the end of
program.

This routine checks for the end of the user 's program in the
Statement Table .

The very last entry in the Statement Table is always a direct
statement. Whenever the statement indicated by STMCUR is
the direct statement, we have finished processing the user's
program.

The line number of a direct statement is $8000. The line
number of any other statement is $7FFF or less. TENDST
determines if the current statement is the direct statement by
loading the high-order byte of the line number into the A
register. This byte is at a displacement of one from the address
in STMCUR. If this byte is $80 (a direct statement), loading it
turns the 6502 minus flag on. Otherwise, the minus flag is
turned off.

GETSTMT ($A9A2)
Entry parameters: TSLNUM contains the line number of the
statement whose address is required.

Exit parameters : If the line number is found, the STMCUR
contains the address of the statement and the carry flag is set
off (clear) . If the line number does not exist, STMCUR contains
the address where a statement with that line number should
be, and the carry flag is set on (set) .

The purpose of this routine is to find the address of the
statement whose line number is contained in TSLNUM.

The routine saves the address currently in STMCUR into
SAVCUR and then sets STMCUR to indicate the top of the

52
'J . ,

Chapter Six

Statement Table. The line whose address is in STMCUR is
called the current line or statement.

GETSTMT then searches the Statement Table for the
statement whose line number is in TSLNUM. The line number
in TSLNUM is compared to the line number of the current line .
If they are equal, then the required statement has been found.
Its address is in STMCUR, so GETSTMT clears the 6502 carry
flag and is finished.

If TSLNUM is smaller than the current statement line
number, GETSTMT gets the length of the current statement by
executing GETLL ($A9DD). GNXTL ($A9DO) is executed to
make the next line in the statement table the current statement
by putting its address into STMCUR. GETSTMT then repeats
the comparison of TSLNUM and the line number of the current
line in the same manner .

If TSLNUM is greater than the current line number, then a
line with this line number does not exist. STMCUR already
points to where the line should be, the 6502 carry flag is already
set, and the routine is done .

GETLL ($A9DD)
Entry parameters: STMCUR indicates the line whose length is
desired.

Exit parameters: Register A contains the length of the
current line.

GETLL gets the length of the current line (that is, the line
whose address is in STMCUR).

The line length is at a displacement of two into the line.
GETLL-Ioads the length into the A register and is done.

GNXTL ($A9DO)
Entry parameters: STMCUR contains the address of the current
line, and register A contains the length of the current line .

Exit parameters : STMCUR contains the address of the next
line.

This routine gets the next line in the statement table and
makes it the current line .

GNXTL adds the length of the current line (contained in
the A register) to the address of the current line in STMCUR.
This process yields the address of the next line in the statement
table, which replaces the value in STMCUR.

53

Chapter Six

SETLN1 ($8818)
Entry parameters: STMCUR contains the address of the current
line .

Exit parameters: LLNGTH contains the length of the
current line. NXTSTD contains the displacement in the line to
the next statement to be executed (in this case, the first
statement in the line).

This routine initializes several line parameters so that
Execution Control can process the line.

The routine gets the length of the line, which is at a
displacement of two from the start of the line .

SETLNlioads a value of three into the Y register to indicate
the displacement into the line of the first statement and stores
the value into NXTSTD as the displacement to the next
statement for execution.

SETLINE ($8818)
Entry parameters: TSLNUM contains the line number of a
statement.

Exit parameters: STMCUR contains the address of the
statement whose line number is in TSLNUM. LLNGTH
contains the length of the line. NXTSTD contains the
displacement in the line to the next statement to be executed (in
this case, the first statement in the line) . Carry is set if the line
number does not exist.

This routine initializes several line parameters so that
execution control can process the line.

SETLINE first calls GETSTMT ($A9A2) to find the address
of the line whose number is in TSLNUM and put that address
into STMCUR. It then continues exactly like SETLNI.

54

Chapter Seven

Execute Expression
The Execute Expression routine is entered when the Program
Executor needs to evaluate a BASIC expression within a
statement. It is also the executor for the LET and implied LET
statements.

Expression operators have an order of precedence; some
must be simulated before others. To properly evaluate an
expression, Execute Expression rearranges it during the
evaluation.

Expression Rearrangement Concepts
Operator precedence rules in algebraic expressions are so
simple and so unconscious that most people aren't aware of
following them. When you evaluate a simple expression like
Y =AX2+ BX+C, you don't think: "Exponentiation has a
higher precedence than multiplication, which has a higher
precedence than addition; therefore, I will first square the X,
then perform the multiplicdtion ." You just do it.

Computers don't develop habits or common sense - they
have to be specifically commanded. It would be nice if we could
just type Y = AX2 + BX + C into our machine and have the
computer understand, but instead we must separate all our
variables with operators. We also have to learn a few new
operators, such as * for multiply and /\ for
exponentiation .

Given that we are willing to adjust our thinking this much,
we enter Y = A *X /\ 2 + B *X + C. The new form of expression
does not quite have the same feel as Y = AX2 + BX + C; we have
translated normal human patterns halfway into a form the
computer can use.

Even the operation X/\ 2 causes another problem for the
computer . It would really prefer that we give it the two values
first, then tell it what to do with them. Since the computer still
needs separators between items, we should write X/\ 2 as
X,2,/\ .

Now we have something the computer can work with. It
can obtain the two values X,2, apply the operator /\ , and get a
result without having to look ahead.

55

Chapter Seven

If we were to transcribe X/\ 2* A in the same manner, we
would have X,2,/\ ,A, *. The value returned by X,2,/\ is the first
value to multiply, so the value pair for multiplication is (X,2,!\)
and A. Again we have two values followed by an operator, and
the computer can understand.

If we continue to transcribe the expression by pairing
values and operators, we find that we don' t want to add the
value X/\ 2* A to B; we want to add the value X/\ 2* A to B*X.
Therefore, we need to tell the computer X,2, /\ ,A, *, B,X, *, +.
The value pair for the operator + is (X,2,!\ ,A, *) and (B,X, *).

The value pair for the final operation, = , is (X,2,/\ ,A, * ,B,X,
*, + ,C, +) and Y. So the complete translation of Y = AX2 + BX +
Cis X,2,/\ ,A, *,B,X, *, + ,C, + ,Y, =.

Very few people other than Forth programmers put up
with this form of expression transcription . Therefore, Atari
BASIC was designed to perform this translation for us,
provided we use the correct symbols, like * and !\ .

The Expression Rearrangement Algorithm
The algorithm for expression rearrangement requires two LIFO
stacks for temporary storage of the rearranged terms. The
Operator Stack is used for temporarily saving operators; the
Argument Stack is used for saving arguments . Arguments are
values consisting of variables, constants, and the constant-like
values resulting from previous expression operations.

Operator Precedence Table
The Atari BASIC User's Manual lists the operators by
precedence. The highest-precedence operators, like <, >, and
= <, are at the top of the list; the lowest-precedence operator,
OR, is at the bottom. The operators at the top of the list get
executed before the operators at the bottom of the list.

The operators in the precedence table are arranged in the
same order as the Operator Name Table. Thus the token values
can be used as direct indices to obtain an operator precedence
value .

The entry for each operator in the Operator Precedence
Table contains two precedence values, the go-onto-stack
precedence and the come-oft-stack precedence. When a new
operator has been plucked from an expression, its go-onto­
stack precedence is tested in relation to the top-of-stack
operator's come-off-stack precedence.

56

Chapter Seven

Expression Rearrangement Procedure
The symbols of the expression (the arguments and the
operators) are accessed sequentially from left to right, then
rearranged into their correct order of precedence by the
following procedure:

1. Initialize the Operator Stack with the Start Of Expression
(SOE) operator.

2. Get the next symbol from the expression.
3. If the symbol is an argument (variable or constant),

place the argument on the top of the Argument Stack.
Go to step 2.

4. If the symbol is an operator, save the operator in the
temporary save cell, SAVEOP.

5. Compare the go-onto-stack precedence of the operator
in SAVEOP to the come-off stack precedence of the
operator on the top of the Operator Stack.

6. If the top-of-stack operator's precedence is less than the
precedence of the SAVEOP operator, then the SAVEOP
operator is pushed onto the Operator Stack. When the
push is done, go back to step 2.

7. If the top-of-stack operator's precedence is equal to or
greater than the precedence of the SAVEOP operator,
then pop the top-of-stack operator and execute it. When
the execution is done, go back to step 5 and continue.

The Expression Rearrangement Procedure has one
apparent problem. It seems that there is no way to stop it.
There are no exits for the" evaluation done" condition. This
problem is handled by enclosing the expression with two
special operators: the Start Of Expression (SOE) operator, and
the End Of Expression (EOE) operator. Remember that SOE
was the first operator placed on the Operator Stack, in step 1.
Execution code for the SOE operator will cause the procedure
to be exited in step 7, when SOE is popped and executed. The
EOE operator is never executed. EOE's function is to force the
execution of SOE.

The precedence values of SOE and EOE are set to insure
that SOE is executed only when the expression evaluation is
finished. The SOE come-off-stack precedence is set so that its
value is always less than all the other operators' go-onto-stack
precedence values. The EOE go-onto-stack precedence is set so
that its value is always equal to or less than all the other

57

Chapter Seven

operators' (including SOE's) come-off-stack precedence
values.

Because SOE and EOE precedence are set this way, no
operator other than EOE can cause SOE to be popped and
executed. Second, EOE will cause all stacked operators,
including SOE, to be popped and executed. Since SOE is
always at the start of the expression and EOE is always at the
end of the expression, SOE will not be executed until the
expression is fully evaluated.

In actual practice, the SOE operator is not physically part of
the expression in the Statement Table. The Expression
Rearrangement Procedure initializes the Operator Stack with
the SOE operator before it begins to examine the expression.

There is no single operator defined as the End Of
Expression (EOE) operator. Every BASIC expression is
followed by a symbol like :, THEN, or the EOL character. All of
these symbols function as operators with precedence
equivalent to the precedence of our phantom EOE operator.
The THEN token, for example, serves a dual purpose. It not
only indicates the THEN action, but also acts as the EOE
operator when it follows an expression.

Expression Rearrangement Example
To illustrate how the expression evaluation procedure works,
including expression rearrangement, we will evaluate our
Y = A *XA 2 + B *X + C example and see how the expression is
rearranged to X,2,A ,A, * ,B,X, *, + ,e, +, Y, = with a correct
result. To work our example, we need to establish a precedence
table for the operators. The values in Figure 7-1 are similar to
the actual values of these operators in Atari BASIC. The lowest
precedence value is zero; the highest precedence value is $OF.

Figure 7-1. Example Precedence Table

operator go-on-stack
symbol precedence

SOE NA
+ $09
* $OA
1\ $OC

$OF
! (EOE) $00

58

come-off-stack
precedence

$00
$09
$OA
$OC
$01
NA

Chapter Seven

Symbol values and notations. In the example steps, the
term PSn refers to step 11 in the Expression Rearrangement
Procedure (page 57) . Step 5, for instance, will be called PS5 .

In the actual expression, the current symbol will be
underlined. If B is the current symbol, then the actual
expression will appear as Y = A *X 2 + B *X + C . In the
rearranged expression, the symbols which have been evaluated
up to that point will also be underlined.

The values of the variables are:

A=2 C=6
B=4 X=3

The variable values are assumed to be accessed when the
variable arguments are popped for operator execution.

The end-of-expression operator is represented by! .

Example step 1.

Actual Expression: Y = A *X A 2 + B*X + C!
Rearranged Expression: X,2, A ,A, *, B,X, *, + ,C, +, Y, = , !
Argument Stack:
Operator Stack: SOE
SAVEOP:

PSI has been executed. The Operator Stack has been
initialized with the SOE operator. We are ready to start
processing the expression symbols.

Example step 2.

Actual Expression : Y = A *X A 2 + B *X + C!
Rearranged Expression: X,2, A ,A, *,B,X, *, + ,C, + ,Y, =,!
Argument Stack: Y
Operator Stack: SOE
SAVEOP:

The first symbol, Y, has been obtained and stacked in the
Argument Stack according to PS2 and PS3.

Example step 3.

Actual Expression: Y =A *X A 2+ B*X+ C!
Rearranged Expression: X,2, A ,A, *,B,X, *, + ,e, +, Y, =,!
Argument Stack: Y
Operator Stack: SOE, =
SAVEOP:

59

ChapterSeven

Operator = has been obtained via PS2. The relative
precedences of SOE ($00) and = ($OF) dictate that the = be
placed on the Operator Stack via PS6.

Example step 4.

Actual Expression: Y =A *XII 2+ B*X+C!
Rearranged Expression: X,2, II ,A, *,B,X, *, + ,C, +, Y, = , !
Argument Stack: Y,A
Operator Stack: SOE, =
SAVEOP:

The next symbol is A. This symbol is pushed onto the
Argument Stack via PS3 .

Example step 5.

Actual Expression: Y = A~XII 2 + B *X + C!
Rearranged Expression: X,2, II ,A, *,B,X, *, + ,e, +, Y, = ,!
Argument Stack: Y,A
Operator Stack: SOE, =, *
SAVEOP: *

The next symbol is the operator *. The relative precedence
of * and = dictates that * be pushed onto the Operator Stack.

Example step 6.

Actual Expression: Y = A *X II 2 + B *X + C!
Rearranged Expression: X,2,II ,A, *, B,X, *, + ,C, +, Y, =,!
Argument Stack: Y,A,X
Operator Stack: SOE, =, *
SAVEOP:

The next symbol is the variable X. This symbol is stacked
on the Argument Stack according to PS3.

Example step 7.
Actual Expression: Y =A *X~ 2+ B*X+ c!
Rearranged Expression: X,2,II ,A, *,B,X, *, + ,C, +, Y, =,!
Argument Stack: Y,A,X
Operator Stack: SOE, =, *, II
SAVEOP: II

The next symbol is II . The relative precedence of the
and the * dictate that II be stacked via PS6.

60

Chapter Seven

Example step 8.

Actual Expression: Y=A*XA l.+B*X+C!
Rearranged Expression: X,2, A ,A, *,B,X, *, + ,C, + ,Y, =,!
Argument Stack: Y,A,X,2
Operator Stack: SOE, =, *,A
SAVEOP:

The next symbol is 2. This symbol is stacked on the
Argument Stack via PS3.

Example step 9.

Actual Expression: Y =A *XA 2+ B*X+C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,C, + ,Y, =,!
Argument Stack: Y,A,9
Operator Stack: SOE, =, *
SAVEOP:+

The next symbol is the operator + . The precedence of the
Ijperator that was at the top of the stack, A ,is greater than the
precedence of + . PS7 dictates that the top-of-stack operator be
popped and executed.

The A operator is popped. Its execution causes arguments
X and 2 to be popped from the Argument Stack, replacing the
variable with the value that it represents and operating on the
two values yielded: XA 2=3A 2=9. The resulting value, 9, is
pushed onto the Argument Stack. The + operator remains in
SAVEOP. We continue at PS5.

Note that in the rearranged expression the first symbols,
X,2, A, have been evaluated according to plan.

Example step 10.
Actual Expression: Y= A*XA 2+B*X+C!
Rearranged Expression: X,2,A,A,*,B,X, *, + ,C, + ,Y, =,!
Argument Stack: Y,18
Operator Stack: SOE, =
SAVEOP: +

This step originates at PS5. The SAVEOP operator, +, has
a precedence that is less than the operator which was at the top
of the stack, *. Therefore, according to PS7, the * is popped
and executed.

The execution of * results in A *9 = 2*9 = 18. The resulting
value is pushed onto the Argument Stack.

61

Chapter Seven

Example step 11.

Actual Expression: Y = A *X A 2 + B *X + C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,C, + , Y, =,!
Argument Stack: Y,18
Operator Stack: SOE, =, +
SAVEOP:

When step 10 finished, we went to PS5 . The operator in
SAVEOP was +. Since + has a higher precedence than the top­
of-stack operator, =, the + operator was pushed onto the
Operator Stack via PS6.

Example step 12.

Actual Expression: Y = A *X A 2 + B*X + C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,c, +, Y, =,!
Argument Stack: Y,18,B
Operator Stack: SOE, =, +
SAVEOP:

The next symbol is the variable B, which is pushed onto the
Argument Stack via PS3.

Example step 13.

Actual Expression: Y = A *X A 2 + B~X + C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,c, + ,Y, =,!
Argument Stack: Y,18,B
Operator Stack: SOE, =, + , *
SAVEOP: *

The next symbol is the operator *. Since * has a higher
precedence than the top-of-stack +, * is pushed onto the stack
via PS6.

Example step 14.
Actual Expression: Y = A *XA 2+ B*X+ C!
Rearranged Expression: X,2,A ,A, *, B,X, *, + ,C, + ,Y, =,!
Argument Stack: Y,18,B,X
Operator Stack: SOE, =, +, *
SAVEOP:

The variable X is pushed onto the Argument Stack via PS3.

Example step 15.
Actual Expression: Y=A*X A2+B*X±C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,C, +, Y, =,!

62

Chapter Seven

Argument Stack: Y,18,12
Operator Stack: SOE, =, +
SAVEOP: +

The operator + is retrieved from the expression. Since +
has a lower precedence than * which is at the top of the stack,
* is popped and executed . .

The execution of * causes B*X=4*3= 12. The resulting
value of 12 is pushed onto the Argument Stack. We will
continue at PS5 via the PS7 exit rule.

Example step 16.

Actual Expression: Y = A *XA 2 + B *X ± C!
Rearranged Expression: X,2,A,A, *,B,X, *, + ,C, +, Y, =,!
Argument Stack: Y,30
Operator Stack: SOE, =
SAVEOP: +

This step starts at PS5 . The SAVEOP operator, +, has
precedence that is equal to the precedence of the top-of-stack
operator, also + . Therefore, + is popped from the operator
stack and executed. The results of the execution cause 18 + 12,
or 30, to be pushed onto the Argument Stack. PS5 is called.

Example step 17.

Actual Expression: Y = A *X A 2 + B *X ± C!
Rearranged Expression: X,2,A ,A, *,B,X, *, + ,C, +, Y, =,!
Argument Stack: Y,30
Operator Stack: SOE, =, +
SAVEOP:

This step starts at PS5 . The SAVEOP is + . The top-of-stack
operator, =, has a lower precedence than +; therefore, + is
pushed onto the stack via PS6.

Example step 18.
Actual Expression: Y=A*X A 2+B*X+C!
Rearranged Expression: X,2,A ,A, *, B,X, *, +, C, + , Y, =,!
Argument Stack: Y,30,C
Operator Stack: SOE, =, +
SAVEOP:

The variable C is pushed onto the Argument Stack via PS3.

63

Chapter Seven

Example step 19.

Actual Expression : Y = A *X /\ 2 + B *X + C!
Rearranged Expression: X,2/' ,A, *,B,X, *, + ,e, +, Y, =,!
Argument Stack: Y,36
Operator Stack: SOE, =
SAVEOP: !

The EOE operator! is plucked from the expression . The
EOE has a lower precedence than the top-of-stack + operator.
Therefore, + is popped and executed. The resulting value of
30 + 6, 36, is pushed onto the Argument Stack. PS5 will execute
next.
Example step 20.

Actual Expression: Y =A *X/\ 2+ B*X +Cl
Rearranged Expression: X,2," ,A, *, B,X, *, + ,e, +, Y, =,!
Argument Stack:
Operator Stack: SOE
SAVEOP: !

This step starts at PS5. The! operator has a lower
precedence than the top-of-stack = operator, which is popped
and executed. The execution of = causes the value 36 to be
assigned to Y. This leaves the Argument Stack empty. PS5 will
be executed next.

Example step 21.

Actual Expression: Y =A *X/\ 2+ B*X + Cl..
Rearranged Expression: X,2," ,A, *, B,X, *, + ,e, +, Y, =,!
Argument Stack:
Operator Stack:
SAVEOP: !

The! operator in SA VEOP causes the SOE operator to be
popped and executed. The execution of SOE terminates the
expression evaluation.

Note that the rearranged expression was executed exactly
as predicted .

Mainline Code
The Execute Expression code implements the Expression
Rearrangement Procedure. The mainline code starts at the
EXEXPR label at $AAEO. The input to EXEXPR starts at the
current token in the current statement. STMCUR points to the

64

Chapter Seven

current statement. STINDEX contains the displacement to the
current token in the STMCUR statement. The output of
EXEXPR is whatever values remain on the top of the argument
stack when the expression evaluation is finished.

In the following discussion, PSn refers to the procedure
step n in the Expression Rearrangement Procedure.

PSI, initialization, occurs when EXEXPR is entered.
EXPINT is called to initialize the operator and argument stacks.
EXPINT places the SOE operator on the operator stack.

PS2, which obtains the next token, directly follows
initialization at EXNXT ($AAE3). The code calls EGTOKEN to
get the next expression symbol and classify it. If the token is an
argument, the carry will be set. If the token is an operator, the
carry will be clear.

If the token is an argument, PS3 is implemented via a call to
ARGPUSH. After the argument is pushed onto the argument
stack, EXNXT (PS2) will receive control.

If the token was an operator, then the code at EXOT
($AAEE) will be executed. This code implements PS4 by saving
the token in EXSVOP.

PS5, which compares the precedents of the EXSVOP token
and the top-of-stack token, follows EXOT at EXPTST ($AAF A).
This code also executes the SOE operator . If SOE is popped,
then Execute Expression finishes via RTS.

If the top-of-stack operator precedence is less than the
EXSVOP operator precedence, PS6 is implemented at
EOPUSH ($AB15). EOPUSH pushes EXSVOP onto the
operator stack and then goes to EXNXT (PS2) .

If the top-of-stack operator precedence is greater than or
equal to the EXSVOP operator precedence, then PS7 is
implemented at EXOPOP ($ABOB). EXOPOP will pop the top­
of-stack operator and execute it by calling EXOP. When EXOP
is done, control passes to EXPTST (PS5) .

Expression Evaluation Stacks
The two expression evaluation stacks, the Argument Stack and
the Operator Stack, share a single 256-byte memory area. The
Argument Stack grows upward from the lower end of the 256-
byte area. The Operator Stack grows downward from the
upper end of the 256-byte area.

The 256-byte stack area is the multi purpose buffer at the
start of the RAM tables . The buffer is pointed to by the

65

Chapter Seven

ARGSTK (also ARGOPS) zero-page pointer at $80. The current
index into the Argument Stack is maintained by ARSLVL
($AA). When the Argument Stack is empty, ARSLVL is zero.

The OPSTKX cell maintains the current index into the
Operator Stack . When the Operator Stack is initialized with the
SOE operator, OPSTKX is initialized to $FF. As operators are
added to the Operator Stack, OPSTKX is decremented. As
arguments are added to the Argument Stack, ARSLVL is
incremented.

Since the two stacks share a single 256-byte memory area,
there is a possibility that the stacks will run into each other. The
code at $ABCl is used to detect a stack collision. It does this by
comparing the values in ARSLVL and OPSTKX. If ARSLVL is
greater than or equal to OPSTKX, then a stack collision occurs,
sending the STACK OVERFLOW error to the user.

Operator Stack
Each entry on the Operator Stack is a single-byte operator-type
token. Operators are pushed onto the stack at EXOPUSH
($AB15) and are popped from the stack at EXOPOP ($ABOB).

Argument Stack
Each entry on the Argument Stack is eight bytes long. The
format of these entries is described in Figures 7-2, 7-3, and 7-4,
and are the same as the formats for entries in the Variable Value
Table .

Unlike the Variable Value Table, the Argument Stack must
deal with both variables and constants. In Figure 7-2, we see
that VNUM is used to distinguish variable entries from
constant entries.

The SADR and AADR fields in the entries for strings and
arrays are of special interest. (See Figures 7-3 and 7-4.) When a
string or array variable is dimensioned, space for the variable is
created in the string/ array space. The displacement to the start
of the variable's area within the string/array space is placed in
the SADR/AADR fields at that time. A displacement is used
rather than an absolute address because the absolute address
can change if any program changes are made after the DIM
statement is executed.

Execute Expression needs these values to be absolute
address values within the 6502 address space. When a
string/array variable is retrieved from the Variable Value Table,

66

Chapter Seven

the displacement is transformed to an absolute address . When
(and if) the variable is put back into the Variable Value Table,
the absolute address is converted back to a displacement.

The entries for string constants also deserve some special
attention . String constants are the quoted strings within the
user program. These strings become part of the tokenized
statements in the Statement Table. When Execute Expression
gets a string token, it will create a string constant Argument
Stack entry. This entry's SADR is an absolute address pointer
to the string in the Statement Table. SLEN and SDIM are set to
the actual length of the quoted string .

Argument Work Area
An argument which is currently being examined by Execute
Expression is kept in a special zero-page Argument Work Area
(AWA). The AWA starts at the label VTYPE at $02.

Figure 7-2. Argument Stack Entry
012

IVTYPE I VNUM I DATA
+

[Data Field. Format depends on VTYPE.

If VNUM> 0, the entry is a variable. In this case,

8

r
If VNUM = 0, the entry is a constant.

the VNUM value is the entry number in the Variable
Value Table. The token representing this variable is
VNUM+$80 .

$00 = Data is a six-byte floating point constant.
$80 = Data represents an undimensioned string.
$81 = Data represents a dimensioned string with

a relative address pointer.
$83 = Data represents a dimensioned string with

an absolute address pointer.
$40 = Data represents an undimensioned array.
$41 = Data represents a dimensioned array with

a relative address pointer .
$43 = Data represents a dimensioned array with

an absolute address pointer.

67

Chapter Seven

Figure 7-3. Argument Stack String Entry

o 1 2 4 8

I VTYPE VNUM SADR SLEN SDIM I

[Dimensioned length of the string. Valid only if
VTYPE=$81 01'$83.

Current length of the string. Valid only if VTYPE
= $81 or $83.

String address. Valid only if VTYPE = $81 or $83 .
If VTYPE = $81, then SADR is the displacement
of the start of the string from the start of the
string/array space.

If VTYPE = $83, then SADR is the abso lu te address
of the start of the string.

Figure 7-4. Argument Stack Array Entry

68

o 1 2 4 6 8

I VTYPE I VNUM I AADR I DIM1 I DIM2 I

t t

[

When an array has been dimensioned as A(D1,D2),
this field contains the 02 value . If an array

~I was dimensioned as A(D1), then this fie ld is
zero . The field is va lid only if VTYPE = $41 or
$43 .

[
When an array has been dimensioned, as A(D1,D2)

~I or as A(D1), this field contains the 01 value.
The field is va lid only if VTYPE = $41 or $43.

[

Array Address. Valid only if VTYPE = $41 or $43.

If VTYPE =$41, the AADR is the displacement to
'---. the start of the array in the string/array space.

If VTYPE = $43, the AADR is the absolute address
of the start of the string.

Chapter Seven

Operator Executions
An operator is executed when it is popped from the Operator
Stack. Execute Expression calls EXOP at $AB20 to start this
execution. The EXOP routine uses the operator token value as
an index into the Operator Execution Table ($AA70) . The
operator execution address from this table, minus 1, is placed
on the 6502 CPU stack . An RTS is then executed to begin
executing the operator 's code .

The names of the operator execution routines all begin with
the characters XP.

All the Atari BASIC functions, such as PEEK, RND, and
ABS, are executed as operators .

Most routines for the execution of the operators are very
simple and straightforward. For example, the * operator
routine, XPMUL ($AC96), pops two arguments, multiplies
them via the floating point package, pushes the result onto the
argument stack, and returns.

String, Array, DIM, and Function Operations
Any array reference in an expression may be found in one of
two forms: A(x) or A(x,y) . The indices x and y may be any
valid expression. The intent of the indices is to reference a
specific array element.

Before the specific element reference can take place, the x
and/or y index expressions must be fully evaluated. To do this,
the characters' (' II' and I)' are made operators. The
precedence of these operators forces things to happen in the
correct sequence. Figure 7-5 shows the relative precedence of
these operators for an array .

Figure 7-5. Array Operator Precedence

operator
symbol

(
, (comma)
)

go-on-stack
precedence

$OF
$04
$04

come-off-stack
precedence

$02
$03
$OE

As a result of these precedence values, (has a high
enough precedence to go onto the stack, no matter what other
operator is on the top of the stack .

69

Chapter Seven

The comma's go-on-stack precedence will force all operators
except (to be popped and executed. As a result, the x index
sub-expression, in the expression A(x,y), will be fully evaluated
and the final x index value will be pushed onto the Argument
Stack.

The comma will then be placed onto the Operator Stack. Its
come-off-stack precedence is such that no other operator,
except) , will pop it off.

The) operator precedence will force any y index
expression to be fully evaluated and the y index result value to
be placed onto the Argument Stack.

It will then force the comma operator to be popped and
executed . This action results in a comma counter being
incremented.

The) will then force the (to be popped and executed.
The execution of (results in the proper array element being
referenced. The (operator will pop the indices from the
Argument Stack. The number of indices (either zero or one) to
be popped is governed by the comma counter, which was
incremented by one for each comma that was popped and
executed .

Atari BASIC has numerous (tokens, and each causes a
different (routine to be executed. These (operators are array
(CALPRN), string (CSLPRN), array DIM (CDLPRN), string DIM
(CDSLPR), function (CFLPRN), and the expression grouping
CLPRN operator . The Syntax Table pseudo-instruction CHNG
is used to change the CLPRN token to the other (tokens in
accordance with the context of the grammar.

The expression operations for each of these various (
operators in relation to commas and (is exactly the same.
When (is executed, the comma count will show how many
arguments the operator's code must pop from the argument
stack. Each of these arguments will have been evaluated down
to a single value in the form of a constant.

70

Chapter Eight

Execution Boundary
Conditions

BASIC Language statements can be divided into groups with
related functions. The execution boundary statements, RUN,
STOP, CONT and END, cause a BASIC program to start or
stop executing. The routines which simulate these statements
are XRUN, XSTOP, XCONT, and XEND.

Program Termination Routines
Any BASIC statement can be used as either a direct statement
or a program statement, but some only make sense in one
mode. The STOP statement has no real meaning when entered
as a direct statement. When the statement simulation routine
for STOP is asked to execute in direct mode, it does as little
processing as possible and exits . Useful processing occurs only
when STOP is a program statement.

STOP ($87A7). The XSTOP and XEND routines are similar and
perform some of the same tasks. The tasks common to both are
handled by the STOP routine .

If this statement is not a direct statement, the STOP routine
saves the line number of the current line in STOPLN. This line
number is used later for printing the STOPed message. It is
also used by the CONT simulation routine (XCONT) to
determine where to restart program execution. (Since XEND
also uses this routine, it is possible to CONTinue after an END
statement in the middle of a program.)

The STOP routine also resets the LIST and ENTER devices
to the screen and the keyboard.

XSTOP ($8793). XSTOP does the common STOP processing
and then calls: LPRTOKEN($B535) to print the STOPed
message. It then calls one of the error printing routines,
:ERRM2 ($B974), to output the AT LINE nnn portion. The
:ERRM2 routine will not print anything if this was a direct
statement. When :ERRM2 is finished, it jumps back to the start
of the editor .

71

Chapter Eight ______________ _

XENO ($8780). XEND calls the STOP routine to save the
current line number. It then transfers to the start of the editor
via the SNXl entry point. This turns off the sound, closes any
open IOCBs, and prints the READY message. XEND also
leaves values on the 6502 CPU stack. These values are thrown
away when the editor resets the stack.

ENO OF PROGRAM. A user may have neglected to include an
END statement in his program. In this case, when Execution
Control comes to the end of the Statement Table it calls XEND,
and the program is terminated exactly as if the last statement in
the program were an END.

Program Initiation Routines
The statements that cause a user's program to begin execution
are RUN and CONT. These statements are simulated by XRUN
andXCONT.

XCONT ($878E). The CONT statement has no meaning when
encountered as a program statement, so its execution has no
effect.

When the user enters CONT as a direct statement, XCONT
uses the line number that was saved in STOPLN to set
Execution Control's line parameters (STMCUR, NXTSTD,
and LLNGTH) . This results in the current line being the line
following the one whose line number is in STOPLN. This
means that any statement following STOP or END on a line
will not be executed; therefore, STOP and END should always
be the last statement in the line.

If we are at the end of the Statement Table, XCONT
terminates as if an END statement had been encountered in the
program. If there are more lines to process, XCONT returns to
Execution Control, which resumes processing at the line whose
address was just put into STMCUR.

XRUN ($8740). The RUN statement comes in two formats,
RUN and RUN < filespec> . In the case of RUN < filespec> ,
XRUN executes XLOAD to load a saved program, which
replaces the current one in memory. The process then proceeds
like RUN.

XRUN sets up Execution Control's line pointers to indicate
the first line in the Statement Table. It clears some flags used to
control various other BASIC statements; for example, it resets
STOPLN to O. It closes all IOCBs and executes XCLR to reset all

72

Chapter Eight

the variables to zero and get rid of any entries in the
String! Array Table or the Runtime Stack.

If there is no program, so the only thing in the Statement
Table is the direct statement, then XRUN does some clean-up,
prints READY, and returns to the start of the editor, which
resets the 6502 CPU stack.

If there is a program, XRUN returns to Execution Control,
which starts processing the first statement in the table as the
current statement.

When RUN < filespec> is used as a program statement, it
performs the useful function of chaining to a new program, but
if RUN alone is used as a program statement, an infinite loop
will probably result .

Error Handling Routine
There are other conditions besides the execution boundary
statements that terminate a program's execution. The most
familiar are errors.

There are two kinds of errors that can occur during
execution: Input!Output errors and BASIC language errors.

Any BASIC routine that does I/O calls the IOTEST routine
($BCB3) to check the outcome of the operation. If an error that
needs to be reported to the user is indicated, IOTEST gets the
error number that was returned by the Operating System and
joins the Error Handling Routine, ERROR ($B940), which
finishes processing the error.

When a BASIC language error occurs, the error number is
generated by the Error Handling Rou tine. This routine
calculates the error by having an entry point for every BASIC
language error. At each entry point, there is a 6502 instruction
that increments the error number. By the time the main
routine, ERROR, is reached, the error number has been
generated.

The Error Handling Routine calls STOP ($B7 A7) to save the
line number of the line causing the error in STOPLN. It tests
TRAPLN to see if errors are being TRAPed. The TRAP option is
on if TRAPLN contains a valid line number. In this case, the
Error Handler does some clean-up and joins XGOTO, which
transfers processing to the desired line.

If the high-order byte of the line number is $80 (not a valid
line number), then we are not TRAPing errors. In this case, the
Error Handler prints the four-part error message, which

73

Chapter Eight ______________ _

consists of ERROR, the error number, AT LINE, and finally the
line number. If the line in error was a direct statement, the AT
LINE part is not printed. The error handler resets ERRNUM to
zero and is finished.

The Error Handling Routine does not do an orderly return,
but jumps back to the start of the editor at the SYNTAX entry
point where the 6502 stack is reset, clearing it of the now­
unwanted return addresses.

74

Chapter Nine

Program Flow
Control Statements

Execution Control always processes the statement in the
Statement Table that follows the one it thinks it has just
finished . This means that statements in a BASIC program are
usually processed in sequential order.

Several statements, however, can change that order:
GOTO, IF, TRAP, FOR, NEXT, GOSUB, RETURN, POP, and
ON. They trick Execution Control by changing the parameters
that it maintains.

Simple Flow Control Statements

XGOTO ($B6A3)
The simplest form of flow control transfer is the GOTO
statement, simulated by the XGOTO routine.

Following the GOTO token in the tokenized line is an
expression representing the line number of the statement that
the user wishes to execute next . The first thing the XGOTO
routine does is ask Execute Expression to evaluate the
expression and convert it to a positive integer. XGOTO then
calls the GETSTMT routine to find this line number in the
Statement Table and change Execution Control's line
parameters to indicate this line.

If the line number does not exist, XGOTO restores the line
parameters to indicate the line containing the original GOTO,
and transfers to the Error Handling Routine via the ERNOLN
entry point. The Error Handling Routine processes the error
and jumps to the start of the editor.

If the line number was found, XGOTO jumps to the
beginning of Execution Control (EXECNL) rather than
returning to the point in the routine from which it was called.
This leaves garbage on the 6502 CPU stack, so XGOTO first
pulls the return address off the stack.

75

Chapter Nine

XIF ($8778)
The IF statement changes the statement flow based on a
condition. The simulation routine, XIF, begins by calling a
subroutine of Execute Expression to evaluate the condition.
Since this is a logical (rather than an arithmetic) operation, we
are only interested in whether the value is zero or non-zero. If
the expression was false (non-zero), XIF modifies Execution
Control's line parameters to indicate the end of this line and
then returns. Execution Control moves to the next line,
skipping any remaining statements on the original IF statement
line.

If the expression is true (zero), things get a little more
complicated. Back during syntaxing, when a statement of the
form IF < expression> THEN < statement> was encountered,
the pre-compiler generated an end-of-statement token after
THEN. XIF now tests for this token. If we are at the end of the
statement, XIF returns to Execution Control, which processes
what it thinks is the next statement in the current line, but
which is actually the THEN < statement> part of the IF
statement.

If XIF does not find the end-of-statement token, then the
statement must have had the form IF < expression> THEN
<line number>. XIF jumps to XGOTO, which finishes
processing by changing Execution Control's line parameters to
indicate the new line.

XTRAP ($87E1)
The TRAP statement does not actually change the program
flow when it is executed. Instead, the XTRAP simulation
routine calls a subroutine of Execute Expression to evaluate the
line number and then saves the result in TRAPLN ($BC) .

The program flow is changed only if there is an error. The
Error Handling Routine checks TRAPLN. If it contains a valid
line number, the error routine does some initial set-up and
joins the XGOTO routine to transfer to the new line.

Runtime Stack Routines
The rest of the Program Flow Control Statements use the
Runtime Stack. They put items on the stack, inspect them,
and/or remove them from the stack.

Every item on the Runtime Stack contains a four-byte
header. This header consists of a one-byte type indication, a

76

Chapter Nine

two-byte line number, and a one-byte displacement to the
Statement Name Token. (See pages 18-19.) The type byte is the
last byte placed on the stack for each entry. This means that the
pointer to the top of the Runtime Stack (RUNSTK) points to the
type byte of the most recent entry on the stack. A zero type
byte indicates a GOSUB-type entry. Any non-zero type byte
represents a FOR-type entry .

A GOSUB entry consists solely of the four-byte header. A
FOR entry contains twelve additional bytes: a six-byte limit
value and a six-byte step value.

Several routines are used by more than one of the
statement simulation routines.

PSHRSTK ($8683) This routine expands the Runtime Stack
by calling EXPLOW and then storing the type byte, line
number, and displacement of the Statement Name Token on
the stack .

POPRSTK ($8841) This routine makes sure there really is
an entry on the Runtime Stack. POPRSTK saves the
displacement to the statement name token in SVDISP, saves
the line number in TSLNUM, and puts the type/variable
number in the 6502 accumulator. It then removes the entry by
calling the CONTLOWroutine.

:GETTOK ($8737) This routine first sets up Execution
Control's line parameters to point to the line whose number is
in the entry just pulled from the Runtime Stack. If the line was
found, :GETTOK updates the line parameters to indicate that
the statement causing this entry is now the current statement .
Finally, it loads the 6502 accumulator with the statement name
token from the statement that created this entry and returns to
its caller .

If the line number does not exist, :GETTOK restores the
current statement address and exits via the ERGFDEL entry
point in the Error Handling Routine.

Now let's look at the simulation routines for the statements
that utilize the Runtime Stack.

XFOR ($8648)
XFOR is the name of the simulation routine which executes a
FOR statement .

In the statement FOR 1=1 TO 10 STEP 2:
I is the loop control variable

77

Chapter Nine

1 is its initial value
10 is the limit value
2 is the step value

XFOR calls Execute Expression, which evaluates the initial
value and puts it in the loop control variable's entry in the
Variable Value Table .

Then it calls a routine to remove any currently unwanted
stack entries - for example, a previous FOR statement that
used the same loop control variable as this one .

XFOR calls a subroutine of Execute Expression to evaluate
the limit and step values. If no step value was given, a value of
1 is assigned. It expands the Runtime Stack using EXPLOW
and puts the values on the stack.

XFOR uses PSHRSTK to put the header entry on the stack.
It uses the variable number of the loop control variable
(machine-language ORed with $80) as the type byte. XFOR
now returns to Execution Control, which processes the
statement following the FOR statement.

The FOR statement does not change program flow . It just
sets up an entry on the Runtime Stack so that the NEXT
statement can change the flow .

XNEXT ($B6CF)
The XNEXT routine decides whether to alter the program flow,
depending on the top Runtime Stack entry. XNEXT calls the
POPRSTK routine repeatedly to remove four-byte header
entries from the top of the stack until an entry is found whose
variable number (type) matches the NEXT statement's variable
token. If the top-of-stack or GOSVB-type entry is encountered,
XNEXT transfers control to an Error Handling Routine via the
ERNOFOR entry point .

To compute the new value of the loop variable, XNEXT
calls a subroutine of Execute Expression to retrieve the loop
control variable's current value from the Variable Value Table,
then gets the step value from the Runtime Stack, and finally
adds the step value to the variable value . XNEXT again calls an
Execute Expression subroutine to update the variable's value in
the Variable Value Table .

XNEXT gets the limit value from the stack to determine if
the variable's value is at or past the limit. If so, XNEXT returns
to Execution Control without changing the program flow, and
the next sequential statement is processed.

78

Chapter Nine

If the variable's value has not reached the limit, XNEXT
returns the entry to the Runtime Stack and changes the
program flow. POPRSTK already saved the line number of the
FOR statement in TSLNUM and the displacement to the
statement name token in SVDISP. XNEXT calls the :GETTOK
routine to indicate the FOR statement as the current statement.

If the token at the saved displacement is not a FOR
statement name token, then the Error Handling Routine is
given control at the ERGFDEL entry point . Otherwise, XNEXT
returns to Execution Control, which starts processing with the
statement following the FOR statement.

XGOSUB ($B6AO)
The GOSUB statement causes an entry to be made on the
Runtime Stack and also changes program flow .

The XGOSUB routine puts the GOSUB-type indicator
(zero) into the 6502 accumulator and calls PSHRSTK to put a
four-byte header entry on the Runtime Stack for later use by
the simulation routine for RETURN. XGOSUB then processes
exactly like XGOTO.

XRTN ($B719)
The RETURN statement causes an entry to be removed from
the Runtime Stack. The XRTN routine uses the information in
this entry to determine what statement should be processed
next.

The XRTN first calls POPRSTK to remove a GOSUB-type
entry from the Runtime Stack. If there are no GOSUB entries
on the stack, then the Error Handling Routine is called at
ERBRTN. Otherwise, XRTN calls :GETTOK to indicate that the
statement which created the Runtime Stack entry is now the
current statement.

If the statement name token at the saved displacement is
not the correct type, then XRTN exits via the Error Handling
Routine's ERGFDEL entry point. Otherwise, control is
returned to the caller. When Execution Control was the caller,
then GOSUB must have created the stack entry, and
processing will start at the statement following the GOSUB.

Several other statements put a GOSUB-type entry on the
stack when they need to mark their place in the program. They
do not affect program flow and will be discussed in later
chapters .

79

Chapter Nine

XPOP ($8841)
The XPOP routine uses POPRSTK to remove an entry from the
Runtime Stack. A user might want to do this if he decided not
to RETURN from a GOSUB.

XON ($87ED)
The ON statement comes in two versions: ON-GOTO and ON­
GOSUB. Only ON-GOSUB uses the Runtime Stack.

The XON routine evaluates the variable and converts it to
an integer (MOD 256). If the value is zero, XON returns to
Execution Control without changing the program flow.

If the value is non-zero and this is an ON-GOSUB
statement, XON puts a GOSUB-type entry on the Runtime
Stack for RETURN to use later.

From this point, ON-GOSUB and ON-GOTO perform in
exactly the same manner. XON uses the integer value
calculated earlier to index into the tokenized statement line to
the correct GOTO or GOSUB line number. If there is no line
number corresponding to the index, XON returns to Execution
Control without changing program flow. Otherwise, XON
joins XGOTO to finish processing .

80

Chapter Ten

Tokenized Program
Save and load

The tokenized program can be saved to and reloaded from a
peripheral device, such as a disk or a cassette. The primary
statement for saving the tokenized program is SAVE. The
saved program is reloaded into RAM with the LOAD
statement . The CSAVE and the CLOAD statements are special
versions of SAVE and LOAD for use with a cassette.

Saved File Format
The tokenized program is completely contained within the
Variable Name Table, the Variable Value Table, and the
Statement Table . However, since these tables vary in size, we
must also save some information about the size of the tables.

The SAVE file format is shown in Figure 10-1. The first part
consists of seven fields , each of them two bytes long, which tell
where each table starts or ends. Part two contains the saved
program's Variable Name Table (VNT), Variable Value Table
(VVT), and Statement Table (ST) .

The displacement value in all the part-one fields is actually
the displacement plus 256. We must subtract 256 from each
displacement value to obtain the true displacement.

The VNT starts at relative byte zero in the file's second
part. The second field in part one holds that value plus 256.

The DVVT field in part one contains the displacement,
minus 256, of the VVT from the start of part two .

The DST value, minus 256, gives the displacement of the
Statement Table from the start of part two.

The DEND value, minus 256, gives the end-of-file
displacement from the start of part two.

81

Chapter Ten

Figure 10-1. SAVE File Format

PART 1 0

2

4

6

8

10

12
14

PART 2 0

DVVT-256

DSNT-256

DEND-256

XSAVE ($885D)

0

256

Not Used .

DVVT

DST

Not Used.

DEND

VNT

VVT

ST

.......... The displace me nt of th e VNT from
the beginning of pa rt two, plus 256.

The disp lace me nt of VVT from th e
......... beginning of part two, plus 256.

• ___ The di splacement of the ST from th e
beginning of part two, plus 256.

____ The di splace ment of th e end of th e
fil e from th e beginning of part two.

____ Variable Name Table

____ Variable Valu e TZibie

.......... Sta te me nt Table

The code that implements the SAVE statement starts at the
XSAVE ($BB5D) label. Its first task is to open the specified
output file, which it does by calling ELADVC.

The next operation is to move the first seven RAM table
pointers from $80 to a temporary area at $500. While these
pointers are being moved, the value contained in the first
pointer is subtracted from the value in each of the seven
pointers, including the first.

Since the first pointer held the absolute address of the first
RAM table, this results in a list of displacements from the first
RAM table to each of the other tables. These seven two-byte
displacements are then written from the temporary area to the
file via 103. These are the first fourteen bytes of the SAVE file.
(See Figure 10-1.)

The first RAM table is the 256-byte buffer, which will not be
SAVEd. This is why the seven two-byte fields at the beginning
of the SAVEd file hold values exactly 256 more than the true

82

Chapter Ten

displacement of the tables they point to. (The LOAD procedure
will resolve the 256-byte discrepancy.)

The next operation is to write the three needed RAM
tables. The total length of these tables is determined from the
value in the seventh entry in the displacement list, minus 256.
To write the three entries, we point to the start of the Variable
Name Table and call 104, with the length of the three tables .
This saves the second part of the file format .

The file is then closed and XSAVE returns to Execution
Control.

XLOAD ($BAFB)
The LOAD statement is implemented at the XLOAD label
located at $BAFB.

XLOAD first opens the specified load file for input by
calling ELADVC. BASIC reads the first fourteen bytes from the
file into a temporary area starting at $500. These fourteen bytes
are the seven RAM table displacements created by SAVE.

The first two bytes will always be zero, according to the
SAVE file format. (See Figure 10-1.) BASIC tests these two
bytes for zero values. If these bytes are not zero, BASIC
assumes the file is not a valid SAVE file and exits via the
ERRNSF, which generates error code 21 (Load File Error).

If this is a valid SAVE file, the value in the pointer at $80
(Low Memory Address) is added to each of the seven displace­
ments in the temporary area. These values will be the memory
addresses of the three RAM tables, if and when they are read
into memory.

The seventh pointer in the temporary area contains the
address where the end of the Statement Table will be. If this
address exceeds the current system high memory value, the
routine exits via ERRPTL, which generates error code 19 (Load
Program Too Big) .

If the program will fit, the seven addresses are moved from
the temporary area to the RAM table pointers at $80. The
second part of the file is then loaded into the area now pointed
to by the Variable Name Table pointer $82. The file is closed,
CLR is executed, and a test for RUN is made.

If RUN called XLOAD, then a value of $FF was pushed
onto the CPU stack. If RUN did not call XLOAD, then $00 was
pushed onto the CPU stack. If RUN was the caller, then an RTS
is done.

83

Chapter Ten

If XLOAD was entered as a result of a LOAD or CLOAD
statement, then XLOAD exits directly to the Program Editor,
not to Execution Control.

CSAVE and CLOAD
The CSAVE and CLOAD statements are special forms of SAVE
and LOAD. These two statements assume that the
SAVE/LOAD device is the cassette device.

CSAVE is not quite the same as SAVE "C " . Using SAVE
with the "C:" device name will cause the program to be saved
using long cassette inter-record gaps. This is a time waster, and
CSAVE uses short inter-record gaps.

CSAVE starts at XCSAVE ($BBAC) . CLOAD starts at
XCLOAD ($BBA4).

84

Chapter Eleven

The LIST and ENTER
Statements

UST can be used to store a program on an external device and
ENTER can retrieve it . The difference between LOAD-SAVE
and LIST-ENTER is that LOAD-SAVE deals with the tokenized
program, while LIST-ENTER deals with the program in its
source (ATASCII) form.

The ENTER Statement
BASIC is in ENTER mode whenever a program is not
RUNning. By default the Program Editor looks for lines to be
ENTERed from the keyboard, but the editor handles all
ENTERed lines alike, whether they come from the keyboard or
not.

The Enter Device
To accomplish transparency of all input data (not just ENTERed
lines), BASIC maintains an enter device indicator, ENTDTD
($B4). When a BASIC routine (for example, the INPUT
simulation routine) needs data, an 110 operation is done to the
IOCB specified in ENTDTD . When the value in ENTDTD is
zero, indicating 10CB 0, input will come from the keyboard .
When data is to come from some other device, ENTDTD
contains a number indicating the corresponding 10CB. During
colds tart initialization, the enter device is set to IOCB O. It is
also reset to 0 at various other times.

XENTER ($BACB)
The XENTER routine is called by Execution Control to simulate
the ENTER statement. XENTER opens IOCB 7 for input using
the specified < filespec> , stores a 7 in the enter device
ENTDTD, and then jumps to the start of the editor.

Entering from a Device
When the Program Editor asks CLCO, the get line routine
($BA92), for the next line, CLCO tells CIO to get a line from the

85

Chapter Eleven

device specified in ENTDTD - in this case, from 10CB 7. The
editor continues to process lines from 10CB 7 until an end-of­
file error occurs. The 10TEST routine detects the EOF
condition, sees that we are using 10CB 7 for ENTER, closes
device 7, and jumps to SNX2 to reset the enter device
(ENTDTD) to 0 and print the READY message before restarting
at the beginning of the editor .

The LIST Statement
The routine which simulates the LIST statement, XLIST, is
actually another example of a language translator, complete
with symbols and symbol-combining rules. XLIST translates
the tokens generated by Atari BASIC back into the semi­
English BASIC statements in ATASCII. This translation is a
much simpler task than the one done by the pre-compiler,
since XLIST can assume that the statement to be translated is
syntactically correct. All that is required is to translate the
tokens and insert blanks in the appropriate places .

The List Device
BASIC maintains a list device indicator, LISTDTD ($B5),
similar to the enter device indicator discussed earlier.
When a BASIC routine wants to output some data (an error
message, for example), the I/O operation is done to the device
(IOCB) specified in LISTDTD.

During coldstart initialization and at various other times,
LISTDTD is set to zero, representing 10CB 0, the editor, which
will place the output on the screen. Routines such as XPRINT
or XLIST can change the LIST device to indicate some other
10CB. Thus the majority of the BASIC routines need not be
concerned about the output's destination .

Remember that 10CB 0 is always open to the editor, which
gets input from the keyboard and outputs to the screen. 10CB 6
is the S: device, the direct access to graphics screen, which is
used in GRAPHICS statements. Atari BASIC uses 10CB 7 for
1/0 commands that allow different devices, like SAVE, LOAD,
ENTER, and LIST .

XLiST ($8483)
The XLIST routine considers the output's destination in its
initialization process and then forgets about it. It looks at the
first expression in the tokenized lin~. If it is the < filespec>

86

Chapter Eleven

string, XLIST calls a routine to open the specified device using
lOCB 7 and to store a 7 in LISTDTD. All of XLIST' s other
processing is exactly the same, regardless of the LISTed data's
final destination.

XLIST marks its place in the Statement Table by calling a
subroutine of XGOSUB to put a GOSUB type entry on the
Runtime Stack. Then XLIST steps through the Statement Table
in the same way that Execution Control does, using Execution
Control's line parameters and subroutines . When XLIST is
finished, Execution Control takes the entry off the Runtime
Stack and continues .

The XLIST routine, assuming it is to LIST all program
statements, sets default starting and ending line numbers of 0
(in TSLNUM) and $7FFF (in LELNUM).

XLIST then determines whether line numbers were
specified in the tokenized line that contained the LIST
statement. XLIST compares the current index into the line
(STINDEX) to the displacement to the next statement
(NXTSTD). If STINDEX is not pointing to the next statement,
at least one line number is specified. In this case, XLIST calls a
subroutine of Execute Expression to evaluate the line number
and convert it to a positive integer, which XLIST stores in
TSLNUM as the starting line number.

If a second line number is specified, XLIST calls Execute
Expression again and stores the value in LELNUM as the final
line to LIST. If there is no second line number, then XLIST
makes the ending line number equal to the starting line
number, and only one line will be LISTed . If no line numbers
were present, then TSLNUM and LELNUM still contain their
default values, and all the program lines will be LISTed .

XLIST gets the first line to be LISTed by calling the
Execution Control subroutine GETSTMT to initialize the line
parameters to correspond to the line number in TSLNUM. If
we are not at the end of the Statement Table, and if the current
line's number is less than or equal to the final line number to be
LISTed, XLIST calls a subroutine :LLINE to list the line.

After LISTing the line, XLIST calls Execution Control's
subroutines to point to the next line. LISTing continues in this
manner until the end of the Statement Table is reached or until
the final line specified has been printed.

When XLIST is finished, it exits via XRTN at $B719, which
makes the LIST statement the current statement again and then
returns to Execution Control.

87

Chapter Eleven

LIST Subroutines

:LlINE ($855C)
The :LLINE routine LISTs the current line (the line whose
address is in STMCUR).

: LLINE gets the line number from the beginning of the
tokenized line. The floating point package is called to convert
the integer to floating point and then to printable ATASCII . The
result is stored in the buffer indicated by INBUFF. : LLINE calls
a subroutine to print the line number and then a blank.

For every statement in the line, :LLINE sets STINDEX to
point to the statement name token and calls the: LSTMT
routine ($B590) to LIST the statement. When all statements
have been LISTed, : LLINE returns to its caller, XLIST.

:LSTMT ($8590)
The :LSTMT routine LISTs the statement which starts at the
current displacement (in STINDEX) into the current line. This
routine does the actual language translation from tokens to
BASIC statements.

:LSTMT uses two subroutines, :LGCT and :LGNT, to get
the current and next token, respectively. If the end of the
statement has been reached, these routines both pull the return
address of their caller off the 6502 CPU stack and return to
:LSTMT's caller, :LLINE. Otherwise, they return the requested
token from the tokenized statement line.

The first token in a statement is the statement name tok,en.
:LSTMT calls a routine which prints the corresponding
statement name by calling: LSCAN to find the entry and
:LPRTOKEN to print it.

In the discussion of the Program Editor we saw that an
erroneous statement was given a statement name of ERROR
and saved in the Statement Table. If the current statement is
this ERROR statement or is REM or DATA, :LSTMT picks up
each remaining character in the statement and calls PRCHAR
($BA9F) to print the character.

Each type of token is handled differently. : LSTMT
determines the type (variable, numeric constant, string
constant, or operator) and goes to the proper code to translate
it.

Variable Token. A variable token has a value greater than or
equal to $80. When :LSTMT encounters a variable token, it

88

Chapter Eleven

turns off the most significant bit to get an index into the
Variable Name Table . :LSTMT asks the :LSCAN routine to get
the address of this entry. : LSTMT then calls: LPRTOKEN
($B535) to print the variable name. If the last character of the
name is (, the next token is an array left parenthesis operator,
and: LSTMT skips it.

Numeric Constant Token. A numeric constant is indicated by
a token of $OE. The next six bytes are a floating point number.
: LSTMT moves the numeric constant from the tokenized line to
FRO ($04) and asks the floating point package to convert it to
ATASCII. The result is in a buffer pointed to by INBUFF.
:LSTMT moves the address of the ATASCII number to
SRCAOR and tells: LPRTOKEN to print it.

String Constant Token. A string constant is indicated by a
token of $OF. The next byte is the length of the string followed
by the actual string data . Since the double quotes are not stored
with a string constant, : LSTMT calls PRCHAR ($BA9F) to print
the leading double quote. The string length tells: LSTMT how
many following characters to print without translation.
:LSTMT repeatedly gets a character and calls PRCHAR to print
it until the whole string constant has been processed. It then
asks PRCHAR to print the ending double quote.

Operator Token. An operator token is any token greater than
or equal to $10 and less than $80. By subtracting $10 from the
token value, :LSTMT creates an index into the Operator Name
Table. :LSTMT calls :LSCAN to find the address of this entry. If
the operator is a function (token value greater than or equal to
$30L :LPROTOKEN is called to print it. If this operator is not a
function but its name is alphabetic (such as AND), the name is
printed with a preceding and following blank. Otherwise,
:LPRTOKEN is called to print just the operator name.

: lSCAN ($B50C)
This routine scans a table until it finds the translation of a token
into an ATASCII name . A token's value is based on its table
entry number; therefore, the entry number can be derived by
modifying the token. For example, a variable token is created
by machine-language ~Ring the table entry number of the
variable name with $80. The entry number can be produced by
ANDing out the high-order bit of the token. It is this entry
number, stored in SCANT, that the: LSCAN routine uses.

89

Chapter Eleven

The tables scanned by :LSCAN have a definite structure.
Each entry consists of a fixed length portion followed by a
variable length ATASCII portion. The last character in the
ATASCII portion has the high-order bit on. Using these facts,
: LSCAN finds the entry corresponding to the entry number in
SCANT and puts the address of the ATASCII portion in
SCRADR.

:LPRTOKEN ($8535)
This routine's task is to print the string of ATASCII characters
whose address is in SCRADR. : LPRTOKEN makes sure the
most significant bit is off (except for a carriage return) and
prints the characters one at a time until it has printed the last
character in the string (the one with its most significant bit on).

)

90

Chapter Twelve

Atari Hardware
Control Statements

The Atari Hardware Control Statements allow easy access to
some of the computer's graphics and audio capabilities . The
statements in this group are COLOR, GRAPHICS, PLOT,
POSITION, DRAWTO, SETCOLOR, LOCATE, and SOUND.

XGR ($8A50)
The GRAPHICS statement determines the current graphics
mode . The XGR simulation routine executes the GRAPHICS
statement. The XGR routine first closes IOCB 6. It then calls an
Execute Expression subroutine to evaluate the graphics mode
value and convert it to an integer.

XGR sets up to open the screen by putting the address of a
string "S:" into INBUFF. It creates an AUXl and AUX2 byte
from the graphics mode integer. XGR calls a BASIC I/O routine
which sets up IOCB 6 and calls CIO to open the screen for the
specified graphics mode . Like all BASIC routines that do I/O,
XGR jumps to the 10TEST routine, which determines what to
do next based on the outcome of the I/O .

XCOlOR ($8A29)
The COLOR statement is simulated by the XCOLOR routine .
XCOLOR calls a subroutine of Execute Expression to evaluate
the color value and convert it to an integer. XCOLOR saves this
value (MOD 256) in BASIC memory location COLOR ($C8).
This value is later retrieved by XPLOT and XDRAWTO.

XSETCOlOR ($8987)
The routine that simulates the SETCOLOR statement,
XSETCOLOR, calls a subroutine of Execute Expression to
evaluate the color register specified in the tokenized line. The
Execute Expression routine produces a one-byte integer. If the
value is not less than 5 (the number of color registers),
XSETCOLOR exits via the Error Handling Routine at entry
point ERVAL. Otherwise, it calls Execute Expression to get two
more integers from the tokenized line.

91

Chapter Twelve

To calculate the color value, XSETCOLOR multiplies the
first integer (MOD 256) by 16 and adds the second (MOD 256).
Since the operating system's five color registers are in
consecutive locations starting at $2C4, XSETCOLOR uses the
register value specified as an index to the proper register
location and stores the color value there.

XPOS ($BA16)
The POSITION statement, which specifies the X and Y
coordinates of the graphics cursor, is simulated by the XPOS
routine.

XPOS uses a subroutine of Execute Expression to evaluate
the X coordinate of the graphics window cursor and convert it
to an integer value. The two-byte result is stored in the
operating system's X screen coordinate location (SCRX at $55).
This is the column number or horizontal position of the cursor .

XPOS then calls another Execute Expression subroutine to
evaluate the Y coordinate and convert it to a one-byte integer.
The result is stored in the Y screen coordinate location (SCRY at
$54). This is the row number, or vertical position.

XLOCATE ($BC95)
XLOCATE, which simulates the LOCATE statement, first calls
XPOS to set up the X and Y screen coordinates. Next it
initializes 10CB 6 and joins a subroutine of XGET to do the
actual I/O required to get the screen data into the variable
specified.

XPLOT ($BA76)
..

XPLOT, which simulates the PLOT statement, first calls XPOS
to set the X and Y coordinates of the graphics cursor. XPLOT
gets the value that was saved in COLOR ($C8) and joins a PUT
subroutine (PRCX at $BAA1) to do the I/O to 10CB 6 (the
screen).

XDRAWTO ($BA31)
The XDRAWTO routine draws a line from the current X, Y
screen coordinates to the X, Y coordinates specified in the
statement . The routine calls XPOS to set the new X,Y
coordinates. It places the value from BASIC's memory location
COLOR into OS location SVCOLOR ($2FB) . XDRAWTO does
some initialization of lOeB 6 specifying the draw command
($11). It then calls a BASIC I/O routine which finishes the

92

Chapter Twelve

initialization of 10CB 6 and calls CIO to draw the line. Finally,
XDRAWTO jumps to the 10TEST routine, which will
determine what to do next based on the outcome of the 110.

XSOUND ($89DD)
The Atari computer hardware uses a set of memory locations to
control sound capabilities. The SOUND statement gives the
user access to some of these capabilities. The XSOUND
routine, which simulates the SOUND statement, places fixed
values in some of the sound locations and user specified values
in others .

The XSOUNO routine uses Execute Expression to get four
integer values from the tokenized statement line. If the first
integer (voice) is greater than or equal to 4, the Error Handling
Routine is invoked at ERVAL.

The OS audio control bits are all turned off by storing a 0
into $0208. Any bits left on from previous serial port usage are
cleared by storing 3 in $D20F.

The Atari has four sound registers (one for each voice)
starting at $D200. The first byte of each two-byte register
determines the pitch (frequency). In the second byte, the four
most significant bits are the distortion, and the four least
significant bits are the volume.

The voice value mentioned earlier is multiplied by 2 and
used as an index into the sound registers. The second value
from the tokenized line is stored as the pitch in the first byte of
one of the registers ($D200, $D202, $D204, or $D206),
depending on the voice index. The third value from the
tokenized line is multiplied by 16 and the fourth value is added
to it to create the value to be stored as distortion/volume. The
voice, times 2, is again used as an index to store this value in
the second byte of a sound register ($D201, $D203, $D205, or
$D207). The XSOUND routine then returns to Execution
Control.

93

-

-

Chapter Thirteen

External Data
1/0 Statements

The external data I/O statements allow data which is not part of
the BASIC source program to flow into and out of BASIC.
External data can come from the keyboard, a disk, or a cassette.
BASIC can also create external information by sending data to
external devices such as the screen, a printer, or a disk.

The INPUT and GET statements are the primary
statements used for obtaining information from external
devices. The PRINT and PUT statements are the primary
statements for sending data to external devices.

XIO, LPRINT, OPEN, CLOSE, NOTE, POINT and
STATUS are specialized I/O statements. LPRINT is used to
print a single line to the liP: II device. The other statements
assist in the 1/0 process.

XINPUT ($8316)
The execution of the INPUT statement starts at XINPUT
($B316).

Getting the Input Line. The first action of XINPUT is to
read a line of data from the indicated device. A line is any
combination of up to 255 characters terminated by the EOL
character ($9B). This line will be read into the buffer located at
$580.

If the INPUT statement contained was followed by
< expression> , the data will be read from the IOCB whose
number was specified by < expression> . If there was no
< expression> , IOCB 0 will be used. IOCB 0 is the screen
editor and keyboard device (E:). If IOCB 0 is indicated, the
prompt character (?) will be displayed before the input line
request is made; otherwise, no prompt is displayed .

Line Processing. Once the line has been read into the
buffer, processing of the data in that line starts at XINA
($B335). The input line data is processed according to the
tokens in the INPUT (or READ) statements. These tokens are
numeric or string variables separated by commas.

95

Chapter Thirteen

Processing a Numeric Variable. If the new token is a
numeric variable, the CVAFP routine is called to convert the
next characters in the input line to a floating point number. If
this conversion does not report an error, and if the next input
line character is a comma or an EOL, the floating point value is
processed.

The processing of a valid numeric input value consists of
calling RTNVAR to return the variable and its new value to the
Variable Value Table.

If there is an error, INPUT processing is aborted via the
ERRINP routine. If there is no error, but the user has hit
BREAK, the process is aborted via XSTOP. If there is no abort,
XINX ($B389) is called to continue with INPUT's next task.

Processing a String Variable. If the next statement token is
a string variable, it is processed at XISTR ($B35E). This routine
is also used by the READ statement. If the calling statement is
INPUT, then all input line characters from the current character
up to but not including the EOL character are considered to be
part of the input string data. If the routine was called by READ,
all characters up to but not including the next comma or EOL
are considered to be part of the input string.

The process of assigning the data to the string variable is
handled by calling RISASN ($B386). If RISASN does not abort
the process because of an error like DIMENSION TOO
SMALL, XINX is called to continue with INPUT's next task .

XINX. The XINX ($B389) routine is entered after each variable
token in an INPUT or a READ statement is processed.

If the next token in the statement is an EOL, the
INPUT/READ statement processing terminates at XIRTS
($B3Al). XIRTS restores the line buffer pointer ($80) to the
RAM table buffer. It then restores the enter device to IOCB 0
(in case it had been changed to some other input device).
Finally, XIRTS executes an RTS instruction.

If the next INPUT/READ statement token is a comma, more
input data is needed. If the next input line character is an EOL,
another input line is obtained. If the statement was INPUT, the
new line is obtained by entering XINO ($B326) . If the statement
was READ, the new line is obtained by entering XRD3 ($B2DO).

The processing of the next INPUT/READ statement
variable token continues at XINA.

96

Chapter Thirteen

XGET ($8C7F)
The GET statement obtains one character from some specified
device and assigns that character to a scalar (non-array)
numeric variable.

The execution of GET starts at XGET ($BC7F) with a call to
GrODVe. GIODVC will set the I/O device to whatever number
is specified in the # < expression> or to IOCB zero if no
< expression> was specified. (If the device is IOCB a (E:), the
user must type RETURN to force E: to terminate the input.)

The single character is obtained by calling 103. The
character is assigned to the numeric variable by calling ISVARI
($BD2D). ISVARI also terminates the GET statement
processing.

PRINT
The PRINT statement is used to transmit text data to an
external device. The arguments in the PRINT statement are a
list of numeric and/or string expressions separated by commas
or semicolons . If the argument is numeric, the floating point
value is converted to text form. If the argument is a string, the
string value is transmitted as is.

If an argument separator is a comma, the arguments are
output in tabular fashion: each new argument starts at the next
tab stop in the output line, with blanks separating the
arguments.

If the argument separator is a semicolon, the transmitted
arguments are appended to each other without separation.

The transmitted line is terminated with an EOL, unless a
semicolon or comma directly precedes the statement's EOL or
statement separator (:).

XPRINT ($8386). The PRINT routine begins at XPRINT
($B3B6). The tab value is maintained in the PTABW ($C9) cell.
The cell is initialized with a value of ten during BASIC's cold
start, so that commas in the PRINT line cause each argument to
be displaced ten positions after the beginning of the last
argument . The user may POKE PTABW to set a different tab
value .

XPRINT copies PTABW to SCANT ($AF). SCANT will be
used to contain the next multiple-of-PTABW output line
displacement - the column number of the next tab stop .

COX is initialized to zero and is used to maintain the
current output column or displacement.

97

Chapter Thirteen

XPRO. XPRINT examines the next statement token at XPRO
($B3BE), classifies it, and executes the proper routine.

Token. If the next token is #, XPRIOD ($B437) is entered.
This routine modifies the list device to the device specified in
the # < expression> . XPRO is then entered to process the next
token.
, Token. The XPTAB ($B419) routine is called to process
the, token. Its job is to tab to the next tab column.

If COX (the current column) is greater than SCANT, we
must skip to the next available tab position. This is done by
continuously adding PTABW to SCANT until COX is less than
or equal to SCANT. When COX is less than SCANT, blanks
($20) are transmitted to the output device until COX is equal to
SCANT.

The next token is then examined at XPRO.

EOL and: Tokens. The XPEOS ($B446) routine is entered
for EOL and: tokens. If the previous token was a; or, token,
PRINT exits at XPRTN ($B458). If the previous token was not a ;
or , token, an EOL character is transmitted before exiting via
XPRTN.

; Token. No special action is taken for the; token except to
go to XPRO to examine the next token.
Numbers and Strings. If the next token is not one of the
above tokens, Execute Expression is called to evaluate the
expression. The resultant value is popped from the argument
stack and its type is tested for a number or a string.

If the argument popped was numeric, it will be converted
to text form by calling CVFASC. The resulting text is
transmitted to the output device from the buffer pointed to by
INBUFF ($F3). XPRO is then entered to process the next token.

If the argument popped was a string, it will be transmitted
to the output device by the code starting at :XPSTR ($B3F8).
This code examines the argument parameters to determine the
current length of the string. When the string has been
transmitted, XPRO is entered to process the next token.

XLPRINT ($8464)
LPRINT, a special form of the PRINT statement, is used to print
a line to the printer device (P :).

98

Chapter Thirteen

The XLPRINT routine starts at $B464 by opening 10CB 7 for
output to the P: device. XPRINT is then called to do the
printing. When the XPRINT is done, 10CB 7 is closed via
CLSYSl and LPRINT is terminated .

XPUT ($BC72)
The PUT statement sends a single byte from the expression in
the PUT statement to a specified external device .

Processing starts at XPUT ($BC72) with a call to GIODVC.
GIODVC sets the 110 device to the 10CB specified in
< expression> . If a # < expression> does not exist, the
device will be set to 10CB zero (E :).

The routine then calls GETINT to execute PUT's expression
and convert the resulting value to a two-byte integer. The least
significant byte of this integer is then sent to the PUT device via
PRCX. PRCX also terminates the PUT processing.

XXIO ($BBE5)
The XIO statement, a general purpose I/O statement, is
intended to be used when no other BASIC 110 statement will
serve the requirements . The XIO parameters are an 10CB 110
command, an 10CB specifying expression, an AUXl value, an
AUX2 value, and finally a string expression to be used as a
filespec parameter.

XIO starts at XXIO ($BBES) with a call to GIOCMD.
GIOCMD gets the 10CB command parameter. XIO then
continues at XOPl in the OPEN statement code .

XOPEN ($BBEB)
The OPEN statement is used to open an external device for
input and/or output. OPEN has a # < expression> , the open
type parameter (AUX1), an AUX2 parameter, and a string
expression to be used as a filespec.

OPEN starts at XOPEN at $BBEB. It loads the open
command code into the A register and continues at XOP1.

XOP1. XOPl continues the OPEN and XIO statement
processing. It starts at $BBED by storing the A register into the
10CMD cell. Next it obtains the AUXl (open type) and AUX2
values from the statement.

The next parameter is the filespec string. In order to insure
that the filespec has a proper terminator, SETSEOL is called to
place a temporary EOL at the end of the string .

99

Chapter Thirteen

The XIO or OPEN command is then executed via a call to
101. When 101 returns, the temporary EOL at the end of the
string is replaced with its previous value by calling RSTSEOL.

OPEN and XIO terminate by calling 10TEST to insure that
the command was executed without error.

XCLOSE ($BC1 B)
The CLOSE statement, which closes the specified device, starts
at XCLOSE ($BClB). It loads the 10CB close command code
into the A register and continues at GDVCIO.

CDVCIO. GDVCIO ($BC1D) is used for general purpose
device I/O . It stores the A register into the IOCMD cell, calls
GIODVC to get the device from # < expression> , then calls 107
to execute the 1/0. When 107 returns, 10TEST is called to test
the results of the I/O and terminate the routine.

XSTATUS ($BC28)
The STATUS statement executes the 10CB status command.
Processing starts at XSTATUS ($BC28) by calling GIODVC to
get the device number from # < expression> . It then calls 108
with the status command in the A register. When 108 returns,
the status returned in the 10CB status cell is assigned to the
variable specified in the STATUS statement by calling ISVARl.
ISVAR1 also terminates the STATUS statement processing.

XNOTE ($BC36)
The NOTE statement is used specifically for disk random
access. NOTE executes the Disk Device Dependent Note
Command, $26, which returns two values representing the
current position within the file for which the 10CB is open.

NOTE begins at XNOTE at $BC36. The code loads the
command value, $26, into the A register and calls GDVCIO to
do the 110 operation . When GDVCIO returns, the values are
moved from AUX3 and AUX4 to the first variable in the NOTE
statement. The next variable is assigned the value from AUX5.

XPOINT ($BC4D)
The POINT statement is used to position a disk file to a
previously NOTEd location. Processing starts at XPOINT
($BC4D). This routine converts the first POINT parameter to an
integer and stores the value in AUX3 and AUX4. The second
parameter is then converted to an integer and its value stored

100

Chapter Thirteen

in AUX5 . The POINT command, $25, is executed by calling
GDI01, which is part of GDVCIO.

Miscellaneous 1/0 Subroutines
IOTEST. laTEST ($BCB3) is a general purpose routine that
examines the resufts of an I/O ope~ation. If the I/O processing
has returned an error, 10TEST processes that error.

10TEST starts by calling LDIOSTA to get the status byte
from the IOCB that performed the last I/O operation. If the byte
value is positive (less than 128), IOTEST returns to the caller.

If the status byte is negative, the I/O operation was
abnormal and processing continues at SICKIO.

If the I/O aborted due to a BREAK key depression, BRKBYT
($11) is set to zero to indicate BREAK. If a LOAD was in
progress when BREAK was hit, exit is via COLDSTART;
otherwise 10TEST returns to its caller.

If the error was not from IOCB 7 (the device BASIC uses),
the error status value is stored in ERRNUM and ERROR is
called to print the error message and abort program execution.

If the error was from 10CB 7, then 10CB 7 is closed and
ERROR is called with the error status value in ERRNUM -
unless ENTER was being executed, and the error was an end­
of-file error. In this case, 10CB 7 is closed, the enter device is
reset to 10CB 0, and SNX2 is called to return control to the
Program Editor.

1/0 Call Routine. All I/O is initiated from the routine starting
at 101 ($BDOA). This routine has eight entry points, 101
through 108, each of which stores predetermined values in an
10CB. All IOn entry points assume that the X register contains
the 10CB value, times 16.

101 sets the buffer length to 255.
102 sets the buffer length to zero.
I03 sets the buffer length to the value in the Y register plus

a most-significant length byte of zero.
104 sets the buffer length from the values in the Y,A

register pair, with the A register being the most-significant
value.

105 sets the buffer address from the value in the INBUFF
cell ($F3).

106 sets the buffer address from the Y,A register pair. The
A register contains the most significant byte.

101

Chapter Thirteen

107 sets the I/O command value from the value in the
IOCMD cell.

108 sets the I/O command from the value in the A register.
All of this is followed by a call to the operating system CIO

entry point. This call executes the I/O . When CIO returns, the
general I/O routine returns to its caller.

102

Chapter Fourteen

Internal 1/0
Statements

The READ, DATA, and RESTORE statements work together to
allow the BASIC user to pass predetermined information to his
or her program. This is, in a sense, internal 110 .

XDATA ($A9E7)
The information to be passed to the BASIC program is stored in
one or more DATA statements. A DATA statement can occur
any place in the program, but execution of a DATA statement
has no effect.

When Execution Control encounters a DATA statement, it
expects to process this statement just like any other. Therefore
an XDATA routine is called, but XDATA simply returns to
Execution Control.

XREAD ($8283)
The XREAD routine must search the Statement Table to find
DATA. It uses Execution Control's subroutines and line
parameters to do this. When XREAD is done, it must restore
the line parameters to point to the READ statement. In order to
mark its place in the Statement Table, XREAD calls a
subroutine of XGOSUB to put a GOSUB-type entry on the
Runtime Stack .

The BASIC program may need to READ some DATA, do
some other processing, and then READ more DATA.
Therefore, XREAD needs to keep track of just where it is in
which DATA statement. There are two parameters that provide
for this . DATALN ($B7) contains the line number at which to
start the search for the next DATA statement. DATAD ($B6)
contains the displacement of the next DATA element in the
DATALN line. Both values are set to zero as part of RUN and
CLR statement processing.

XREAD calls Execution Control's subroutine GETSTMT to
get the line whose number is stored in DATALN. If this is the
first READ in the program and a RESTORE has not set a

103

Chapter Fourteen

different line number, DATALN contains zero, and GETSTMT
will get the first line in the program. On subsequent READs,
GETSTMT gets the last DATA statement that was processed by
the previous READ.

After getting its first line, XREAD calls the XRTN routine to
restore Execution Control's line parameters.

The current line number is stored in DATALN. XREAD
steps through the line, statement by statement, looking for a
DATA statement. If the line contains no DATA statement, then
subsequent lines and statements are examined until a DATA
statement is found.

When a DATA statement has been found, XREAD inspects
the elements of the DATA statement until it finds the element
whose displacement is in DATAD.

If no DATA is found, XREAD exits via the ERROOD entry
point in the Error Handling Routine. Otherwise, a flag is set to
indicate that a READ is being done, and XREAD joins XINPUT
at :XINA. XINPUT handles the assignment of the DATA values
to the variables . (See Chapter 13.)

XREST ($8268)
The RESTORE statement allows the BASIC user to re-READ a
DATA statement or change the order in which the DATA
statements are processed . The XREST routine simulates
RESTORE.

XREST sets DATALN to the line number given, or to zero if
no line number is specified. It sets DATAD to zero, so that the
next READ after a RESTORE will start at the first element in the
DATA line specified in DATALN.

104

Chapter Fifteen

Miscellaneous
Statements

XDEG ($8261) and XRAD ($8266)
The transcendental functions such as SIN or COS will work
with either degrees or radians, depending on the setting of
RADFLG ($FB). The DEG and RAD statements cause RADFLG
to be set. These statements are simulated by the XDEG and
XRAD routines, respectively.

The XDEG routine stores a six in RADFLG. XRAD sets it to
zero. These particular values were chosen because they aid the
transcendental functions in their calculations .

RADFLG is set to zero during BASIC's initialization
process and also during simulation of the RUN statement.

XPOKE ($824C)
The POKE statement is simulated by the XPOKE routine.
XPOKE calls a subroutine of Execute Expression to get the
address and data integers from the tokenized line. XPOKE then
stores the data at the specified address.

XBYE ($A9E8)
The XBYE routine simulates the BYE statement. XBYE closes all
IOCBs (devices and files) and then jumps to location $E471 in
the Operating System. This ends BASIC and causes the memo
pad to be displayed.

XDOS ($A9EE)
The DOS statement is simulated by the XDOS routine. The
XDOS routine closes all IOCBs and jumps to whatever address
is stored in location $OA. This will be the address of DOS if
DOS has been loaded. If DOS has not been loaded, $OA will
point to the memo pad.

XLET ($AAEO)
The LET and implied LET statements assign values to
variables. They both invoke the XLET routine, which consists
of the Execute Expression routines. (See Chapter 7.)

105

Chapter Fifteen

XREM ($A9E7)
The REM statement is for documentation purposes only and
has no effect on the running program. The routine which
simulates REM, XREM, simply executes an RTS instruction to
return to Execution Control.

XERR ($891 E)
When a line containing a syntax error is entered, it is given a
special statement name token to indicate the error. The entire
line is flagged as erroneous no matter how many previously
good statements are in the line . The line is then stored in the
Statement Table.

The error statement is processed just like any other.
Execution Control calls a routine, XERR, which is one of the
entry points to the Error Handling Routine . It causes error 17
(EXECUTION OF GARBAGE).

XDIM ($8109)
The DIMension statement, simulated by the XDIM routine,
reserves space in the String/Array Table for the DIMensioned
variable.

The XDIM routine calls Execute Expression to get the
variable to be DIMensioned from the Variable Value Table . The
variable entry is put into a work area . In the process, Execute
Expression gets the first and second DIMension values and sets
a default of zero if only one value is specified.

XDIM checks to see if the variable has already been
DIMensioned. If the variable was already DIMensioned, XDIM
exits via the ERRDIM entry point in the Error Handling
Routine. If not, a bit is set in the variable type byte in the work
area entry to mark this variable as DIMensioned .

Next, XDIM calculates the amount of space required. This
calculation is handled differently for strings and arrays.

DIMensioning an Array. XDIM first increments both
dimension values by one and then multiplies them together to
get the number of elements in the array. XDIM multiplies the
result by 6 (the length of a floating point number) to get the
number of bytes required . EXPAND is called to expand the
String/ Array Table by that amount.

XDIM must finish building the variable entry in the work
area . It stores the first and second dimension values in the
entry. It also stores the array's displacement into the

106

Chapter Fifteen

String! Array Table. It then calls an Execute Expression
subroutine to return the variable to the Variable Value Table .
(See Chapter 3.)

DIMensioning a String. Reserving space for a string in the
String! Array Table is much simpler. XDIM merely calls the
EXPAND routine to expand by the user-specified size.

XDIM must also build the Variable Value Table entry in the
work area. It sets the current length to 0 and the maximum
length to the DIMensioned value . The displacement of the
string into the String! Array Table is also stored in the variable.
XDIM then calls a subroutine of Execute Expression to return
the variable entry to the Variable Value Table. (See Chapter 3.)

107

Chapter Sixteen

Initialization
When the Atari computer is powered up with the BASIC
cartridge in place, the operating system does some processing
and then jumps to a BASIC routine. Between the time that
BASIC first gets control and the time it prints the READY
message, initialization takes place. This initialization is called a
cold start. No data or tables are preserved during a cold start.

Initialization is repeated if things go terribly awry. For
example, if there is an 110 error while executing a LOAD
statement, BASIC is totally confused. It gives up and begins all
over again with the COLDSTART routine.

Sometimes a less drastic partial initialization is necessary.
This process is handled by the WARMSTART routine, in which
some tables are preserved.

Entering the NEW statement, simulated by the XNEW
routine, has almost the same effect as a cold start.

COLDSTART ($AOOO)
Two flags, LOADFLG and WARMFLG, are used to determine
if a cold or warm start is required.

The load flag, LOADFLG ($CA), is zero except during the
execution of a LOAD statement. The XLOAD routine sets the
flag to non-zero when it starts processing and resets it to zero
when it finishes. If an 1/0 error occurs during that interval,
10TEST notes that LOADFLG is non-zero and jumps to
COLDSTART.

The warm-start flag, WARMFLG ($08), is never set by
BASIC. It is set by some other routine, such as the operating
system or DOS. If WARMFLG is zero, a cold start is done . If it
is non-zero, a warm start is done. During its power-up
processing, before BASIC is given control, OS sets WARMFLG
to zero to request a cold start. During System Reset processing,
OS sets the flag to non-zero, indicating a warm start is desired.

If DOS has loaded any data into BASIC's program area
during its processing, it will request a cold start.

The COLDSTART routine checks both WARMFLG and
LOADFLG to determine whether to do a cold or warm start. If
a cold start is required, COLDSTART initializes the 6502 CPU

109

Chapter Sixteen ______________ _

stack and clears the decimal flag. The rest of its processing is
exactly the same as if the NEW statement had been entered.

XNEW ($AOOC)
The NEW statement is simulated by the XNEW routine. XNEW
resets the load flag, LOADFLG, to zero. It initializes the zero­
page pointers to BASIC's RAM tables. It reserves 256 bytes at
the low memory address for the multi purpose buffer and
stores its address in the zero-page pointer located at $80.
Since none of the RAM tables are to retain any data, their zero­
page pointers ($82 through $90) are all set to low memory plus
256 .

The Variable Name Table is expanded by one byte, which is
set to zero. This creates a dummy end-of-table entry .

The Statement Table is expanded by three bytes. The line
number of the direct statement ($8000) is stored there along
with the length (three). This marks the end of the Statement
Table .

A default tab value of 10 is set for the PRINT statement.

WARMSTART ($A04D)
A warm start is the least drastic of the three types of
initialization. Everything the WARMSTART routine does is also
done by COLDSTART and XNEW.

The stop line number (STOPLN), the error number
(ERRNUM), and the DATA parameters (DATALN and DATAD)
are all set to zero. The RADFLG flag is set to zero, indicating
that transcendental functions are working in radians. The
break byte (BRKBYT) is set off and $FF is stored in TRAPLN to
indicate that errors are not being trapped.

All IOCBs (devices and files) are closed.
The enter and list devices (ENTDTD and LISTDTD) are set

to zero to indicate the keyboard and the screen, respectively.
Finally, the READY message is printed and control passes

to the Program Editor.

110

Introduction to
Part Two

Congratulations! If you have read all of Part 1, you are through
the hard stuff. In Part 2, we hope to teach you how to use at
least some of the abundance of information presented in the
Source Listing and in Part 1. In particular, we will show you
how to examine the various RAM and ROM tables used by
BASIC.

The examples and suggestions will be written in Atari
BASIC. But those of you who are true-blue assembly language
fanatics should have little trouble translating the concepts to
machine code, especially with the source listing to guide you.

Would that we could present an example program or
concept for each possible aspect of the BASIC interpreter, but
space does not allow it - nor would it be appropriate. For
example, although we will present here a program to list all
keywords and token values used by BASIC, we will not explore
the results (usually disastrous) of changing token values within
a BASIC program.

Part 2 begins with a pair of introductory chapters. If you are
experienced at hexadecimal-to-decimal conversions and with
the concepts of word and byte PEEKs and POKEs, you may
wish to skip directly to Chapter 3.

113

________________ Chapter One

Hexadecimal
Numbers

The word hexadecimal means, literally, "of six and ten." It
implies, however, a number notation which uses 16 as its base
instead of 10. Hexadecimal notation is used as a sort of
shorthand for the eight-digit binary numbers that the 6502
understands. If Atari BASIC understood hexadecimal numbers
and we all had eight fingers on each hand, there would be no
need for this chapter. Instead, to use this book you have to
make many conversions back and forth between hexadecimal
("hex") and decimal notation. Many BASIC users have never
had to learn that process.

Virtually all the references to addresses and other values in
this book are given in hexadecimal notation (or simply "hex"
to us insiders). For example, we learn that the Atari BASIC
ROM cartridge has $AOOO for its lowest address and that
location $80 contains a pointer to BASIC's current LOMEM.
But what does all that mean?

First of all, if you are not familiar with 6502 assembly
language, let me point out that there is a convention that a
number preceded by a dollar sign ($80) is a hexadecimal
number, even if it contains only decimal digits. Also, notice
that in the Source Listing all numbers in the first three columns
are hexadecimal, even though the dollar sign is not present. (To
the right of those columns, though, only those numbers
preceded by a dollar sign are in hex.)

Now, suppose I wanted to look at the contents of location
$A4AF (SNTAB in the listing). Realistically, the only way to
look at a memory location from BASIC is via the PEEK function
(and see the next chapter if you are not sure how to use PEEK
in this situation). But BASIC's language syntax requires a
decimal number with PEEK - for instance, PEEK (15).

Obviously, we need some way to convert from hexadecimal
to decimal. Aside from going out and buying one of the
calculators made just for this purpose, the best way is probably
to let your computer help you. And the computer can help you

115

Chapter One

even if you only understand BASIC. As an example, here 's a
BASIC program that will convert hex to decimal notation:

1121 DIM HEX$(23),NUM$(4)
2121 HEX$="@ABCDEFGHI#######JKLMNO"
30 CVHEX=9121121121
1121121 PRINT :PRINT "GIVE ME A HEX NUMBER \I

11121 INPUT NUM$
12121 GOSUB CVHEX
13121 PRINT "HEX ";NUM$;" = DECIMAL ";NUM
14121 GOTO 1121121
9121121121 REM THE CONVERT HEX TO DECIMAL ROUTINE
91211121 NUM=12I
91212121 FOR 1=1 TO LEN(NUM$)
91213121 NUM=NUM*16+ASC(HEX$(ASC(NUM$(I»-47»-64
91214121 NEXT I:RETURN

Now, while this program might be handy for a few
purposes, it would be much neater if we could simply use its
capabilities anytime we wanted to examine or change a location
(or its contents) referred to by a hex address or data . And so
shall it be used.

If we remove lines 100 through 140, inclusive, then any
BASIC program which incorporates the rest of the program
may change a hex number into decimal by simply

1. placing the ATASCII form of the hex number in the
variable NUM$,

2. calling the convert routine at line 9000 (via GOSUB
CVHEX), and

3. using the result, which is returned in the variable NUM.
In the next chapter, we will immediately begin to make use

of this routine. If you are not used to hex notation, you might
do well to type in and play with this program before
proceeding.

Finally, before we leave this subject, le t's examine a routine
which will allow us to go the other way - that is, convert
decimal to hex:

4121 DIM DEC$(16):DEC$="12I123456789ABCDEP"
5121 CVDEC=91121121
1 121121 PRINT :PRINT "GIVE ME A DECIMAL NUMBER "

116

Chapter One

110 INPUT DEC:NUM=DEC
120 GOSUB CVDEC:REM 'NUM' is destroyed by this
130 PRINT DEC;" Decimal = ";NUM$;" Hex"
140 GOTO 100
9100 REM CONVERT DECIMAL TO HEX ROUTINE
9110 DIV=4096
9120 FOR 1=1 TO 4
9130 N=INT(NUM/DIV):NUM$(I,I)=DEC$(N+l)
9140 NUM=NUM-DIV*N:DIV=DIV/16
9150 NEXT I
9160 RETURN

These lines are meant to be added to the previous program,
though they can be used alone if you simply add this line:

10 DIM NUM$(4)

We will use portions of these programs in later chapters,
but we may compress some of the code into fewer lines simply
to save wear and tear on our fingers. If you study these
routines, you'll recognize them in their transformed versions.

117

-

-

Chapter Two

PEEKing and
POKEing

In contrast to languages which include direct machine
addressing capability, like "C" and Forth, and in contrast to
"school" languages like Pascal and Fortran, which specifically
prevent such addressing, BASIC provides a sort of halfway
measure in machine accessibility.

POKE is a BASIC statement. Its syntax is
POKE < address>, < data> . Naturally, both < address> and
< data> may be constants, variables, or even full-blown
expressions:

POKE 82,0: REM change left screen margin to zero
produces the same result as

LEFTMARGIN = 82:POKE LEFTMARGIN,O

PEEK on the other hand, is a BASIC function. It cannot
stand alone as a statement. To use PEEK, we either PRINT the
value (contents) of a PEEKed location, assign a PEEKed value
to a variable, or test the value for some condition:

POKE 82, PEEK(82) + 1 : REM move the left margin in a
space

PRINT PEEK(106) : REM where is the top of system
memory?

IF PEEK(195) = 136 THEN PRINT "End of File"

In the first example, the number POKEd into 82 will be
whatever number was stored before, plus 1. As explained in
Part I, the PEEK function is executed before the POKE.

An aside: Just where did I get those addresses I used in the
PEEKs and POKEs? One way to find them is to peruse the
listings of Atari' s operating system, available in Atari's
technical manuals set, and the listing of BASIC in this book.
Another way would be to use a book (like COMPUTE! Books'
Mapping the Atari) or a reference card designed specifically to
tell you about such addresses.

And one more thing to consider before moving on. If we
counted all of the bit patterns possible in a single 8-bit byte (like

119

Chapter Two

01010101, 11110000, and 00000001, where each 1 or 0 represents
a single on or offbit), we would discover that there are 256
unique combinations, ranging in value from 0 to 255. Since
each memory location can hold only one byte, it is not
surprising to learn that the PEEK function will always return a
number from 0 to 255 ($00 to $FF). Similarly, BASIC will only
POKE a data value that is an integer from 0 to 255. In fact,
BASIC will convert any data to be POKEd to an integer
number, rounding off any fractional parts.

So far so good. But suppose we want to examine a location
which is actually a two-byte word, such as the line number
where the last TRAPped error occurred, stored starting at
location $BA hex or 186 decimal. PEEK only lets us look at one
byte at a time. How do we look at two bytes? Simple: one byte
at a time.

In most cases, words in a 6502-based machine are stored in
memory with the least significant byte stored first. This means
that the second byte of each word is a count of the number of
256's there are in its value, and the first byte is the leftovers.
(Or we can more properly say that the first byte contains lithe
word's value modulo 256. ") Confused? Let's try restating that.

In decimal arithmetic, we can count from 0 to 9 in a single
digit. To go beyond 9, we have a convention that says the digit
second from the right represents the number of 10' s in the
number, and so on.

If we consider bytes to be a computer's digits, which in
many ways they are, and if we remember that each byte may
represent any number from 0 to 255 (or $00 to $FF), then it is
logical to say that the next byte is a count of the number of 256' s
in the number. The only thing illogical is that the higher byte
comes after the lower byte (like reading 37 as "7 tens and 3
ones" instead of what we are used to).

Some examples might help:

a 6502 word as written think of
in memory in assembler it as

0100 $0001 0*256 + 1
0001 $0100 1*256 +0
0204 $0402 4*256 +2
FFFF $FFFF 255*256 + 255

So let's examine that error line location:

PRINT PEEK(186) + 256 * PEEK(187)

120

decimal
value

1
256

1026
65535

Chapter Two

Do you see it? Since the second byte is a count of the number of
256's in the value, we must multiply it by 256 to calculate its
true value .

Now, in the case of line numbers, it is well and good that
we print out a decimal value, since that is how we are used to
thinking of them. But suppose you wished to print out some of
BASIC's tables? You might very well wish to see the hex
representations. The program presented here allows you to
specify a hex address . It then presents you with the contents of
the byte and the word found at that address, in both decimal
and hex form .

10 DIM HEX$(23),NUM$(4)
20 HEX$="@ABCDEFGHI#######JKLMNO"
30 CVHEX=9000
40 DIM DEC$(16):DEC$="0123456789ABCDEF"
50 CVDEC=9100
100 PRINT :PRINT "WHAT ADDRESS TO VIEW "i
110 INPUT NUM$:PRINT
120 PRINT "Address ";NUM$i" contains:"
130 GOSUB CVHEX:ADDR=NUM
140 NUM=PEEK(ADDR):GOSUB CVDEC
150 PRINT ,"byte "iPEEK(ADDR)i" = $";NUM$(3)
160 WORD=PEEK(ADDR)+256*PEEK(ADDR+1)
170 NUM=WORD:GOSUB CVDEC
180 PRINT ,"word "iWORDi" = $"iNUM$
190 GOTO 100
9000 REM THE CONVERT HEX TO DECIMAL ROUTINE
9010 NUM=0
9020 FOR 1=1 TO LEN(NUM$)
9030 NUM=NUM*16+ASC(HEX$(ASC(NUM$(I))-47))-64
9040 NEXT I:RETURN
9100 REM CONVERT DECIMAL TO HEX ROUTINE
9110 DIV=4096
9120 FOR 1=1 TO 4
9130 N=INT(NUM/DIV):NUM$(I,I)=DEC$(N+1)
9140 NUM=NUM-DIV*N:DIV=DIV/16
9150 NEXT I
9160 RETURN

You may have noticed that lines 10 through 50 and lines
9000 to the end are the same as those used in the example

121

Chapter Two

programs in the last chapter. And did you see line 160, where
we obtained the word value by multiplying by 256?

As the last point of this chapter, we need to discuss how to
change a word value. Obviously, in Atari BASIC we can't POKE
both bytes of a word at once any more than we could retrieve
both bytes at once (although BASIC A + can, by using the
DPOKE statement and DPEEK function) . So we must invent a
mechanism to do a double POKE.

Given that the variable ADDR contains the address at
which we wish to POKE a word, and given that the variable
WORD contains the value (in decimal) of the desired word, the
following code fragment will perform the double POKE:

POKE ADDR + l,INT(WORD/256)
POKE ADDR, WORD-256 *PEEK(ADDR + 1)

This is kind of sneaky code, but calculating the most
significant byte and POKEing the value in byte location
ADDR + 1 first allows us to also use it as a kind of temporary
variable in calculating the least significant byte. By PEEKing the
location that already holds the high-order byte, we can subtract
it from the original value. The remainder is WORD modulo 256
- the low-order byte.

And that's about it. Hopefully, if you were not familiar
with PEEK and POKE before, you now at least will not
approach their use with too much caution. Generally, PEEKs
will never harm either your running program or the machine,
but don't be surprised if a stray POKE or two sends your
computer off into never-never land . After all, you may have
just told BASIC to start putting your program into ROM, or
worse .

On the other hand, if you have removed your diskettes and
turned off your cassette recorder, the worst that can happen
from an erring POKE is that you'll have to turn the power off
and back on again. So have at it. Happy PEEKing and
POKEing.

122

Chapter Three

Listing Variables
in Use

Chapter 3 of Part 1 described the layout of the Variable Name
Table and the Variable Value Table. In particular, we read that
the Variable Name Table was built in a very simple fashion:
Each new variable name, as it is encountered upon program
entry, is simply added to the end of the list of names. The most
significant bit of the last character of the name is turned on, to
signal the end of that name. The contents of VNTP point to the
beginning of the list of names, and the content of VNTD is the
address of the byte after the end of the list.

Now, what does all that mean? What does it imply that we
can do? Briefly, it implies that we can look at BASIC's memory
and find out what variable names are in current use. Here's a
program that will do exactly that:

32700 QQ=128:PRINT QQ,
32710 FOR Q=PEEK(130)+256*PEEK(131) TO PE

EK(132)+256*PEEK(133)-1
32720 IF PEEK(Q)<128 THEN PRINT CHR$(PEEK

(Q»::NEXT Q:STOP
32730 PRINT CHR$(PEEK(Q)-128):QQ=QQ+1:PRI

NT QQ,:NEXT Q:STOP

Actually, this is not so much a program as it is a program
fragment. It is intended that you will type NEW, type in the
above fragment, and then LIST the fragment to a disk file (LIST
"O:LVAR") or to a cassette (LIST "C:"). Then type NEW again
and ENTER or LOAD the program whose variables you want
to list. Finally, use ENTER to re-enter the fragment from disk
(ENTER "O:LVAR") or cassette (ENTER "C:"). Then type
GOTO 32700 to obtain your Variable Name Table listing.

Of course, if you had OPENed a channel to the printer
(OPEN #1,8,0, "P:"), you could change the PRINTs to direct
the listing to the printer (PRINT #1; CHR$ (< expression>)).

123

Chapter Three

How does the fragment work? The reason for the start and
end limits for the FOR loop are simple: word location 130 ($82)
contains the pointer to the beginning of the Variable Name
Table and word location 132 ($84) contains the pointer to the
end of that same table, plus 1. So we simply traipse through
that table, printing characters as we encounter them - except
that when we encounter a character with its most significant bit
on (IF PEEK(Q) > 127), we turn off that bit before printing it and
start the next name on a new line.

Notice that we use the variable QQ to allow us to print out
the token value for each variable name. We will use this
information in some later chapters .

Also note that the variable names QQ and Q will appear in
your variable name listing. Sorry. We can write a program
which would accomplish the same thing without using
variables, but it would be two or three times as big and much
harder to understand. Of course, if you consistently use certain
variable names, such as 1 and J in FOR-NEXT loops, you could
use those names here instead, thus not affecting the count of
variables in use.

Incidentally, the STOP at the end of the third line should be
unnecessary, since the table is supposed to end with a
character with its upper bit on. But I've learned not to take
chances - things don't always go as they're supposed to.

124

Chapter Four

Variable
Values

In this chapter, we will show how you can determine the value
of any variable by inspecting the Variable Value Table. Actually,
in many respects this is a waste of effort. After all, if I need to
know the value of the variable TOTAL, I can just type PRINT
TOTAL.

But this book is supposed to be a guide, and there are a few
uses for this information, particularly in assembly language
subroutines, and it is instructive in that it gives us an inkling of
what BASIC goes through to evaluate a variable reference.

It will probably be better to present the program first, and
then explain what it does. Before doing so, though, note that
the program fragment expects you to give it a valid variable
token (128 through 255). No checks are made on the validity of
that number, since we are all intelligent humans here and since
we want to save program space . Enough. The program:

32500 PRINT :PRINT "WHAT VARIABLE NUMBER
"i:INPUT Q

32505 Q=PEEK(134)+256*PEEK(135)+(Q-128)*
8

32510 PRINT :PRINT "VARIABLE NUMBER " j PE
EK(Q+l),

32515 ON INT(PEEK(Q)/64) GOTO 32600,3265
o

32520 PRINT "IS A NUMBER, ":PRINT ,"VALU
E II j

32525 QEXP=PEEK(Q+2):IF QEXP>127 THEN PR
INT 1-" i :QEXP=QEXP-128

32530 QNUM=0:FOR QQ=Q+3 TO Q+7
32535 QNUM=QNUM*100+PEEK(QQ)-6*INT(PEEK(

QQ)/16):NEXT QQ
32540 QEXP=QEXP-68:IF QEXP=0 THEN 32555
32545 FOR QQ=QEXP TO SGN(QEXP) STEP -SGN

(QEXP)

125

Chapter Four

32550 QNUM=(QEXP>0)*QNUM*100+(QEXP<0)*QN
UM/100:NEXT QQ

32555 PRINT QNUM:PRINT :GOTO 32500
32570 IF PEEK(Q)/2<>INT(PEEK(Q)/2) THEN

32580
32575 PRINT ,"AND IS NOT YET DIMENSIONED

":POP:GOTO 32500
32580 PRINT ,"ADDRESS IS "jPEEK(Q+2)+256

*PEEK(Q+3):RETURN
32600 PRINT "IS AN ARRAY, ":GOSUB 32570
32610 PRINT ,"DIM 1 IS "jPEEK(Q+4)+256*P

EEK(Q+5)
32615 PRINT ,"DIM 2 IS "jPEEK(Q+6)+256*P

EEK(Q+7)
32620 GOTO 32500
32650 PRINT "IS A STRING, ":GOSUB 32570
32660 PRINT ,"LENGTH IS "jPEEK(Q+4)+256*

PEEK(Q+5)
32665 PRINT ,"{3 SPACES}DIM IS "jPEEK(Q+

6)+256*PEEK(Q+7)
32670 GOTO 32500

Did you get lost in all of that? I got lost several times ~s I
wrote it, but it seems to work well. Shall we discuss it?

The first place where confusion may arise is when I ask you
to give a variable token from 128 to 255, and then reveal that
the entry in the Variable Value Table thinks variable numbers
range from 0 to 127. Actually, there is no anomaly here. The
variable token that you input is the token value of the variable
in your program. The number in the table is its relative
position. The numbers differ only in their uppermost bit .

The program uses the number you specify to form an
address of an entry somewhere within the Variable Value
Table . It then displays the internal variable number and
examines the flag byte of the variable entry . Recall that the
uppermost bit ($80, or 128) of the flag byte is on, if this variable
is a string. The next bit ($40, or 64) is on if the variable is an
array. If neither is on, the variable is a normal floating point
number (or scalar, as it is sometimes called, to distinguish it
from a floating point array). All this is decided and acted upon
in line 32515.

126

Chapter Four

Before examining what happens if the number is a scalar,
let's look at strings and arrays. Both start out (lines 32600 and
32650) by identifying themselves and calling a subroutine
which determines if the variable has been DIMensioned yet. If
not, the subroutine tells us so, removes the GOSUB entry from
the stack, and starts the whole shebang over again. If the
variable is DIMensioned, though, we print its address before
returning. Note that the address printed is the relative address
within the String/Array Table .

If the DIMension check subroutine returns, both string and
array variables have their vitals printed out before the program
asks you for another variable number. In the case of a string,
we see the current length (as would be obtained by the LENgth
function) and its dimension. For an array, we see both
dimensions. Note that array dimensions here are always one
greater than the user program specified, so that a zero
dimension value means "this dimension is unused."

Point of interest: this program will never print a zero for an
array dimension. Why? Because Atari BASIC never places a
zero in either dimension when the DIM statement is executed.
In a way, this is a "feature" (a feature is a documented bug). It
implies that we may code DIM XX(7) and yet use something
like PRINT XX(N,O) . In other words, a singly dimensioned
array in Atari BASIC is exactly equivalent to a doubly
dimensioned array with a 0 as the second subscript in the DIM
statement.

Back to the listing. Fairly straightforward up until now. But
look what happens if the variable is a scalar, a single floating
point number .

First, we obtain the exponent byte; if its upper bit is on, the
number is negative, so we print the minus sign before turning
the bit off.

Second, we must loop through the five bytes of the
mantissa, accumulating a value. The really strange part here is
line 32535, so let's examine it closely. As we get each byte, we
must multiply what we have gotten so far by 100 (remember,
floating point numbers are in BCD format, so each byte
represents a power of 100). Then, what we really want to do is
add in 10 times the higher digit in the byte, plus the lower
digit . We could have gotten those numbers as follows:

NEWBCDVALUE = OLDBCDVALUE*100
HIGHER = INT(PEEK(QQ)/16)

127

Chapter Four _______________ _

LOWER=PEEK(QQ)-16*HIGHER
BYTEVALUE = 10*HIGHER + LOWER
NEWBCDVALUE =NEWBCDVALUE + BYTEVALUE
OLDBCDVALUE=NEWBCDVALUE

Hopefully, your algebra is up to understanding how line
32535 is just a simplification of all that. If not, don't worry
about it. It works.

But we still haven't accounted for the exponent. Now,
exponents in the Atari floating point format are powers of 100
in "excess 64" notation, which simply means that you subtract
64 from the exponent to get the real power of 100. But wait! The
implied decimal point is all the way to the left of the number.
So we must bias our "excess 64" by the five multiplies-by-100
we did in deriving the BCD value. All that is done in line 32540.

Finally, we simply count the exponent down to one or up
to minus one, depending on what it started at. And line 32545
is tricky, but not too much so. I will leave its inner workings as
an exercise for you, the reader.

And, hard though it may be to believe, we arrive at line
32555 with the number in hand. Then we PRINT it.

Did we really have to go through all that? Not really, but
perhaps it gives you an idea of what BASIC's GETTOK routine
($AB3E) does when it encounters a variable name.

Finally, to test all this out, you should type it in, LIST it to
disk or cassette, use NEW, and then enter or load your favorite
program. Finally, re-ENTER this program fragment from disk
or cassette and type GOTO 32500. Just for fun, you might try
finding the variable values for the following program:

10 A ; 12.34567890 : B = 9876543210
20 C = 0.0000556677
30 GOTO 60
40 D$ = "WILL NEVER BE EXECUTED"
50 E (7) = 1
60 DIM F$(30), G$(40), H(9,17), J(7)
70 G$="ONLY THIS STRING WILL HAVE LENGTH"

Type this little guy in, ENTER the variable value printer,
and RUN the whole thing. Answer the variable number
prompt with numbers from 128 to 135 and see what you get.
It's interesting!

128

Chapter Five

Examining the
Statement Table

If you will recall, Chapter 3 in Part 1 discussed the various user
tables that existed in Atari BASIC's RAM memory space.
Specifically, it discussed the Variable Name Table, Variable
Value Table, Statement Table, Stringl Array Table, and Runtime
Stack.

In the last two chapters, we investigated the Variable Name
Table and the Variable Value Table, showing how Atari BASIC
can examine itself. So what is more logical than to now use
Atari BASIC to display the contents of the Statement Table?

While we could write a program that would examine the
tokenized program and produce source text, there' is little
incentive to do so. The task would be both very difficult and
very redundant: BASIC's LIST command performs the same
task very nicely, thank you ,

What we can do, though, is write a program which will
show the actual hex tokens used in a logical and almost
readable form . Again, let's look at the program before
decoding what it does .

10 DIM NUM$(4)
40 DIM DEC$(16):DEC$="0123456789ABCDEF"
50 CVDEC=9100
100 GOTO 32000
110 ERROR- THIS IS AN ERROR LINE
120 DATA AND, THIS, IS, DATA, 1,2,3
130 REM LINES 110 TO 130 ARE FOR DEMONST

RATION PURPOSES ONLY
9100 REM CONVERT DECIMAL TO HEX
9110 DIV=4096
9120 FOR 1=1 TO 4
9130 N=INT(NUM/DIV):NUM$(I,I)=DEC$(N+l)
9140 NUM=NUM-DIV*N:DIV=DIV/16
9150 NEXT I
9160 RETURN

129

Chapter Five _______________ _

32000 QQ=PEEK(136)+256*PEEK(137)
32010 Q=PEEK(QQ)+256*PEEK(QQ+1):QS=QQ:QQ

=QQ+3
32015 IF Q>32767 THEN PRINT "--END--":ST

OP
32020 QL=PEEK(QQ-l)+QS:PRINT "LINE NUMBE

R ";Q,"LINE LENGTH ";PEEK(QQ-l)
32030 QT=PEEK(QQ+l):PRINT "{2 SPACES}STM

T LENGTH ";PEEK(QQ),"STMT CODE ";P
EEK(QQ+1)

32040 Q=PEEK(QQ)+QS:QQ=QQ+2
32050 IF QQ<Q THEN 32080
32060 IF Q<QL THEN PRINT :GOTO 32030
32070 PRINT :GOTO 32010
32080 IF QT>1 AND QT<55 THEN 32120
32090 PRINT "{2 SPACES}UNTOKENIZED::";
32100 PRINT CHR$(PEEK(QQ»;:QQ=QQ+1:IF Q

Q<Q THEN 32100
32110 PRINT :GOTO 32010
32120 NUM=PEEK(QQ):GOSUB CVDEC
32125 IF PEEK(QQ»127 THEN PRINT 11 V=";N

UM$(3):GOTO 32200
32130 IF PEEK(QQ»15 THEN PRINT 11 ";NUM$

(3);:GOTO 32200
32140 IF PEEK(QQ)=14 THEN GOTO 32170
32150 QQ=QQ+1:QN=PEEK(QQ):NUM=QN:GOSUB C

VDEC
32155 PRINT 11 S,I;NUM$(3);"=";:IF QN=0 T

HEN 32200
32160 FOR QQ=QQ+1 TO QQ+QN-1:PRINT CHR$(

PEEK(QQ»i:NEXT QQ:GOTO 32190
32170 PRINT 11 N=";
32180 FOR QQ=QQ+1 TO QQ+5:NUM=PEEK(QQ):G

OSUB CVDEC:PRINT NUM$(3);:NEXT QQ
32190 QQ=QQ-1:PRINT
32200 QQ=QQ+1:IF QQ<Q THEN 32120
32210 PRINT :IF QQ<QL THEN 32030
32220 PRINT :GOTO 32010

Now, even if you don't want to type all that in, there are a
few points to be made about it. First, note that lines 10 through
50 and 9100 through 9160 are the decimal-to-hex converter from

130

Chapter Five

Chapter 2. Then, let's start with line 32000 and do a functional
description, with the line numbers denoting the portion we are
examining.

32000. Decimal 136 is hex $88, the location of STMTAB, the
pointer to the user's program space.

32010, 32020. In each line, the first two bytes are the line
number; the next byte is the line length (actually, the offset to
next line). Remember, line 32768 is actually the direct
statement.

32030, 32040. Within a line, each statement begins with a
statement length (the offset to the next statement from
the beginning of the line) and a statement token.

32050-32070. Boundary conditions are checked for.
32080-32110. REM becomes statement token 0, DATA is

token 1 and the error token is 55 ($37). All three of them simply
store the user's input unchanged.

32120. Remember, any token with its upper bit on
indicates a variable number token. They really don't need to be
special cased in this program, but we do so for readability .

32130. Operator tokens have values of 16 to 127 ($10 to
$7F) . .

32140-32160. For string constants (also called string literals),
we simply print out the string length and its contents (the
characters between the quote signs) .

32170-32180. For numeric constants, we simply print the
hex values of all six bytes.

32190-32200. Clean-up. We ensure that we return for all
remaining tokens (if any) in each statement and for all
remaining statements (if any) in each line.

Observe the FOR-NEXT loop controls in line 32180. Why
QQ + 1 TO QQ + 5 if we want six values printed out? Ah, but
this is a trick. Note that the loop termination value (QQ + 5)
involves the loop variable (QQ). The problem is, though, that
the loop variable is changed by the prior implied assignment
(QQ = QQ + 1) when the assignment takes place - which is, of
course, before the determination of the value of "QQ + 5" takes
place.

In other words, by the time we are ready to evaluate
QQ +5, the variable QQ has already been changed from its
original value to its new, loop controlling value (QQ + 1).

Quite possibly, the proper general solution to using a FOR
loop's variable in its own termination (or STEP) values is to

131

Chapter Five _______________ _

assign it to a temporary variable, thusly:

QTEMP = QQ :FOR QQ = QTEMP + 1 TO QTEMP + 6

Did you notice that line 32160 actually has the same
problem? Notice that we solved it there by adding -1 to the
termination value to compensate for the + 1 in the initialization
assignment.

One last comment before leaving the subject of strange
FOR-NEXT loops. In Atari BASIC (and, indeed, in virtually all
microcomputer BASICs), the termination (TO) value and the
STEP value are determined when the FOR statement is first
executed and are NOT changeable. Example :

10 X=7:Y=2
20 FOR I = 1 TO X STEP Y
30 X = X+l
40 Y = y+x
50 NEXT I

This FOR loop will execute exactly four times (I = I, 3, 5,
and 7). The fact that X and Y change within the loop has no
effect on the actual loop execution.

132

Chapter Six

Viewing the
Runtime Stack

The Runtime Stack is the last of the user RAM tables that we
will discuss in Part 2.

Perhaps you noticed that we left out a discussion of the
String! Array Table in Part 2. The omission was on purpose:
there seems little purpose in PEEKing the contents of this table
when BASIC's PRINT statement does an admirable job of
letting you see all variable values . However, if you are so
inclined, you could use the general purpose memory PEEKer
program of Chapter 2 to view any portion of any memory,
including the String! Array Table.

On the other hand, looking at the Runtime Stack is kind of
fun and enlightening. And the program we will present here
might even find use on occasion . If you are having trouble
tracing a program's flow, through various GOSUBs and!or
FOR loops, simply drop in the routine below and COSUB to it
at an appropriate place in your program. It will print out a LIFO
(Last In, First Out) listing of all active COSUB calls and FOR­
NEXT loop beginnings .

10 FOR J=l TO 3
20 GOSUB 30
30 FOR K=l TO 5
40 GOSUB 50
50 JUNK=7:FOR Q=l TO 2:GOSUB 32400
32400 QQ=PEEK(144)+256*PEEK(145)
32410 IF QQ<=PEEK(142)+256*PEEK(143) THE

N PRINT "--END OF STACK--":STOP
32420 PRINT "AT LINE "iPEEK(QQ-3)+256*PE

EK(QQ-2)i
32430 PRINT ", OFFSET "iPEEK(QQ-1)i
32440 IF PEEK(QQ-4)=0 THEN PRINT ", GOSU

B":QQ=QQ-4:GOTO 32410
32450 PRINT ", FOR (#"iPEEK(QQ-4)i")":QQ

=QQ-16:GOTO 32410

133

Chapter Six

The first thing you might notice about this little routine is
that, in contrast to all the programs we have used so far, it
examines its portion of user RAM backward. That is, it starts
at the top (high address) of the Runtime Stack area and works
downward toward the bottom.

Again, nothing surprising. If you will recall the description
of entries on this stack (pages 18-19 and 133-34), you will
remember that every entry, whether a GOSUB or FOR, has a
four-byte header. And, while FOR statements also have twelve
bytes of termination and step value added, the four bytes are
always at the top of each entry - they are the last items put on
the stack.

Thus, we start at the top of the stack and examine four
bytes. If the type byte is zero, it is a GOSUB entry, and all we
must do is display the line number and statement offset. If we
remove the four-byte header by subtracting 4 from our stack
pointer, we are ready to examine the next entry.

In the case of a FOR entry, we similarly display the line
number and statement offset. However, each FOR entry also
has a variable token associated with it, so we also display that
token's value. With the variable name lister of Chapter 2, you
can find out which variable is controlling this FOR loop.
Finally, note that after displaying a FOR loop entry, we remove
sixteen bytes (the four-byte header and the two six-byte
floating point values) in preparation for the next entry.

Incidentally, lines 10 through 50 are present as examples
only. Add lines 32400 to 32450 to your own programs and see
where you've come from.

134

Chapter Seven

Fixed Tokens
In the last chapter, we discussed the last of the tables in user
RAM. Now we will see how and where BASIC stores its
internal ROM-based tables.

As we noted in Chapter 5 of Part 1 (and viewed via the
listing program of Chapter 5 in this Part), there are four kinds
of tokens in an Atari BASIC program: (1) statement name
tokens, (2) operator tokens, (3) variable tokens, and (4)
constant tokens (string and numeric constants). Also, we
learned in Part 1 how the tokenizing process works, converting
the user's ATASCII source code into tokens. What we didn't
learn, though, was exactly what token replaces what BASIC
keyword .

In this chapter, we present a program which will list all of
the fixed tokens (those in ROM). Actually, the program
presents three listings, each consisting of a list of token values
with their associated ATASCII strings. But wait a moment!
Three listings? There are only two ROM-based tables ~ SNTAB
andOPNTAB.

Yes, but it seems that this program is also capable of listing
the Variable Name Table. Why list it again, when we did it so
well in Chapter 3? Because we wanted to show you how BASIC
itself does it. In many ways, this program emulates the
functions of the SEARCH routine at address $A462 in the
source listing. And, yes, BASIC uses a single routine to search
all three of these same tables . You might want to examine
BASIC's SEARCH routine at the same time you peruse this
listing.

100 REM we make use of the general purpose
110 REM token lister three times:
200 PRINT :PRINT "A LIST OF VARIABLE TOKENS"
210 ADDR=PEEK(130)+256*PEEK(131)
220 SKIP=0:TOKEN=128:GOSUB 1000
300 PRINT :PRINT "A LIST OF STATEMENT TOKENS"
310 ADDR=42159:SKIP=2:TOKEN=0:GOSUB 1000
400 PRINT :PRINT "A LIST OF OPERATOR TOKENS"
410 ADDR=42979:SKIP=0:TOKEN=16:GOSUB 1000
420 STOP
1000 REM a general purpose token listing routine

135

Chapter Seven

1001 REM
1002 REM On entry to this routine, the following
1003 REM variables have meanings:
1004 REM ADDR = address of beginning of table
1005 REM SKIP = bytes per entry to skip
1006 REM TOKEN = starting token number
1007 REM
1100 ADDR=ADDR+SKIP:IF PEEK(ADDR)=0 THEN RETURN
1110 PRINT TOKEN, :TOKEN=TOKEN+l
1120 IF PEEK(ADDR»127 THEN 1140
1130 PRINT CHR$(PEEK(ADDR));:ADDR=ADDR+l:GOTO 1120
1140 PR~NT CHR$(PEEK(ADDR)-128):ADDR=ADDR+l:GOTO 1100

The main routine is actually lines 1100 through 1140 (while
lines 1000 through 1007 simply explain it all). It's actually fairly
simple. Each table is assumed to consist of a fixed number of
bytes followed by a variable number of ATASCII bytes, the last
of which has its upper bit on.

In line 1100, we skip over the fixed bytes (if any) and check
for the end of the table. After that, we simply print the token
value followed by the name .

Worth examining, though, are lines 200 through 420,
where we call the main subroutine. First, note that the Variable
Name Table has no bytes to skip and is located via its zero-page
pointer. Naturally, the first variable token value is 128.

Each entry in the Statement Name Table (SNTAB, at
location $A4AF) has two leading bytes (actually, the two-byte
address, minus 1, of the syntax table entry for this statement).
Statement name token values begin at zero, and 42159 is the
decimal address of SNTAB.

Finally, the smallest-numbered operator token is 16
decimal (except for string and numeric constants, which are
special cased). There are no leading bytes in the Operator
Name Table, and it starts at location 42979 decimal (OPNTAB,
at $A7E3).

136

Chapter Eight

What Takes
Precedence?

There was one other ROM-based table mentioned in Part 1
which deserves some attention here. You may recall that when
an expression is executed, the execution operators are given
particular precedences, so that in BASIC, 2+3*4 equals 14, not
20. Chapter 7 of Part 1 does a particularly thorough job of
explaining the concepts of precedence.

The program presented in this chapter prints out all of
BASIC's operator tokens along with their token -v-alues and
their dual precedence values. Actually, the program provides a
visual readout of OPRTAB (Operator PRecedence TABle, at
$AC3F).

In each pair of precedence values listed, the first number is
the go-onto-stack value and the second is the come-off-stack
value.

11313 PRINT "A LIST OF OPERATOR TOKENS"
1113 PRINT" WITH THEIR PRECEDENCE TABLE VALUES"
2213 SKIP=13:TOKEN=128:GOSUB 1131313
1131313 ADDR=42979:REM WHERE OP NAMES START
113113 TOKEN=16:REM LOWEST TOKEN VALUE
113213 REM NOW THE MAIN CODE LOOP
111313 IF PEEK(ADDR)=13 THEN STOP
11113 PRINT TOKEN, :PREC=PEEK(44139S+TOKEN-16)
11213 PRINT INT(PREC/16);":";PREC-16*INT(PREC/16),
11313 PREC=PEEK(ADDR):ADDR=ADDR+1
11413 IF PREC<128 THEN PRINT CHR$(PREC);:GOTO 11313
11513 PRINT CHR$(PREC-128):TOKEN=TOKEN+1:GOTO 111313

If you closely examined the program in the last chapter,
you will note a striking similarity to this program, especially
lines 1100 through 1150. Actually, the only thing we have really
added is the precedence printout of line 1120.

And note the form of the PEEK in line 1110. Then look at
the line of code at address $AAF1 in the BASIC listing. Given

137

Chapter Eight ______________ _

the limitations of dissimilar languages, the code is identical.
This is more evidence that you really can use BASIC as a tool to
diagnose itself.

138

________________ Chapter Nine

Using What
We Know

Now that Atari BASIC stands revealed before you, what do
you do with it? Many authors have, even without benefit of the
listing in this book, either used or fooled BASIC in ways that
we who designed it never dreamed of.

For example, consider what happens if you change
BASIC's STARP pointer ($8C) to be equal to its ENDSTAR
value ($8E) . Remember, BASIC's SAVE command saves
everything from the contents of VNTP to the contents of
STARP (as documented in Chapter 10 of Part 1). So changing
what is in STARP is tantamount to telling BASIC to SAVE more
(or less) than what it normally would. Presto! We can now save
the entire array and string space to disk or tape, also.

Is it useful? Here's one program that is, using the concepts
we learned in the previous chapters.

30000 PRINT :PRINT "WHAT VARIABLE NUMBER
DO YOU": PRINT, "WISH TO FIND ";

30010 INPUT QV
30020 QA=PEEK(130)+256*PEEK(131):QN=128
30030 IF QN=QV THEN 30060
30040 IF PEEK(QA)<128 THEN QA=QA+1:GOTO

30040
30050 QN=QN+1:QA=QA+1:GOTO 30030
30060 IF PEEK(QA)<128 THEN PRINT CHR$(PE

EK(QA»;:QA=QA+1:GOTO 30060
30070 PRINT CHR$(PEEK(QA)-128);" IS THE

VARIABLE"
30100 QA=PEEK(136)+256*PEEK(137)
30110 QN=PEEK(QA)+256*PEEK(QA+1):QL=PEEK

(QA+2):QSV=QA:QA=QA+3
30120 IF QN>32767 THEN PRINT "--END--":E

ND
30130 QS=PEEK(QA):QT=PEEK(QA+1):QA=QA+2:

IF QT>l AND QT<55 THEN 30150

139

Chapter Nine

30140 QA=QSV+QL:GOTO 30110
30150 IF PEEK(QA)=QV THEN PRINT "LINE " . I

QN:GOTO 30140
30160 IF PEEK(QA»15 THEN 30200
30170 IF PEEK(QA)=14 THEN QA=QA+6:GOTO 3

0200
30180 QA=QA+PEEK(QA+1)+1
30200 QA=QA+1:IF QA<QSV+QS THEN 30150
30210 IF QA<QSV+QL THEN 30130
30220 GOTO 30110

What does it do? It finds all the places in your program that
you used a particular variable . And how do you use it? Type it
in, LIST it to disk or cassette, and clear the user memory via
NEW. Now type, ENTER, or LOAD the program you wish to
investigate (and then SAVE it, if you haven't already done so) .
Finally, ENTER this program fragment from the disk or cassette
where you LISTed it and type GOTO 30000.

Although the program asks you for a variable number
(which you can get via the program of Chapter 3), it doesn' t
really matter if you don't know it. The program will print your
chosen variable's name before giving all the references. If you
chose wrong, try again.

And how does it work? Somewhat like the program token
lister of Chapter 5, except that here we are simply skipping
everything but variable name references. First, though, we use
a modified Variable Name Table lister (lines 30020 through
30070) to tell you what name you chose.

Then, we start at the beginning of the program (line 30100)
and check each user line number (30110 and 30120). Within
each line, we loop through, checking all statements (30130),
skipping entirely all REMs, DATA lines, and lines with syntax
errors (line 30140). If we find ourselves in an expression, we
check for a matching variable token reference (line 30150) and
print it if found, after which we skip the rest of the line. We also
skip over numeric and string constants (lines 30170 and 30180).
Finally, we check to see if we are at the end of the statement
(30200) or the end of a line (30210 and 30220).

This is a fairly large program fragment, and it will prove
most useful in very large programs, where you can't
remember, for example, how many places you are using the
variable name LOOP. So you might want to try to leave room
in memory for this aid; you may be very glad you did.
140

Copyright © 1978, 1979,1983
Optimized Systems Software
Cupertino, CA

Printed in the United States of America

This program may not be reproduced, stored in a retrieval sys tem, or transmitted in
whole or in part, in any form, or by any means, be it electronic, mechanical , photo­
copying, recording, or o therwise without the prior written permjssion of

Optimized Systems Software, Inc.
10379 Lansdale A venue
Cupertino, California 95014 (U .S.A.)

Telephone: (408) 446-3099

142

Source Code

Some Miscellaneous Equates

3331 PATSIZ EQU
3323 ZICB EQU
33B3 ZPG1 EQU
34B3 MISCR1 EQU
3533 MISCRAM EQU

E456 CIO EQU
3343 IOCBORG EQU
3333 DCBORG EQU

AI2J12J3 ROM EQU
I2JI2JD2 ZFP EQU

12J12J9B CR EQU

12J2E7 LMADR EQU
32E5 HMADR EQU
12J2E5 HIMEM EQU

DB33 FPORG EQU
12J12J11 BRKBYT EQU
I2JI2JI2JB WARMFL EQU
D212JA RNDLOC EQU
BFF9 CRTGI EQU
12J12J5D EPCHAR EQU
E471 BYELOC EQU
12J312JA DOSLOC EQU
12J12J55 SCRX EQU
312J54 SCRY EQU
32C4 CREGS EQU
12J2FB SVCOLOR EQU
D23B SREG1 EQU
0233 SREG2 EQU
0231 SREG3 EQU
D23F SKCTL EQU
12J2712J GRFBAS EQU
32FE DSPFLG EQU
33"'E APHM EQU

Zero Page

RAM Table Pointers

0300 = 30B3 ORG
03B0 LOMEM
00B3 ARGOPS
03B3 ARGSTK
03B3 0302 OUTBUFF
0"'B2 "''''32 VNTP
0"'B4 "'332 VNTD
03B6 3032 VVTP
03BB ENDVVT
03BB 3002 STMTAB

00BA "'332 STMCUR
00BC 0002 STARP
03BE ENDSTAR
03BE 3302 RUNSTK
0090 TOPRST K
0090 0002 MEMTOP
0392 0301 MEOLFLG
0093 3001

$ 1
$23
$B3
$4B3
$533

$E456
$340
$333

$AI2JI2JI2J
$0 2

$9B

$2E7
$2E5
HMADR

$D BI2J3
$ 11
$I2JB
$D 2I2JA
$BF FC- 3
$5 0
$E471
$I2JA
$55
$54
$2C4
$2FB
$D2I2JB
$D212J3
$D212J1
$ D2I2JF
$2712J
$2FE
$E

ZPG1

OS 2
OS 2
OS 2
OS 2

OS

OS
OS

OS

OS
OS
os

PATCH AREA SIZE
zero PageIOCB
beginning of BASIC's zero page
syntax stack, etc.
other RAM usage

in OS ROMs
where IOCBs start
whe r e DCB (for SIO) is

begin code here
begin f1tg point work area

ATASCII end of line

system 10 mem
system high mem

fltg point in OS ROMs

warms tart flag
get a random byte here
cartridge init vector
the "?" for INPUT statement
where to go for BYE
v i a here to exit to DOS
X AXIS
Y AXIS
COLOR REGISTER
SAVE COLOR FOR CIO
SOUND REG 1
SOUND REG 2
SOUND REG 3
sound control
1ST GRAPHICS FUNCTION AD DR
ATAR I DISPLAY FLAG
APPLICATION HIGH MEM

LOW MEMORY POINTER
ARGUMENT / OPERATOR STACK

SYNTAX OUTPUT BUF FER
VARIABLE NAME TABLE POINTER
VARIABLE NAME TABLE DUMMY END
VARIABLE VALUE TABLE POINTER
END VARIABLE VALUE TABLE
STATEMENT TABLE [PROGRAM] ;
POINTER
CURRENT PGM PTR
STRING/ARRAY TABLE POINTER
END STRING / ARRAY SPACE
RUN TIME STACK
END RUN TIME STACK
TOP OF USED MEMORY
MODIFIED EOL FLAG
: : SPARE: :

143

Source Code

Miscellaneous Zero Page RAM

USED FOR FREQUENTLY USED VALUES
TO DECREASE ROM SIZE AND INCREASE
EXECUTION SPEED. ALSO USED FOR VARIOUS
INDIRECT ADDRESS POINTERS .

"''''94 "'''''''1 COX DS CURRENT OUTPUT INDEX
"''''95 POKADR POKE ADDRESS
"''''95 "'''''''2 SRCADR DS SEARCH ADR
"''''97 INDEX2 ARRAY INDEX 2
"''''97 "'''''''2 SVESA DS 2 SAVE EXPAND START ADR
"''''99 "'''''''2 MVFA DS 2 MOVE FROM ADR
"''''9B "'''''''2 MVTA DS 2 MOVE TO ADR
"''''9D CPC CUR SYNTAX PGM COUNTER
"''''9D "'''''''2 WVVTPT DS WORKING VAR TABLE PTR VALUE
"''''9F MAXCIX MAX SYNTAX CIX
"''''9F "'''''''1

LLNGTH DS 1 LINE LENGTH
"''''A''' "'''''''2 TSLNUM DS 2 TEST LINE NO
"''''A 2 "'''''''2 MVLNG DS 2 MOVE LENGTH
"''''A4 "'''''''2 ECSIZE DS 2 MOVE SIZE
"''''A 6 "'''''''1

DIRFLG DS 1 DIRECT EXECUTE FLAG
"''''A 7 STMLBD STMT LENGTH BYTE DISPL
"''''A 7 "'''''''1

NXTSTD DS NEXT STMT DISPL
"''''AB STMSTRT STMT START CIX
"''''AB "'''''''1

STINDEX DS CURR STMT INDE X
"''''A 9 STKLVL SYNTAX STACK LEVEL
"''''A9 IBUFFX INPUT BUFFER INDEX
"''''A9 "'''''''1

OPSTKX DS OPERATOR STACK INDEX
"''''AA ARSLVL
"''''AA SRCSKP SEARCH SKIP FACTOR

"''''AA "'''''''1
ARSTKX DS ARG STACK INDEX

"''''AB TSCOX TSCOW LENGTH BYTE PTR
"''''AB "'''''''1

EXSVOP DS SAVED OPERATOR
"''''AC TVSCIX SAVE CIX FOR TVAT
"''''AC "'''''''1

EXSVPR DS SAVED OPERATOR PRECE DENCE
"''''AD SVVNTP SAVE VAR NAME TBL PTR
"''''AD "'''''''2 LELNUM DS 2 LIST END LINE t
"''''AF ATEMP TEMP FOR ARRAYS
"''''AF STENUM SEARCH TABLE ENTRY NUMBER
"''''AF "'''''''1

SCANT DS LIST SCAN COUNTER
"''''B''' SVONTC SAVE ONT SRC CODE
"''''B''' "'''''''1

COMCNT DS COMMA COUNT FOR EXEXOR
"''''Bl SVVVTE SAVE VAR VALUE EXP SIZE
"''''Bl "'''''''1

ADFLAG DS ASSIGN/DIM FLAG
"''''B2 SVONTL SAVE ONT SRC ARG LEN
"''''B2 "'''''''1

SVDISP DS DISPL INTO LINE OF FOR/GOSUB
TOKEN

"''''B3 ONLOOP LOOP CONTROL FOR OP
"''''B3 SVONTX SAVE ONT SRC INDEX
"''''B3 "'''''''1

SAVDEX DS 1 SAVE INDEX INTO STMT
"''''B4 "'''''''1

ENTDTD DS 1 ENTER DEVICE TB
"''''B5 "'''''''1

LISTDTD DS 1 LIST DEVICE TBL
III"'B6 "''''1111 DATAD DS 1 DATA DISPL
"''''B7 "'''''''2 DATALN DS 2 DATA LINNO
"''''B9 "'''''''1

ERRNUM DS 1 ERROR #
"''''BA "'''''''2 STOPLN DS 2 LINE j STOPPED AR [FOR CON]
"''''BC "'''''''2 TRAPLN DS 2 TRAP LINE # [FOR ERROR]
"''''BE "'''''''2 SAVCUR DS 2 SAVE CURRENT LINE ADDR
"''''C''' "'''''''1

IOCMD DS I/O COMMAND
"''''C1 "'''''''1

IODVC DS 1 I /O DEVICE
"''''C2 "'''''''1

PROMPT DS 1 PROMPT CHAR
"'IIIC3 "'1111111 ERRSAV DS ERROR # FOR USER
"''''C4 "'''''''2 TEMPA DS TEMP ADDR CELL
"''''C6 "'''''''2 ZTEMP2 DS TEMP
"'IIICS "'''''''1

COLOR DS SET COLOR FOR BASE
"''''C9 "'''''''1 PTABW DS PRINT TAB WIDTH
"''''CA "'''''''1 LOADFLG DS LOAD IN PROGRESS FLAG

144

Source Code

Argument Work Area (AWA)

Floating Point Work Area

33CB
3302
3002
0003
3003

0004
0004
0005

00DA

30E0
00El

00E6
00EC

030 2

3331
3036
0305

0331
0005

0006

0001
0005

0006
0001

ORG
TVTYPE
VTYPE OS
TVNUM
VNUM OS
FPREC EQU
FMPREC EQU

BININT
FR0 OS
FR0M OS

FRE

FRI
FRIM

FR2
FRX

os

OS
os

os
os

ZFP

1
6
FPREC-l

FPREC-l

FPREC

FPREC-l

FPREC
1

VARIABLE TYPE
VARIABLE TYPE
VARIABLE NUMBER
VARIABLE NUMBER

LENGTH OF FLOATING POINT
MANTISSA
FP REGO
FP REG3
FP REG3 MANTISSA

FP REG0 EXP

FP REG 1
FP REG1 MANTISSA

FP REG 2
FP SPARE

RAM for ASCII to Floating Point Conversion

30ED
30EE
33EE
30EF
30EF
00EF
30F3
30F0
00Fl
00Fl

0301

0331

0301

0001

EEXP os
FRSIGN
NSIGN os
SQRCNT
PLYCNT
ES IGN os
SGNFLG
FCHRFLG os
XFMFLG
DIGRT os

Input Buffer Controls

00F2
00F3

Temps

03F5
03F7
03F9

3301
3332

3332
3332
3332

Miscellany

03FB
33FB

03FC
03FE

3301
3303
3336
3332
3332

CIX os
INBUFF os

ZTEMPI os
ZTEMP4 os
ZTEMP3 os

DEGFLG
RADFLG os
RADON EQU
DEGON EQU
FLPTR os
FPT R2 os

2
2
2

1
3
6

2
2

VALUE OF E
FP SIGN
SIGN OF •

SIGN OF EXPONENT

1ST CHAR FLAG

_ OF DIGITS RIGHT OF DECIMAL

CURRENT INPUT INDEX
LINE INPUT BUFFER

LOW LE VE L ZERO PageTEMPS

3=RADIANS, 6= DEGREES
INDI CATE RADIANS
INDICATES DEGREES
PO LYNOMIAL POI NTERS

Miscellaneous Non-Zero Page RAM

3133

3483
3481
3482
13484
057E
057F
0580

121483
3483
3331
3331
3332
357E
3331
3331
0383

ORG
STACK EQU
SIX os
SOX os
SPC os

ORG
LBPRl os
LBPR2 os
LBUFF os

USED FOR VA LUE S NOT ACCESSED FREQUENTLY
MISCRI

1
2

STACK+254
1
1
128

SYNTAX STACK
INPUT INDEX
OUTPUT INDEX
PGM COUNTER

LBUFF PREFIX
BLUFF PREF I X
LINE BUFFER

145

Source Code

1il61il1il IilSEIil ORG LBUFF+$61il
IilS EIil 1il1il1il6 PLYARG DS FPREC
IilSE6 1il1il1il6 FPSCR DS FPREC
IilSEC 1il1il1il6 FPSCRl DS FPREC

IilSE6 FSCR EQU FPSCR
IilSEC FSCRl EQU FPSCRl

IOCBArea

0SF2 = 1il340 ORG IOCBORG

10CB - 1/0 Control Block
THERE ARE 8 I/O CONTROL BLOCKS
1 I OCB IS REQUIRED FOR EACH
CURRENTLY OPEN DEVICE OR FILE.

0341il IOCB
0341il 001ill ICHID DS DEVICE HANDLER ID
1il341 Iillillill ICDNO DS DEVICE NUMBER
1il342 Iillillill ICCOM DS 1 I/O COMMAND
1il343 Iillillill ICSTA DS 1 I /O STATUS
1il34 4 Iillillill ICBAL DS 1
1il34S Iillillill ICBAH DS 1 BUFFER ADR [H,L]
1il346 1il1il1il2 ICPUT DS 2 PUT A BYTE VIA THIS
1il348 Iillillill ICBLL DS
1il349 Iillillill ICBLH DS 1 BUFFER LENGTH [H,L]
1il34A Iillillill ICAUXl DS 1 AUXILIARY 1
1il34B Iillillil l ICAUX2 DS 1 AUXILIARY 2
1il34C Iillillill ICAUX3 DS 1 AUXILIARY 3
1il34D Iillillill ICAUX4 DS 1 AUXILIARY 4
1il34E Iillillill ICAUXS DS 1 AUXILIARY 5
1il34F Iillillill DS 1 SPARE

Iillilllil ICLEN EQU *- IOCB

1il3SIil 1il1il71il DS I CLEN*7 SPACE FOR 7 MORE I OCBS

ICCOM Value Equates

Iillillill ICOIN EQU $Iill OPEN INPUT
1il1il1il2 ICOOUT EQU $1il2 OPEN OUTPUT
1il1il1il3 ICOIO EQU $1il3 OPEN UN/OUT
1il1il1il4 ICGBR EQU $1il4 GET BINARY RECORD
IilIilIilS ICGTR EQU $IilS GET TEXT RECORDS
1il1il1il6 ICGBC EQU $1il6 GET BINARY CHAR
1il1il1il7 ICGTC EQU $1il7 GET TEXT CHAR
IilIilIilB ICPBR EQU $1il8 PUT BINARY RECORD
1il1il1il9 ICPTR EQU $1il9 PUT TEXT RECORD
IilIilIilA ICPBC EQU $ lilA PUT BINARY CHAR
IilIilIilB ICPTC EQU $IilB PUT TEXT CHAR
IilIilIilC ICCLOSE EQU $IilC CLOSE FILE
IilIilIilD ICSTAT EQU $IilD GET STATUS
IilIilIilE ICDDC EQU $IilE DEVICE DEPENDENT
IilIilIilE ICMAX EQU $IilE MAX VALUE
IilIilFF ICFREE EQU $FF IOCB FREE INDICATOR
IillillC ICGR EQU $l C OPEN GRAPHICS
1il1il11 I CDRAW EQU $11 DRAW TO

ICSTA Value Equates

Iillillill I CSOK EQU $Iil l STATUS GOOD, NO ERRORS
1il1il1il2 ICSTR EQU $1il2 TRUNCATED RECORD
1il1il1il3 ICSEOF EQU $1il3 END OF FILE
1il1il81il ICSBRK EQU $81il BREAK KEY ABORT
1il1il81 ICSDNR EQU $81 DEVICE NOT READY
1il1il82 ICSNED EQU $82 NON - EX ISTENT DEVICE
1il1il83 ICSDER EQU $83 DATA ERROR
1il1il84 ICS IVC EQU $84 INVALID COMMAND
1il1il8S ICSNOP EQU $85 DEVICE/FILE NOT OPEN
1il1il86 ICSIVN EQU $86 I NVALID IOCB NUMBER
1il1il87 ICSWPE EQU $87 WRITE PROTECTION

146

Source Code

Equates for Variables
-I N VARIABLE VALUE TABLE
- ON ARGUMENT STACK

00"H" EVTYPE EQU 0 VALUE TYPE CODE
0080 EVSTR EQU $80 STRING
0040 EVARRAY EQU $40 - ARRAY
0002 EVSDTA EQU $02 - ON IF EVSADR IS ABS ADR
0001 EVDIM EQU $01 ON IF HAS BEEN DIM
0000 EVSCALER EQU $00 - SCALER

0001 EVNUM EQU VARIABLE NUMBER [83 - FFJ

0002 EVVALUE EQU 2 SCALAR VALUE [6 BYTESJ

0002 EVSADR EQU 2 STRING DISPL [2J
0004 EVSLEN EQU 4 STRING LENGTH [2J
0006 EVSDIM EQU 6 STRING DIM [2J

0002 EVAADR EQU 2 ARRAY DISPL [2J
0004 EVAD1 EQU 4 ARRAY DIM 1 [2J
0006 EVAD2 EQU 6 ARRAY DIM 2 [2J

Equates for Ru n Stack

0004 GFHEAD EQU 4 LENGTH OF HEADER FOR FOR/GOSUB
000C FBODY EQU 12 LENGTH OF BODY OF FOR ELEMENT
0003 GFDISP EQU 3 DISP TO SAVED LINE DISP
0001 GFLNO EQU 1 DISPL TO LINE # IN HEADER
0000 GFTYPE EQU 0 DISPL TO TYPE IN HEADER
0006 FSTEP EQU 6 DISPL TO STEP IN FOR ELEMENT
00"'0 FLIM EQU 0 DISPL TO LIMIT IN FOR ELEMENT

ROM Start

Cold Start
COLD START - REI NITIALIZES ALL MEMORY

WIPES OUT ANY EXISTING PROGRAM
A"'00 COLDS TART
M00 A5CA LDA LOADFLG ;Y IN MIDDLE OF LOAD
A002 D004 AA"'08 BNE COLD 1 ;DO COLDSTART
A004 A508 LDA WARMFLG IF WARM START
A006 D045 AA04D BNE WARMSTART THEN BRANCH
M08 COLD1
A008 A2FF LDX #$FF SET ENTRY STACK
A00A 9A TXS TO TOS
A00B D8 CLD CLEAR DECIMAL MODE
A00C XNEW
A00C AEE702 LDX LMADR ;LOAD LOW
M0F ACE802 LDY LMADR+l ;MEM VALUE
A012 8680 STX LOMEM SET LOMEM
A014 8481 STY LOMEM+1
A016 A900 LDA #0 RESET MODIFIED
AIH8 8592 STA MEOLFLG EOL FLAG
A01A 85CA STA LOADFLG RESET LOAD FLAG
A01C C8 INY ALLOW 256 FOR OUTBUFF
A01D 8A TXA ;VNTP

A01E A282 LDX #VNTP GET ZPG DISPC TO VNTP
A020 9500 :CS1 STA 0,X SET TABLE ADR LOW
A022 E8 INX
A023 9400 STY 0,X SET TABLE ADR HIGH
A025 E8 INX
A026 E092 CPX #MEMTOP+2 AT LIMIT
A028 90F6 AA020 BCC :CS1 BR IF NOT

A02A A286 LDX #VVTP EXPAND VNT BY ONE

147

Source Code

A02C
A02E
A031
A033
A035

A03B
A03A
A03B
A03D
A03F
A040
A042
A044
A045
A047

Alii 49
A04B

A001
207FAB
A2BC
A003
207FAB

A901i1
A8
9184
918A
C8
A981i1
918A
C8
A91i13
918A

A91i1A
85C9

Warm Start

A04D
AIiI4D
Alii 5 iii
1\1iI53
AIiI56
A058
A05A
A05D

21i1F8B8
2041BD
21i172BD
A592
FIiI1iI3 AAIiI5D
21i199BD
21i157BD

Syntax
AIiI61i1

LDY
JSR
LDX
LDY
JSR

LDA
TAY
STA
STA
INY
LDA
STA
INY
LDA
STA

LDA
STA

U
EXPLOW
tSTARP
t3
EXPLOW

[VNTD),Y
[STMCUR), Y

t$81i1
[STMCUR),Y

t$1iI3
[STMCUR),Y

#I iii
PTABW

FOR END OF VNT
ZERO BYTE
EXPAND STMT TBL
BY 3 BYTES
GO DO IT

SET iii

INTO WTP
INTO STMCUR+1iI

$81i1 INTO
STMCUR+l

$1iI3 INTO
STMCUR+2

SET PRINT TAB
WIDTH TO 10

WA RMSTART - BASIC RES'rART

WARMSTART
JSR RUNINIT

SNXIJSR CLSALL
SNX2JSR SETDZ

LDA MEOLFLG
BEQ SNX3
JSR RSTSEOL

DOES NOT DESTROY CURRENT PGM

INIT FOR RUN
GO CLOSE DEVICE 1-7
SET ElL DEVICE iii

IF AN EOL INSERTED

SNX3 JSR PREADY
THEN UN-INSERT IT
PRINT READY MESSAGE

LOCAL

Editor - Get Lines of Input

Alii 6 iii SYNTAX
Alii 6 iii A5CA LDA LOADFLG IF LOAD IN PROGRESS
AIiI62 DIiI9C A Alii iii iii BNE COLDSTART GO DO COLDSTART
AIiI64 A2FF LDX #$FF RESTORE STACK
AIiI66 9A TXS
A067 21i151DA JSR INTLBF GO INT LBUFF
AIiI6A A95D LDA tEPCHAR
AIiI6C 85C2 STA PROMPT
AIiI6E 21i192BA JSR GLGO
Alii 71 20F4A9 JSR TSTBRK TEST BREAK
AIiI74 DIiIEA AA061i1 BNE SYNTAX BR IF BREAK

AIiI76 A91i11i1 LDA to INIT CURRENT
MI78 B5F2 STA CIX ,INPUT INDEX TO ZERO
AIiI7A 859F STA MAXCIX
AIiI7C 8594 STA COX ,OUTPUT INDEX TO ZERO
AIiI7E 85A6 STA DIRFLG ,SET DIRECT SMT
AIiI81i1 85B3 STA SVONTX SET SAVE ONT CIX
AIiI82 85BIiI STA SVONTC
AIiIB4 85Bl STA SWVTE VALUE IN CASE
AIiI86 A584 LDA VNTD OF SYNTAX ERROR
AIiI88 85AD STA SVVNTP
AIiI8A A585 LDA VNTD+l
AIiI8C 85AE STA SVVNTP+l

AIiI8E 21i1AIDB JSR SKBLANK SKIP BLANKS
AIiI91 21i19FAl JSR :GETLNUM CONVERT AND PUT IN BUFFER
AIiI94 20C8A2 JSR : SETCODE SET DUMMY FOR LINE LENGTH
AIiI97 A5D5 LDA BININT+l
AIiI99 1 iii iii 2 AAIiI9D BPL :SYNIiI
AIiI9B 85Ab STA 1)1RFLG

148

A09D
AI'J9D
A0A0
A0A2
A0A4
A0A6
MA8
A0AA
A0AC
A0AE
Af:lB l
A0Bl
A0Bl
A0B3
A0BS

MB8
Af:lBB
Af:lBD
A0BF
Af:lCl
MC4
A0C6
MC8
A0CB
A0CE
A0D l

A0D3
A0DS
A0D7
MlD9
A0DB
JI.0DC
Af:lDE
A0DF
A0El
A0E3

A0ES
A0E7
A0E9
A0EB
A0ED
Af:lEF
A0Fl
A0F3
A0F4
A0F6
A0F8
A0FB
A0FB
A0FD
A0FF
A101
A103
A10S

A108
A10A
1.l0C

A10E
A1l0
Alll
A1l3
AllS

20A1DB
A4F2
84A8
B1F3
C99B
D007 "A0Bl
24A6
30B2 "A06f:l
4C89Al

AS94
8SA7
2f:lC8A2

20A1DB
A9A4
A0AF
A202
2062A4
86F2
ASAF
20C8A2
20A1DB
20C3Al
9035 "A108

A49F
B1F3
C99B
D006 "Af:lEl
C8
91F3
88
A920
0980
91F3

A940
0SA6
8SA6
A4A8
84F2
A203
86A7
E8
8694
A937
20C8A2

A4F2
B1F3
E6F2
C99B
D0F3 "A0F8
2f:lC8A2

AS94
A4A7
9180

A4F2
88
B1F3
C99B
D09A "A0Bl

All 7 A002
-U19 AS94

:SYN0
JSR
LDY
STY
LDA
CMP
BNE
BIT
BMI
JMP

:SYNl
:XIF

LDA
STA
JSR

JSR
LDA
LDY
LDX
JSR
STX
LDA
.TSR
JSR
JSR
BCC

LDY
LDA
CMP
BNE
INY

SKBLANKS
CIX
STMSTRT
[I NBUFF),Y
#CR
:SYNl
DIRFLG
SYNTAX
:SDEL

COX
STMLBD
:SETCODE

SKBLANK
#SNTAB/2S6
#SNTAB&255
#2
SEARCH
CIX
STENUM
:SETCODE
SKBLANK
:SYNENT
: SYNOK

MAXCIX
[INBUFF), Y
#C R
: SYN3A

STA [INBUFF),Y
DEY
LDA #$20

: SYN3P. ORA # $80
STA [INBUFF),Y

LDA
ORA
STA
LDY
STY
LDX
STX
INX
STX

#$40
DIRFLG
DIRFLG
STMSTRT
CIX
#3
STMLBD

COX
LDA #CERR

: SYN3 JSR : SETCODE
:XDATA

LDY CIX
LDA [INBUFF),Y
INC CIX
CMP #C R
BNE :SYN3
JSR :SETCODE

:SYNOK LDA COX
LDY STMLBD
STA [OUTBUFF),Y

LDY
DEY
LDA
CMP
BNE

:SYN4
LDA

LDY

CIX

[INBUFF] , Y
#CR
:SYN l

#2
cox

Source Code

SKIP BLANKS
GET INDEX
SAVE INCASE OF SYNTAX ERROR

;GET NEXT CHAR
;IS IT CR
;BR NOT CR
; IF NO LINE NO.

THEN NO. DELETE
;GO DELETE STMT

;SAVE COX
;AS PM TO STMT LENTGH BYTE
; DUMMY FOR STMT LENGTH

;GO SKIP BLANKS
; SET UP FOR STMT
; NAME SEARCH

;AND DO IT

;GET STMT NUMBER
;GO SET CODE

; AND GO SYNTAX HIM
; BR IF OK SYNTAX
;ELSE SYNTAX ERROR

GET MAXCIX
LOAD MAXCIX CHAR
WAS IT CR
BR IF NOT CR
~lOVE CR RIGHT ONE

THEN PUT A
BLANK IN IT'S PLACE
SET MAXCIX CHAR
TO FLASH

;INDICATE SYNTAX ERROR

; IN DIRFLG
;RESTORE STMT START

;SET FOR FIRST STMT

; INC TO CODE
;AND SET COX
; GARBAGE CODE
;GO SET CODE

;GET INDEX
;GET INDEX CHAR
; INC TO NXT
;IS IT CR
;BR IF NOT

; GET DISPL TO END OF STMT

; SET LENG'I'H BYTE

;GET INPUT DISPL

;GET LAST CHAR
;IS IT CR
;BR IF NOT

SET LINE LENGTH
INTO STMT

149

Source Code

AllB 918e1 STA [OUTBUFF],Y

AllO 2e1A2A9 SYNS JSR GETSTMT ;GO GET STMT
A12e1 A9e1e1 LOA #0
A122 Belel3 "A127 BCS :SYN6

A124 :SYNSA
A124 2e100A9 JSR GETLL ;GO GET LINE LENGTH
A127 38 :SYN6 SEC
A128 ES94 SBC COX ; ACU=LENGTH[OLO-NEW]
A12A Fel2e1 "A14C BEQ :SYNIN ; BR NEW=OLO
A12C Bel13 "A141 BCS :SYNCON ;BR OLO>NEW

;OLO<NEW
A12E 49FF EOR #$FF ;COMPLEMENT RESULT
Al3e1 A8 TAY
Al31 C8 INY
Al32 A28A LOX #STMCUR ;POINT TO STMT CURRENT
A134 2e17FA8 JSR EXPLOW ;GO EXPAND
A137 AS97 LOA SVESA ;RESET STMCUR
Al39 BSBA STA STMCUR
A13B AS98 LOA SVESA+l
Al30 8S8B S'fA STMCUR+l
Al3F OeleiB ' A14C BNE :SYNIN

A141 48 :SYNCON PHA CONTRACT LENGTH
A142 2e10elA9 JSR GNXTL
A14S 68 PLA
A146 A8 TAY
A147 A28A LOX #STMCUR ;POINT TO STMT CURRENT
A149 2e1FBAB JSR CONTLOW ;GO CONTRACT

A14C A494 :SYNIN LOY COX STMT LENGTH
A14E BB :SYN7 DEY MINUS ONE
A14F B18e1 LOA [OUTBUFF],Y GET BUFF CHAR
AlSl 91BA STA [STMCUR], Y ;PUT INTO STMT TBL
AlS3 9B TYA ; TEST END
AlS4 OelFB "A14E BNE :SYN7 ; BR IF NOT
AlS6 24A6 BIT OIRFLG ;TEST FOR SYNTAX ERROR
AlSB Sel2A "AIB4 BVC :SYNB ;BR IF NOT
AISA ASBI LOA SVVVTE ; CONTRACT VVT
AISC ASLA
AISC +elA ASL A
AlSO ASLA
AlSO +elA ASL A
AISE ASLA
AISE +elA ASL A
AISF AB TAY
A16e1 A2BB LDX #ENDVVT
A162 2etFBA8 JSR CONTLOW
A16S 38 SEC
A166 ASB4 LOA VNTD CONTRACT VNT
A16B ESAD SBC SVVNTP
A16A AB TAY
A16B ASBS LDA VNTD+l
A16D ESAE SBC SVVNTP+l
A16F A2B4 LDX #VNTO
A171 2e1FDA8 JSR CONTRACT
A1 74 24A6 BIT OIRFLG IF STMT NOT DIRECT
A176 lelel6 "A17E BPL :SYN9A THE BRANCH
A17B 2e17BBS JSR LOLINE ELSE LIST DIRECT LINE
A17B 4C6e1AeI JMP SYNTAX THEN BACK TO SYNTAX
A17E 2e1SCBS : SYl,9A JSR LLINE LIST ENTIRE LINE
AIBI 4C6e1AeI :SYN9 JMP SYNTAX
A184 lelFB "AIB I :SYNB BPL :SYN9
AI B6 4CSFA9 JMP EXECNL GO TO PROGRAM EXECUTOR

A189 2e1A2A9 :SDEL JSR GETSTMT GO GET LINE
AIBC BelF3 "AIBI BCS :SYN9 BR NOT FOUND
AIBE 2etDDA9 JSR GETLL GO GET LINE LENGTH
A191 4B PHA Y

150

A192 20D0A9
A195 68
A196 A8
A197 A28A
A199 20FBA8
A19C 4C60A0

Get a Line Number

A19F
A19F 2000D8
AIA2 9008 "AIAC
AIA4

AIA4 A900
AIA6 85F2
AIA8 A080
AIM 3009 "AIB5

AIAC 2056AD
AIAF A4D5
AIBI 30Fl "AIA4
AIB3 A5D4

AIB5
AIB5 84Al
AIB7 85A0
AIB9 20C8A2
AIBC A5Al
Al BE 85D5
AIC0 4CC8A2

SYNENT

AIC3
AIC3 A001
AIC5 B195
AIC7 859E
AIC9 8D8304
AICC 88
AICD B195
AICF 859D
AlDl 8D8204
AID4 A900
AID6 85A9
AID8 A594
AIDA 8D8104
AIDD A5F2
AIDF 8D8004

NEXT

= AIE2
AIE2 20AIA2

AIE5 301A "A201

AIE7 C901
AIE9 902A "A215
AIEB D008 "A IF5

Al ED 20 15A2
AIF0 90F0 "AIE2
AIF2 4C6CA2

AIF5 C905

Source Code

JSR GNXTL
PLA
'rAY
LDX #STMCUR GET STMCUR DISPL
JSR CONTLOW GO DELETE
JMP SYNTAX GO FOR NEXT LINE

;GETLNUM-GET A LINE NO FROM ASCLT IN INBUFF
TO BINARY INTO OUTBUFF

: GETLNUM
JSR
BCC

:GLNI

LDA
STA
LDY

CVAFP
: GLNUM

#13
CIX
#$80

BMI :SLNUM

:GLNUM JSR CVFPI
LDY BININT+l
BMI
LDA

: SLNUM
STY
STA
JSR
LDA
STA
JMP

:GLN I
BININT

TSLNUM+l
TSLNUM
:SETC ODE
TSLNUM+l
BININT+l
:SETCODE

GO CONVERT LINE #
BR IF GOOD LINE #

SET LINE #

=$8000

CONVERT FP TO INT
LOAD RESULT
BR IF LNO> 32767

SET LINE # HIGH
AND LOW
OUTPUT LOW
OUTPUT HI

AND RETURN

PERFORM LINE PRE-COMPILE

:SYNENT
LDY
LDA
STA
STA
DEY
LDA
STA
STA
LDA
STA
LDA
STA
LDA
STA

:NEXT EQU
JSR

BMI

CMP

#l
[SRCADR]. Y
CPC+l
SPC+l

[SRCADR]. Y
CPC
SPC
#0
STKLVL
COX
SOX
CIX
SIX

; GET PC HIGH

;SET PGM COUNTERS

;SET STKLUL
;SET STKLUL
;MOVE
;COX TO SOX
; MOVE
;CIX TO SIX

GET NEXT SYNTAX CODE
AS LONG AS NOT FAILING

:NXS C GET NEXT CODE

: ERNTV BR IF REL-NON-TERMINAL

#l TEST CODE=l
BCC :GETADR BR CODE=eJ [ABS-NON-TERMINAL]
BNE :TSTSUC BR CODE >1

JSR :GETADR CODE=l [EXTERNAL SUBROUTINE]
BCC : NEXT BR IF SUB REPORTS SUCCESS
J MP :FAIL ELSE GO TO FAIL CODE

:TSTSUC CMP #5 TEST CODE = 5

151

Source Code

AIF7 9059 ' A252 BCC : POP CODE = [2,3,OR 4J POP UP TO
NEXT SYNTAX CODE

AIF9 20A9A2 JSR :TERMTST CODE >5 GO TEST TERMINAL
AIFC 90E4 ' AIE2 BCC : NEXT BR IF SUCCESS
AIFE 4C6CA2 JMP :FAIL ELSE GO TO FAIL CODE

A201 38 :ERNTV SEC RELATIVE NON TERMINAL
A202 A200 LDX #0 TOKEN MINUS
A204 E9Cl S8C #$ Cl
A206 B002 'A20A BCS :ERNI BR IF RESULT PLUS
A208 A2FF LDX #$FF ADD A MINUS
A20A 18 :ERNI CLC
A20B 659D ADC CPC RESULT PLUS CPC
A20D 48 PHA IS NEW CPC-l
A20E 8A TXA
A20F 659E ADC CPC+l
A211 48 PHA SAVE NEW PC HIGH
A212 4C28A2 JMP : PUSH GO PUSH

= A215 :GETADR EQU GET DOUBLE BYTE ADR [-lJ
A215 20AIA2 JSR :NXSC GET NEXT CODE
A218 48 PHA SAVE ON STACK
A219 20AIA2 JSR :NXSC GET NEXT CODE
A21C 48 PHA SAVE ON STACK
A21D 9009 'A228 BCC :PUSH BR IF CODE =0
A2U' 68 PLA EXCHANGE TOP
A220 A8 TAY 2 ENTRIES ON
A221 68 PLA CPU STACK
A222 AA TAX
A223 98 TYA
A224 48 PHA
A225 8A TXA
A226 48 PHA
A227 60 RTS ; ELSE GOTO EXTERNAL SRT VIA RTS

PUSH PUSH TO NEXT STACK LEVEL

= A228 : PUSH EQU
A228 A6A9 LDX STKLVL GET STACK LEVEL
A22A E8 INX PLUS 4
A22B E8 INX
A22C E8 INX
A22D E8 INX
A22E F01F 'A24F BEQ :SSTB ;BR STACK TOO BIG
A230 86A9 STX STKLVL SAVE NEW STACK LEVEL

A232 A5F2 LDA CIX CIX TO
A234 9D8004 STA SIX,X STACK IX
A237 A594 LDA COX COX TO
A239 9D8104 STA SOX,X STACK OX
A23C A59D LDA CPC CPC TO
A23E 9D8204 STA SPC,X STACK CPC
A241 A59E LDA CPC+l
A243 9D8304 STA SPC+l,X

A246 68 PLA MOVE STACKED
A247 859E STA CPC+l PC TO CPC
A249 68 PLA
A24A 859D STA CPC
A24C 4CE2Al JMP : NEXT GO FOR NEXT

A24F 4C24B9 :SSTB JMP ERLTL

POP LOAD CPC FROM STAC K PC
AND DECREMENT TO PREV STACK LEVEL

= A252 :POP EQU
A252 A6A9 LOX STKLVL GET STACK LEVEL
A254 0001 'A257 8NE : POPI BR NOT TOP OF STACK

152

Source Code

A256 6'"

A257
A25A
A25C
A25F

A261
A262
A263
A264
A265

A267
A269

FAIL

BD82"'4
B590
BD83"'4
859E

CA
CA
CA
CA
B6A9

B"''''3 "A26C
4CE2A1

= A26C
A26C 2"'A1A2

A26F 3"'FB "A26C

A271 C9"'2
A273 B"''''8 "A27D

RTS

:POP1 LDA SPC,X
STA CPC
LDA SPC+1,X
STA CPC+1

OEX
DEX
OEX
DEX
STX STKLVL

BCS :FAIL
JMP : NEXT

TO SYNTAX CALLER

MOVE STACK PC
TO CURRENT PC

X=X - 4

BR IF CALLER FAILING
ELSE GO TO NEXT

TERMINAL FAILED

:FAIL EQU

LOOK FOR ALTERNATIVE [OR] OR
A RETURN INDICATOR

JSR :NXSC GET NEXT CODE

BMI

CMP
BCS

:FAIL

#2
:TSTOR

BR IF RNTV

TEST CODE =2
BR IF POSSIBLE OR

CODE = '" OR 1
INC PC BY TWO

A275 2 "'9AA 2
A278 2"'9AA2
A27B D"'EF "A26C

JSR
JSR
BNE

:INCCPC
: INCCPC
:FAIL AND CONTINUE FAIL PROCESS

A270 C9"'3 :TSTOR CMP #3
A27F F"'Ol "A252 BEQ :POP
A281 B"'E9 "A26C BCS :FAIL

A283
A2B5
A287
A289
A28B
A28B
A28D
A29'"
A292
A295
A297

A5F2
C59F
9"''''2 "A28B
859F

A6A9
B08"'''' 4
85F2
8D81"'4
8594
4CE2A1

Increment CPC

LDA
CMP
8CC
STA

:SCIX
LDX
LDA
STA
LOA
STA
JMP

CIX
MAXCIX
:SCIX
MAXCIX

STKLVL
SIX,X
CIX
SOX,X
COX
: NEXT

TEST CODE=3
BR CODE =3 [RETURN]
CODE>3 [RNTV] CONTINUE

IF THIS CIX
IS A NEW MAX

THEN SET NEW MAX

CODE=2 [OR]
MOVE STACK INDEXES
TO CURRENT INDEXES

TRY FOR SUCCESS HERE

INCCPC - INC CPC BY ONE

A29A
A29C
A29E
A2A'"

NXSC

A2A1
A2A1
A2A4
A2A6
A2A8

= A29A
E69D
D"''''2 "A2A'"
E69E
6'"

2 "'9AA 2
A2"''''
A19D
6'"

: INCCPC EQU
INC CPC
BNE :ICPCR
INC CPC+1

: ICPCR RTS

GET NEXT SYNTAX CODE

NXSC
JSR
LOX
LDA
RTS

:INCCPC
t'"
[CPC,X]

INC PC

GET NEXT CODE
RETURN

153

Source Code

TERMTST

A2A9
A2A9 C9elF
A2AB FelelD 'A2BA
A2AD Bel37 'A2E6

A2AF 68
A2Bel 68
A2Bl A9elC
A2B3 48
A2B4 A9A6
A2B6 48
A2B7 4C28A2

ECHNC

A2BA
A2BA 2el9M2
A2BD Aelelel
A2BF B19D

A2Cl A494
A2C3 88
A2C4 918el
A2C6 18
A2C7 6el

SETCODE

A2C8
A2C8 A494
A2CA 918el
A2CC E694
A2CE FI'll'l1 'A2Dl
A2DI'l 61'l
A2Dl 4C24B9

Exits for IF and REM
A2D4
A2D6
A2D7
A2D9
A2DB
A2DD

A2EI'l
A2Eel

A2FF
9A
A594
A4A7
9181'l
4CBIAI'l

A2Eel A2FF
A2E2 9A
A2E3 4CFBAel

SRCONT

A2E6
A2E6 21'lAIDB
A2E9 A5F2
A2EB C5B3
A2ED FI'l16 'A31'l5
A2EF 85B3

A2Fl A9A7
A2F3 AI'lE3
A2F5 A2ell'l
A2F7 21'l62A4

154

TERMTST
CMP
BEQ
BCS

PLA
PLA
LDA
PHA
LDA
PHA
JMP

:ECHNG
JSR
LDY
LDA

LDY
DEY
STA
CLC
RTS

:SETCODE
LDY
STA
INC
BEQ
RTS

:SCOVF

:EIF
TXS
LDA
LDY
STA
JMP

:EREM
:EDATA

LDX
TXS
JMP

: SRCONT
JSR
LDA
CMP
BEQ
STA

LDA
LDY
LDX
JSR

TEST A TERMINAL CODE

#$elF TEST CODE=F
: ECHNG BR CODE < F
:SRCONT BR CODE > F

POP RTN ADR

#:EXP-l&255 PUSH EXP ADR
FOR SPECIAL

#:EXP/256 EXP ANTV CALL

: PUSH GO PUSH

EXTERNAL CODE TO CHANGE COX -1

:INCCPC INC PC TO CODE
#el
[CPC] , Y GET CODE

COX GET COX
MINUS 1

[OUTBUFF], Y SET NEW CODE
SET SUCCESS
RETURN

SET CODE IN ACV AT COX AND INC COX

JMP

LDX

COX
[OUTBUFF] , Y
COX
:SCOVF

ERLTL

#$FF

cox
STMLBD
[OUTBUFF], Y
:XIF

#$FF

:XDATA

,GET COX
,SET CHAR
,INC COX
,BR IF NOT ZERO
,DONE
,GO 'ro LINE TOO LONG ERR

RESET STACK

SET STMT LENGTH

GO CONTINUE IF

, RESET STACK

,GO CONTINUE DATA

SEARCH OP NAME TABLE AND TEST RESULT

SKPBLANK
CIX
SVONTX
:SONTl
SVONTX

#OPNTAB/256
#OPNTAB&255
#I'l
SEARCH

SKIP BLANKS
GET CURRENT INPUT INDEX
COMPARE WITH SAVED IX
BR IF SAVED IX SAME
SAVE NEW IX

SET UP FOR ONT
SEARCH

GO SEARCH

Source Code

A2FA B028 "1'.324 BCS :SONF 8R NOT FOUND
A2FC 86B2 STX SVONTL SAVE NEW CIX
A2FE 18 CLC
A2FF A5AF LDA STENUM ADD $10 TO
1'.301 6910 ADC #$10 ENTRY NUMBER TO
1'.303 85B0 STA SVONTC GET OPERATOR CODE

1'.305 1'.000 :SONTI LDY #0
1'.307 B19D LDA [CPC],Y GET SYNTAX REQ CODE
1'.309 C5B0 CMP SVONTC DOES IT MATCH THE FOUND
A30B F00E "A31B BEQ :SONT2 BR IF MATCH
A30D C944 CMP #CNFNP WAS REQ NFNP
A30F D006 "1'.317 BNE :SONTF BR IF NOT
1'.311 A5B0 LDA SVONTC GET WHAT WE GOT
1'.313 C944 CMP #CNFNP IS IT NFNA
1'.315 B002 "1'.319 BCS :SONTS BR IF IT IS
1'.317 :SONTF
1'.317 38 SEC REPORT FAIL
1'.318 60 RTS
1'.319 A5B0 :SONTS LDA SVONTC GET REAL CODE

A31B 20C8A2 :SONT2 JSR :SETCODE GO SET CODE
A31E A6B2 LDX SVONTL INC CIX BY
1'.320 86F2 STX CIX
1'.322 18 CLC REPORT SUCCESS
1'.323 60 RTS DONE
1'.324 1'.900 :SONF LDA #13 SET ZERO AS
1'.326 85B0 STA SVONTC SAVED CODE
1'.328 38 SEC
1'.329 60 RTS DONE

TVAR
EXTERNAL SUBROUTINE FOR TNVAR & TSVAR

1'.321'. 1'.900 :TNVAR LDA #0 ; SET NUMERIC TEST
A32C F002 "1'.330 BEQ :TVAR

A32E 1'.980 :TSVAR LDA #$80 SET STR TEST

1'.330 85D2 :TVAR STA TVTYPE SAVE TEST TYPE
1'.332 20AIDB JSR SKPBLANK SKIP LEADING BLANKS
1'.335 A5F2 LDA CIX GET INDEX
1'.337 85AC STA TVSCIX FOR SAVING

1'.339 20F3A3 JSR : TSTALPH GO TEST FIRST CHAR
A33C B025 "1'.363 BCS :TVFAIL BR NOT ALPHA
A33E 20E6A2 JSR : SRCONT IF THIS IS A
1'.341 A5B0 LDA SVONTC RESVD NAME
1'.343 F008 "A34D BEQ :TVI BR NOT RSVDNAME
1'.345 A4B2 LDY SVONTL IF NEXT CHAR AFTER
1'.347 BIF3 LDA [INBUFF], Y RESERVED NAME
1'.349 C930 CMP #$30 NOT ALARM NUMERIC
A34B 9016 "1'.363 BCC :TVFAIL THEN ERROR

A34D E6F2 :TVI INC CIX INC TO NEXT CHAR
A34F 20F3A3 JSR :TSTALPH TEST ALPHA
1'.352 90F9 "A34D BCC : TVI BR IF ALPHA
1'.354 20AFDB JSR TSTNUM TRY NUMBER
1'.357 90F4 "A34D BCC :TVI BR IF NUMBER

1'.359 BIF3 LDA [INBUFF], Y GET OFFENDING CHAR
A35B C924 CMP # '$, IS IT $
1'.35D F006 "1'.365 BEQ :TVSTR BR IF $ [STRING]
A35F 24D2 BIT TVTYPE THIS A NVAR SEARCH
1'.361 1009 "A36C BPL :TVOK BR 'IF NVAR

1'.363 38 :TVFAIL SEC SET FAIL CODE
1'.364 60 RTS DONE

1'.365 24D2 :TVSTR BIT TVTYPE TEST SVAR SEARCH
1'.367 10FA "1'.363 BPL :TVFAIL BR IF SVI'.R

155

Source Code

A369 C8 INY INC OVER $
A36A D"''''D "A379 BNE :TVOK2 BR ALWAYS

A36C BIF3 :TVOK LDA [INBUFF], Y , GET NEXT CHAR
A36E C928 CMP #' (, IS IT PAREN
A37'" D"''''7 "A379 BNE :TVOK2 BR NOT PAREN
A372 C8 INY INC OVER PAREN
A373 A94'" LDA #$40 OR IN ARRAY
A375 05D2 ORA TVTYPE CODE TO TVTYPE
A377 85D2 STA TVTYPE

A379 A5AC :TVOK2 LDA TVSCIX GET SAVED CIX
A37B 85F2 STA CIX PUT BACK
A37D 84AC STY TVSCIX SAVE NEW CIX

A37F A583 LDA VNTP+l SEARCH VNT
A381 A482 LDY VNTP FOR THIS GUY
A383 A2"'''' LDX #'"
A385 2"'62A4 JSR SEARCH
A388 :TVRS
A388 B"''''A "A394 BCS : TVS'" BR NOT FOUND
A38A E4AC CPX TVSCIX FOUND RIGHT ONE
A38C F"'4D "A3DB BEQ :TVSUC BR IF YES
A38E 2"'9"'A4 JSR SRCNXT GO SEARCH MORE
A391 4C88A3 JMP :TVRS TEST THIS RESULT

A394 : TVS'"
A394 38 SEC SIGH:
A395 A5AC LDA TVSCIX VAR LENGTH IS
A397 E5F2 SBC CIX NEW CIX-OLD CIX
A399 85F2 STA CIX

A39B A8 TAY GO EXPAND VNT
A39C A284 LDX #VNTD BY VAR LENGTH
A39E 2"'7FA8 JSR EXPLOW
A3Al A5AF LDA STENUM SET VARIABLE NUMBER
A3A3 85D3 STA TVNUM

A3A5 A4F2 LDY CIX AND
A3A7 88 DEY
A3A8 A6AC LDX TVSCIX GET DISPL TO EQU+l
A3M CA DEX
A3AB BD8"''''5 :TVSl LDA LBUFF,X MOVE VAR TO
A3AE 9197 STA [SVESA],Y
A3B'" CA DEX
A3Bl 88 DEY
A3B2 1"'F7 "A3AB BPL :TVSl

A3B4 A4F2 LDY CIX ,TURN ON MSB
A3B6 88 DEY ,OF LAST CHAR
A3B7 B197 LDA [SVESA], Y ,IN VTVT ENTRY
A3B9 "'98'" ORA #$80
A3BB 9197 STA [SVESA], Y

A3BD A"''''8 LDY #8 THEN EXPAND
A3BF A288 LDX #STMTAB VVT BY 8
A3Cl 2"'7FA8 JSR EXPLOW
A3C4 E6Bl INC SVVVTE INC VVT EXP SIZE

A3C6 A"''''2 LDY #2 CLEAR VALUE
A3C8 A9"'''' LDA #'" PART OF
A3CA 99D2"'''' :TVSIA STA TVTYPE,Y ENTRY
A3CD C8 INY
A3CE C"''''8 CPY #8
A3D'" 9"'F8 "A3CA BCC :TVSIA
A3D2 88 DEY AND THEN
A3D3 B9D2"'''' :TVS2 LDA TVTYPE,Y PUT IN VAR TABLE
A3D6 9197 STA [SVESA],Y ENTRY
A3D8 88 DEY
A3D9 1"'F8 "A3D3 BPL :TVS2

156

A30B
A300
A30F

2402
5"''''2 'A3E1
C6AC

A3E1 A5AC
A3E3 85F2

A3E5
A3E7
A3E9
A3E8
A3EE
A3EF

A5AF
3"''''7 'A3F'"
"'98'"
2"'C8A2
18
6'"

A3F'" 4C38B9

TSTALPH

A3F3
A3F3 1\4F2
1\3F5 B1F3
A3F7
1\3F7
A3F9
1\3FB
A3FO

C941
9"''''3 '1\3FE
C95B
6'"

A3FE 38
1\3FF 6'"

TNCON

A4"''''
1\4"''''
A4"'3
1\4"'5
1\4"'7
A4"'A
A4"'C
l\4"'E
1\41'"

2"'A10B
1\5F2
85AC
2"'''''''08
9"''''5 'A411
1\ SAC
85F2
6'"

A411 1\9"'E
A413 2"'C8A2

A416
A418
A41A
1\41C
1\41E
A41F
1\42'"
1\422
A424
A426
1\427

1\494
A2"''''
B504
918'"
C8
E8
E"''''6
9"'F6 'A41A
8494
18
6'"

TSCON

A428
1\428
1\42B
A420
A42F
A431
A433
A434

2"'A10B
1\4F2
B1F3
C922
F"''''2 'A435
38
6'"

: TVSUC BIT TVTYPE
BVC :TVNP
OEC TVSCIX

:TVNP LOA TVSCIX
STA CIX

LOA
BMI
ORA
JSR
CLC
RTS

:TVFULL JMP

STENUM
: TVFULL
#$8'"
:SETCODE

ERRVSF

Source Code

WAS THERE A PI\REN
BR IF NOT
LET SYNTAX SEE PI\REN

GET NEW CIX
TO CIX

GET TABLE ENTRY NO
BR IF > $7F
MAKE IT > $7F
SET COOE TO OUTPUT BUFFER
SET SUCCESS CODE
RETURN

GO TO ERROR RTN

TEST CIX FOR ALPHA

: TSTALPH
LOY
LOA

TSTALPH
CMP
BCC
CMP
RTS

:TI\FI\IL SEC
RTS

CIX
[INBUFF] . Y

#' A
:TAFAIL
#$5B

EXTERNAL SUBROUTINE TO CHECK FOR NUMBER

:TNCON
JSR
LOA
STA
JSR
BCC
LOA
STA
RTS

SKBLANK
CIX
TVSCIX
CVAFP
:TNC1
TVSCIX
CIX

:TNC1 LOA #$"'E
JSR :SETCOOE

LOY COX
LOX #'"

:TNC2 LOA FR"'.X
STA [OUTBUFF].Y
INY
INX
CPX #6
BCC : TNC2
STY COX
CLC
RTS

GO TEST ANO CONY
BR IF NUMBER

RETURN FAIL

SET NUMERIC CONST

MOVE CaNST TO STMT

EXT SRT TO CHECK FOR STR CONST

:TSCON
JSR
LOY
LOA
CMP
BEQ
SEC
RTS

SKBLANK
CIX
[INBUFF]. Y
#$22
:TSC1

GET INOEX
GET CHI\R
IS IT OQUOTE
BR IF OQ
SET FAIL
RETURN

157

Source Code

M35
A437
A43A
A43C
A43E

M41
A443
M45
A447
A449
A44B
M4D
A44F
M52

A455
A457
M58
A45A
A45C
A45E

A91ilF
21ilC8A2
A594
85A8
21ilC8A2

E6F2
A4F2
B1F3
C99B
FIilIilC 'M57
C922
FIil1il6 'M55
2 IilC 8A2
4C41M

E6F2
18
A594
E5AB
A4A8
9181il

A461il 18
A461 61il

A462
A462 86M

A464 A2FF
A466 86AF

A468
A46A
A46C
A46E
A471il
A472
M74
A476
A478

A479
A47C
A47E
A480
M82
A482
A4B4
A484
M85

158

8596
8495
E6AF
A6F2
A4M
B195
FIil27 'A49D
A91il1il
08

BD8005
297F
C92E
F01D 'A49F

5195

+0A
F01il2 'A489

:TSCI LDA
JSR
LDA
STA
JSR

:TSC2 INC
LDY
LDA
CMP
BEQ
CMP
BEQ
JSR
JMP

:TSC3 INC
:TSC4 CLC

LDA
SBC
LDY
STA

CLC
RTS

#$IilF
:SETCODE
COX
TSCOX
:SETCODE

CIX
CIX
[INBUFF],Y
fCR
:TSC4
#$22
:TSC3
:SETCODE
:TSC2

CIX

COX
TSCOX
TSCOX
[OUTBUFF] , Y

Search a Table
TABLE FORMAT:

SET SCON CODE

SET COX
SAVE FOR LENGTH
SET DUMMY FOR NOW

NEXT INPUT CHAR

IS IT CR
BR IF CR
IS IT DQ
BR IF DQ
OUTPUT IT
NEXT

INC CIX OVER DQ

LENGTH IS COX MINUS
LENGTH BYTE COX

SET LENGTH

SET SUCCESS
DONE

GARBAGE TO SKIP [N]
ASCII CHAR [N]

WITH LEAST SIGNIFICANT BYTE HAVING
MOST SIGNIFICANT BIT ON

LAST TABLE ENTRY t1UST HAVE FIRST ASCII
CHAR = Iil

ENTRY PARMS:
Y. = SKIP LENGTH
A,Y = TABLE ADR [HIGH LOW]
ARGUMENT = INBUFF + CIX

EXIT PARMS:

SEARCH
STX

LDX
STX

SRCSKP

#$FF
STENUM

CA RRY = CLEAR IF FOUND
X = FOUND ARGUMENT END CIX+ l
SRCADR TABLE ENTRY ADR
STENUfl = TABLE ENTRY NUMBER

SAVE SKIP FACTOR

SET ENTRY NUMBER
TO ZERO

:SRCI STA SRCADR+l SET SEARCH AOR
STY SRCADR
INC STENUM
LDX CIX
LOY SRCSKP
LDA [SRCADR],Y
BEQ : SRCNF
LDA #0
PHP

:SRC2 LOA LBUFF,X
AND #$7F
CMP #'. '
BEQ : SRC5

:SRC2A
EOR [SRCADR],Y
ASLA
ASL A
BEQ : SRC3

INC ENTRY NUMBER
GET ARG DISPL
GET SKIP LENGTH
GET FIRST CHAR
BR IF EOT
SET STATUS = EQ
AND PUSH IT

GET INPUT CHAR
TURN OFF MSB
IF WILD CARD
THEN BR

EX-OR WITH TABLE CHAR
SHIFT MSB TO CARRY

BR IF [ARG=TAB] CHAR

A487 68
M88 08

M89
A48A
A48B

A48D
A48E

A490
A490
A491
M92
A494
M95
A497
M99

C8
E8
90EC 'A479

28
F00B ' A498

18
98
6595
1\8
A596
6900
D0CD 'A468

A498 18
A49C 60

A49D 38
A49E 60

A49F
A4Al
A4A3
A4A5
A4A7
A4A9
A4AA
A4AC
A4AD

A4AF

A902
C5AA
D0DD 'A4B2
8195
3003 'A4AC
C8
D0F9 'A4A5
38
B0DA 'A489

A4AF C7A7
A4Bl 5245CD

A4B4 CAA7
A4B6 444154Cl

A4BA F3A6
A4BC 494E5055D4

A4Cl BCA6
A4C3 434F4C4FD2

A4C8 32A7
A4CA 4C4953D4

A4CE 23A7
A4D0 454E5445D2
A4D5 BFA6
A4D7 4C45D4

A4DA 93A7
A4DC 49C6

A4DE DIA6
A4E0 464FD2

A4E3 E9A6

Source Code

PLA
PHP

: SRC3 INY
INX

POP STATUS
PUSH NE STATUS

;INC TABLE INDEX
; INC ARG INDEX

BCC : SRC2 ; IF TABLE MSB OFF, CONTINUE
;ELSE END OF ENTRY

PLP
BEQ : SRCFND

SRCNXT
CLC
TYA
ADC
TAY
LDA
ADC
BNE

:S RCFND CLC
RTS

: SRCNF SEC
RTS

: SRC5 LDA
CMP
8NE

: SRC6 LDA
BMI
INY
BNE

: SRC7 SEC
BCS

SRCADR

SRCADR+l
#0
:SRCI

#2
SRCSKP
:SRC2A

[SRCADR), Y
: SRC7

:SRC6

:SRC3

;GET STATUS
;BR IF NO MIS MATCH

;ACV=ENTRY LENGTH
;PLUS START ADR [L)
:TO Y
;ETC

;BR ALLWAYS

;INDICATE FOUND

;INDICATE NOT FOUND

IF NOT
STMT NAME TABLE
THEN IGNORE

;TEST MSB OF TABLE
IF ON DONE
ELSE
LOOK AT NEXT CHAR
INDICATE MSB ON
AND RE-ENTER CODE

Statement Name Table

SNTAB - STATEMENT NAME TABLE

SNTAB

DW
DC

DW
DC

DW
DC

DW
DC

DW
DC

DW
DC
DW
DC

DW
DC

DW
DC

DW

EACH ENTRY HAS SYNTAX TABLE ADR PTR
FOLLOWED BY STMT NAME

:SREM- l
'REM'

: SDATA-l
'DATA'

:SINPUT-l
'INPUT'

:SCOLOR-l
' COLOR '

: SLIST-l
'LIST'

:SENTER-l
'ENTER'
:SLET-l
'LET'

:SIF-l
'IF'

:SFOR-l
'FOR'

:SNEXT-l

159

Source Code

A4E5 4E4558D4 DC 'NEXT'

A4E9 BCA6 DW :SGOTO-1
A4EB 474F54CF DC 'GOTO '

A4EF BCA6 DW :SGOTO- 1
A4F1 474F2054CF DC 'GO TO'

A4F6 BCA6 DW :SGOSUB-1
MF8 474F5355C2 DC 'GOSUB'

A4FD BCA6 DW :STRAP-1
MFF 545241D0 DC 'TRAP'

A503 BDA6 DW :SBYE-1
A505 4259C5 DC 'BYE '

A508 BDA6 DW :SCONT-1
A50A 434F4ED4 DC 'CONT'

A50E 5FA7 DW :SCOM-1
A510 434FCD DC 'COM'

A513 20A7 DW :SCLOSE-1
A515 434C4F53C5 DC 'CLOSE'

A51A BDA6 DW :SCLR-1
A51C 434CD2 DC 'CLR'
A51F BDA6 DW :SDEG-1
A521 4445C7 DC 'DEG'

A524 5FA7 DW :SDIM-1
A526 4449CD DC 'DIM'

A529 BDA6 DW :SEND-1
A52B 454EC4 DC 'END'

A52E BDA6 DW :SNEW-1
A530 4E45D7 DC 'NEW'

A533 19A7 DW :SOPEN-1
A535 4F5045CE DC 'OPEN'
A539 23A7 DW :SLOAD-1
A53B 4C4F4 1C4 DC 'LOAD'
A53F 23A7 DW :SSAVE-1
A541 534156C5 DC 'SAVE'
A545 412!A7 DW :SSTATUS-1
A547 5354415455 DC 'STATUS'

D3
A54D 49A7 DW :SNOTE-1
A54F 4E4F54C5 DC 'NOTE'
A553 49A7 DW :SPOINT-1
A555 504F494ED4 DC 'POINT '
A55A 17A7 DW :SXIO-1
A55C 5849CF DC 'XIO'

A55F 62A7 DW :SON-1
A561 4FCE DC 'ON'

A563 5CA7 DW : SPOKE-1
A565 504F4BC5 DC 'POKE'

A569 FBA6 DW :SPRINT-1
A56B 5052494ED4 DC 'PRINT'

A570 BDA6 DW :SRAD-1
A572 5241C4 DC 'RAD'

A575 F4A6 DW :SREAD-1

160

Source Code

A577 524541C4 DC 'READ'

A57B EEA6 DW :SREST-l
A57D 524553544F DC 'RESTORE '

52C5

A584 BDA6 DW :SRET-l
A586 5245545552 DC 'RETURN'

CE

A58C 26A7 DW :SRUN-l
A58E 5255CE DC 'RUN'

A591 BDA6 DW :SSTOP-l
A59~ 53544FDIl Dr ' STOP '

A597 BDA6 DW :SPOP-l
A599 51l4FDIl DC 'POP'

A59C FBA6 DW :SPRINT-l
A59E BF DC '? '

A59F E7A6 DW :SGET-l
A5Al 4745D4 DC 'GET'
A5A4 B9A6 DW : SPUT-l
A5A6 51l55D4 DC 'PUT'
A5A9 BCA6 DW :SGR-l
A5AB 47524151148 DC ' GRAPHICS '

4943D3

A5B3 5CA7 DW : SPLOT-l
A5B5 51l4C4FD4 DC 'PLOT '

A5B9 5CA7 DW :SPOS-l
A5BB 51l4F534954 DC 'POSITION'

494FCE

A5C3 BDA6 DW :SDOS- l
A5C5 444FD3 DC ' DOS'

A5C8 5CA7 DW :SDRAWTO-l
A5CA 4452415754 DC 'DRAWTO'

CF

A5DIl 5AA7 DW : SSETCOLOR-l
A5D2 534554434F DC 'SETCOLOR '

4C4FD2

A5DA E1A6 DW :SLOCATE-l
A5DC 4C4F434154 DC 'LOCATE'

C5

A5E2 58A7 DW :SSOUND-l
A5E4 534F554EC4 DC ' SOUND '
A5E9 FFA6 DW :SLPRINT-l
A5EB 4C51l52494E DC 'LPRINT'

D4
A5Fl BDA6 DW :SCSAVE-l
A5F3 43534156C5 DC 'CSAVE '
A5F8 BDA6 DW :SCLOAD- l
A5FA 434C4F41C4 DC 'CLOAD'
A5FF BFA6 DW : SILET-l
A61l1 Illl DB Il
A61l2 81l1l1l DB $80,00
A61l4 2A4552524F DB ' *ERROR-

522D21l
A60C A0 DB $A0

161

Source Code

Syntax Tables

Syntax Table OP Codes

0000 :ANTV EQU $00 ABSOLUTE NON TERMINAL VECTOR
FOLLOWED BY 2 BYTE ADR -1

0001 :ESRT EQU $01 EXTERNAL SUBROUTINE CALL
FOLLOWED BY 2 BYTE ADR - 1

0002 :OR EQU $02 ALTERNATIVE, BNF OR (J)
0003 :RTN EQU $03 RETURN, (#)
0004 :NULL EQU $04 ACCEPT TO THIS POINT (&)
000E :VEXP EQU $0E SPECIAL NTV FOR EXP «EXP >)
000F :CHNG EQU $0F CHANGE LAST OUTPUT TOKEN

< EXP > =«EXP »< NOP > < UNARY > < EXP > I < NV > <NOP>#

A60 D :EXP SYN CLPRN
A60 D +2 B DB CLPRN
A60E SYN JS, : EXP
A60E +BF DB $B0+«(: EXP-*)&$7F) XOR $40)
A60F SYN CRPRN
A60F +2C DB CRPRN
A610 SYN JS, :NOP
A610 +DE DB $B0+«(:NOP-*)&$7F) XOR $40)
A6 11 SYN :OR
A611 +02 DB : OR
A6 12 SYN JS, : UNARY
A61 2 +C6 DB $B0+«(: UNARY-*) &$7F) XOR $40)
A613 SYN JS , :EXP
A613 +BA DB $B0+«(:EXP- *)&$7F) XOR $4~)
A6 14 SYN : OR
A614 +02 DB :OR
A615 SYN JS , :NV
A615 +CD DB $B0+«(:NV-*)&$7F) XOR $4")
A616 SYN JS, :NOP
A6 16 +DB DB $B"+ (« :NOP-*)&$7F) XOR $4")

A617 SYN :RTN
A6 1 7 +03 DB :RTN

< UNARY > = + I - I NOT#

A6 1B : UNARY SYN CPLUS
A61B +2 5 DB CPLUS
A6 19 SYN : CHNG,CUPLUS
A619 +0F DB : CHNG
A61A +35 DB CUPLUS
A61B SYN :OR
A61B +02 DB : OR
A61C SYN CMINUS
A61C +26 DB CMINUS
A61D SYN :CHNG,CUMINUS
A61D +"F DB :CHNG
A61E +36 DB CUMINUS
A6 1F SYN :OR
A6 1F +"2 DB :OR
A620 SYN CNO'T'
A62" +28 DB CNOT
A62 1 SYN : RTN
A621 +"3 DB :RTN

< NV > = <NFUN > <NVAR> <NCON> I <STCOMP>#

A622 :NV SYN JS , :NFUN, :OR
A622 +FD DB $B"+«(:NFUN-*)&$7F) XOR $4"
A623 +"2 DB :OR
A624 SYN JS , : NVAR, :OR
A624 +E8 DB $80+ «(:NVAR- *)&$7F) XOR $40
A625 +02 DB : OR
A626 SYN :ESRT,AD , :TNCON-l, :OR
A626 +01 DB :ESRT

162

Source Code

A627 +FFA3
A629 HI2
A62A
A62A +00
A62B +7DA6
A62D
A62D +03

DW
DB

SYN
DB
DW

SYN
DB

(:TNCON-1)
:OR

:ANTV , AD, :STCOMP-1
: ANT V
(: STCOMP-1)

:RTN
: RTN

< NOP > = <OP> <EXP> 1&#

A62E
A62E +C4
A62F
A62F +9E
A630
A630 +02
A631
A631 +03

:NOP SYN JS , :OP
DB $B0+(((: OP -*) &$7F) XOR $40)
SYN JS, :EXP
DB $80+(((:EXP-*)&$7F) XOR $40)
SYN : OR

DB :OR
SYN :RTN

DB : RTN

<op> =** I * I / I < = s= <> < 1 >1 = IAND IOR#

A632
A632 +23
A633 +02
A634
A634 +25
A635 +02
A636
A636 +26
A637 +0 2
A638
A638 +24
A639 +02
A63A
A63A +27
A63B +02
A63C
A63C +lD
A63D +02
A63E
A63E +IF
A63F +02
A640
A640 +lE
A641 +02
A642
A642 +20
A643 +02
A644
A644 +21
A645 +02
A646
A646 +22
A647 H'12
A648
A648 +2A
A649 +02
A64A
A64A +29
A64B
A64B +03

:OP
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB
DB

SYN
DB

SYN
DB

SYN CEXP ,:OR
CEXP
: OR
CPLUS, : OR

CPLUS
: OR
CMINUS, :OR

CMINUS
:OR
CMUL, :OR

CMUL
:OR
CDIV , :OR

CDIV
:OR
CLE , :OR

CLE
:OR
CGE, :OR

CGE
:OR
CNE, : OR

CNE
:OR
CLT , :OR

CLT
:OR

CGT, :OR
CGT
:OR
CEQ, :OR

CEQ
:OR
CAND, :OR

CAND
: OR

COR
COR

:RTN
:RTN

<NVAR > = < TNVAR > < NMAT>#

A64C
A64C +01
A64D +29A3
A64F
A64F +C2
A650
A650 +0 3

: NVAR SYN : ESR'r , AD, : TNVAR - 1
DB : ESRT
DW (: TNVAR-1)

SYN
DB
SYN

DB

JS, :NMAT
$80+(((:NMAT - *)&$7F) XOR $40)

:RTN
:RTN

163

Source Code

<NMAT> = (<EXP> <NMAT2» I &#

A65l :NMAT SYN CLPRN, :CHNG,CALPRN
A65l +2B DB CLPRN
A652 +0F D8 :CHNG
A653 +38 DB CALPRN
A654 SYN :VEXP
A654 +0E DB :VEXP
A655 SYN JS, : NMAT2
A655 +C4 D8 $80+«(:NMAT2-*)&$7F) XOR $40)
A656 SYN CRPRN
A656 +2C D8 CRPRN
A657 SYN :OR
A657 +02 D8 :OR
A658 SYN :RTN
A658 +03 D8 :RTN

<NMAT2> = ,<EXP> &#

A659 :NMAT2 SYN CCOM, :CHNG,CACOM
A659 +12 DB CCOM
A65A +0F DB :CHNG
A65B +3C DB CACOM
A65C SYN :VEXP
A65C +0E D8 :VEXP
A65D SYN :OR
A65D +02 DB :OR
A65E SYN :RTN
A65E H'3 DB :RTN

<NFUN> = <NFNP> <NFP> <NFSP> <SFP> I <NFUSR>#

A65F :NFUN SYN CNFNP
A65F +44 DB CNFNP
A660 SYN JS, :NFP
A660 +D2 D8 $80+«(:NFP-*)&$7F) XOR $40)
A66l SYN :OR
A66l +02 D8 :OR
A662 SYN :ANTV , AD, :NFSP-l
A662 +00 DB :ANTV
A663 +CDA7 ow (:NFSP-l)
A665 SYN JS, :SFP
A665 +03 DB $80+«(: SFP-*)&$7F) XOR $40)
A666 SYN :OR
A666 +02 DB :OR
A667 SYN JS, :NFUSR
A667 +C2 DB $80+«(:NFUSR-*)&$7F) XOR $40)
A668 SYN :RTN
A668 +03 DB :RTN

<NFUSR> = USR (< PUSR>) #

A669 :NFUSR SYN CUSR
A669 +3F DB CUSR
A66A SYN CLPRN, :CHNG,CFLPRN
A66A +2B DB CLPRN
A66B +0F D8 :CHNG
A66C +3A DB CFLPRN
A66D SYN : ANTV,AD, :PUSR-l
A66D +00 DB :ANTV
A66E +D9A7 DW (: PUSR-l)
A670 SYN CRPRN
A670 +2C DB CRPRN
A671 SYN :RTN
A671 +03 DB :RTN

< N FP > = (< EXP >) #

A672 : NFP SYN CLPRN, : CHNG,CFLPRN
A672 +2B DB CLPRN
A673 +0F DB :CHNG
A674 +3A DB CFLPRN
A675 SYN : VEXP

164

Source Code

A675 HIE DB :VEXP
A676 SYN CRPRN
A676 +2C DB CRPRN
A677 SYN :RTN
A677 +03 DB : RTN

< SFP > = < STR>) #

A678 :SFP SYN CLPRN, :CHNG,CFLPRN
A678 +2B DB CLPRN
A679 +0F DB :CHNG
A67A +3A DB CFLPRN
A67B SYN JS, :STR
A67B +C7 DB $80+(((:STR-*)&$7F) XOR $40
A67C SYN CRPRN
A67C +2C DB CRPRN
A67D SYN :RTN
A67D +03 DB :RTN

< STCOMP > = < STR > < SOP > < STR >#
A67E :STCOMP SYN JS, :STR
A67E +C4 DB $80+ (((:STR-*)&$7F) XOR $40
A67F SYN JS, :SOP
A67F +E3 DB $80+ (((:SOP-*)&$7F) XOR $40
A680 SYN JS, :STR
A680 +C2 DB $80+ (((:STR-*)&$7F) XOR $40
A681 SYN :RTN
A681 +03 DB :RTN

<STR > = < SFUN > < SVAR > < SCON >#

A682 :STR SYN JS , :SFUN
A682 +C8 DB $80+ (((:SFUN-*)&$7F) XOR $40
A683 SYN : OR
A683 +02 DB :OR
A684 SYN JS, :SVAR
A684 +CB DB $B0+(((:SVAR-*)&$7F) XOR $40
A685 SYN :OR
A685 +0 2 DB :OR
A686 SYN :ESRT,AD, :TSCON-l
A686 +01 DB :ES RT
A687 +27A4 OW (:TSCON-l)
A689 SYN :RTN
A689 +03 DB :RTN

< SFUN > =SFNP < NFP >#

A68A ;3FUN SYN :ANTV ,AD, :SFNP-l
A68A +00 DB :ANTV
A68B +D5A7 OW (: SFNP-l)
A68D SYN JS, :NFP
A68D +A5 DB $80+ (((:NFP-*)&$7F) XOR
A68E SYN :RTN
A68E +03 DB :RTN

< SVAR > = < TSVAR > <SMAT > #

A68F :SVAR SYN :ESRT , AD, :TSVAR-l
A68F +01 DB : ESRT
A690 +2DA3 OW (: TSVAR-l)
A692 SYN JS , :SMAT
A692 +C2 DB $80+(((:SMAT-*)&$7F) XOR
A693 SYN :RTN
A693 +03 DB : RTN

< SMAT> = (< EXP > < SMAT2 >) 1&#

A694
A694 +2B
A695 +0F
A696 +37

: SMAT SYN CLPRN, :CHNG,CSLPRN
DB CLPRN
DB :CHNG
DB CSLPRN

$40

$40

)

)

)

)

)

165

Source Code

A697 SYN : VEXP
A697 H1E DB :VEXP
A698 SYN JS, :SMAT2
A698 +C4 DB $80+(((: SMAT2-*)&$7F) XOR $40)
A699 SYN CRPRN
A699 +2C DB CRPRN
A69A SYN :OR
A69A +02 DB :OR
A69B SYN :RTN
A69B +03 DB :RTN

< SMAT2 > =, < EXP > 1&#

A69C :SMAT2 SYN CCOM, : CHNG, CACOM
A69C +12 DB CCOM
A69D +0F DB :CHNG
A69E +3C DB CACOM
A69F SYN :VEXP
A69F +0E DB : VEXP
A6Ml SYN :OR
A6A0 +02 DB :OR
A6Al SYN :RTN
A6Al +03 DB : RTN

<SOP> = < > < #
A6A2 :SOP
A6A2 SYN CLE, :CHNG , CSLE, : OR
A6A2 +lD DB CLE
MA3 +0F DB :CHNG
A6A4 +2F DB CSLE
A6AS +02 DB :OR
A6A6 SYN CNE , : CHNG, CSNE , : OR
MA6 +lE DB CNE
A6A7 +0F DB :CHNG
MA8 +30 DB CSNE
A6A9 +02 DB :OR
A6AA SYN CGE , :CHNG,CSGE, : OR
A6AA +IF DB CGE
A6AB +0F DB :CHNG
A6AC +31 DB CSGE
A6AD +02 DB :OR
A6AE SYN CLT, :CHNG, CSLT, :OR
A6AE +20 DB CLT
A6AF +0F DB :CHNG
MB0 +32 DB CSLT
A6Bl +02 DB :OR
A6B2 SYN CGT , :CHNG, CSGT, : OR
A6B2 +21 DB CGT
A6B3 +0F DB : CHNG
A6B4 +33 DB CSGT
A6BS +02 DB :OR
A6B6 SYN CEQ , : CHNG, CSEQ
A6BG +22 DB CEQ
AGB7 +0F DB : CHNG
A6B8 +34 DB CSEQ
AGB9 SYN :RTN
A6B9 +03 DB :RTN

< PUT> = < Ol > ,<EXP > < EOS > #
A6BA :SPUT
A6BA SYN CPND, :VEXP
AGBA +lC DB CPND
AGBB +0E DB :VEXP
AGBC SYN CCOM
AGBC +12 DB CCOM

166

Source Code

< > = < EXP> <EOS > #

116BD
116BD
116BD
116BD
116BD
116BD
116BD H'lE

< > = < EOS>#
IIbBE
116BE
116BE
A6BE
116BE
A6BE
A6BE
A6BE
A6BE
A6BE
A6BE
A6BE
A6BE
A6BE
A6BE +FA
A6BF
116BF +03

: STRAP
:SGOTO
:SGOSUB
:SGR
:SCOLOR
: XEOS SYN : VEXP

DB :VEXP

:SCSIlVE
:SCLOAD
:SDOS
:SCLR
:SRET
:SEND
:SSTOP
:SPOP
:SNEW
:SBYE
:SCONT
:SDEG
: SRAD

SYN
DB
SYN

DB

JS, :EOS
$S0 +(((:EOS-*)&$7F) XOR $40)

:RTN
: RTN

< LET > = < NVAR> = < EXP > < EOS> < SVAR> = < STR > < EOS > #

A6C0 :SLET
A6C0 :SILET
A6C0 SYN :ANTV,AD, :NVAR-l
A6C0 +00 DB : ANTV
116Cl +4B1I6 OW (:NVAR-l)
A6C3 SYN CEQ , : CHNG,CAASN
A6C3 +22 DB CEQ
A6C4 +0F DB :CHNG
A6C5 +20 DB CAASN
116C6 SYN :VEXP
116C6 +0E DB : VEXP
116C7 SYN JS , :EOS
A6C7 +Fl DB $S0+(((:EOS-*)&$7F) XOR $40)
A6CS SYN :OR
116CS +02 DB :OR

A6C9 SYN JS , :SVAR
A6C9 +S6 DB $S0+(((:SVAR-*)&$7F) XOR $40)
A6CA SYN CEQ, :CHNG , CSASN
A6CA +22 DB CEQ
A6CB +0F DB :CHNG
A6CC +2E DB CSIISN
116CD SYN : liNT V , AD , :STR-l
A6CD +00 DB :ANTV
A6CE +Sl116 DW (: STR-l)
11600 SYN JS, :EOS
A6D0 +ES DB $S0+(((: EOS-*)&$7F) XOR $40)
A6D l SYN : RTN
A6Dl +03 DB :RTN

< FOR > = < TNVAR > = < EXP > TO < EXP > < FSTEP > < EOS > #

A6D2 :SFOR SYN :ESRT,IID, :TNVAR- l
116D2 +01 DB :ESRT
A6D3 +29A3 DW (:TNVAR-l)
A6D5 SYN CEQ, : CHNG,CAASN
A6D5 +22 DB CEQ
11606 +0F DB :CHNG
A6D7 +2D DB CAASN

167

Source Code

A6DS SYN :VEXP
A6DS +0E DB :VEXP
A6D9 SYN CTO
A6D9 +19 DB CTO
A6DA SYN :VEXP
A6DA +lJE DB :VEXP
A6DB SYN JS, :FSTEP
A6DS +C3 DB $B0+(((:FSTEP-*)&$7F) XOR $40
A6DC SYN JS, :EOS
A6DC +DC DS $S0+(((:EOS-*)&$7F) XOR $40)

A6DD SYN :RTN
A6DD +03 DB :RTN

< FSTEP > = STEP < EXP > 1&
A6DE :FSTEP
A6DE SYN CSTEP
A6DE +lA DB CSTEP
A6DF SYN :VEXP
A6DF +0E DB : VEXP
A6E0 8YN :OR
A6E0 +02 DB :OR
A6El SYN :RTN
A6El +03 DB :RTN

<LOCATE> = < EXP > , < EXP > ,<TNVAR > < EOL > #

A6E2 :8LOCATE
A6E2 SYN :VEXP
A6E2 +0E DB :VEXP
A6E3 SYN CCOM
A6E3 +12 DB CCOM
A6E4 SYN :VEXP
A6E4 +0E DB :VEXP
A6ES SYN CCOM
A6ES +12 DB CCOM
A6E6 SYN JS, :SNEXT
A6E6 +C4 DB $B0+(((:SNEXT-*)&$7F) XOR $40)
A6E7 SYN :RTN
A6E7 +03 DB :RTN

<GET> = <D1 > , < TNVAR > #
A6EB :SGET
A6ES SYN JS, :Dl
A6ES +DD DB $B0+(((:Dl-*)&$7F) XOR $40)
A6E9 SYN CCOM
A6E9 +12 DB CCOM

<NEXT> = < TNVAR > < EOS > #

A6EA :8NEXT SYN : ESRT,AD, :TNVAR-l
A6EA +01 DB :ESRT
A6EB +29A3 DW (:TNVAR-l)
A6ED SYN JS, :EOS
A6ED +CB DB $B0+(((:EOS-*)&$7F) XOR $40)
A6EE SYN :RTN
A6EE +03 DB :RTN

<RESTORE> = < EXP > < EOS > <EOS>#

A6EF :SREST SYN :VEXP
A6EF +0E DB :VEXP
A6F0 8YN JS, :EOS
A6F0 +CB DB $B0+(((:E08-*)&$7F) XOR $40)
A6Fl 8YN :OR
A6Fl +02 DB :OR
A6F2 SYN J8, :EOS
A6F2 +C6 DB $B0+(((:E08-*)&$7F) XOR $40)
A6F3 SYN :RTN
A6F3 +03 DB :RTN

168

Source Code

<INPUT> = < OPD > < READ > #
A6F4
A6F4 +FB

:SINPUT SYN JS, :OPD
DB $B0+(((:OPD-*)&$7F) XOR $40)

< READ > = < NSVARL > < EOS > #

A6F5 :SREAD SYN JS, :NSVRL
A6F5 +DB DB $B0+(((:NSVRL-*)&$7F) XOR $40
A6F6 SYN JS, :EOS
A6F6 +C2 DB $B0+(((:EOS-*)&$7F) XOR $40)

A6F7 SYN :RTN
A6F7 +03 DB :RTN

EOS=: I CR#

A6FB :EOS SYN CEOS
A6FB +14 DB CEOS
A6F9 SYN :OR
A6F9 +02 DB :OR
A6FA SYN CCR
A6FA +16 DB CCR
A6FB SYN :RTN
A6FB +03 DB :RTN

< PRINT > = < D1 >< EOS > I < D1 > < PR1 > < EOS >
A6FC :SPRINT
A6FC SYN JS, :D1
A6FC +C9 DB $B0+(((:D1-*)&$7F) XOR $40)
A6FD SYN JS, :EOS
A6FD +BB DB $B0+(((:EOS-*)&$7F) XOR $40)
A6FE SYN :OR
A6FE +02 DB :OR
A6FF SYN JS, :OPD
A6FF +ED DB $B0+(((:OPD-*)&$7F) XOR $40)
A700 :SLPRINT
A700 SYN : ANTV ,AD, :PR1-1
A700 +00 DB :ANTV
A701 +9FA7 DW (: PR1-1)
A703 SYN JS, :EOS
A703 +B5 DB $B0+(((:EOS-*)&$7F) XOR $40)
A704 SYN :RTN
A704 +03 DB :RTN

<D1> = < CPND> < EXP > #
A705 : D1 SYN CPND
A705 HC DB CPND
A706 SYN : VEXP
A706 +0E DB :VEXP
A707 SYN : RTN
A707 +03 DB :RTN

< NSVAR > = < NVAR > I < SVAR > #

A70B : NSVAR SYN
A70B +01 DB
A709 +29A3 DW
A70B SYN
A70B +02 DB
A70C SYN
A70C +01 DB
A70D +2DA3 DW
A70F SYN
A70F +03 DB

< NSVRL > = < NSVAR > < NSV2 >

A710
A7l0 +BB
A7l1

:NSVRL SYN
DB
SYN

:ESRT,AD , :TNVAR-l
:ESRT
(:TNVAR-l)

:OR
:OR

:ESRT,AD, : TSVAR-l
:ESRT
(:TSVAR-1)

:RTN
:RTN

1&#

JS, : NSVAR
$B0+(((:NSVAR-*)&$7F) XOR $40)
JS, :NSV2

169

Source Code

A711 +C3
A7l2
A7l2 Hl2
A7l3 +03

DB
SYN

$80+(((:NSV2 - *)&$7F) XOR $40)
:OR ,:RTN

DB
DB

< NSV2 > = , < NSVRL > 1&#
A714 :NSV2
A7l4 +12 DB
A7lS SYN
A71S +BB DB
A7l6 SYN
A716 +02 DB
A717 +03 DB

:OR
:RTN

SYN CCOM
CCOM

JS , : NSVRL
$80+ (((:NSVRL-*)&$7F) XOR $40

:OR ,:RTN
:OR
:RTN

< XIO> = < AEXP>, < 02S > < FS > , < AEXP > < EOS > #

A7l8 :SXIO
A7l8 SYN :VEXP
A7l8 +0E DB :VEXP
A7l9 SYN CCOM
A719 +12 DB CCOM

< OPEN > = < 01 > , < EXP > , < EXP > , < FS > , < EOS > #
A71A :SOPEN
A71A SYN JS, : D1
A71A +AB DB $80+ (((: Dl-*)&$7F) XOR $40)
A71B SYN CCOM
A7lB +12 DB CCOM
A71C SYN JS, :TEXP
A71C +F9 DB $80+ (((:TEXP-*)&$7F) XOR $40
A71D SYN CCOM
A7lD +12 DB CCOM
A7lE SYN JS, : FS
A7lE +F3 DB $80+(((:FS-*)&$7F) XO R $40)
A71F SYN JS , : EOS
A71F +99 DB $80+(((:EOS-*)&$7F) XO R $40)
A720 SYN :RTN
A720 +"'3 D8 :RTN

< CLOSE > = < 01> <EOS > #

A721 :SCLOSE
A721 SYN JS, :Dl
A721 +A4 DB $80+(((:Dl-*)&$7F) XOR $40)
A722 SYN JS, :EOS
A722 +96 DB $80+(((:EOS-*)&$7F) XOR $40)
A723 SYN :RTN
A723 HD D8 :RTN

< > = < FS > < EOS >#

A724 : SENTER
A724 :SLOAD
A724 :SSAVE
A724 SYN JS, :FS
A724 +ED DB $80+ (((:FS-*)&$7 F) XOR $40)
A72S SYN JS, :EOS
A72S +93 DB $80+(((:EOS-*) &$7F) XOR $40)
A726 SYN :RTN
A726 +03 DB :RTN

< RUN> = < FS > <EOS2 > I < EOS2 > #

A727
A727
A727 +EA
A728
A728 +90
A729
A729 +02

170

:SRUN
SYN
DB
SYN
DB
SYN

DB

JS, : FS
$80 +(((:FS-*)&$7F) XOR $40)
JS, :EOS

$80+(((:EOS-*)&$7F) XOR $40)
:OR

:OR

)

)

A72A
A72A +8E
A72B
A72B +1il3

SYN
08
SYN

DB

< OPO > = < 01 >, 1#

A72C :OPD
A72C SYN
A72C +99 DB
A72D :OPDX SYN
A7 2D +12 DB
A72E SYN
A72E +"'2 DB
A72F SYN
A72F +96 DB
A 73~ SYN
A73'" +15 DB
A731 SYN
A73 1 +~2 DB '
A732 SYN
A732 +"'3 DB

< LIST > = < FS > ; < L~ > I < L2 > #

A733 : SLIST
A733 SYN
A733 +DE DB
A73 4 SYN
A734 +84 DB
A735 SYN
A735 H!l2 DB
A736 SYN
A736 +DB DB
A737 SYN
A737 +12 DB
A738 SYN
A738 +C4 DB
A739 SYN
A739 +02 DB
A73A SYN
A73A +C2 DB
A73B SYN
A73B +03 DB

< LIS > = < L1 > < EOS2 > #

A73C :LIS
A73C SYN
A73C +00 DB
A73D +BFA7 OW
A73F SYN
A73F +F4 DB
A740 SYN
A740 HI3 DB

< STATUS > = < STAT > < EOS2 > #

A741 :SSTATUS
A74 1 SYN
A74 1 +C3 DB
A742 SYN
A742 +F1 DB
A743 SYN
A743 +0 3 DB

< STAT > = < Ol > , < NVAR > #
A744 : STAT
A744 SYN
A744 +81 DB

Source Code

JS, :EOS
$8~+(((:EOS-*)&$7F) XOR $4~)

:RTN
:RTN

JS , :D1
$8~+(((:D1-*)&$7F) XOR $4~)

CCOM
CCOM

:OR
:OR
JS, : 01

$8"'+(((:D1-*)&$7F) XOR $4'")
CSC

CSC
: OR

:OR
: RTN

:RTN

JS, :FS
$8"'+(((:FS-*)&$7F) XOR $4'")

JS, :EOS
$8"'+(((:EOS-*)&$7F) XOR $40)

:OR
:OR
JS, :FS

$80+ (((:FS-*)&$7F) XOR $40)
CCOM

CCOM
JS ,:LIS

$80+(((:LIS-*)&$ 7F) XOR $40)
:OR

:OR
JS, :LIS

$80+(((:LIS-*)&$7F) XOR $40)
:RTN

: RTN

: ANTV , AD , :L1-1
: ANT V
(: L1-1)
JS, :EOS2

$80+(((:EOS2-*) &$7F) XOR $40
:RTN

: RTN

JS, : STAT
$80+(((:STAT-*)&$7F) XOR $40
JS, : EOS2

$80+(((: EOS2-*) &$7F) XOR $40
: RTN

:RTN

JS, : 01
$80+(((:D1-*)&$7F) XOR $40)

)

171

Source Code

A745 SYN CCOM
A745 +12 DB CCOM
A746 SYN :ANTV,AD, :NVAR-1
A746 +00 DB :ANTV
A747 +4BA6 DW (:NVAR-1)
A749 SYN :RTN
A749 +03 DB :RTN

< > = < STAT > , < NVAR > < EOS2 > #
A74A :SNOTE
A74A :SPOINT
A74A SYN JS, :STAT
A74A +BA DB $80+(((:STAT-*)& $7F) XOR $40)
A74B SYN CCOM
A74B +12 DB CCOM
A74C SYN : ANTV,AD, :NVAR-1
A74C +00 DB : ANTV
A74D +4BA6 DW (: NVAR-1)
A74F SYN JS, : EOS2
A74F +E4 DB $80 +(((:EOS2 -*)&$7F) XOR $40)
A750 SYN :RTN
A750 +03 D8 :RTN

< FS > = < STR >

A751 :FS
A751 SYN :ANTV,AD, :STR-1
A751 +00 DB :ANTV
A752 +81A6 DW (: STR-1)
A754 SYN :RTN
A754 +03 DB :RTN

< TEXP> = < EXP > , < EXP > #

A755 :TEXP
A755 SYN :VEXP
A755 +0E DB :VEXP
A756 SYN CCOM
A756 +12 DB CCOM
A757 SYN :VEXP
A757 +0E D8 :VEXP
A758 SYN :RTN
A758 +03 DB :RTN

< SOUND > = < EXP >,< EXP > , < EXP >,< EXP > < EOS >#

A759 :SSOUND
A759 SYN :VEXP
A759 +0E D8 :VEXP
A75A SYN CCOM
A75A +12 DB CCOM
A75B :SSETCOLOR
A75B SYN :VEXP
A75B +0E DB :VEXP
A75C SYN CCOM
A75C +12 DB CCOM

< > = < EXP > , < EXP > < EOS > #

A75D
A75D
A75D
A75D
A75D
A75D +B8
A75E
A75E +D5
A75F
A75F +03

172

:SPOKE
: SPLOT
:SPOS
:SDRAWTO

SYN
08
sm
DB
SYN

JS , :TEXP
$80+ (((:TEXP-*)&$7F) XOR $40

JS , :EOS2
$80+(((:EOS2-*)&$7F) XOR $40

:RTN
DB : RTN

Source Code

<DIM> = <NSML> < EOS >#
A761?! :SD1M
A761?! :SCOM
A761?! SYN JS, :NSML
A761?! +EC DB $81?!+(((:NSML-*)&$7F) XOR $ 4 I?!
A761 SYN JS, :EOS2
A761 +02 DB $81?!+(((:EOS2-*)&$7F) XOR $ 4 I?!
A762 SYN :RTN
A762 + I?! 3 DB :RTN

< ON > = < EXP > <ON1> < EXPL > <EOS >#

A763 :SON SYN :VEXP
A763 +I?!E DB :VEXP
A764 SYN JS, :ONI
A764 +C4 DB $81?!+(((:ONl-*)&$7F) XOR $ 41?!)
A765 SYN JS, :EXPL
A765 +C7 DB $81?!+(((:EXPL-*)&$7F) XOR $41?!
A766 SYN JS, :EOS2
A766 +CD 08 $81?!+(((:EOS2-*)&$7F) XOR $41?!
A767 SYN :RTN
A767 +1?!3 08 :RTN

< ON1 > = GOTO I GOSUB#

A768 :ONI SYN CGTO
A768 +17 DB CGTO
A769 SYN :OR
A769 + I?! 2 DB :OR
A76A SYN CGS
A76A +18 DB CGS
A76B SYN :RTN
A76B + I?! 3 DB :RTN

< EXPL > = < EXP > < EXPl1 > #

A76C :EXPL SYN :VEXP
A76C +I?!E DB :VEXP
A76D SYN JS, :EXPLI
A76D +C2 DB $81?!+(((:EXPLl-*)&$7F) XOR $41?!)
A76E SYN :RTN
A76 E + I?! 3 DB :RTN

< EXPl1 > =,<EXPL > 1&#

A76F :EXPL1 SYN CCOM
A76F +12 DB CCOM
A771?! SYN JS, :EXP L
A 77 I?! +BC DB $81?!+(((:EXPL-*)&$7F)
A771 SYN : OR
A771 + I?! 2 DB :OR
A772 SYN : RTN
A772 + I?! 3 DB : RTN

< EOS2 > = CEOS CCR#

A773 :EOS2
A773 SYN CEOS
A773 +14 DB CEOS
A774 SYN :OR
A774 + I?! 2 DB :OR
A775 SYN CCR
A775 +16 DB CCR
1\776 SYN :RTN
A776 + I?! 3 DB :RTN

< NSMAT > = <TNVAR > «EXP> < NMAT2 »

A777
A777
A777 +01

: NSMAT
SYN

DB
:ESRT,AD, :TNVAR-1

:ESRT

XOR $41?!)

173

Source Code

A77B +29A3 DW (:TNVAR-1)
A77A SYN CLPRN, :CHNG, CDLPRN
A77A +2B DB CL PRN
A77B +0F DB :CHNG
A77C +39 DB CDLPR N
A77D SYN :VEXP
A77D +0E DB :VEXP
A77E SYN : ANTV,AD , :NMAT2-1
A77E +00 DB :ANTV
A77F +5BA6 DW (: NMAT2-1)
A7B1 SYN CRPRN
A7B1 +2C DB CRPR N
A7B2 SYN :OR
A7B2 +02 DB :OR
A7B3 SYN :ESRT,AD, :TSVAR- 1
A7B3 +01 DB :ESRT
A7B4 +2DA3 DW (: TSVAR-1)
A7B6 SYN CLPRN, :CHNG,CDSLPR
A7B6 +2B DB CLPRN
A7B7 +0F DB :CHNG
A7BB +3B DB CDSLPR
A7B9 SYN :VEXP
A7B9 +0E DB :VEXP
A7BA SYN CR PRN
A7BA +2C DB CRPRN
A7BB SYN :RTN
A7BB Hl3 DB :RTN

<NSML> = < NSMAT> < NSML2 > 1&#

A7BC :NSML SYN JS, :NSMAT
A7BC +AB DB $B0+«(:NSMAT-*)&$7F) XOR $40
A7BD SYN JS , : NSML2
A7BD +C3 DB $B0+«(:NSML2-*)&$7F) XOR $40
A7BE SYN :OR, :RTN
A7BE +02 DB :OR
A7BF +03 DB :RTN

<NSML2> =, < NSML> 1&#
A790 :NSML2 SYN CCOM
A790 +12 DB CCOM
A791 SYN JS, :NSML
A791 +BB DB $B0+«(:NSML-*)&$7F) XOR $40
A792 SYN :OR, :RTN
A792 +02 DB :OR
A793 +03 DB :RTN

<IF> = < EXP > THEN <IFA> < EOS > #

A794 :SIF SYN
A794 +0E DB
A795 SYN
A795 +lB DB
A796 SYN
A796 +C3 DB
A797 SYN
A797 +9C DB
A79B SYN
A79B +03 DB

<IFA> = < TNCON > < ElF >

A799 : IFA SYN
A799 +01 DB
A79A +FFA3 DW
A79C SYN
A79C +02 DB
A79D SYN
A79D +01 DB
A79E +D3A2 DW

174

:VEXP
:VEXP
CTHEN

CTHEN
JS , : IFA

$B0+(«:IFA-*)&$7F) XOR $40
JS , : EOS2

$B0+(«:EOS2-*)&$7F) XOR $40
:RTN

:RTN

:ESRT,AD , :TNCON-1
:ESRT
(: TNCON-1)

: OR
:OR

: ESRT,AD, :EIF-1
:ESRT
(:EIF-1)

)

)

)

Source Code

<PR1> = <PEL> <PSl> <PR2> 1&#
A7AfIJ :PRI
A7AfIJ SYN JS , :PEL, :OR
A7AfIJ +C9 DB $8f1J+(((: PEL-*) &$7F) XOR $4fIJ
A7Al +02 DB :OR
A7A2 SYN JS, : PSL
A7A2 +D4 DB $80+(((:PSL- *)&$7F) XOR $413
A7A3 SYN JS , :PR2
A7A3 +C3 DB $813+(((: PR2-*) &$ 7F) XOR $40
A7A4 SYN :OR
A7A4 +02 DB :OR
A7AS SYN : RTN
A7AS +03 DB :RTN

<PR2> = <PEL> &#

A7A6 :PR2 SYN JS, :PEL
A7A6 +C3 DB $80+(((:PEL-*)&$7F) XOR $40)
A7A7 SYN :OR
A7A7 +02 DB :OR
A7A8 SYN :RTN
A7A8 +0 3 DB :RTN

< PEL > = <PES > <PELA>#

A7A9 :PEL SYN JS , oPES
A7A9 +C3 DB $80+(((: PES-*)&$7F) XOR $40)
A7AA SYN JS, : PELA
A7AA +C8 DB $80+(((:PELA-*)&$7F) XOR $40)
A7AB SYN :RTN
A7AB +03 DB :RTN

<PES> = <EX P > <STR>

A7AC oPES SYN :VEXP
A7AC +0E DB : VEXP
A7AD SYN :OR
A7AD +02 DB :OR
A7AE SYN :ANTV,AD, :STR-l
A7AE +00 DB :ANTV
A7AF +BIA6 DW (: STR-l)
A7Bl SYN : RTN
A7B l +03 DB :RTN

< PELA > = < PSl > <PEL> 1 &#
A7B2 :PELA SYN JS, :PSL
A7B2 +C4 DB $80+(((:PSL-*) &$7F) XOR $40
A7B3 SYN JS, : PR2
A7B3 +B3 DB $80+ (((: PR2-*) &$7F) XOR $40
A7B4 SYN :OR
A7B4 +02 DB :OR
A7BS SYN : RTN
A7BS +03 DB :RTN

<PSl> = <PS> <PSLA>#

A7B6 :PSL SYN JS , : PS
A7B6 +C6 DB $80+(((:PS-*)&$7F) XOR $40)

A7B7 SYN JS, :PSLA
A7B7 +C2 DB $80+(((: PSLA-*)&$7F) XOR $40
A7B8 SYN : RTN
A7B8 +03 DB : RTN

<PSLA> = <PSl> 1&#

A7B9 :PSLA SYN JS ,: PSL
A7B9 +BD DB $80+(((:PSL-*)&$7F) XOR $40)

A7BA SYN :OR

175

Source Code

A7BA Hl2 DB :OR
A7BB SYN :RTN
A7BB Hl3 DB :RTN

< PS > =, I , #

A7BC :PS SYN CCOM
A7BC +12 DB CCOM
A7BD SYN :OR
A7BD +02 DB :OR
A7BE SYN CSC
A7BE +15 DB CSC
A7BF SYN :RTN
A7BF +03 DB :RTN

< L1 > = < EXP > < L2 > &#

A7C0 :L1 SYN :VEXP
A7C0 +0E DB :VEXP
A7C1 SYN JS, :L2
A7C1 +C3 DB $B0+{{{:L2-*)&$7F) XOR $40)
A7C2 SYN :OR
A7C2 +02 DB :OR
A7C3 SYN : RTN
A7C3 +03 DB : RTN

< L2 > =, < EXP > 1&#

A7C4 :L2 SYN CCOM
A7C4 +12 DB CCOM
A7C5 SYN :VEXP
A7C5 +0E DB :VEXP
A7C6 SYN : OR
A7C6 Hl2 DB :OR
A7C7 SYN :RTN
A7C7 +03 DB :RTN

< REM > = < EREM>
A7C8 :SREM SYN :ESRT,AD, :EREM-1
A7C8 +01 DB : ESRT
A7C9 +DFA2 OW (:EREM-1)

< SDATA > = < EDATA>

A7CB :SDATA SYN :ESRT, AD, :EDATA-1
A7CB +01 DB :ESRT
A7CC +DFA2 DW (:EDATA-1)

<NFSP > =ASC I VAL I LEN#

A7CE :NFSP SYN CASC, :OR
A7CE +40 DB CASC
A7CF +11l2 DB :OR
A7DI1l SYN CVAL, :OR
A7DI1l +41 DB CVAL
A7D1 +02 DB :OR
A7D2 SYN CADR, :OR
A7D2 +43 DB CADR
A7D3 +11l2 DB :OR
A7D4 SYN CLEN
A7D4 +42 DB CLEN
A7D5 SYN :RTN
A7D5 +11l3 DB : RTN

176

Source Code

< SFNP > = STR I CHR#

A'ID6 :SFNP SYN CSTR , :OR
A7D6 +3D DB CSTR
A7D7 +1il 2 DB :OR
A7DB SYN CCHR
A7D8 +3E DB CCHR
A7D9 SYN :RTN
A7D9 +1il3 DB :RTN

< PUSR > = < EXP > < PUSRl > #

A7DA :PUSR SYN :VEXP
A7DA HIE DB :VEXP
A7DB SYN JS, :PUSRl
A7DB +C2 DB $81il+(((:PUSR1 -*) &$7F) XOR $41il)
A7DC SYN :RTN
A7DC +1il3 DB :RTN

< PUSR1> =,<PUSR > 1&#

A7DD : PUSRl SYN CCOM, :CHNG , CACOM
A7DD +12 DB CCOM
A7DE +IilF D8 : CHNG
A7DF +3C DB CACOM
A7EIil SYN JS, : PUSR
A7EIil +RA DB $81il+(((:PUSR-*)&$7F) XOR $41il)
A7El SYN :OR
A7El +1il2 DB :OR
A7E2 SYN :RTN
A7E2 +1il3 DB :RTN

OPNTAB - Operator Name Table
A7E3 OPNTAB

IilIilIilF C SET $IilF ;FIRST ENTRY VALUE=$llil

Iillilllil C SET C+1
Iillilllil CDQ EQU C

A7E3 B2 DB $82 ;DOUBLE QUOTE

= Iillilll C SET C+1
= 1il011 CSOE EQU C

A7E4 B0 DB $B0 DUMMY FOR SOE

= 01il12 C SET C+l
= 1il012 CCOM EQU C

A7E5 AC DC

= 0013 C SET C+l
= 01il13 COOL EQU C

A7E6 A4 DC ' $,

= 0014 C SET C+l
= 1il1il14 CEOS EQU C

A7E7 BA DC ': I

= 01il15 C SET C+l
= 0015 CSC EQU C

A7E8 BB DC ' j I

= 1il1il16 C SET C+l
= 1il016 CCR EQU C ;CARRIAGE RETURN

A7E9 9B DB CR

= 1il017 C SET C+l
= 1il017 CGTO EQU C

A7EA 474F54CF DC 'GOTO'

177

Source Code

~ '''H8 C SET C+l
~ 0018 CGS EQU C

A7EE 474F5355C2 DC ' GOSUB'

~ 0019 C SET C+l
~ 0019 CTO EQU C

A7F3 54CF DC 'TO'

~ 001A C SET C+l
~ 001A CSTEP EQU C

A7F5 53544500 DC 'STEP'

~ 001B C SET C+l
~ 001B CTHEN EQU C

A7F9 544845CE DC 'THEN'

~ 001C C SET C+l
~ 001C CPND EQU C

A7FD A3 DC ' # '

~ 0010 CSROP EQU C+l START OF REAL OPS

~ 0010 C SET C+l
~ 0010 CLE EQU C

A7FE 3CBD DC t <= I

~ 001E C SET C+l
~ 001E CNE EQU C

A800 3CBE DC '< > t

~ 001F C SET C+l
~ 001F CGE EQU C

A802 3EBD DC ' >= '

~ 0020 C SET C+1
~ 0020 CLT EQU C

A804 BC DC ' < '

~ 0021 C SET C+1
~ 0021 CGT EQU C

A805 BE DC '>'

~ 0022 C SET C+l
~ 0022 CEQ EQU C

A806 BD DC ' -'

~ 0023 C SET C+1
~ 0023 CEXP EQU C

A807 DE DB $5E+$80 ,up ARROW FOR EXP

~ 0024 C SET C+l
~ 0024 CMUL EQU C

A808 AA DC

~ 0025 C SET C+1
~ 0025 CPLUS EQU C

A809 AB DC ' + '

~ 0026 C SET C+l
~ 0026 CMINUS EQU C

A80A AD DC

~ 0027 C SET C+1
~ 0027 CDIV EQU C

A80B AF DC '/ '

~ 0028 C SET C+1
~ 0028 CNOT EQU C

A80C 4E4FD4 DC 'NOT'

178

Source Code

= 0029 C SET C+l
= 0 0 29 COR EQU C

A80F 4FD2 DC ' OR'

= 002A C SET C+l
= 0 0 2A CAND EQU C

A8ll 4 14EC4 DC 'AND '

= 002B C SET C+l
= 002B CLPRN EQU C

A81 4 A8 DC ' (,

= 002C C SET C+l
= 002C CRPRN EQU C

A815 A9 DC ') ,

THE FOLLOWING ENTRIES liRE CO~IPIUSED OF CHARACTERS
SIMILAR 1'0 SOME OF THOSE ABOVE BUT HAVE
DIFFERENT SYN TACTlCAL OR SEMANTl C MEANING

= 002D C SET C+l
= 002D CAASN EQU C ;ARITHMETIC ASSIGMENT

A816 BD DC '- '

= 00 2E C SET C+l
= 002E CSASN EQU C STRING OPS

A81 7 BD DC

= 002F C SET C+l
= 002F CSLE EQU C

A8 18 3CBD DC ' <= I

= 0030 C SET C+l
= 0030 CSNE EQU C

A81A 3CBE DC '(> '

= 0031 C SET C+l
= 0031 CSGE EQU C

A81C 3EBD DC ' >= '

= 0032 C SET C+l
= 0032 CSLT EQU C

A81E BC DC ' < '

= 0033 C SET C+l
= 0033 CSGT EQU C

A8 1 F BE DC ') ,

= 0034 C SET C+l
= 0034 CSEQ EQU C

A820 BD D-: '-'

= 0035 C SET C+l
= ::J035 CUPLUS EQU C ;UNARY PLUS

A821 AB DC '+ '

= 0036 C SET C+l
= 0036 CUMINUS EQU C UNARY MINUS

A822 AD DC

= 0037 C SET C+l
= 0037 CSLPRN EQU C ;STRING LEFT PAREN

A823 A8 DC '(,

= 0038 C SET C+l
= 0038 CALPRN EQU C ARRAY LEFT PAREN

A824 80 DB $80 DOES NOT PRINT
eJ039 C SET C+l

= 0039 CDLPRN EQU C DIM LEFT PAREN

179

Source Code

A825 8~ DB $8~ DOES NOT PRINT

= ~~3A C SET C+1
= ~~3A CFLPRN EQU C FUNCTION LEFT PAREN

A826 A8 DC '(,

= ~~3B C SET C+1
= ~~3B CDSLPR EQU C

A827 A8 DC '(,

= ~~3C C SET C+l
= ~~3C CACOM EQU C ARRAY CmlMA

A828 AC DC

Function Name Table

PART OF ONTAB

A829 FNTAB

= ~~3D C SET C+1
= ~~3D CFFUN EQU C ;FIRST FUNCTION CO DE
= ~~3D CSTR EQU C

A829 535452A4 DC 'STR$,
= ~~3E C SET C+1
= ~~3E CCHR EQU C

A82D 434852A4 DC 'CHR$,
= ~~3F C SET C+1
= ~~3F CUSR EQU C ;USR FUNCTION CODE

A831 5553D2 DC 'USR'
= ~04~ C SET C+1
= ~~4~ CASC EQU C

A834 4153C3 DC 'ASC'
= ~~41 C SET C+1
= ~~41 CVAL EQU C

A837 5641CC DC 'VAL '
= ~~42 C SET C+1
= ~~42 CLEN EQU C

A83A 4C45CE DC 'LEN'
= ~~43 C SET C+1
= ~~43 CADR EQU C

A83D 4144D2 DC ' ADR '
= ~~44 C SET C+1
= ~il44 CNFNP EQU C

A84il 4154CE DC 'ATN'
A843 434FD3 DC 'COS'
A846 5il4545CB DC 'PEEK'
A84A 5349CE DC 'SIN'
A84D 524EC4 DC 'RND '
A85~ 4652C5 DC 'FRE '
AS53 4558D~ DC 'EXP'
A856 4C4FC7 DC 'LOG'
A859 434C4FC7 DC 'CLOG'
A85D 5351D2 DC ' SQR'
A86~ 5347CE DC 'SGN'
A863 4142D3 DC 'ABS'
A866 494ED4 DC ' INT '
A869 5il4144444C DC 'PADDLE'

C5
A86F 53544943CB DC 'ST ICK'
A874 5il545249C7 DC 'PTRJG'
A879 53545249C7 DC 'STRIG'

A87E ~~ DB $il~

END OF OPNTAB & FNTAB

180

A87F

EXPAND

A87F A9"''''

A881
A881 84A4
A883 85A5

A885 38
A886 A59'"
A888 65A4
A88A A8
A88B A591
A88D 65A5
A88F CDE6"'2
A892 9"''''C -A8A'"
A894 D"''''7 -A89D
A896 CCE5"'2
A899 9"''''5 -A8A'"
A89B F"''''3 -A8A'"
A89D 4C3CB9

A8A'"
A8A'" 38
A8Al A59'"
A8A3 F5"''''
A8A5 85A2
A8A7 A591
A8A9 F5"'1
A8AB 85A3

A8AD 18
A8AE 75"'1
A8B'" 859A

A8B2 B5"''''
A8B4 8599
A8B6 8597
A8B8 65A4

A8BA 859B

A8BC B5"'1
A8BE 8598
A8C'" 65A5
A8C2 65A3
A8C4 859C

A8C6

Source Code

Memory Manager

LOCAL

MEMORY MANAGEMENT CONSISTS OF EXPANDING AND
CONTRACTING TO INFORMATION AREA POINTED TO
8Y THE ZERO PAGE POINTER TABLES. ROUTINES
MODIFY THE ADDRESS IN THE TABLES AND
MOVE DATA AS REQUIRED. THE TWO FUNDAMENTAL
ROUTINES ARE 'EXPAND' AND 'CONTRACT'

X = ZERO PAGE ADDRESS OF TABLE AT WHICH
EXPANSION IS TO START
Y EXPANSION SIZE IN BYTES [LOW)
A = EXPANSION SIZE IN BYTES [HIGH)

EXPLOW - FOR EXPANSION < 256 BYTES
SETS A = '"

EXPLOW LDA #'"

EXPP.ND
STY ECSIZE SAVE EXPAND SIZE
STA ECS IZE+l

SEC
LDA MEMTOP TEST MEMORY TO BE FULL
ADC ECSIZE
TAY MEMTOP+ECSIZE+l
LDA MEMTOP+l
ADC ECSIZE+l MUST BE LE
CMP HIMEM+l
BCC :EXP2 HIMEM
BNE :EXPI
CPY HIMEM
BCC :EXP2
BEQ :EXP2

:EXPI JMP MEMFULL

:EXP2
SEC FORM MOVE LENGTH [MVLNG)
LDA MEMTOP MOVE FROM ADR [MVFA)
SBC "',X MVLNG = MEMTOP-EXPAND ADR
STA MVLNG
LDA MEMTOP+l MVFA[L) EXP ADR [L)
SBC l,X
STA MVLNG+l MVFA[H) EXP ADR[H) +

MVLNG[H)
CLC DURING MOVE MVLNG[L)
ADC l,X WILL BE ADDED SUCH
STA MVFA+l THAT MVFA = MEMTOP

LDA "' , X SAVE PREMOVE EXPAND AT VALUE
STA MVFA SET MVFA LOW
STA SVESA FORM MOVE TO ADR [MVTA)
ADC ECSIZE t1VTA[L) = EXP ADR[L) +

ECSIZE[L)
STA MVTA MVTA[H) = [CARRY + EXP

AD-[H)
LDA 1,X +ECSIZE[H)) + MVLNG[H)
STA SVESA+l
ADC ECSIZE+l DURING MOVE MVLNG[L)
ADC MVLNG+l WILL BE ADDED SUCH THAT
STA MVTA+l MVTA = MEMTOP + ECSIZE

:EXP3

181

Source Code

ABC6 B500 LDA 0,X ADD ECSIZE TO
ABCB 65A4 ADC ECSIZE ALL TABLE ENTRIES
ABCA 9500 STA 0,X FROM EXPAND AT ADR
ABCC B501 LDA 1, X TO HIMEM
ABCE 65A5 ADC ECSIZE+l
ABD0 9501 STA l,X
ABD2 EB INX
ABD3 EB INX
ABD4 E092 CPX #MEMTOP+2
ABD6 90EE 'ABC6 BCC :EXP3
ABDB B50F STA APHM+1 SET NEW APL
ABDA A590 LDA MEMTOP HI MEM TO
ABDC B50E STA APHM MEMTOP

ABDE A6A3 LDX MVLNG+1 X = MVLNG[H]
ABE0 EB INX PLUS ONE
ABEl A4A2 LDY MVLNG Y = MVLNG[L]
ABE3 D00B 'ABF0 BNE :EXP6 TEST ZERO LENGTH
ABE5 F010 'ABF7 BEQ :EXP7 BR IF LOW = 0

ABE7 B8 :EXP4 DEY DEC MVLNG[L]
ABEB C69A DEC MVFA+l DEC MVFA[H]
ABEA C69C DEC MVTA+1 DEC MVTA[H]

A8EC B199 :EXP5 LDA [MVFA] , Y MVFA BYTE
A8EE 919B STA [MVTA], Y TO MVTA
ABF0 B8 :EXP6 DEY DEC COUNT LOW
ABF1 D0F9 'ABEC BNE :EXP5 BR IF NOT ZERO

A8F3 B199 LDA [MVFA] , Y MOVE THE ZERO BYTE
ABF5 919B STA [MVTA],Y

ABF7 :EXP7
ABF7 CA DEX IF MVLNG[H] IS NOT
ABFB D0ED 'ABE7 BNE :EXP 4 ZERO THEN MOVE 256 MORE

ELSE
ABFA 63 RTS DONE

CONTRACT
X ZERO PAGE ADR OF TABLE AT WHICH

CONTRACTION WILL START
Y CONTRACT SIZE IN BYTES [LOW]
A CONTRACT SIZE IN BYTES [HI]

CONTLOW
SETS A = 0

ABFB A900 CONTLOW LDA #0

A8FD CONTRACT
ABFD B4A4 STY ECSIZE SAVE CONTRACT SIZE
ABFF B5A5 STA ECSIZE+l

A901 3B SEC FORM MOVE LENGTH [LOW]
A902 A590 LDA MEMTOP
A904 F500 SBC 0,X MVLNG[L] = $100-
A906 49FF EOR #$FF [MEMTOP[L]] - CON AT

VALUE [L]
A90B A8 TAY THIS MAKES START Y AT
A909 CB INY MOVE HAVE A 2'S COMPLEMENT
A90A 84A2 STY MVLNG REMAINDER IN IT

A90C A591 LDA MEMTOP+1 FORM MOVE LENGTH[HIGH]
A90E F501 SBC l,X
A910 85A3 STA MVLNG+1

A912 B500 LDA 0,X FORM MOVE FROM ADR [MVFA]
A914 E5A2 SBC MVLNG MVFA = CON AT VALUE
A916 B599 STA MVFA MINUS MVLNG[L]
A91B B501 LDA l,X DURING MOVE MVLNG[L]

182

Source Code

A91A E91'11'1 SBC .1'1 WILL BE ADDED BACK INTO
A91C 859A STA MVFA+l MVFA IN [IND], Y INST

A91E 869B STX MVTA TEMP SAVE OF CON AT DISPL

A921'1 38 :CONTI SEC SUBTRACT ECSIZE FROM
A921 B51'11'1 LOA I'I,X ALL TABLE ENTRY FROM
A923 E5A4 SBC ECSIZE : CON AT ADR TO HIMEM
A925 951'11'1 STA I'I,X
A927 B501 LOA l,X
A929 E5A5 SBC ECSIZE+l
A92B 9501 STA l,X
A92D E8 INX
A92E E8 INX
A92F E092 CPX tMEMTOP+2
A931 90ED AA921'1 BCC :CONTI
A933 851'1F STA APHM+l SET NEW APL
A935 A590 LOA MEMTOP HI MEM TO
A937 851'1E STA APHM MEMTOP

A939 A69B LOX MVTA

A93B B500 LOA I'I,X :FORM MOVE TO ADR [MVTA]
A93D E5A2 SBC MVLNG MVTA = NEW CON AT VALUE
A93F 859B STA MVTA MINUS MVLNG [L]
A941 B51'11 LOA I, X DURING MOVE MVLNG[L]
A943 E901'1 SBC .1'1 WILL BE ADDED BACK INTO
A945 859C STA MVTA+l MVTA IN [INO],Y INST

A947 FMOVER
A947 A6A3 LOX MVLNG+l GET MOVE LENGTH HIGH
A949 E8 INX INC SO MOVE CAN BNE
A94A A4A2 LOY MVLNG GET MOVE LENGTH LOW
A94C 0006 AA954 BNE : CONT2 IF NOT ZERO GO
A94E FI'I0B AA95B BEQ :CONT4 BR IF LOW = 0

A950 E69A :CONT3 INC MVFA+l : INC MVFA[H]
A952 E69C INC MVTA+l INC MVTA[H]

A954 B199 :CONT 2 LDA [MVFA] , Y GET MOVE FROM BYTE
A956 919B STA [MVTA] , Y SET MOVE TO BYTE
A958 C8 INY INCREMENT COUNT LOW
A959 DI'IF9 AA954 BNE :CONT2 BR IF NOT ZERO

A95B :CONT4
A95B CA DEX : DECREMENT COUNT HIGH
A95C D0F2 AA950 BNE :CONT3 :BR IF NOT ZERO
A95E 60 RTS : ELSE DONE

Execute Control

A95F LOCAL

EXECNL - Execute Next Line

START PROGRAM EXECUTOR

A95F EXECNL
A95F 201BB8 JSR SETLNI SET UP LIN & NXT STMT

EXECNS - Execute Next Statement

A962 EXECNS
A962 20F4A9 JSR TSTBRK TEST BREAK
A965 D035 AA99C BNE : EXBRK BR IF 8REAK
A967 A4A7 LDY NXTSTD GET PTR TO NEXT STMT L
A969 C49F CPY LLNGTH AT END OF LINE
A96B B01C AA989 BCS : EXEOL BR IF EOL

183

Source Code

A96D B18A LOA [STMCUR],Y ;GET NEW STMT LENGTH
A96F 8SA7 STA NXTSTD ;SAVE AS FUTURE STMT LENGTH
A971 98 TYA ;Y=DISPL TO THIS STMT LENGTH

. A972 C8 INY ;PLUS 1 IS DISPL TO CODE
A973 B18A LOA [STMCUR],Y ;GET CODE
A97S C8 INY ;INC TO STMT MEAT
A976 84A8 STY STINDEX ;SET WORK INDEX

A978 UJ7EA9 JSR :STGO ;GO EXECUTE
A97B 4C62A9 JMP EXECNS ;THEN DO NEXT STMT

A97E :STGO ASLA ;TOKEN*2
A97E H1A ASL A
A97F AA TAX
A980 BD00AA LOA STETAB,X GET ADR AND
A983 48 PHA ;PUSH TO STACK
A984 BD01AA LOA STETAB+l , X ; AND GO TO
A987 48 PHA ;VIA
A988 60 RTS ; RTS

A989 : EXEOL
A989 A00l LOY #1
A98B B18A LOA [STMCUR], Y
A98D 3010 'A99F BMI :EXFD ; BR IF DIR

A98F AS9F LOA LLNGTH ;GET LINE LENGTH
A99l 20D0A9 JSR GNXTL ;I NC STMCUR
A994 20E2A9 JSR TENDST ;TEST END STMT TABLE
A997 l0C6 'A9SF BPL EXECNL ;BR NOT END

A999 4C8DB7 : EXDONE JMP XEND GO BACK TO SYNTAX
A99C 4C93B7 : EXBRK JMP XSTOP BREAK, DO STOP
A99F 4CSDA0 :EXFD JMP SNX3 GO TO SYNTAX VIA READY MSG

GETSTMT - Get Statement in Statement Table

A9A2 GETSTMT

A9A2 AS8A LOA
A9A4 8SBE STA
A9A6 AS8B LOA
A9A8 8SBF STA
A9AA AS89 LOA
A9AC M88 LOY

A9AE 8S8B STA
A9B0 848A STY

A9B2 A00l :GS2
A9B4 B18A LOA
A9B6 CSAl CMP
A9B8 9000 'A9C7 BCC
A9BA D00A 'A9C6 BNE
A9BC 88 DEY
A9BD B18A LOA
A9BF C5A0 CMP
A9Cl 90"'4 'A9C7 BCC
A9C3 0001 'A9C6 BNE
A9CS 18 CLC
A9C6 :GSRTl
A9C6 6'" RTS

A9C7 20DDA9 :GS3

184

SEARCH FOR STMT THAT HAS TSLNUM
SET STMCUR TO POINT TO IT IF FOUND
OR TO WHERE IT WOULD GO IF NOT FOUND
CARRY SET IF NOT FOUND

SAVE CURRENT LINE ADDR

STMCUR
SAVCUR
STMCUR+l
SAVCUR+l
STMTAB+l ;START AT TOP OF TABLE
STMTAB

STMCUR+l ;SET STMCUR
STMCUR

LOY #1
[STMCUR],Y ;GET STMT LNO [HI]
TSLNUM+l ;TEST WITH TSLNUM
:GS3 ;BR IF S<TS
:GSRTl ;BR IF S>TS
:GS3 ;S=TS, TEST LOW BYTE
[STMCUR). Y
TSLNUM
:GS3 ;BR S<TS
:GSRTl ;BR S>TS

jS=TS, CLEAR CARY

;AND RETURN [FOUND]

JSR GETLL ;GO GET THIS GUYS LENGTH

Source Code

A9CA 21lDIlA9 JSR GNXTL
A9CD 4CB2A9 JMP :GS2

A9DIl GNXTL
A9DIl 18 CLC
A9Dl 658A ADC STMCUR ;ADD LENGTH TO STMCUR
A9D3 858A STA STMCUR
A9D5 A8 TAY
A9D6 A58B LDA STMCUR+l
A9D8 691l1l ADC #Il
A9DA 858B STA STMCUR+l
A9DC 61l RTS
A9DD AIl1l2 GETLL LDY #2
A9DF B18A LDA [STMCUR] , Y
A9El 61l RTS

TENDST - Test End of Statement Table

A9E2 TENDST
A9E2 Alllll LDY #l INDEX TO CNO [' I]
A9E4 B18A LDA [STMCUR],Y GET CNO [HI]
A9E6 61l RTS
A9E7 XREM
A9E7 XDATA
A9E7 61l TESTRTS RTS

XBYE - Execute BYE

A9E8 XBYE
A9E8 21l41BD JSR CLSALL CLOSE 1-7
A9EB 4C71E4 JMP 8YELOC EXIT

XDOS - Execute DOS

A9EE XDOS
A9EE 21l41BD JSR CLSALL CLOSE 1-7
A9Fl 6CIlAIlll JMP [DOSLOC] GO TO DOS

TSTBRK - Test for Break

A9F4
A9F4 AIlIlIl

A9F6 A511
A9F8 DIl1l4 "A9FE
A9FA AIlFF
A9FC 8411
A9FE 98
A9FF 61l

MIlIl
MIlIl
MIlIl +A9E6
AAIl2
MIl2 +A9E6

= 1l1l1l1
AAIl4
AAIl4 +B315
MIl6
MIl6 +BA28
MilS
MIl8 +B482

= 1l1l1l4

TSTBRK
LDY #Il

LDA BRKBYT LOAD BREAK BYTE
BNE :TB2
LDY #$FF
STY BRKBYT

:TB2 TYA SET COND
RTS DONE

Statement Execution Table

;STETAB-STATEMENT EXECUTION TABLE
-CONTAINS STMT EXECUTION AOR
-MUST BE IN SAME ORDER AS SNTAB

STETAB
FDB XREM-l
DW REV (XREM-l)
FDB XOATA-l
OW REV (XOATA-l)

CDATA EQU (*-STETAB)/2-1
FOB XINPUT-l
OW REV (XINPUT-l)
FOB XCOLOR-l
OW REV (XCOLOR-l)
FOB XLIST-l
OW REV (XLIST-l)

CLIST EQU (*-STETAB)/2-1

CODE

185

Source Code

AAIiJA FDB XENTER-l
AAIiJA +BACA DW REV (XENTER-l)
AAIiJC FDB XLET-l
AAIiJC +AADF DW REV (XLET-l)
AAIiJE FDB XIF-l
AAIiJE +B777 DW REV (XIF-l)
AAlliJ FDB XFOR-l
AAlliJ +B64A DW REV (XFOR-l)

= 1iJ1iJ1iJ8 CFOR EOU (*-STETAB) /2 -1
AA12 FDB XNEXT-l
AA12 +B6CE DW REV (XNEXT-l)
AA14 FDB XGOTO-l
AA14 +B6A2 DW REV (XGOTO-l)
AA16 FDB XGOTO-l
AA16 +B6A2 DW REV (XGOTO-l)
AA18 FDB XGOSUB-l
AA18 +B69F DW REV (XGOSUB-l)

= IiJIiJIiJC CGOSUB EOU (*-STETAB) /2 -1
AAIA FDB XTRAP-l
AA1A +B7E0 DW REV (XTRAP-l)
AA1C FDB XBYE-l
AAIC +A9E7 DW REV (XBYE-l)
AAIE FDB XCONT-l
AAIE +B7BD DW REV (XCONT-l)
AA21iJ FDB XCOM-l
AA21iJ +B1D8 DW REV (XCOM-1)
AA22 FDB XCLOSE-l
AA22 +BCIA DW REV (XCLOSE-l)
AA24 FDB XCLR-l
AA24 +B765 DW REV (XCLR-l)
AA26 FDB XDEG-l
AA26 +B260 DW REV (XDEG-l)
AA28 FDB XDIM-l
AA28 +BID8 DW REV (XDIM-l)
AA2A FDB XEND-l
AA2A +B78C DW REV (XEND-l)
AA2C FDB XNEW-l
AA2C +AIiJIiJB DW REV (XNEW-l)
AA2E FDB XOPEN-l
AA2E +BBEA DW REV (XOPEN-l)
AA31iJ FDB XLOAD-l
AA30 +BAFA DW REV (XLOAD-1)
AA32 FDB XSAVE-l
AA32 +BB5C DW REV (XSAVE-l)
AA34 FDB XSTATUS-l
AA34 +BC27 DW REV (XSTATUS-l)
AA36 FDB XNOTE-1
AA36 +BC35 DW REV (XNOTE-l)
AA3B FDB XPOINT-l
AA38 +BC4C DW REV (XPOINT-l)
AA3A FDB XXIO-l
AA3A +BBE4 DW REV (XXIO-l)
AA3C FDB XON-l
AA3C +B7EC DW REV (XON-l)

= 00IE CON EOU (*-STETAB) /2 -I
AA3E FDB XPOKE-l
AA3E +B24B DW REV (XPOKE-I)
AA41iJ FDB XPRINT-l
AA41iJ +B3B5 DW REV (XPRINT-l)
AA42 FDB XRAD-l
AA42 +B265 DW REV (XRAD-l)
AA44 FDB XREAD-l
AA44 +B282 DW REV (XREAD-l)

= 0022 CREAD EOU (*-STETAB) /2 -1
AA46 FDB XREST-l
AA46 +B26A DW REV (XREST-l)
AA48 FDB XRTN-l
AA48 +B718 DW REV (XRTN-l)
AA4A FDB XRUN-l
AA4A +B74C DW REV (XRUN-l)
AA4C FDB XSTOP-l

186

Source Code

AA4C +B792 DW REV (XSTOP-1)
AA4E FDB XPOP-1
AA4E +B840 DW REV (XPOP-1)
AA50 FDB XPRINT-1
AA50 +B385 DW REV (XPRINT-1)
AA52 FDB XGET-1
AA52 +BC 7E DW REV (XGET-1)
AA54 FDB XPUT -1
AA54 +BC71 DW REV (XPUT-1)
AA56 FDB XGR-1
AA56 +BA4F DW REV (XGR-1)
AA58 FDB XPLOT-1
AA58 +BA75 DW REV (XPLOT-1)
AA5A FDB XPOS-1
AA5A +BA15 DW REV (XPOS-1)
AA5C FDB XDOS-1
AA5C +A9ED DW REV (XDOS-1)
AA5E FDB XDRAWTO-1
AA5E +BA30 DW REV (XDRAWTO-1)
AA60 FDB XSETCOLOR-1
AA60 +B9B6 DW REV (XSETCOLOR-1)
AA62 FDB XLOCATE-1
AA62 +BC94 DW REV (XLOCATE-1)
AA64 FDB XSOUND-1
AA64 +B9DC DW REV (XSOUND-1)
AA66 FDB XLPRINT-1
AA66 +B463 DW REV (XLPRINT-1)
AA68 FDB XCSAVE-1
AA68 +BBA3 DW REV (XCSAVE-1)
AA6A FDB XCLOAD-1
AA6A +BBAB DW REV (XCLOAD-1)
AA6C FD8 XLET-1
AA6C +AADF DW REV (XLET-1)

= 0036 CILET EQU (*-STETAB)/2-1
AA6E FDB XERR-1
AA6E +B91D DW REV (XE RR-1)

= 0037 CERR EQU (*-STETAB)/2-1

Operator Execution Table

OPETAB - OPERATOR EXECUTION TABLE
- CONTAINS OPERATOR EXECUTION ADR
- MUST BE IN SAME ORDER AS OPNTAB

AA70 OPETAB
AA70 FDB XPLE-1
AA70 +ACB4 DW REV (XPLE-1)
AA72 FDB XPNE-1
AA72 +ACBD DW REV (XPNE-1)
AA74 FDB XPGE-1
AA74 +ACD4 DW REV (XPGE-1)
AA76 FDB XPLT-1
AA76 +ACC4 DW REV (XPLT-1)
AA78 FDB XPGT - 1
AA7B +ACCB DW REV (XPGT-1)
AA7A FDB XPEQ-l
AA7A +ACDB DW REV (XPEQ-l)
AA7C FDB XPPOWER-l
AA7C +B164 DW REV (XPPOWER-l)
AA7E FDB XPMUL-1
AA7E +AC95 DW REV (XPMUL-1)
AABl'! FDB XPPLUS-l
AAB0 +AC83 DW REV (XPPLUS-l)
AAB2 FDB XPMINUS-l
AA82 +AC8C DW REV (XPMINUS-l)
AAB4 FDB XPDIV-l
AAB4 +AC9E DW REV (XPDIV-l)
AAB6 FDB XPNOT-l
AAB6 +ACF8 DW REV (XPNOT-l)
AAB8 FDB XPOR-l
AA88 +ACED DW REV (XPOR-l)

187

Source Code

AA8A FDB XPAND-l
AA8A +ACE2 DW REV (XPAND-l)
AA8C FDB XPLPRN-l
AA8C +ABIE DW REV (XPLPRN-l)
AA8E FDB XPRPRN-l
AA8E +AD7A DW REV (XPRPRN-l)
AA91!! FDB XPAASN-l
AA91!! +AD5E DW REV (XPAASN-l)
AA92 FDB XSAASN-l
AA92 +AEA2 DW REV (XSAASN-l)
AA94 FDB XPSLE-l
AA94 +ACB4 DW REV (XPSLE-l)
AA96 FDB XPSNE-l
AA96 +ACBD DW REV (XPSNE-l)
AA98 FDB XPSGE-l
AA98 +ACD4 DW REV (XPSGE-l)
AA9A FDB XPSLT-l
AA9A +ACC4 DW REV (XPSLT-l)
AA9C FDB XPSGT-l
AA9C +ACCB DW REV (XPSGT-l)
AA9E FDB XPEQ-l
AA9E +ACDB DW REV (XPEQ-l)
AAAI!! FDB XPUPLUS-l
AAAI!! +ACB3 DW REV (XPUPLUS-l)
AAA2 FDB XPUMINUS-l
AAA2 +ACA7 DW REV (XPUMINUS-l)
AAA4 FDB XPSLPRN-l
AAA4 +AE25 DW REV (XPSLPRN-l)
AAA6 FDB XPALPRN-l
AAA6 +AD85 DW REV (XPALPRN-l)
AAA8 FDB XPDLPRN-l
AAA8 +AD81 DW REV (XPDLPRN-l)
AAAA FDB XPFLPRN-l
AAAA +AD7A DW REV (XPFLPRN-l)
AAAC FDB XDPSLP-l
AAAC +AD81 DW REV (XDPSLP-l)
AAAE FDB XPACOM-l
AAAE +AD78 DW REV (XPACOM -l)

AABI!! FDB XPSTR-l
AABI!! +B1!!48 DW REV (XPSTR-l)
AAB2 FDB XPCHR-l
AAB2 +B1!!66 DW REV (XPCHR-l)
AAB4 FDB XPUSR-l
AAB4 +BI!!B9 DW REV (XPUSR-l)
AAB6 FDB XPASC-l
AAB6 +BeJ11 DW REV (XPASC-l)
AAB8 FDB XPVAL-l
AAB8 +AFFF DW REV (XPVAL-l)
AABA FDB XPLEN-l
AABA +AFC9 DW REV (XPLEN-l)
AABC FDB XPA DR-l
AABC +BeJIB DW REV (XPADR-l)
AABE FDB XPATN-l
AABE +B12E DW REV (XPATN-l)
AACeJ FDB XPCOS-l
AACeJ +B124 DW REV (XPCOS-l)
AAC2 FDB XPPEEK-l
AAC2 +AFEeJ DW REV (XPPEEK-l)
AAC4 FDB XPS IN-l
AAC4 +B11A DW REV (XPSIN-l)
AAC6 FDB XPRND-l
AAC6 +BeJ8A DW REV (XPRND-l)
AAC8 FDB XPFRE-l
AAC8 +AFEA DW REV (XPFRE-l)
AACA FDB XPEXP-l
AACA +B14C DW REV (XPEXP-l)
AACC FDB XPLOG-l
AACC +B138 DW REV (XPLOG-l)
AACE FDB XPLleJ-l
AACE +B142 DW REV (XPLll!!-l)

188

Source Code

M00 FOB XPSQR-1
M00 +B156 OW REV (XPSQR-1)
M02 FOB XPSGN-1
M02 +A018 OW REV (XPSGN-1)
M04 FOB XPABS-1
M04 +B0AO ow REV (XPABS-1)
M06 FOB XPINT-1
M06 +B00C ow REV (XPINT-1)
M08 FOB XPPOL-1
MOB +B021 ow REV (XPPOL-1)
MOA FOB XPSTICK-1
MOA +B025 ow REV (XPSTICK-1)
MOC FOB XPPTRIG-1
MOC +B029 ow REV (XPPTRIG-1)
MOE FOB XPSTRIG-l
MOE +B020 ow REV (XPSTRIG-l)

Execute Expression

ME0 LOCAL

EXEXPR - Execute Expression

ME0 XLET
ME0 EXEXPR
ME0 202EAB JSR EXPINT GO INIT

ME3 : EXNXT
ME3 203EAB JSR :EGTOKEN GO GET TOKEN
ME6 B006 "MEE BCS :EXOT BR IF OPERATOR

ME8 20BMB JSR IIRGPUSH PUSH ARG
MEB 4CE3M JMP :EXNXT GO FOR NEXT TOKEN

MEE 8511B :EXOT STA EXSVOP SAVE OPERATOR
1\AF0 1111 TAX
MF1 B02FAC LOll OPRTAB-16,X GET OP PREC
MF4 LSRA SHIFT FOR GOES ON TO PREC
1\AF4 +411 LSR II
MF5 LSRA
MF5 +4A LSR II
MF6 LSRA
MF6 +4A LSR A
MF7 LSRA
MF7 +4A LSR A
MF8 8511C STII EXSVPR SAVE GOES ON PREC

I\AFII 114A9 : EXPTST LOY OPSTKX GET OP STACK INDEX
MFC B180 LOA [ARGSTK],Y GET TOP OP
I\AFE M TIIX
MFF B02FAC LOll OPRTIIB-16,X GET TOP OP PREC
IIB02 290F liND #$0F
AB04 C5AC CMP EXSVPR [TOP OP]: [NEW OP]
AB06 9000 "AB15 BCC :EOPUSH IF T<N, PUSH NEW

ELSE POP
IIB08 M TIIX IF POP SOE
/\B09 F014 "IIB1F BEQ : EXENO THEN DONE

AB0B EXOPOP
/\B0D B180 LOll [ARGSTK] , Y RE-GET TOS OP
AB00 E6A9 INC OPSTKX DEC OP STACK INDEX
/\B0F 2020AB JSR :EXOP GET EXECUTE OP
/\B12 4CFAAA JMP : EXPTST GO TEST OP WITH NEW TOS

AB15 A5AB :EOPUSH LOll EXSVOP GET OP TO PUSH
AB17 88 DEY DEC TO NEXT ENTRY
ABl8 9180 STII [ARGSTK],Y SET OP IN STACK
ABIA 84119 STY OPSTKX SAVE NEW OP STACK INDEX
ABIC 4CE3AA JMP :EXNXT GO GET NEXT TOKEN

/\BIF XPLPRN

189

Source Code

ABlF 6il :EXEND RTS DONE EXECUTE EXPR

AB20 :EXOP
AB2il 3B SEC SUBSTRACT FOR REL 0
AB2l E9lD SBC #CSROP VALUE OF FIRST REAL OP
AB23 ASLA VALUE * 2
AB23 +0A ASL A
AB24 M TAX
AB25 BD70M LOA OPETAB,X PUT OP EXECUTION
AB2B 4B PHA ROUTINE ON STACK
AB29 BD71AA LOA OPETAB+l,X AND GOTO
AB2C 4B PHA VIA
AB2D 60 RTS RTS

Initialize Expression Parameters

AB2E EXPINT
AB2E A0FF LOY #$FF
AB30 A911 LOA tCSOE OPERATOR
AB32 9180 STA [ARGSTK], Y STACK
AB34 B4A9 STY OPSTKX
AB36 CB INY ANO INITIALIZE
AB37 B4B0 STY COMCNT
AB39 B4M STY ARSTKX ARG STACK
AB3B B4Bl STY ADFLAG ASSIGN FLAG
AB3D 60 RTS

GElTOK - Get Next Token and Classify

AB3E GETTOK
AB3E :EGTOKEN
AB3E A4AB LOY STINDEX GET STMT INDEX
AB40 E6AB INC STINDEX INC TO NEXT
AB42 BlBA LOA [STMCUR],Y GET TOKEN
AB44 3043 "ABB9 BMI :EGTVAR BR IF VAR

AB46 C90F CMP #$0F TOKEN: $0F
AB4B 90il3 "AB4D BCC :EGNC BR IF $0E, NUMERIC CONST
AB4A F013 "AB5F BEQ : EGSC BR IF $0F, STR CONST
AB4C 60 RTS RTN IF OPERATOR

AB4D NCTOFR0
AB4D A200 :EGNC LOX #0
AB4F C8 :EGTI INY INC LINE INDEX
AB50 BlBA LOA [STMCUR],Y GET VALUE FROM STMT TBL
AB52 9504 STA FR0,X AND PUT INTO FR0
AB54 EB INX
AB55 E006 CPX #6
AB57 90F6 "AB4F BCC :EGTI
AB59 C8 INY INY Y BEYOND CONST
AB5A A900 LOA tEVSCALER ACU=SCALER
AB5C AA TAX X = VAL NO 0
AB5D F022 "ABBI BEQ :EGST GO SET REM

AB5F C8 :EGSC INY INC Y TO LENGTH BYTE
AB60 BIBA LOA [STMCUR],Y GET LENGTH
AB62 A2BA LOX iSTMCUR POINT TO SMCUR
AB64 RISC
AB64 B5D6 STA VTYPE+EVSLEN SET AS LENGTH
AB66 85DB STA VTYPE+EVSOIM AND DIM
AB6B C8 INY
AB69 98 TYA ACU=OISPL TO STR
AB6A 18 CLC
AB6B 7500 ADC 0,X DISPL PLUS ADR
AB6D 8504 STA VTYPE+EVSADR IS STR AOR
AB6F A900 LOA #0 SET = 0
AB71 85D7 STA VTYPE+EVSLEN+l LENGTH HIGH
AB73 8509 STA VTYPE+EVSDIM+l OIM HIGH
AB75 7501 ADC 1,X FINISH ADR
AB77 8505 STA VTYPE+EVSAOR+l

190

VTYPE+EVSLEN

Source Code

ACU=DISPL TO STR
PLUS STR LENGTH
IS NEW INDEX

AB79
AB7A
AB7C
AB7D
AB7F

9B
65D6
A8
A200
A983

TYA
ADC
TAY
LDX
LDA

#00 VAR NO = 0
#EVSTR+EVSDTA+EVDIM ; TYPE = STR

AB81
AB83
AB85
AB87
AB88

AB89
AB89
AB89
AB8C
AB8E
AB91
AB92
AB94
AB96
AB97

85D2
86D3
84A8
18
60

2028AC
B19D
99D200
C8
C008
90F6 'AB8C
18
60

: EGST STA
STX
STY
CLC

:EGRTS RTS

GETVAR
:EGTVAR

JSR
:EGT2 LDA

STA
INY
CPY
BCC
CLC
RTS

VTYPE
VNUM
STINDEX

GVVTADR
[WVVTPT] , Y

VTYPE, Y

#8
:EGT2

SET TYPE
SET NUM
SET NEW INDEX
INDICATE VALUE
RETURN

GET VVT ADR
; MOVE VVT ENTRY

TO FR0

INDICATE VALUE
RETURN

AAPSTR - Pop String Argument and Make Address Absolute

AB98 20F2AB AAPSTR JSR ARGPOP

GSTRAD - Get String [ABS] Address

AB9B
AB9B
AB9D
AB9F
ABA 1
ABA3
ABA 5
ABA 5
ABA6

A902
24D2
D015 'ABB6
05D2
85D2

+6A
900F 'ABB7

ABA8 18
ABA9 A5D4

ABAB
ABAD
ABAF
ABB0
ABB2
ABB4
ABB6
ABB7

658C
85D4
A8
A5D5
658D
85D5
60
202EB9

GSTRAD
LDA
BIT
BNE
ORA
STA
RORA
ROR
BCC

CLC
LDA

ADC
STA
TAY
LDA
ADC
STA

:GSARTS RTS
:GSND JSR

#EVSDTA
VTYPE
:GSARTS
VTYPE
VTYPE

A
:GSND

VTYPE+EVSADR

STARP
VTYPE+EVSADR

VTYPE+EVSADR+l
STARP+l
VTYPE+EVSADR+l

ERRDIM

ARGPUSH - Push FRO to Argument Stack

ABBA
ABBA E6AA
ABBC A5AA
ABBE
ABBE +0A
ABBF
ABBF +0A
ABC0
ABC0 +0A
ABC 1 C5A9
ABC 3 B00D 'ABD2
ABC 5 A8
ABC6 88
ABC 7 A207

ABC 9 B5D2
ABCB 918'"

ARGPUSH
INC
LDA
ASLA
ASL
ASLA
ASL
ASLA
ASL
CMP
BCS
TAY
DEY
LDX

ARSLVL
ARSLVL

A

A
OPSTKX
:APERR

#7

:APHl LDA VTYPE,X
STA [ARGOPS],Y

; GO POP ARG

LOAD TRANSFORMED BIT
TEST STRING ADR TRANSFORM
BR IF ALREADY TRANSFORMED
TURN ON TRANS BIT
AND SET
SHIFT DIM BIT TO CARRY

STRING ADR
+ STARP

STRING DISPL

INC ARG STK LEVEL
ACU = ARG STACK LEVEL
TIMES 8

TEST EXCEED MAX
BR IF GT MAX
Y = NEXT ENTRY ADR
MINUS ONE
X = 7 FOR 8

MOVE FR'"
TO ARGOPS

191

Source Code

ABCO 88
ABCE CA
ABCF 10F8 "A8C9
ABOl 60

AB02 4C2CB9

DEY
OEX
BPL
RTS

:APERR JMP

:APHl

ERRAOS

GETPINT - Get Positive Integer from Expression

AB05 GETPINT
AB05 20E0AB JSR GETINT
AB08 GETPI0
AB08 A505 LOA FR0+l
ABOA 3001 "ABOO BMI :GPIERR
ABOC 60 RTS
ABOO 4C32B9 :GPIERR JMP ERRLN

GETINT - Get Integer from Expression

ABE0 20E0AA
ABE3
ABE3 20F2AB
ABE6 4C56AO

GETINT JSR EXEXPR
GTINTO

JSR ARGPOP
JMP CVFPI

GETllNT - Get One-Byte Integer from Expression

ABE9 GETlINT
ABE9 2005AB JSR GETPINT
ABEC 0001 "ABEF BNE :ERVl
ABEE 60 RTS
ABEF :ERVl
ABEF 203AB9 JSR ERVAL

ARGPOP - Pop Argument Stack Entry to FRO or FRl

ABF2 ARGPOP
ABF2 A5AA LOA ARSLVL
ABF4 C6AA DEC ARSLVL
ABF6 ASLA
ABF6 +0A ASL A
ABF7 ASLA
ABF7 +0A ASL A
ABF8 ASLA
ABF8 +0A ASL A
ABF9 A8 TAY
ABFA 88 DEY
ABFB A207 LOX #7

ABFO B180 :APOP0 LOA [ARGOPSJ, Y
ABFF 9502 STA VTYPE,X
AC01 88 DEY
AC02 CA DEX
AC03 10F8 "ABFD BPL :APOP0
AC05 60 RTS

ARGP2 - Pop TOS to FR1,TOS-l to FRO

AC06
AC09
AC0C

20F2AB
20B6DO
4CF2AB

ARGP2 JSR ARGPOP
JSR MV0TOl
JMP ARGPOP

POPl - Get a Value in FRO

BACKWARDS

DONE

STACK OVERFLOW

GO GET INT

GET HIGH BYTE
BR > 32767
DONE

EVAL EXPR

POP VALUE TO FR0
GO CONVERT FR0 TO INT &
RETURN

GET INT <32768
IF NOT 1 BYTE, THEN ERROR

GET ARG STACK LEVEL
DEC AS LEVEL
AS LEVEL * 8

Y = START OF NEXT ENTRY
MINUS ONE
X 7 FOR 8

MOVE ARG ENTRY

BACKWARDS

DONE

POP TOS TO FR0
MOVE FR0 TO FRl
POP TOS TO FR0 AND RETURN

- EVALUATE EXPRESSION IN STMT LINE &
POP IT INTO FR0

AC0F
AC0F 20E0AA
AC12 20F2AB
AC15 60

192

POPl
JSR
JSR
RTS

EXEXPR
ARGPOP

EVALUATE EXPRESSION
PUSH INTO FR0

--

Source Code

RTNVAR - Return Variable to Variable Value Table from FRO

AC16 RTNVAR
AC16 A5D3 LDA VNUM ; GET VAR NUMBER
AC18 2328AC JSR GVVTADR
ACIB A233 LDX #3

ACID B5D2 :RVI LDA VTYPE,X MOVE FR0 TO
ACIF 919D STA [WVVTPT), Y VAR VALUE TABLE
AC21 C8 INY
AC22 E8 INX
AC23 E038 CPX #8
AC25 93F6 'ACID BCC :RVI
AC27 60 RTS DONE

GVVTADR - Get Value's Value Table Entry Address

AC28 GVVTADR
AC28 M33 LDY #3 CLEAR ADR HI
AC2A 849E STY WVVTPT+l
AC2C ASLA MULT VAR NO
AC2C +3A ASL A
AC2D ASLA BY 8
AC2D +0A ASL A
AC2E 269E ROL WVVTPT+l
AC30 ASLA
AC33 +3A ASL A
AC31 269E ROL WVVTPT+l
AC33 18 CLC THEN
AC34 6586 ADC VVTP ADD VVTP VALUE
AC36 859D STA WVVTPT TO FORM ENTRY
AC38 A587 LOA VVTP+l ADR
AC3A 659E AOC WVVTPT+l
AC3C 859E STA WVVTPT+l
AC3E 63 RTS

Operator Precedence Table

- ENTRIES MUST BE I N SAME ORDER AS OPNTAB
- LEFT NIBBLE IS TO GO ON STACK PREC
- RIGHT NIB8LE IS COME OFF STACK PREC

AC3F OPRTAB
AC3F 33 DB $03 COO
AC43 33 DB $33 CSOE
AC41 30 DB $33 CCOM
AC42 30 DB $33 COOL
AC43 33 DB $33 CEOS
AC44 03 DB $03 CSC
AC45 33 DB $33 CCR
AC46 33 DB $30 CGTO
AC47 30 DB $33 CGS
AC48 33 DB $33 CTO
AC49 33 DB $33 CSTEP
AC4A 03 DB $30 CTHEN
AC4B 33 DB $30 CPND
AC4C 88 DB $88 CLE
AC4D 88 DB $88 CNE
AC4E 88 DB $88 CGE
AC4F 88 DB $88 CGT
AC53 88 D8 $88 CLT
AC51 88 DB $88 CEO
AC52 CC DB $CC CEXP
AC53 AA DB $AA CMUL
AC54 99 DB $99 CPLUS
AC55 99 DB $99 CMINUS
AC56 AA DB $AA CDIV
AC57 77 DB $77 CNOT
AC58 55 DB $55 COR
AC59 66 DB $66 CAND
AC5A F2 D8 $F2 CLPRN

193

Source Code

ACSB 4E DB $4E CRPRN
ACSC Fl DB $Fl CAASN
ACSD Fl DB $Fl CSASN
ACSE EE DB $EE CSLE
ACSF EE DB $EE CSNE
AC60 EE DB $EE CSGE
AC61 EE DB $EE CSLT
AC62 EE DB $EE CSGT
AC63 EE DB $EE CSEQ
AC64 DO DB $00 CUPLUS
AC6S DO DB $00 CUMINUS
AC66 F2 DB $F2 CSLPRN
AC67 F2 DB $F2 CALPRN
AC68 F2 DB $F2 CDLPRN
AC69 F2 DB $F2 CFLPRN
AC6A F2 DB $F2 CDSLPR
AC6B 43 DB $43 CACOM

AC6C F2 DB $F2 FUNCTIONS
AC6D F2 DB $F2
AC6E F2 DB $F2
AC6F F2 DB $F2
AC70 F2 DB $F2
AC71 F2 DB $F2
AC72 F2 DB $F2
AC73 F2 DB $F2
AC74 n DB $F2
AC7S F2 DB $F2
AC76 F2 DB $F2
AC77 F2 DB $F2
AC78 F2 DB $F2
AC79 F2 DB $F2
AC7A F2 DB $F2
AC7B F2 DB $F2
AC7C F2 DB $F2
AC7D F2 DB $F2
AC7E F2 DB $F2
AC7F F2 DB $F2
AC80 F2 DB $F2
AC81 F2 DB $F2
AC82 F2 DB $F2
AC83 F2 DB $F2

Miscellaneous Operators

Miscellaneous Operators' Executors
AC84 XPPLUS
AC84 2006AC JSR ARGP2
AC87 203BAD JSR FRADD
AC8A 4CBAAB JMP ARGPUSH
AC8D XPMINUS
AC8D 2006AC JSR ARGP2
AC90 2041AD JSR FRSUB
AC93 4CBAAB JMP ARGPUSH
AC96 XPMUL
AC96 2006AC JSR ARGP2
AC99 2047AD JSR FRMUL
AC9C 4CBAAB JMP ARGPUSH
AC9F XPDIV
AC9F 2006AC JSR ARGP2
ACA2 204DAD JSR FRDIV
ACAS 4CBAAB JMP ARGPUSH
ACA8 XPUMINUS
ACA8 20F2AB JSR ARGPOP GET ARGUMENT INTO FR0
ACAB ASD4 LOA FR0 GET BYTE WITH SIGN
ACAD 4980 EOR #$80 FLIP SIGN BIT
ACAF 8SD4 STA FR0 RETURN BYTE WITH SIGN CHANGED
ACBl 4CBAAB JMP ARGPUSH ;PUSH ON STACKS
ACB4 XPUPLUS

194

Source Code

ACB4 6'" RTS
ACB5 XPLE
ACB5 XPSLE
ACB5 2"'26AD JSR XCMP
ACBS 3"'4B 'AD"'5 BMI XTRUE
ACBA F"'49 'AD"'5 BEQ XTRUE
ACBC 1"'42 'AD"'''' BPL XFALSE
ACBE XPNE
ACBE XPSNE
ACBE 2"'26AD JSR XCMP
ACC1 F"'3D 'AD"'''' BEQ XFALSE
ACC3 D04'" 'AD"'5 BNE XTRUE
ACC5 XPLT
ACC5 XPSLT
ACC5 2"'26AD JSR XCMP
ACCS 3"'3B 'AD"'5 BMI XTRUE
ACCA 1"'34 'AD"'''' BPL XFALSE
ACCC XPGT
ACCC XPSGT
ACCC 2"'26AD JSR XCMP
ACCF 3"'2F 'AD0'" BMI XFALSE
ACD1 F"'2D 'AD"'''' BEQ XFALSE
ACD3 1"'3'" 'AD"'5 BPL XTRUE
ACD5 XPGE
ACD5 XPSGE
ACD5 2"'26AD JSR XCMP
ACDS 3"'26 'AD"'''' BMI XFALSE
ACDA 1"'29 'AD"'5 BPL XTRUE
ACDC XPEQ
ACDC XPSEQ
ACDC 2"'26AD JSR XCMP
ACDF F"'24 'AD"'5 BEQ XTRUE
ACE1 D"'lD 'AD"'''' BNE XFALSE

ACE3 XPAND
ACE3 2"''''6AC JSR ARGP2
ACE6 A5D4 LDA FR'"
ACES 25E'" AND FR1
ACEA F"'14 'AD00 BEQ XFALSE
ACEC D017 'AD"'5 BNE XTRUE
ACEE XPOR
ACEE 2"''''6AC JSR ARGP2
ACF1 A5D4 LDA FR0
ACF3 "'5EPJ ORA FR1
ACF5 F"'09 'AD"'''' BEQ XFALSE
ACF7 D"''''C 'AD"'5 BNE XTRUE
ACF9 XPNOT
ACF9 2"'F2AB JSR ARGPOP
ACFC A5D4 LDA FR'"
ACFE F"''''5 'AD"'5 BEQ XTRUE

FALL THROUGH TO XFALSE

AD"'''' XFALSE
AD"'''' A9"'''' LDA #'"
AD"'2 AS TAY
AD03 F"''''4 'AD09 BEQ XTF

AD"'5 XTRUE
AD"'5 A94'" LDA #$4'"
AD"'7 XTI
AD07 A0"'1 LDY H

AD"'9 XTF
AD"'9 S5D4 STA FR'"
AD"'B S4D5 STY FRIJ+1
AD"'D A2D6 LDX #FR"'+2 POINT TO PART TO CLEAR
AD"'F A"'IJ4 LOY #FPREC-2 GET # OF BYTES TO CLEAR
ADll 2"'4SDA JSR ' ZXLY CLEAR REST OF FR'"
AD14 S5D2 STA VTYPE
AD16 XPUSH
AD16 4CBAAB JMP ARGPUSH

195

Source Code

XPSGN - Sign Function

AD19 XPSGN
AD19 20F2AB JSR
AD1C ASD4 LDA
AD1E F0F6 'AD16 BEQ
AD20 l0E3 'AD0S BPL
AD22 A9C0 LDA
AD24 30El 'AD07 BMI

XCMP - Compare Executor

AD26 XCMP
AD26 A4A9 LDY
AD28 88 DEY
AD29 B180 LDA
AD2B C92F CMP
AD2D 9003 'AD32 BCC
AD2F 4C81AF JMP

AD32 2006AC FRCMPP

ARGPOP
FR0
XPUSH
XTRUE
#$C0
XTI

OPSTKX

[ARGSTK],Y
#CSLE
FRCMPP
STRCMP

JSR ARGP2

GET MINUS EXPONENT

GET OPERATOR THAT
GOT US HERE

IF OP WAS ARITHMETIC
THEN DO FP REG COMP
ELSE DO STRING COMPARE

FRCMP - Compare Two Floating Point Numbers

AD3S
AD3S 2041AD

AD38 ASD4
AD3A 60

*
*

*
FRCMP

JSR

LDA"
RTS

FRADD - Floating Point Add

ON ENTRY

ON EXIT

FRSUB

FR0

FR0 & FRl CONTAIN FLOATING POINT #'S

CC + FR0 > FRl
CC - FR0 < FRl
CC 0 FRE0 = FRl

SUBTRACT FRl FROM FR0

GET FR0 EXPONENT
RETURN WITH CC SET

* DOES NOT RETURN IF ERROR

AD3B
AD3B
AD3E
AD40

2066DA
B0l3 'ADS3
60

FRADD
JSR
BCS
RTS

FRSUB - Floating Point Subtract

FADD
:ERROV

ADD TWO #
BR IF ERROR

DOES NOT RETURN IF ERROR

AD4l
AD41
AD44
AD46

2060DA
B"'0D 'ADS3
60

FRSUB
JSR
BCS
RTS

FRMUl- Floating Point Multiply

*
AD47 FRMUL
AD47 20DBDA JSR
AD4A B007 'ADS3 BCS
AD4C 6'" RTS

FRDIV - Floating Point Divide

AD4D
AD4D 2"'28DB

196

FRDIV
JSR

DOES

DOES

FSUB
:ERROV

NOT RETURN IF

FMUL
:ERROV

NOT RETURN IF

FDIV

SUB TWO *
BR IF ERROR

ERROR

MULT TWO *
BR IF ERROR

ERROR

; DIVIDE TWO #

ADS'" B"''''l 'ADS3 BCS :ERROV
ADS2 6'" RTS

ADS3 ERROV
ADS3 2"'2AB9 JSR EROVFL

CVFPI - Convert Floating Point to Integer

* DOES NOT RETURN

ADS6 CVFPI
ADS6 2"'D2D9 JSR FPI
ADS9 B"''''l 'ADSC BCS :ERRVAL
ADSB 6'" R'rs

ADSC :ERRVAL
ADSC 2"'3AB9 JSR ERVAL

XPAASN - Arithmetic Assignment Operator

ADSF XPAASN
ADSF A5A9 LDA OPSTKX
AD61 C9FF CMP #$FF
AD63 D"''''F 'AD74 BNE :AAMAT

AD65 2"''''6AC JSR ARGP2
AD6B A2"'5 LDX #5
AD6A BSE'" :AASNl LDA FR1,X
AD6C 9SD4 STA FR"',X
AD6E CA DEX
AD6F 1"'F9 'AD6A BPL :AASNl
AD71 4C16AC JMP RTNVAR

AD74 :AAMAT
AD74 A9B'" LDA #$B'"
AD76 B5B1 STA ADFLAG
AD7B 6'" RTS

XPACOM - Array Comma Operator

AD79
AD79 E6B'"

XPACOM
INC COMCNT

XPRPRN - Right Parenthesis Operator

Source Code

BR IF ERROR

IF ERROR

GO CONVERT TO INTEGER
IF ERROR, BR
ELSE RETURN

VALUE ERROR

GET OP STACK INDEX
AT STACK START
BR IF NOT, [MAT ASSIGN]

DO SCALER ASSIGN
GO POP TOP 2 ARGS
MOVE FRl VALUE
TO FR'"

FR'" TO VVT & RETURN

SET ASSIGN FLAG BIT ON
IN ASSIGN/DIM FLAG
GO POP REM OFF OPS

INCREMENT COMMA COUNT

XPFLPRN - FUNCTION RIGHT PAREN OPERATOR

AD7B XPRPRN
AD7B XPFLPRN
AD7B A4A9 LDY OPSTKX
AD7D 6B PLA
AD7E 6B PLA
AD7F 4C"'BAB JMP EXOPOP

XPDLPRN - DIM Left Parenthesis Operator

ADB2
ADB2
ADB2 A94'"
ADB4 BSBl

XDPSLP
XPDLPRN

LDA
STA

#$4'"
ADFLAG

GET OPERATOR STACK TOP

GO POP AND EXECUTE NEXT
OPERATOR

SET DIM FLAG BIT
IN ADFLAG

FALL THRU TO XPALPRN

197

Source Code

XPALPRN - Array Left Parenthesis Operator

XPALPRN AD86
AD86
AD88

24B1 BIT ADFLAG
:ALP1 1006 'AD90 BPL

AD8A A5AA
AD8C 85AF
AD8E C6AA

AD90
AD92
AD93
AD95

A900
A8
C5B0
F00B 'ADA2

AD97 C6B0
AD99 20E3AB
AD9C A5D5
AD9E 3023 'ADC3
ADA0 A4D4

ADA2 8598
ADA4 8497

ADA6
ADA9
ADAB
ADAD
ADAF
ADB1

ADB3

20E3AB
A5D4
85F5
A5D5
3012 'ADC3
85F6

20F2AB

ADB6 24B1
ADB8 5005 'ADBF
ADBA A900
ADBC 85B1
ADBE 60

ADBF
ADBF
ADC1
ADC3

ADC6
ADC6
ADC8
ADCA
ADCC

ADCE

66D2
B003 'ADC6
202EB9

A5F6
C5D7
9008 'ADD4
D0F5 'ADC3

A5F5
ADD0 C5D6
ADD2 B0EF 'ADC3

ADD4
ADD6
ADD8
ADDA
ADDC
ADDE
ADE0

ADE2
ADES
ADE7
ADE9
ADEC
ADEF

AS98
C5D9
9008
D0E7
A597
CSD8
B0E1

'ADE2
'ADC3

'ADC3

20SDAF
AS97
A498
2052AF
2046AF
A5D4

ADF1 A4D5
ADF3 2052AF
ADF6 A58C

198

LDA
STA
DEC

ARSLVL
ATEMP
ARSLVL

:ALP1 LDA #0
TAY
CMP COMCNT
BEQ :ALP2

DEC
JSR
LDA
BMI
LDY

COMCNT
GTINTO
FR0+l
:ALPER
FR0

:ALP2 STA INDEX2+1
STY INDEX2

JSR
LDA
STA
LDA
BMI
STA

JSR

BIT
BVC
LDA
STA
RTS

:ALP3

GTINTO
FR0
ZTEMP1
FR0+1
:ALPER
ZTEMP1+1

ARGPOP

ADFLAG
:ALP3
#0
ADFLAG

ROR VTYPE
Bes :ALP4

:ALPER JSR ERRDIM

:ALP4
LDA
CMP
Bec
BNE

LDA
CMP
BCS

:ALP5 LDA
CMP
BCC
BNE
LDA
CMP
BCS

ZTEMP1+1
VTYPE+EVAD1+1
:ALPS
: ALPER

ZTEMP1
VTYPE+EVAD1
:ALPER

INDEX2+1
VTYPE+EVAD2+1
:ALP6
:ALPERR
INDEX2
VTYPE+EVAD2
:ALPER

:ALP6 JSR AMUL1
LDA INDEX2
LDY INDEX2+1
JSR AADD
JSR AMUL2
LDA VTYPE+EVAADR
LDY
JSR
LDA

VTYPE+EVAADR+1
AADD
STARP

IF NOT ASSIGN
THE BRANCH

ELSE
SAVE STACK LEVEL

;OF THE VALUE ASSIGNMENT
AND PSEUDO POP IT

INIT FOR 12 = 0

IF COMMA COUNT =0 THEN
BR WITH 12 = 0

ELSE

ELSE POP 12 AND MAKE INT

ERROR IF > 32,767

;SET 12 VALUE

POP 12 AND MAKE INT
MOVE Il
TO ZTEMP1

ERROR IF > 32,767

POP THE ARRAY ENTRY

IF NOT EXECUTING DIM
THEN CONTINUE
TURN OFF DIM BIT
IN ADFLAG
AND RETURN

IF ARRAY HAS BEEN
DIMED THEN CONTINUE
ELSE DIM ERROR

TEST INDEX 1
IN RANGE WITH
DIM1

;TEST INDEX 2
; IN RANGE WITH
; DIM 2

; INDEXl
;INDEXl

ZTEMP1
ZT EMP1

ZTEMP1

INDEX1
INDEX1 + INDEX2

ZTEMP1*6
ZTEMP1 + DISPL

ZTEMP1 + ADR

Source Code

ADF8 A48D LDY STARP+l
ADFA 2'!IS2AF JSR MDD

ZTEMPl NOW POINTS
TO ELEMENT REQD

ADFD 24Bl BIT ADFLAG IF NOT ASSIGN
ADFF lIiIlS "AE16 BPL :ALP8 THEN CONTINUE

ELSE ASSIGN
AEl1Il ASAF LDA ATEMP ;RESTORE ARG LEVEL
AEI1I3 85M STA ARSLVL TO VALUE AND
AEI1IS 2111F2AB JSR ARGPOP ; POP VALUE

AEI1I8 A 111 111 5 LDY #5
AEI1IA B9D4111111 :ALP7 LDA FRIiI ,Y MOVE VALUE
AEIiiD 91FS STA [ZTEMP1], Y TO ELEMENT SPACE
AEI1IF 88 DEY
AEll1l 1l1lF8 "AEIiiA BPL :ALP7
AE12 C8 INY TURN OFF
AE13 84Bl STY ADFLAG ADFLAG
AE1S 6111 RTS DONE

AE16 A 111111 5 : ALP8 LDY #5
AE18 B1FS :ALP9 LDA [ZTEMP1], Y MOVE ELEMENT TO
AE1A 99D41111i1 STA FRI1I,Y FRI1I
AE1D 88 DEY
AE1E llilF8 "AE18 BPL :ALP9

AE21i1 C8 INY
AE21 84D2 STY VTYPE
AE23 4CBMB JMP ARGPUSH PUSH FRIiI BACK TO STACK

AND RETURN

XPSLPRN - String Left Parenthesis

AE26 XPSLPRN
AE26 ASBI1I LDA COMCNT IF NO INDEX 2
AE28 FIiI11I7 "AE31 BEQ :XSLP2 THEN BR

AE2A 2096AE JSR :XSPV ELSE POP 12 AND
AE2D 8498 STY INDEX2+l ;SAV E IN INDEX 2
AE2F 8597 STA INDEX2

AE31 211196AE :XSLP2 JSR :XSPV POP INDEX 1
AE34 38 SEC ADD DECREMENT BY ONE
AE3S E91i11 SBC #l AND PUT INTO ZTEMPl
AE37 8SFS STA ZTEMPl
AE39 98 TYA
AE3A E91i1111 SBC #111
AE3C 8SF6 STA ZTEMP1+l

AE3E 20F2AB JSR ARGPOP POP ARG STRING

AE41 ASBl LDA ADFLAG IF NOT A DEST STRING
AE43 llillilB "AE51i1 BPL :XSLP3 THEN BRANCH
AE4S 111 5 Blil ORA COMCNT
AE47 8SBl STA ADFLAG
AE49 A4D9 LDY VTYPE+EVSDIM+l INDEX 2 LIMIT
AE4B ASD8 LDA VTYPE+EVSDIM IS DIM
AE4D 4CS4AE JMP :XSLP4

AES0 ASD6 : XSLP3 LDA VTYPE+EVSLEN ; INDEX 2 LIMIT
AES2 A4D7 LDY VTYPE+EVSLEN+l IS STRING LENGTH

AES4 A6B0 :XSLP4 LDX COMCNT IF NO INDEX 2
AES6 FI1I 1 iii "AE68 BEQ :XSLP6 THEN BRANCH
AES8 C6BI1I DEC COMCNT ELSE
AE5A C498 CPY INDEX2+l
AE5C 91i13S "AE93 BCC :XSLER
AESE DI1I04 "AE64 BNE :XSLPS INDEX 2 LIMIT
AE6111 CS97 CMP INDEX2
AE62 91112F "AE93 BCC :XSLER

199

Source Code

AE64 A498
AE66 A597

AE68
AE69
AE6B
AE6D
AE6E
AE6F
AE71
AE73
AE75
AE76
AE78
AE79

38
E5F5
85D6
AA
98
E5F6
85D7
901E 'AE93
A8
0003 'AE7B
8A
F018 'AE93

AE7B 209BAB

AE7E 18
AE7F
AE81
AE83
AE85
AE87
AE89

AE8B
AE8D
AE8F

A5D4
65F5
85D4
A5D5
65F6
85D5

24Bl
1001 'AE90
60

AE90 4C9AAB

AE93 203699

:XSLP5 LOY INDEX2+1
LDA INDEX2

:XSLP6 SEC
SBC ZTEMP1
STA VTYPE+EVSLEN
TAX
TYA
SBC ZTEMP1+1
STA VTYPE+EVSLEN+l
BCC :XSLER
TAY
BNE :XSLP7
TXA
BEQ :XSLER

: XS LP 7 JSR

CLC
LOA
AOC
STA
LDA
ADC
STA

BIT
BPL
RTS

:XSLP8 JMP

:XSLER JSR

GSTRAD

VTYPE+EVSADR
ZTEMPI
VTYPE+EVSADR
VTYPE+EVSADR+1
ZTEMP1+l
VTYPE+EVSAOR+l

ADFLAG
: XSLP8

ARGPUSH

ERRSSL

;USE INDEX 2
;AS LIMIT

LENGTH IS

LIMIT - INDEX

LENGTH MUST BE
GE ZERO

GET ABS ADR

STRING ADR
STRING ADR + INDEX 1

IF NOT ASSIGN
THEN BR
ELSE RETURN TO ASSIGN

PUSH ARG AND RETURN

XSPV - Pop Index Value as Integer and Insure Not Zero

AE96
AE96
AE99
AE9B
AE90
AE9F
AEA0
AEA2

20E3A9
A5D4
A405
0003 'AEA2
AA
F0Fl 'AE93
60

:XSPV
JSR GTINTO
LOA FR0
LOY FR0+l

:XSPVl BNE : XSPVR
TAX
BEQ : XSLER

:XSPVR RTS

XSAASN - String Assign Operator

AEA3
AEA3
AEA6
AEA6
AEA8
AEAA
AEAC
AEAE
AE80

2098AB

A5D4
8599
A5D5
859A
A5D6
85A2

AEB2 A4D7
AEB4 84A3

AEB6
AEB8
AEBA

AEBC
AEBE
AEC0
AEC3
AEC5
AEC7
AEC9

200

A4A9
C0FF
F00F 'AECB

A98'"
8591
2"''''BAB
A5D7
A4D6
26Bl
B"''''7 'AE02

XSAASN
JSR

RISASN
LDA
STA
LDA
STA
LDA
STA
LOY
STY

LDY
CPY
BEQ

LDA
STA
JSR
LDA
LDY
ROL
BCS

AAPSTR

VTYPE+EVSAOR
MVFA
VTYPE+EVSADR+1
MVFA+l
VTYPE+EVSLEN
MVLNG
VTYPE+EVSLEN+1
MVLNG+1

OPSTKX
#$FF
:XSA1

#$8'"
ADFLAG
EXOPOP
VTYPE+EVSLEN+l
VTYPE+EVSLEN
ADFLAG
: XSA2A

GO GET THE INTEGER
GET VALUE LOW
GET VALUE HI
RTN IF VB NOT ZERO
TEST VL
BR VL ,VB = 0
DONE

POP STR WITH ABS ADR

MVFA = ADR

MVLNG LENGTH

IF AT TOP OF
OP STACK
THEN BR

ELSE
SET ASSIGN BIT
IN ASSIGN/DIM FLAG
AND PROCESS SUBSTRING
A,Y =
DEST LEN
TURN OFF ASSIGN
AND BR

Source Code

AECB 209BAB :XSAI JSR AAPSTR ; POP STR WITH ABS ADR

AECE A5D9 :XSA2 LDA VTYPE+EVSD IM+l A,Y = DEST LENGTH
AED0 A4DB LDY VTYPE+EVSDIM

AED2 :XSA2A
AED2 C5A3 CMP MVLNG+l IF DEST LENGTH
AED4 9006 "AEDC BCC : XSA3 LESS THAN MOVE LENGTH
AED6 D0e1B "AEE0 SNE : XSA4
AEDB C4A2 CPY MVLNG THEN
AEDA S004 "AEE0 SCS : XSA4
AEDC B5A3 :XSA3 STA MVLNG+l SET MOVE LENGTH
AEDE B4A2 STY MVLNG = DIST LENGTH

AEE0 IB : XSA4 CLC
AEEI A5D4 LDA VTYPE+EVSADR MOVE LENGTH PLUS
AEE3 65A2 ADC MVLNG START ADR IS
AEE5 AB TAY END ADR
AEE6 A5D5 LDA VTYPE+EVSADR+l
AEEB 65A3 ADC MVLNG+l
AEEA AA TAX

AEEB 3B SEC END ADR MINUS
AEEC 9B TYA START OF STRING
AEED E5BC SSC STARP SPACE IS DISPL
AEEF B5F9 STA ZTEMP3 TO END OF STRING
AEFI BA TXA WHICH WE SAVE
AEF2 E5BD SSC STARP+l IN ZTEMP3
AEF4 B5FA STA ZTEMP3+l

AEF6 3B SEC SET MOVE LENGTH LOW
AEF7 A900 LDA #0 = $100 - MVL [L]
AEF9 E5A2 SBC MVLNG BECAUSE OF THE WAY
AEFB B5A2 STA MVLNG FMOVE WORKS

AEFD 3B SEC
AEFE AS99 LDA MVFA ADJUST MVFA TO
AF00 ESA2 SSC MVLNG CONFORM WITH MVL
AF02 B599 STA MVFA CHANGE
AF04 A59A LDA MVFA+l
AF06 E900 SBC #0
AF0B B59A STA MVFA+l

AF0A 3B SEC
AF0B A5D4 LDA VTYPE+EVSADR MOVE THE DEST
AF0D E5A2 SSC MVLNG STRING ADR TO
AF0F B59B STA MVTA MVTA AND
AFll A5D5 LDA VTYPE+EVSADR+ 1 MAKE IT CONFORM
AF13 E900 SBC #0 WITH MVL
AF15 B59C STA MVTA+l

AFl7 2047A9 JSR FMOVER ;GO DO THE VERY FAST MOVE

AFIA ASD3 LDA VNUM GO GET ORIGNAL DEST
AFIC 2089AB JSR GETVAR STRING

AFIF 38 SEC DISPL TO END OF
AF20 A5F9 LDA ZTEMP3 MOVE MINUS DISPL
AF22 E5D4 SSC VTYPE+EVSADR TO START OF STRING
AF24 AB TAY IS OUR RESULT LENGTH
AF25 A5FA LDA ZTEMP3+l
AF27 E5DS SSC VTYPE+EVSADR+l
AF29 AA TAX

AF2A A902 LDA #02 IF THE DESTINATION
AF2C 25Bl AND ADFLAG LENGTH WAS IMPLICT
AF2E F00F "AF3F BEQ :XSA5 SET NEW LENGTH
AF30 A900 LDA #0 CLEAR

201

Source Code

AF32 8sBl

AF34
AF36
AF38
AF3A
AF3C
AF3E

AF3F
AF41
AF43

E4D7
9336
D33s
C4D6
B331
63

'AF3E
'AF3F

'AF3F

84D6
86D7
4C16AC

STA

CPX
BCC
BNE
CPY
BCS

:XSA6 RTS

ADFLAG

VTYPE+EVSLEN+l
:XSA6
:XSAs
VTYPE+EVSLEN
:XSAs

:XSAs STY VTYPE+EVSLEN
STX VTYPE+EVSLEN+l
JMP RTNVAR

AMUL2 - Integer Multiplication of ZTEMP1 by 6

AF46
AF46
AF48
AF4A
AF4C
AF4E
AFs3

36Fs
26F6
A4F6
AsFs
36Fs
26F6

AMUL2
ASL
ROL
LDY
LDA
ASL
ROL

ZTEMPI
ZTEMPl+l
ZTEMPl+l
ZTEMPI
ZTEMPI
ZTEMPl+l

AADD - Integer Addition of [A, y] to ZTEMP1

AFs2
AFs2
AFs3
AFss
AFs7
AFs8
AFsA
AFsC

18
6sFs
8sFs
98
6sF6
8sF6
63

AADD
CLC

ADC ADC ZTEMPI
STA ZTEMPI
TYA
ADC ZTEMPl+l
STA ZTEMPl+l
RTS

AMUL -Integer Multiplication of ZTEMP1 by DlM2

AFsD
AFSD
AFsF
AF61
AF63

A933
8sF7
8sF8
Aln3

AMULI
LDA
STA
STA
LDY

#3
ZTEMP4
ZTEMP4+l
#$13

AF6s AsFs :AMI LDA ZTEMPI
AF67 LSRA
AF67 +4A LSR A
AF68 933C' AF76 8CC : AM3

AF6A
AF6B
AF6D
AF6F
AF71
AF73
AF74

18
A2FE
BsF9
7sDA
9sF9
E8
D3F7 'AF6D

CLC
LDX

:AM2
ADC
STA
INX
BNE

#$FE
LDA ZTEMP4+2,X

VTYPE+EVAD2+2,X
ZTEMP4+2,X

:AM2

AF76 A233 :AM3 LDX #3
AF78 76Fs : AM4 ROR ZTEMPl, X
AF7A CA DEX
AF7B 13FB' AF78 BPL : AM4

AF7D 88
AF7E D3Es 'AF6s

AF83 63

DEY
BNE

RTS

STRCMP - String Compare

AF81
AF81
AF84
AF87

202

2398AB
23B6DO
2398AB

STRCMP
JSR
JSR
JSR

:AMI

AAPSTR
MV3TOI
AAPSTR

FLAG
ELSE FOR EXPLICT LENGTH

IF NEW LENGTH
GREATER THAN
OLD LENGTH THEN
SET NEW LENGTH
ELSE DO NOTHING

ZTEMPI = ZTEMPl*2

SAVE ZTEMPl*2 IN [A,Y]

ZTEMPI = ZTEMPl*4

ADD LOW ORDER

ADD HIGH ORDER

DONE

CLEAR PARTIAL PRODUCT

SET FOR 16 BITS

GET MULTIPLICAN
TEST MS8 = ON

BR IF OFF

ADD MULTIPLIER
TO PARTIAL PRODUCT

MULT PRODUCT BY 2

TEST MORE BITS
8R IF MORE

DONE

POP STRING WITH ABS ADR
MOVE B TO FRI
POP STRING WITH A8S ADR

Source Code

AF8A A2D6 :SCI LDX tFRI1I-2+EVSLEN ; GO DEC STR A LEN
AF8C 2111BCAF JSR ZPADEC
AF8F 1118 PHP SAVE RTN CODE
AF9111 A2E2 LDX tFRl-2+EVSLEN GO DEC STR B LEN
AF92 2111BCAF JSR ZPADEC
AF95 FI1I13 'AFAA BEQ :SC2 BR STR B LEN 0
AF97 28 PLP GET STR A COND CODE
AF98 FI1II1ID 'AFA7 BEQ :SCLT BR STR A LEN = 111

AF9A A00111 LDY tl!J COMPARE A BYTE
AF9C BID4 LDA [FRI1I-2+EVSADR),Y OF STRING A
AF9E DIE0 CMP [FRl - 2+EVSADR) , Y ; TO STRING B
AFAI1I F00C 'AFAE BEQ :SC3 BR IF SAME
AFA2 91111113 'AFA7 BCC :SCLT BR IF A<B

AFM A901 :SCGT LDA n A>B
AFA6 60 RTS

AFA7 A980 :SCLT LDA #$8111 A<B
AFA9 6111 RTS

AFAA 28 :SC2 PLP IF STR A LEN NOT
AFAB D0F7 'AFA4 BNE :SCGT ZERO THEN A>B
AFAD 60 :SCEQ RTS ELSE A=B
AFAE E6D4 :SC3 INC FRI1I-2+EVSADR ; INC STR A ADR
AFBI1I DI1I11I2 'AFB4 BNE :SC4
AFB2 E6D5 INC FRI1I-l+EVSADR
AFB4 E6EI1I :SC4 INC FRl-2+EVSADR INC STR B ADR
AFB6 DI1ID2 'AF8A BNE :SCI
AFB8 E6El INC FRl-l+EVSADR
AFBA DI1ICE 'AF8A BNE :SCI

ZPADEC - Decrement a Zero-Page Double Word

AFBC ZPADEC
AFBC B500 LDA 0,X GET LOW BYTE
AFBE D01116 'AFC6 BNE :ZPADI BR NOT ZERO
APC0 B501 LDA 1,X GET HI BYTE
AFC2 FI1I11I5 'AFC9 BEQ :ZPADR BR IF ZERO
APC4. D61111 DEC 1,X DEC HIGH BYTE
AFC6 D6 111 111 :ZPADI DEC 0,X DEC LOW BYTE
APC8 A8 TAY SET NE COND CODE
APC9 6111 :ZPADR RTS RETURN

Functions

XPLEN - Length Function

AFCA XPLEN
AFCA 211198AB JSR AAPSTR POP STRING WITH ABS ADR
AFCD A5D6 LDA VTYPE+EVSLEN MOVE LENGTH
AFCF A4D7 LDY VTYPE+EVSLEN+l
AFDI XPIFP
AFDI 85D4 STA FRI1I TO TOP OF FRI1I
AFD3 84D5 STY FRI1I+l
AFD5 2111AAD9 XPIFPl JSR CVIFP AND CONVERT TO FP
AFD8 XPIFP2

AFD8 A9111111 LDA #111 CLEAR
AFDA 85D2 STA VTYPE TYPE AND
AFDC 85D3 STA VNUM NUMBER
AFDE 4CBAAB JMP ARGPUSH PUSH TO STACK AND RETURN

XPPEEK - PEEK Function

AFEI XPPEEK
AFEI 2111E3AB JSR GTINTO GET INT ARG
AFE4 A0111111 LDY #111
AFE6 BID4 LDA [FRI1I),Y GET MEM BYTE
AFE8 4CDIAF JMP XPIFP GO PUSH AS FP

203

Source Code

XPFRE - FRE Function

AFEB XPFRE
AFEB 2"F2AB JSR
AFEE 38 SEC
AFEF AOES"2 LOA
AFF2 ES9" SBC
AFF4 8S04 STA
AFF6 AOE6"2 LOA
AFF9 ES91 SSC
AFFB 8S05 STA
AFFO 4C05AF JMP

XPVAL - VAL Function

B""" XPVAL
B""" 2"79BO JSR

BIII13 A91111 LOA
BililS 85F2 STA
BII"7 211""08 JSR

Restore Character

B""A 2"99BO JSR

BililO 911C9 "AF08 BCC

B""F :VERR
B""F 2"lCB9 JSR

XPASC - ASC Function

BII12 XPASC
B"12 21198AB JSR

Get 1 > T Byte of String

BillS All""
B"17 81D4

B"19 4COIAF

BillC
B"le 21198AB
BilIF 4CD5AF

LOY
LDA

JMP

XPAOR
JSR
JMP

XPPDL - Function Paddle

B"22
B"22 A9""
B"24 F""A "B"3"

XPPDL
LDA
BEQ

XPSTICK - Function Joystick

BII26
B"26 A9"8
BII28 0""6 "B"3"

XPSTICK
LOA
BNE

ARGPOP

HIMEM
MEMTOP
FR"
HIMEM+l
MEMTOP+l
FR"+l
XPIFPl

SETSEOL

til
CIX
CVAFP

RSTSEOL

XPIFP2

ERSVAL

AAPSTR

t"
[FR"-2+EVSADR],Y

XPIFP

AAPSTR
XPIFP1

#"
:GRF

#8
:GRF

XPPTRIG - Function Paddle Trigger

B"2A
B"2A A9"C
BII2C D""2 "B"3"

XPPTRIG
LDA
BNE

#$"C
:GRF

XPSTRIG - Function Joystick Trigger

BII2E
B"2E A914

204

XPSTRIG
LOA '$14

POP DUMMY ARG

NO F REE 8YTES
= HIMEM-MEMTOP

GO PUSH AS FP

PUT EOL AT STR ENO

GET NUMERIC TERMINATOR
SET INOEX INTO BUFFER
CONVERT TO F. P.

RESET END OF STR

GET STRING ELEMENT

; GET INDEX
, GET BYTE

,GET STRING
, FINISH

TO 1ST BYTE

II

GET OISPL FROM BASE ADDR

GET DISP FROM BASE AD DR

GET DISPL FROM BASE AODR

GET DISP FROM BASE ADDR

BIB'"
B"'3'"
B"'31
B"'34
B"'36
B"'38

B"'3A
B"'3B
B"'3C
B"'3E

B"'3F
B"'42
B"'44

B"'46

48
2"'E3AB
A505
O"''''E "B"'46
A504

68
18
6504
AA

B07"'02
A"'00
F"'8B "AF01

B"'46 203AB9

:GRF
PHA
JSR
LOA
BNE
LOA

PLA
CLC
ADC
TAX

LOA
LOY
BEQ

:ERGRF
JSR

XPSTR - STR Function

B"'49
B"'49 2"'F2AB

B"'4C 2"'E608

Build String Element

B"'4F
B"'51
B"'53
B"'55

A5F3
8504
A5F4
8505

Get Length

B"'57
B"'59
B"'59
B05A
B"'5C
B"'5E
B"'60
B"'62

A"'FF

C8
B1F3
10FB "B"'59
297F
91F3
C8

B"'63 8406

B"'65 0017 "B07E

XPSTR
JSR

JSR

LOA
STA
LOA
STA

LDY
:XSTR1

INY
LOA
BPL
ANO
STA
INY

STY

BNE

XPCHR - CHR Function

B067
B"'67 2"'F2AB

B"'6A 2"'56AO
B"'60 A504
B"'6F 8DC005

Build String Element

B072
B"'74
B076
B"'78

A905
8505
A9C0
85D4

B07A A901
B07C 8506
B07E
B07E A900
B"'8'" 8507

XPCHR
JSR

:CHR

JSR
LDA
STA

LOA
STA
LDA
STA

LDA
STA

LDA
STA

GTINTO
FR"'+1
:ERGRF
FR'"

FR0

GRFBAS,X

'''' XPIFP

ERVAL

ARGPOP

CVFASC

INBUFF
FR"'-2+EVSAOR
INBUFF+l
FR"'-l+EVSAOR

#$FF

[INBUFF],Y
:XSTR1
t$7F
[INBUFF],Y

FR0-2+EVSLEN

:CHR

ARGPOP

CVFPI
FR'"
LBUFF+$4'"

#(LBUFF+$4"')/256
FR0-1+EVSAOR
#(LBUFF+$40)&255
FR"'-2+EVSAOR

U
FR"'-2+EVSLEN

#'"
FR"'-l+EVSLEN

Source Code

GET INTEGER FROM STACK
HIGH ORDER BYTE
SHOULO BE ='"
GET #

GET OISPL FROM BASE

AOO MORE OISPL

GET VALUE

GO CONVERT & PUSH ON STACK

GET VALlJE IN FRe

CONVERT TO ASCII

SET AOOR

IN IT FOR LENGTH COUNTER

BUMP COUNT
GET CHAR
IS MSB NOT ON, REPEAT
TURN OFF MSB
RETURNS CHAR TO BUFFER
INC TO GET LENGTH

SET LENGTH LOW

JOIN CHR FUNCTION

GET VALlJE IN FRCiJ

CONVERT TO INTEGER
GET INTEGER LOW
SAVE

SET ADOR
x

x
x

SET LENGTH LOW
X

SET LENGTH HIGH
X

205

Source Code

BIl82
BIl84
BIl86

8503
A983
8502

BIl88 4CBAAB

STA
LOA
STA

JMP

XPRND - RND Function

BIl88 XPRNO
BIl8B A2A8 LOX
BIl80 AIlBI"I LOY
M8F 2139800 JSR

BI"I92 21"1F2AB JSR

BI"I95 ACI"IA02 LOY
BI"I98 8404 STY
BIl9A ACI"IA02 LOY
BIl90 8405 STY
BIl9F 21"1AA09 JSR
BI"IA2 21340.0.0 JSR

B 13.0. 5 4CBAAB JMP

BIlA8 4213655361313 RNOOIV
IlI"I

DB

XPABS - Absolute Value Function

BilAE XPABS
BilAE 21"1F2AB JSR
BI"IBI .0.504 LOA
BIlB3 297F AND
BI"IB5 8504 STA
BI"IB7 4CBAAB JMP

XPUSR - USR Function

BI"IBA XPUSR
BilBA 21lC3BI"I JSR
BI"IBO 21lAA09 JSR
BilCil 4CBAAB JMP

BIlC3 :USR
BIlC3 A 5B 13 LOA
BIlC5 85C6 STA

BIlC7 :USRI
BI"IC7 21lE3AB JSR
BilCA C6C6 DEC
BI"ICC 31l1"19 "BI"ID7 BMI

BI"ICE .0.504 LDA
BI"IOil 48 PHA
BilOl .0.505 LOA
BIl03 48 PHA
BIl04 4CC7BI"I JMP
BIl07 :USR2
81107 A5BIl LOA
BIl09 48 PHA
BilOA 6C041l1"1 JMP

XPINT -Integer Function

BI"IOO XPINT
BI"IOO 21"1F2AB JSR
BilEil 21lE6BI"I JSR
BilE 3 4CBAAB JMP

206

VNUM ; CLEAR VARIABLE t
tEVSTR+EVSOTA+EVOIM ; GET TYPE FLAGS
VTYPE SET VARIABLE TYPE

ARGPUSH PUSH ON STACK

#RNOOIV&255 ; POINT TO 65535
#RNOOIV/256 ; X
FLOIR ;MOVE IT TO FRI

ARGPOP CLEAR DUMMY ARG

RNDLOC GET 2 BYTE RANDOM #
FRI"I X
RNDLOC X
FRI"I+l X
CVIFP CONVERT TO INTEGER
FROIV ;00 DIVIDE

ARGPUSH ; PUT ON STACK

$42,$1"I6,$55,$36,I"I,Il

ARGPOP ;GET ARGUMENT
~RIl ;GET BYTE WITH SIGN
J$7F ;ANO OUT SIGN
FRil ; SAVE
ARGPUSH ;PUSH ON STACK

:USR ;PUT RETURN AOOR IN CPU STACK
CVIFP CONVERT FRil TO FP
ARGPUSH ; PUSH ON STACK

COMCNT ;GET COMMA COUNT
ZTEMP2 ;SET AS # OF ARG FOR LOOP

CONTROL

GTINTO GET AN INTEGER FROM OP STACK
ZTEMP2 DECR t OF ARGUMENTS
:USR2 IF DONE THEM ALL, BRANCH

FRI"I GET ARGUMENT LOW
PUSH ON STACK

FRI"I+! GET ARGUMENT HIGH
PUSH ON STACK

:USRI GET NEXT ARGUMENT

COMCNT GET t OF ARGUMENTS
PUSH ON CPU STACK

[FRI"I] GO TO USER ROUTINE

ARGPOP GET NUMBER
XINT GET INTEGER
ARGPUSH PUSH ON ARGUMENT STACK

Source Code

XINT - Take Integer Part of FRO

BelE6 XINT
BelE6 A5D4 LDA FRel GET EXPONENT
BelE8 297F AND #$7F AND OUT SIGN BIT
BelEA 38 SEC
BelEB E93F SBC #$3F GET LOCATION OF 1ST FRACTION

BYTE
BelED lelel2 "BelFl BPL :XINTI IF > OR = el, THEN BRANCH
BelEF A9elel LDA tel ELSE SET =el

BelFl :XINTI
BelFl AA TAX PUT IN X AS INDEX INTO FRel
BelF2 A9elel LDA tel SET ACCUM TO ZERO FOR ORING
BelF4 A8 TAY ZERO Y
BelF5 :INT2
BelF5 Eelel5 CPX iFMPREC IS D.P. LOC > OF = 57
BelF7 Belel7 "Blelel BCS :XINT3 IF YES, LOOP DONE
BelF9 15D5 ORA FRelM,X OR IN THE BYTE
BelFB 94D5 STY FRelM, X ZERO BYTE
BelFD E8 INX POINT TO NEXT BYTE
BelFE DelFS "BelF5 BNE :INT2 UNCONDITIONAL BRANCH

Blelel :XINT3
Blelel A6D4 LDX FRel GET EXPONENT
Blel2 lel14 "BllB BPL :XINT4 BR IF i IS PLUS
Blel4 AA TAX GET TOTAL OF ORED BYTES &

SET CC
Blel5 Felll "B1l8 BEQ :XINT4 IF ALL BYTES WERE ZERO

BRANCH

IS NEGATIVE AND NOT A WHOLE • [ADD -1]
Blel7 A2Eel LDX #FRI
Blel9 2el46DA JSR ZFl ZERO FRI
BlelC A9Cel LDA t$Cel PUT -1 IN FRI
BlelE 85Eel STA FRI X
B11el A9ell LDA H X
B112 85El STA FRl+l X
B114 2el3BAD JSR FRADD ADD IT
B117 6el RTS
B118 :XINT4
B118 4CelelDC JMP NORM ; GO NORMALIZE

Transcendental Functions

XPSIN - Sine Function

BllB XPSIN
B11B 2elF2AB JSR ARGPOP ;GET ARGUMENT
B11E 2elA7BD JSR SIN
B121 Bel3F "B162 BCS :TBAD
B123 9el3A "BI5F BCC :TGOOD

XPCOS - Cosine Function

B125 XPcos
B125 2elF2AB JSR ARGPOP ;GET ARGUMENT
B128 2elBIBD JSR cos
B12B Bel35 "B162 BCS :TBAD
B12D 9el3el "BI5F BCC :TGOOD

XPATN - Arc Tangent Function

B12F XPATN
B12F 2elF2AB JSR ARGPOP
B132 2el77BE JSR ATAN
BUS Bel2B "B162 BCS :TBAD
B137 9el26 "BI5F BCC :TGOOD

207

Source Code

XPLOG - LOG Function

B139 XPLOG
B139 20F2AB JSR ARGPOP
B13C 20CDDE JSR LOG
B13F B021 'B162 BCS :TBAD
B141 901C 'B15F BCC :TGOOD

XRI,JO - LOG Base 10

B143 XPL10
B143 20F2AB JSR ARGPOP
B146 20DIDE JSR LOG10
B149 B017 'B162 BCS :TBAD
B14B 9012 'B15F BCC :TGOOD

XPEXP - EXP Function

B14D XPEXP
B14D 20F2AB JSR ARGPOP
B150 20C0DD JSR EXP
B153 B00D 'B162 BCS :TBAD
B155 9008 'B15F BCC :TGOOD

XPSQR - Square Root function

B157 XPSQR
B157 20F2AB JSR ARGPOP
B15A 20E5BE JSR SQR
B15D B003 'B162 BCS :TBAD

FALL THREE TO :TGOOD

B15F :TGOOD
B15F 4CBAAB JMP ARGPUSH ,PUSH ARGUMENT ON STACK

B162 :TBAD
B162 203AB9 JSR ERVAL

XPPOWER - Exponential Operator [A"B]

B165 XPPOWER
B165 2006AC JSR ARGP2 ,GET ARGUMENT IN FR0,FRI
B168 A5D4 LDA FR'" ,IS BASE = 0 7
B16A D"''''B 'Bl77 BNE :N0 ,IF BASE NOT "', BRANCH
B16C A5E0 LDA FRI ,TEST EXPONENT
B16E F004 'B174 BEQ :P0 ;IF = 0 BRANCH
B17'" 10ED 'B15F BPL :TGOOD ,IF >0 , ANSWER = 0
Bl72 3"'EE 'B162 BMI :TBAD ,IF <0, VALUE ERROR
B174 :P0
B174 4C"'5AD JMP XTRUE ,IF =0, ANSWER = 1
Bl77 :N0

Bl77 1030 'BIA9 BPL :SPEVEN IF BASE + THEN NO SPECIAL
PROCESS

B179 297F AND #$7F AND OUT SIGN BIT
B17B 8504 STA FR0 SET AS BASE EXPONENT

B17D A5E0 LDA FRI GET EXPONENT OF POWER
B17F 297F AND #$7F AND OUT SIGN BIT
B181 38 SEC
B182 E940 SBC #$4'" IS POWER <17
B184 30DC 'B162 BMI :TBAD IF YES, ERROR

B186 A2"'6 LOX #6 GET INDEX TO LAST DIGIT

B188 C9"'5 CMP #5 IF t CAN HAVE DECIMAL
B18A 90"'4 'B190 BCC :SP4 PORTION, THEN BR
B18C A001 LDY U
B18E D008 'B198 BNE :SP3
B19'" :SP4

B190 85F5 STA ZTEMPI SAVE EXP -4'"

208

Bl92 38
B193 A905
B195 E5F5

B197 A8

B198
B198
B199
B19A
B19C
B19E
BIA0

CA
88
F006 "BIA2
B5E0
D0C2 "B162
F0F6 "B198

:SP3

SEC
LDA
SBC

TAY

DEX
DEY
BEQ
LDA
BNE
BEQ

BIA2 :SP2
BI A2 A080 LDY
BIA4 B5E0 LDA
BIA6 LSRA
BIA6 +4A LSR
BIA7 B002 "BLAB BCS

BIA9
BIA9 A000
BLAB
BLAB 98
BIAC 48

:SPEVEN
LDY

:POWR
TYA
PHA

Save Exponent [from FR1]

BIAD A205
BIAF
BIAF
BIBI
BIB2
BIB3

B5E0
48
CA
10FA "BIAF

BIB5 20DIDE
BIB8 B0AB "B162

LDX
: POWRI

LDA
PHA
DEX
BPL

JSR
BCS

#5
ZTEMPI

:SP2
FRl , X
:TBAD
: SP3

#$80
FRl,X

A
: POWR

#0

#F MPREC

FRl , X

: POWRI

LOG10
:TBAD

Pull Exponent into FRl [from CPU Stack]

BIBA A200
BIBC A005
BIBE
BIBE
BIBF
BICI
BIC2
BIC3

BIC5
BIC8
BICB

BICD
BICE

BID0
B1D2
B1D4

BID6

68
95E0
E8
88
10F9 "BI BE

2047AD
20CCDD
B009 "BID6

68
108F "B15F

0504
85D4
D089 "B15F

BID6 202AB9

LDX
LDY

: POWR2
PLA
STA
INX
DEY
BPL

JSR
JSR
BCS

PLA
BPL

ORA
STA
BNE

:EROV
JSR

#0
#FMPREC

FR1,X

,DEC COUNTER
:POWR2

FRMUL
EXP10
:EROV

: TGOOD

FR0
FR0
:TGOOD

EROVFL

Source Code

,GET # BYTES POSSIBLE
GET # BYTES THAT COULD BE
DECIMAL
SET COUNTER

, DEC COUNTER
, IF DONE GO TEST EVEN / ODD
,GET BYTE OF EXPONENT
, IF NOT =0 , THEN VALUE ERROR
, REPEAT

, GET ODD FLAG
,GET BYTE OF EXPONENT

IS IT ODD[LAST BIT OFF]?

IF YES , BR

,GET POINTER INTO FRI

, GET A BYTE
,PUSH ON CPU STACK
,POINT TO NEXT BYTE
,BR IF MORE TO DO

,TAKE LOG OF BASE

,GET POINTER I NTO FRI
,SET COUNTER

, PUT IN FR 1
,INCR POINTER

,BR IF MORE TO DO

,GET LOG OF NUMBER
,GET NUMBER

GET EVEN/ODD FLAG
IF EVEN, GO PUT ON STACK

IF ODD MAKE ANSWER-
x
PUSH ON STACK

209

Source Code

Statements

XDiM & XCOM - Execute DIM and COMMON Statements

B1D9 XDIM
B1D9 XCOM

B1D9 A4A8 :DCl LDY STINDEX IF NOT AT
B1DB C4A7 CPY NXTSTD STATEMENT END
B1DD 9"''''1 -B1E'" BCC :DC2 THEN CONTINUE
B1DF 6'" RTS RETURN
B1E'" 2"'E"'AA :DC 2 JSR EXEXPR GO SET UP VIA EXECUTE EXPR
B1E3 ASD2 LDA VTYPE GET VAR TYPE
B1ES RORA SHIFT DIM BIT TO CARRY
B1ES +6A ROR A
B1E6 9"''''3 -BlEB BCC :DC3 CONTINUE IF NOT YET DIMMED
B1E8 2"'2EB9 :DCERR JSR ERRDIM ELSE ERROR

BlEB 38 :DC3 SEC TURN ON
B1EC ROLA DIM FLAG
B1EC +2A ROL A
BlED 8SD2 STA VTYPE AND RESET
B1EF 3"'2F 'B22'" BMI : DCSTR AND BR IF STRING

B1Fl A4FS LDY ZTEMPl INC Il BY
B1F3 AGF6 LDX ZTEMP1+l AND SET AS DIMl
B1FS C8 INY
B1F6 D"''''3 'B1FB BNE :DC4
B1F8 E8 INX
B1F9 3"'ED 'B1E8 BMI : DC ERR BR IF OUT OF BOUNDS
B1FB 84D6 :DC4 STY VTYPE +EVADl
B1FD 86D7 STX VTYPE+EVAD1+l
B1FF 84FS STY ZTEMPl ALSO PUT BACK ONTO
B2"'1 86F6 STX ZTEMP1+l INDEX 1 FOR MULT

B2"'3 A497 LDY INDEX2 INC INDEX 2 BY 1
B2"'S A698 LDX INDEX2+l AND SET AS DIM 2
B2"'7 C8 INY
B2"'8 D"''''3 'B2"'D BNE :DCS
B2"'A E8 INX
B2"'B 3"'DB 'B1E8 BMI :DCERR BR IF OUT OF BOUNDS
B2"'D 84D8 :DCS STY VTYPE+EVAD2
B2"'F 86D9 STX VTYPE+EVAD2+1

B211 2"'SDAF JSR AMULl ZTEMPl = ZTEMP1*D2
B2l4 2"'46AF JSR AMUL2 ZTEMPl = ZTEMP1*6

RESULT IS AN ARRAY
SPACE REQD

B2l7 A4FS LDY ZTEMPl A,Y = LENGTH
B2l9 ASF6 LDA ZTEMP1+l
B21B 3"'CB 'B1E8 BMI : DCERR
B21D 4C34B2 JMP : DCEXP GO EXPAND

B22'" : DCSTR
B22'" A9"'''' LDA #0 SET CURRENT LENGTH ='"
B222 8SD6 STA EVSLEN+VTYPE
B224 8SD7 STA EVSLEN+l+VTYPE

B226 A4FS LDY ZTEMPl MOVE INDEX
B228 84D8 STY VTYPE+EVSDIM TO STR DIM
B22A ASF6 LDA ZTEMP1+l [ALSO LOAD A,Y]

B22C 8SD9 STA VTYPE+EVSDIM+l FOR EXPAND
B22E D"''''4 'B234 BNE :DCEXP INSURE DIM
B23'" C"''''''' CPY #0 NOT ZERO
B232 F0B4 'B1E8 BEQ : DCERR FOR STRING

B234 : DCEXP
B234 A28E LDX #ENDSTAR POINT TO END ST & ARRAY

SPACE
B236 2081A8 JSR EXPAND GO EXPAND

210

B239 38 SEC
B23/\ /\597 LD/\ SVESA
B23C E58C SBC ST/\RP
B23E 85D4 STA VTYPE+EVSADR
B24" A598 LDA SVESA+1
B242 E58D SBC STARP+1
B244 85D5 STA VTYPE+EVSADR+ 1

B246 2016AC JSR RTNVAR
B249 4CD9B1 JMP : DC1

XPOKE - Execute POKE

B24C XPOKE
B24C 20E0AB JSR GETINT
B24F A5D4 LDA FR0
B251 8595 STA POKADR
B253 A5D5 LDA FR0+l
B255 8596 STA POKADR+1

B257 20E9AB JSR GETlINT

B25/\ A5D4 LDA FR0
B25C A000 LDY #0
B25E 9195 STA [POKADR], Y
B260 60 RTS

XDEG - Execute DEG

B261 XDEG
B261 A906 LD/\ #DEGON
B263 85FB ST/\ RADFLG
B265 60 RTS

XRAD - Execute RAD

B266 XRAD
B266 /\900 LD/\ # RADON
B268 85FB ST/\ RADFLG
B26/\ 60 RTS

XREST - Execute RESTORE Statement

B26B XREST
B26B A900 LDA #0
B26D 85B6 STA DATAD

B26F 2010B9 JSR TSTEND
B272 9003 "B277 BCC :XR1
B274 A8 TAY
B275 F007 "B27E BEQ :XR2

B277 20D5AB :XR1 JSR GETPINT

B27A A505 LDA FR0+1
B27C A4D4 LDY FR0

B27E 85B8 :XR2 ST/\ DATALN+1
B2B0 B4B7 STY DATALN
B282 60 RTS

XREAD - Execute READ Statement

B283 XREAO
B283 A5A8 LDA STINDEX
B285 48 PHA
B286 20C7B6 JSR XGS

B289 A5B7 LDA DATALN
B288 85A0 STA TSLNUM
8280 A5B8 LOA DATALN+1
B28F 85A1 STA TSLNUM+1

Source Code

CALCULATE DISPL INTO
ST / /\RRAY SP/\CE
/\ND PUT INTO VALUE BOX

RETURN TO V/\R VALUE TABLE
AND GO FOR NEXT ONE

GET INTEGER /\DDR
SAVE POKE ADDR

GET 1 BYTE INTEGER TO POKE

GET INTEGER TO POKE
GET INDEX

;GET INDEX

GET DEGREES FLAG
SET FOR TRANSCENDENTALS

GET RADIAN FLAG
SET FOR TRANSCENDENTI\LS

ZERO D/\TA DISPL

TEST END OF STMT
BR IF NOT END
RESTORE TO LN=0

GET LINE NO.

LOAD LINE NO.

SET LINE

DONE

SAVE STINDEX

SAVE READ STMT VIA GOSUB

MOVE DATALN TO TSLNUM

211

Source Code

B291 20A2A9 JSR GETSTMT GO FIND TSLNUM

B294 AS8A LOA STMCUR MOVE STMCUR TO INBUFF
B296 8SF3 STA INBUFF
B298 AS8B LOA STMCUR+l
B29A 8SF4 STA INBUFF+l

B29C 2019B7 JSR XRTN RESTORE READ STMT VIA RETURN
B29F 68 PLA GET SAVED STINDEX
B2A0 8SA8 STA STINDEX SET IT

B2A2 :XRDl
B2A2 AIil00 LOY #0 SET CIX=0
B2A4 84F2 STY CIX SET CIX
B2A6 2007B3 JSR :XRNTl GET LINE NO. LOW
B2A9 8SB7 STA DATALN SET LINE NO . LOW
B2AB 200SB3 JSR :XRNT
B2AE 8SB8 STA DATALN+l SET LINE NO. HIGH
B2B0 200SB3 JSR :XRNT
B2B3 8SF5 STA ZTEMPl SET LINE LENGTH
B2B5 :XRD2
B2B5 2005B3 JSR :XRNT
B2B8 85F6 STA ZTEMP1+l SET STMT LENGTH

B2BA 2005B3 JSR :XRNT GET STMT LINE TOKEN
B2BD C901 CMP tCDATA IS IT DATA
B2BF F026 'B2E7 BEQ :XRD4 BR IF DATA

B2Cl A4F6 LOY ZTEMP1+l GET DISPL TO NEXT STMT
B2C3 C4F5 CPY ZTEMPl IS IT EOL
B2C5 B005 'B2CC BCS :XRD2A BR IF EOL
B2C7 88 DEY
B2C8 84F2 STY CIX SET NEW DISPL
B2CA 90E9 'B2BS BCC :XRD2 AND CONTINUE THIS STMT

B2CC 84F2 :XRD2A STY CIX
B2CE C6F2 DEC CIX

B2DIi'l A001 :XRD3 LDY U WAS THIS STMT THE
B2D2 BIF3 LOA [INBUFF]. Y DIRECT ONE
B2D4 303D 'B313 BMI : XROOD BR IF IT WAS [OUT OF DATA]

B2D6 38 SEC
B2D7 A5F2 LDA CIX INBUFF + CIX +
B2D9 65F3 ADC INBUFF = ADR NEXT PGM LINE
B2DB 8SF3 STA INBUFF
B2DD A900 LOA #0
B2DF 85B6 STA DATAD
B2El 65F4 ADC INBUFF+l
B2E3 85F4 STA INBUFF+l
B2ES 90BB 'B2A2 BCC :XRDl GO SCAN THIS NEXT LINE

B2E7 :XRD4
B2E7 A911l11l LOA #11l CLEAR ELEMENT COUNT
B2E9 85FS STA ZTEMPl

B2EB :XRD5
B2EB A5F5 LOA ZTEMPl GET ELEMENT COUNT
B2ED C5B6 CMP DATAD AT PROPER ELEMENT
B2EF B00B 'B2FC BCS :XRD7 BR IF AT

ELSE SCAN FOR NEXT
B2Fl 2005B3 :XRD6 JSR :XRNT GET CHAR
B2F4 D0FB 'B2Fl BNE :XRD6 BR IF NOT CR OR COMMA
B2F6 B0D8 'B2D0 BCS :XRD3 BR IF CR
B2F8 E6F5 INC ZTEMPl INC ELEMENT COUNT
B2FA D0EF 'B2EB BNE :XRD5 AND GO NEXT

B2FC A940 :XRD7 LDA #$40 SET READ BIT
B2FE 85A6 STA DIRFLG
B300 E6F2 INC CIX INC OVER DATA TOKEN

212

Source Code

B302 4C35B3 JMP :XINA GO DO IT

B305 XRNT
B305 E6F2 INC CIX INC INDEX
B307 A4F2 :XRNTI LDY CIX GET INDEX
B309 BIF3 LDA [INBUFF]. Y GET CHAR COUNT
B30B C92C CMP #$2C IS IT A COMMA
B30D 18 CLC CARRY CLEAR FOR COMMA
B30E F002 'B312 BEQ :XRNT2 BR IF COMMA
B310 C99B CMP #CR IS IT CR
B312 60 :XRNT2 RTS

B313 2034B9 :XROOD JSR ERROOD

XINPUT - Execute INPUT

B316 XINPUT

B316 A93F LDA # '?' SET PROMPT CHAR
B318 85C2 STA PROMPT
B31A 203EAB JSR GETTOK GET FIRST TOKEN
B31D C6A8 DEC STINDEX BACK UP OVER IT
B31F 9005 'B326 BCC :XIN0 BR IF NOT OPERATOR
B321 2002BD JSR GIOPRM GO GET DEVICE NUM
B324 85B4 STA ENTDTD SET DEVICE NO.

B326 :XIN0
B326 2051DA JSR INTLBF
B329 2089BA JSR GLINE GO GET INPUT LINE
B32C 204E83 JSR :XITB TEST BREAK
B32F A000 LDY #0
B331 84A6 STY DIRFLG SET INPUT MODE
B333 84F2 STY CIX SET CIX=0
B335 :XINA
B335 203EAB JSR GETTOK GO GET TOKEN
B338 E6A8 INC STINDEX INC OVER TOKEN

B33A A5D2 LDA VTYPE IS A STR
833C 3020 'B35E BMI :XISTR BR IF STRING

B33E 2000D8 JSR CVAFP CONVERT TO FP
B341 B014 'B357 BCS :XIERR
B343 2007B3 JSR :XRNT I GET END TOKEN
B346 D00F 'B357 BNE :XIERR ERROR IF NO CR OR COMMA
B348 2016AC JSR RTNVAR RETURN VAR
B34B 4C89B3 JMP :XINX GO FIGURE OUT WHAT TO DO

NEXT

B34E 20F4A9 : XITB JSR TSTBRK GO TEST BREAK
B35 1 D001 'B354 BNE XITBT BR IF BRK
8353 60 RTS DONE
B354 4C93B7 XITBT JMP XSTOP STOP
B357 A900 :XIERR LDA #0 RESET
B359 85B4 STA ENTDTD ENTER DVC
B35B 2030B9 JSR ERRINP GO ERROR

B35E : XISTR
B35E 202EAB JSR EXPINT INIT EXECUTE EXPR
B361 20BMB JSR ARGPUSH PUSH THE STRING
B364 C6F2 DEC CIX DEC CIX TO CHAR
B366 A5F2 LDA CIX BEFORE SOS
B368 85F5 STA ZTEMPI SAVE THAT CIX
B36A A2FF LDX #$FF SET CHAR COUNT -1

B36C E8 :XISI INX INC CHAR COUNT
B36D 2005B3 JSR :XRNT GET NEXT CHAR
B370 D0FA 'B36C BNE :XISI BR NOT CR OR COMMA
B372 B004 'B378 BCS :XIS2 BR IF CR
B374 241\6 BIT DIRFLG IS IT COMMA, IF NOT READ
B376 50F4 'B36C BVC :XISI THEN CONTINUE

213

Source Code

B37B A4F5 :XIS 2 LDY ZTEMPl GET SAVED INDEX
B37A A5A8 LDA STINDEX SAVE INDEX
B37C 48 PHA
B37D 8A TXA ACU = CHAR COUNT
B37E A2F3 LDX #!NBUFF POINT TO INBUFF
B380 2064AB JSR RISC GO MAKE STR VAR
B383 68 PLA
B384 85A8 STA STINDEX RESTORE INDEX
B386 20A6AE JSR RISASN THEN DO STA ASSIGN

B389 24A6 : XINX BIT DIRFLG IS THIS READ
B38B 500F 'B39C BVC :XIN BR IF NOT

B38D E6B6 INC DATAD INC DATA DISPL
B38F 2010B9 JSR TSTEND TEST END READ STMT
B392 B00D 'B3Al BCS :XIRTS BR IF READ END

B394 2007B3 :XIRl JSR :XRNTl GET END DATA CHAR
B397 9018 'B3Bl BCC : XINC BR IF COMMA
B399 4CD0B2 JMP :XRD3 GO GET NEXT DATA LINE

B39C :XIN
B39C 2010B9 JSR TSTEND
B39F 9008 'B3A9 BCC :XINl

B3Al 2051DA :XIRTS JSR INTLBF RESTORE LBUFF
B3A4 A900 LDA #0 RESTORE ENTER
B3A6 85B4 STA ENTDTD DEVICE TO ZERO
B3A8 60 RTS DONE

B3A9 2007B3 :XINl JSR : XRNTl IF NOT END OF DATA
B3AC 9003 'B3Bl BCC :XINC THEN BRANCH
B3AE 4C26B3 JMP :XIN0 AND CONTINUE

B3Bl E6F2 :XINC INC CI X INC INDEX
B3B3 4C35B3 JMP : XINA AND CONTINUE

XPRINT - Execute PRINT Statement

B3B6 XPRINT
B3B6 A5C9 LDA PTABW GET TAB VALUE
B3B8 85AF STA SCANT SCANT
B3BA A900 LDA HI SET OUT INDEX 0
B3BC 8594 STA COX

B3BE MA8 :XPR0 LDY STINDEX GET STMT DISPL
B3C0 B18A LDA [STMCUR),Y GET TOKEN

B3C2 C912 CMP #CC OM
B3C4 F053 'B419 BEQ :XPTAB BR IF TAB
B3C6 C916 CMP #CCR
B3C8 F07C 'B446 BEQ : XPEOL BR IF EOL
B3CA C914 CMP tCEOS
B3CC F078 ' B446 BEQ :XPEOL BR IF EOL
B3CE C915 CMP #CSC
B3D0 F06F 'B441 BEQ :XPNULL BR IF NULL
B3D2 C9lC CMP #CPND
B3D4 F061 'B437 BEQ :XPRIOD

B3D6 20E0AA JSR EXEXPR GO EVALUATE EXPRESSION
B3D9 20F2AB JSR ARGPOP POP FINAL VALUE
B3DC C6A8 DEC STINDEX DEC STINDEX
B3DE 24D2 BIT VTYPE IS THIS A STRING
B3E0 3016 'B3F8 BMI :XPSTR BR IF STRING

B3E2 20E6D8 JSR CVFASC CONVERT TO ASCII
B3E5 A900 LDA #0
B3E7 85F2 STA CIX

B3E9 A4F2 :XPRl LDY CIX OUTPUT ASCII CHARACTERS

214

Source Code

B3EB BIF3 LDA [INBUFF]. Y FROM INBUFF
B3ED 48 PHA UNTIL THE CHAR
B3EE E6F2 INC CIX WITH THE MSB ON
B3F3 235DB4 JSR :XPRC IS FOUND
B3F3 68 PLA
B3F4 13F3 "B3E9 BPL :XPRI
B3F6 33C6 "B3BE BMI :XPR0 THEN GO FOR NEXT TOKEN
B3F8 : XPSTR
B3F8 209BAB JSR GSTRAD GO GET ABS STRING ARRAY
B3FB A900 LDA #0
B3FD 85F2 STA CIX
B3FF A5D6 :XPR2C LDA VTYPE+EVSLEN IF LEN LOW
B401 D004 "B407 BNE :XPR2B NOT ZERO BR
B403 C6D7 DEC VTYPE+EVSLEN+l DEC LEN HI
B405 33B7 "B3BE BMI :XPR0 BR IF DONE
B407 C6D6 : XPR2B DEC VTYPE+EVSLEN ; DEC LEN LOW

B409 A4F2 :XPR2 LDY CIX ; OUTPUT STRING CHARS
B43B BID4 LDA [VTYPE+EVSADR].Y ; FOR THE LENGTH
B40D E6F2 INC CIX ; OF THE STRING
B40F D002 "B413 BNE :XPR2A
B411 E6D5 INC VTYPE+EVSADR+l
B413 : XPR2A
B413 205FB4 JSR :XPRCI
B416 4CFFB3 JMP :XPR2C

8419 :XPTAB
B419 A494 :XPR3 LDY COX DO UNTIL COX+l < SCANT
B41B C8 INY
B41C C4AF CPY SCANT
B41E 9009 "8429 BCC :XPR4
8423 18 :XPIC3 CLC
B421 A5C9 LDA PTABW SCANT SCANT+TAB
B423 65AF ADC SCANT
8425 85AF STA SCANT
8427 90F0 "B419 BCC : XPR3

B429 A494 :XPR4 LDY COX DO UNTIL COX SCANT
842B C4AF CPY SCANT
B42D 8012 "B441 BCS :XPR4A
B42F A920 LDA #$20 PRINT BLANKS
B431 205DB4 JSR :XPRC
B434 4C29B4 JMP :XPR4

B437 2002BD :XPRIOD JSR GIOPRM ; GET DEVICE NO .
B43A 85B5 STA LISTDTD SET AS LIT DEVICE
B43C C6A8 DEC STINDEX ;DEC INDEX
B43E 4CBEB3 JMP : XPR0 ; GET NEXT TOKEN

B441 : XPR4A
B441 E6A8 : XPNULL INC STINDEX INC STINDEX
B443 4CBEB3 JMP :XPR0

B446 :XPEOL
B446 A4A8 :XPEOS LDY STINDEX AT END OF PRINT
B448 88 DEY
B449 B18A LDA [STMCUR]. Y IF PREV CHAR WAS
B44B C915 CMP #CSC SEMI COLON THEN DONE
B44D F009 "B458 BEQ :XPRTN ELSE PRINT A CR
B44F C912 CMP #CCOM OR A COMMA
8451 F005 "B458 BEQ :XPRTN THEN DONE
B453 A99B LDA #CR
B455 205FB4 JSR :XPRCI THEN DONE
8458 : XPRTN
B458 A900 LDA #0 SET PRIMARY
B45A 85B5 STA LISTDTD LIST DVC = 0
B45C 60 RTS AND RETURN

845D 297F :XPRC AND #$7F MSB OFF
845F E694 : XPRCI INC COX INC OUT INDEX

215

Source Code

B461 4C9FBA JMP PRCHAR

XLPRINT - Print to Printer

B464
B464
B466
B468
B46A

B46C
B46E
B470
B472

B474
B477

B47A

B47D

A980
85F3
A9B4
85F4

A207
86B5
A900
A008

20D1BB
20B3BC

20B6B3

4CF1BC

B480 50
B481 3A9B

XLPRINT
LDA
STA
LDA
STA

LDX
STX
LDA
LDY

JSR
JSR

JSR

JMP

#PSTR&255
INBUFF
#PSTR/256
INBUFF+l

#7
LISTDTD
#0
#8

SOPEN
IOTEST

XPRINT

CLSYSl

PSTR DB 'P'
DB ':' ,CR

XLiST - Execute LIST Command

B483
B483
B485
B487
8489
B48A
B48C
848E
B490
B493
8495

B498
B49B
B49B
B49D
B49E
B4A0

B4A2
B4A4
B4A5
B4A8
B4A9
B4AB
B4AD
B4AF
B482

B4B5
B4B5

B4B8
B4BA
B4BC

84BE
B4C0
B4C2

216

Mlel0
84A0
84Al
88
84AD
A97F
85AE
8DFEel2
A99B
209FBA

2e1C7B6

A4A8
C8
C4A7
B02D '84CF

A5A8
48
200FAC
68
85A8
A5D2
1006 'B4B5
20D5BA
4C9BB4

20D5AB

85Al
A5D4
85A0

A4A8
C4A7
F003 'B4C7

XLIST
LDY
STY
STY
DEY
STY
LDA
STA
STA
LDA
JSR

JSR
:XL0

LDY
INY
CPY
BCS

LDA
PHA
JSR
PLA
STA
LDA
BPL
JSR
JMP

:XLl
JSR

STA
LDA
STA

LDY
CPY
BEQ

#0
TSLNUM
TSLNUM+l

LELNUM
#$7F
LELNUM+l
$2FE
#CR
PRCHAR

XGS

STINDEX

NXTSTD
: LSTART

STINDEX

POPl

STINDEX
VTYPE
:XLl
FLIST
:XL0

GETPINT

TSLNUM+l
FR0
TSLNUM

STINDEX
NXTSTD
:LSE

OUTPUT CHAR

POINT TO FILE SPEC
X
X
X

GET DEVICE
SET LIST DEVICE
GET AUX 2
GET OPEN TYPE

DO OPEN
TEST FOR ERROR

DO THE PRINT

CLOSE DEVICE

,SET TA8LE SEARCH LINE NO
,TO ZERO

SET LIST END ~INE NO
,TO $7FFF

SET NON-DISPLAY MODE
POINT CR

, SAVE CURLINE VIA GOSUB

,GET STMT INDEX
,INC TO NEXT CHAR
,RT NEXT STMT

BR IF AT, NO PARMS

SAVE STINDEX
ON STACK
POP FIRST ARGUMENT
RESTORE STINDEX TO
RE-DO FIRST ARG
GET VAR TYPE
BR IF NOT FILE SPEC STRING
GO OPEN FILE
GO BACK TO AS IF FIRST PARM

GO GET START LNO

, MOVE START LNO
,TO TSLNUM

GET STMT INDEX
AT NEXT STMT

BR IF AT, NO PARMS

Source Code

B4C4 20D5AB JSR GETPINT GO GET LINE NO

B4C7 A5D4 :LSE LOA FR0 MOVE END LINE NO
B4C9 85AD STA LELNUM ;TO LIST EN D LI NE NO
B4CB A5D5 LOA FR0+1
B4CD 85AE STA LELNUM+l

B4CF : LSTART
B4CF 20A2A9 JSR GETSTMT ;GO FIND FIRST LINE

B4D2 20E2A9 :LNXT JSR TENDST ;AT END OF STMTS
B4D5 3024 AB4FB BMI :LRTN ; BR AT END

B4D7 A001 :LTERNG LOY #l ; COMPARE CURRENT STMT
B4D9 B18A LOA [STMCUR], Y ;LINE NO WITH END
B4DB C5AE CMP LELNUM+l ;LINE NO
B4DD 900B AB4EA BCC :LGO
B4DF D01A AB4FB BNE : LRTN
B4El 88 DEY
B4E2 B18A LOA [STMCUR], Y
B4E4 C5AD CMP LELNUM
B4E6 9002 AB4EA BCC :LGO
B4E8 0011 AB4FB BNE :LRTN

B4EA 205CB5 :LGO JSR :LLINE ;GO LIST THE LINE
B4ED 20F4A9 JSR TSTBRK ; TEST FOR BREAK
B4F0 0009 AB4FB BNE :LRTN ; BR IF BREAK
B4F2 20DDA9 JSR GETLL
B4F5 20D0A9 JSR GNXTL ;GO INC TO NEXT LINE
B4F8 4CD2B4 JMP :LNXT ;GO DO THIS LINE

B4FB :LRTN
B4FB A5B5 LOA LISTDTD IF LIST DEVICE
B4FD F007 AB506 BEQ :LRTNl IS ZERO, BR
B4FF 20FIBC JSR CLSYSD ELSE CLOSE DEVICE
B502 A900 LOA ~0 AND RESET
B504 85B5 STA LISTDTD DEVICE TO ZERO
B506 :LRTNl
B506 8DFE02 STA $2FE SET DISPLAY MODE
B509 4C19B7 JMP XRTN THEN RESTORE LIST LINE

AND RETURN

LSCAN - Scan a Table for LIST Token

ENTRY PARMS
X SKIP LENGTH

A,Y TABLE ADR
SCANT TOKEN

B50C : LSCAN
B50C 86AA STX SRCSKP SAVE SKIP LENGTH
B50E 2030B5 JSR :LSST SAVE SRC ADR

B511 A4AA :LSC0 LDY SRCSKP GET SKIP FACTOR

B513 C6AF DEC SCANT DECREMENT SRC COUNT
B515 300E AB525 BMI : LSINC BR IF DONE

B517 B195 :LSCl LOA [SRCADR],Y GET CHARACTER
B519 3003 AB51E BMI :LSC2 BR IF LAST CHARACTER
B51B C8 INY INC TO NEXT
B51C D0F9 AB517 BNE :LSCl BR ALWAYS
B51E C8 :LSC2 INY INC TO AFTER LAST CHAR
B51F 2025B5 JSR :LSINC INC SRC ADR BY Y
B522 4C11B5 JMP :LSC0 GO TRY NEXT

B525 18 :LSINC CLC
B526 9B TYA Y PLUS
B527 6595 ADC SRCADR SRCADR
B529 8595 STA SRCADR IS

217

Source Code

8528 A8 TAY NEW
852C A596 LOA SRCAOR+l SRCAOR
852E 6900 AOC #0

8530 8596 :LSST STA SRCAOR+l STORE NEW SRCAOR
8532 8495 STY SRCAOR AND
8534 60 RTS RETURN

LPRTOKEN - Print a Token

8535 LPRTOKEN
8535 : LPRTOKEN
8535 A0FF LOY #$FF INITIALIZE INDEX TO ZERO
8537 84AF STY SCANT

8539 E6AF :LPTI INC SCANT INC INDEX
8538 A4AF LOY SCANT GET INDEX
853D 8195 LOA [SRCAOR],Y GET TOKEN CHAR
853F 48 PHA SAVE CHAR
8540 C998 CMP #CR IF ATARI CR
B542 F004 '8548 BEQ :LPTIA THEN DON'T AND
8544 297F AND #$7F TURN OFF MSB
8546 F003 ' B54B 8EQ :LPT2 BR IF NON-PRINTING
8548 :LPTIA
8548 209FBA JSR PRCHAR GO PRINT CHAR
B548 :LPT2
854B 68 PLA GET CHAR
854C I0E8 'B539 BPL :LPTI BR IF NOT END CHAR
B54E 60 RTS GO BACK TO MY BOSS

LPTWB - Print Token with Blank Before and After

854F : LPTWB
B54F A920 LOA #$20 GET BLANK
B551 209FBA JSR PRCHAR GO PRINT IT
8554 203585 : LPTT8 JSR : LPRTOKEN GO PRINT TOKEN
B557 A920 : LPBLNK LOA #$20 GET BLANK
B559 4C9FBA JMP PRCHAR GO PRINT IT AND RETURN

LUNE - List a Line

B55C LLINE
B55C :LLINE
855C A000 LOY #0
B55E 818A LOA [STMCUR],Y MOVE LINE NO
8560 8504 STA FR0 TO FR0
8562 C8 INY
8563 818A LOA [STMCUR). Y
8565 8505 STA FR0+1
8567 20AA09 JSR CVIFP CONVERT TO FP
856A 20E608 JSR CVFASC CONVERT TO ASCII
8560 A5F3 LDA IN8UFF MOVE IN8UFF AOR
856F 8595 STA SRCADR TO SRCAOR
8571 A5F4 LOA IN8UFF+l
8573 8596 STA SRCAOR+l
8575 205485 JSR :LPTT8 AND PRINT LINE NO

8578 LOLINE
8578 A002 LDY #2
857A 818A LOA [STMCUR],Y GET LINE LENGTH
857C 859F STA LLNGTH AND SAVE
857E C8 INY
857F 818A :LLI LOA [STMCUR],Y GET STMT LENGTH
8581 85A7 STA NXTSTO AND SAVE AS NEXT ST DISPL
8583 C8 INY INC TO STMT TYPE
8584 84A8 STY STINOEX AND SAVE OISPL
8586 209085 JSR :LSTMT GO LIST STMT

218

B589
B58B
B58D
B58F

A4A7
C49F
90F0 "B57F
60

LDY
CPY
BCC
RTS

NXTSTD
LLNGTH
:LLI

LSTMT - List a Statement

B590
B590
B593
B595
B597

B59A
B59D
B59F
B5A1
B5A3

B5A5
B5A8
B5AB

B5AE
B5B1

B5B3
B5B5
B5B7
B5B9
B5BB
B5BD
B5C0
B5C3
B5C5
B5C7
B5CA

B5CD

2031B6
C936
F017 "B5AE
203DB6

2031B6
C937
F004 "B5A5
C902
B009 "B5AE

202FB6
209FBA
4CA5B5

202FB6
101A "B5CD

297F
85AF
A200
A583
A482
200CB5
2035B5
C9A8
D0E7 "B5AE
202FB6
4CAEB5

B5CD C90F
B5CF F018 "B5E9

B5Dl

B5D3
B5D6
B5D8
B5DB
B5DD
B5DF
B5El
B5E3

B036 "B609

204DAB
C6A8
20E6D8
A5F3
8595
A5F4
8596
2035B5

B5E6 4CAEB5

B5E9
B5EC
B5EE
B5F0
B5F3
B5F5

B5F7

202FB6
85AF
A922
209FBA
A5AF
F00A " B601

202FB6
B5FA 209FBA
B5FD C6AF
B5FF D0F6 "B5F7

B601
B601 A922
B603 209FBA
B606 4CAEB5

: LSTMT
JSR
CMP
BEQ
JSR

:LGCT
tCILET
:LADV
LSTMC

JSR
CMP
BEQ
CMP
BCS

: LGCT
#CERR
:LDR
#2
: LADV

:LDR JSR :LGNT
JSR PRCHAR
JMP :LDR

:LADV JSR :LGNT
BPL :LNVAR

AND *$7F
STA SCANT
LDX #0
LDA VNTP+l
LDY VNTP
JSR : LSCAN

:LSI JSR : LPRTOKEN
CMP #$A8
BNE :LADV
JSR : LGNT
JMP :LADV

:LNVAR
CMP
BEQ

#$0F
:LSTC

BCS : LOP

JSR NCTOFR0
DEC STINDEX
JSR CVFASC
LDA INBUFF
STA SRCADR
LDA INBUFF+l
STA SRCADR+l

:LSX JSR : LPRTOKEN
JMP :LADV

:LSTC JSR :LGNT
STA SCANT
LDA #$22
JSR PRCHAR
LDA SCANT
BEQ : LS3

:LS2 JSR :LGNT

:LS3

JSR
DEC
BNE

LDA
JSR
JMP

PRCHAR
SCANT
:LS2

#$22
PRCHAR
:LADV

Source Code

DONE LINE

BR IF NOT
ELSE RETURN

GET CURRENT TOKEN
IF IMP LET
BR
GO LIST STMT CODE

GO GET CURRENT TOKEN
BR IF ERROR STMT

WAS IT DATA OR REM
BR IF NOT

OUTPUT DATA/REM
THEN PRINT THE CR

GET NEXT TOKEN
BR IF NOT VARIABLE

TURN OFF MSB
AND SET AS SCAN COUNT
SCAN VNT FOR
VAR NAME

PRINT VAR NAME
NAME END IN LPAREN
BR IF NOT
DON'T PRINT NEXT TOKEN
IF IT IS A PAREN

TOKEN: $0F
BR IF 0F, STR CONST

BR IF TOKEN >$0F
ELSE IT'S NUM CONST

GO MOVE FR0
BACK INDEX TO LAST CHAR
CONVERT FR0 TO ASCII
POINT SCRADR
TO IN8UFF WHERE
CHAR IS

GO PRINT NUMBER
GO FOR NEXT TOKEN

GET NEXT TOKEN
WHICH IS STR LENGTH
PRINT DOUBLE QUOTE CHAR

OUTPUT STR CONST
CHAR BY CHAR
UNTIL COUNT =0

THEN OUTPUT CLOSING
DOUBLE QUOTE

219

Source Code

B61'l9 38 :LOP SEC
B61'lA E911'l SBC #$I1'l SU8STRACT THE 11'l
B61'lC 85AF STA SCANT SET FOR SCAN COUNT
B61'lE A21'll'l LOX #I'l
B611'l A9A7 LDA #OPNTAB/256
B612 AI'lE3 LOY #OPNTA8&255
8614 21'll'lCB5 JSR : LSCAN SCAN OP NAME TA8LE
8617 21'l3186 JSR :LGCT GO GET CURRENT TOKEN
861A C93D CMP #CFFUN IS IT FUNCTION
B61C 81'lC5 "B5E3 8CS :LSX BR IF FUNCTION
B61E MI'll'l LOY #I'l
B621'l B195 LOA [SRCADR]. Y GET FIRST CHAR
B622 297F AND #$7F TURN OFF MSB
8624 21'lF7A3 JSR TSTALPH TEST FOR ALPHA
8627 MBA 'B5E3 8CS :LSX BR NOT ALPHA
8629 21'l4F85 JSR : LPTW8 LIST ALPHA WITH
862C 4CAEB5 JMP :LADV BLANKS FOR AND AFTER

862F :LGNT GET NEXT TOKEN
862F E6A8 INC STINDEX INC TO NEXT
8631 A4A8 :LGCT LOY STINDEX GET DISPL
8633 C4A7 CPY NXTSTD AT END OF STMT
8635 81'll'l3 "863A 8CS :LGNTE 8R IF AT END
8637 818A LOA [STMCUR], Y GET TOKEN
8639 61'l RTS AND RETURN

B63A 68 :LGNTE PLA POP CALLERS ADR
863B 68 PLA AND
B63C 61'l RTS GO BACK TO LIST LINE

B63D LSTMC
B63D 85AF STA SCANT SET INS CAN COUNT
B63F A21'l2 LOX #2 AND
B641 A9A4 LOA #SNTAB / 256
B643 AI'lAF LOY #SNTAB&255 STATEMENT NAME TABLE
B645 21'll'lCB5 JSR : LSCAN
8648 4C54B5 JMP : LPTT8 GO LIST WITH FOLLOWING BLANK

XFOR - Execute FOR

B64B LOCAL
B64B XFOR
B64B 21'l8AB8 JSR :SAVDEX SAVE STINDEX
B64E 21'lEI'lAA JSR EXEXPR DO ASSIGNMENT
B651 A5D3 LOA VNUM GET VAR IABLE #
8653 I'l981'l ORA #$81'l OR IN HIGH ORDER BIT
B655 48 PHA SAVE ON CPU STACK
B656 21'l2588 JSR FIXRSTK FIX RUN STACK

BUILD STACK ELEMENT

B659 A91'lC LOA #F80DY GET # OF BYTES
B658 21'l78B8 JSR :REXPAN EXPAND RUN STACK

B65E 21'll'lFAC JSR POPI EVAL EXP & GET INTO FRI'l

PUT LIMIT [INFRI'l] ON STACK

B661 A2D4 LDX #FRI'l POINT TO FRI'l
B663 AI'll'll'l LOY #F LIM GET DISPL
8665 21'l8F88 JSR :MV6RS GO MOVE LIMIT

SET DEFAULT STEP

B668 21'l44DA JSR ZFRI'l CLEAR FRI'l TO ZEROS
866B A901 LDA #l GET DEFAULT STEP
B66D 8505 STA FRI'l+1 SET DEFAULT STEP VALUE
866F A941'l LOA #$41'l GET DEFAULT EXPONENT
B671 8504 STA FRI'l STORE

220

8673 20Hl89
8676 8003 "8678

8678 200FAC
8678

8678 A2D4
867D A006
867F 208F88

B682 68

8683

8683 48
8684 A904
8686 207888

8689
868A
868C

B68E
B690
B691
B693
B695
8696

B698
869A
B698
B69C
B69D
B69F

68
A000
91C4

B18A
C8
91C4
B18A
C8
91C4

A6B3
CA
8A
C8
91C4
60

JSR
8CS

JSR
:NSTEP

LDX
LDY
JSR

PLA

PSHRSTK

PHA
LDA
JSR

PLA
LDY
STA

LDA
INY
STA
LDA
INY
STA

LDX
DEX
TXA
INY
STA
RTS

XGOSUB - Execute GOSUB

B6A0
B6A0 20C7B6

XGOSU8
JSR

XGOTO - Execute GOTO

B6A3
B6A3

B6A6
86A6
B6A8
B6M
86AC

20D5AB

A5D5
85Al
A5D4
85A0

XGOTO
JSR

XG02
LDA
STA
LDA
STA

TEST FOR END OF STMT

TSTEND
:NSTEP

ELSE GET STEP VALUE

POPI

Source Code

TEST FOR END OF START
IF YES, WE ARE AT END OF
STMT

EVAL EXP & GET INTO FR0

PUT STEP [IN FR0] ON STACK

#FR0
#FSTEP
:MV6RS

POINT TO FR0
GET DISPL
GO MOVE STEP

GET VARIABLE #

PSHRSTK - PUSH COMMON PORT OF FOR/GOSU8
- ELEMENT ON RUN STACK

ON ENTRY A - VARIA8LE # OR 0 [FOR GOSU8]
TSLNUM - LINE #
STINDEX - DISPL TO STMT TOKEN +1

EXPAND RUN STACK

#GFHEAD
:REXPAN

PUT ELEMENT ON STACK

#GFTYPE
[TEMPA], Y

[STMCUR],Y

[TEMPA], Y
[STMCUR],Y

[TEMPA] , Y

SAVDEX

[TEMPA], Y

XGS

GETPINT

SAVE VAR # / TYPE
GET # OF BYTES TO EXPAND
EXPAND [OLD TOP RETURN IN
ZTEMP1]

GET VARIABLE #/TYPE
GET DISPL TO TYPE IN HEADER
PUT VAR#/TYPE ON STACK

GET LINE # LOW
POINT TO NEXT HEADER 8YTE
PUT LINE # LOW IN HEADER
GET LINE # HIGH

PUT IN HEADER

GET SAVED INDEX INTO LINE
POINT TO TOKEN IN LINE
PUT IN A
POINT TO DISPL IN HEADER
PUT IN HEADER

GO 'ro XGS ROUTINE

; GET POSTIVE INTEGER IN FR0

GET LINE ADRS & POINTERS

FR0+1
TSLNUM+l
FR0
TSLNUM

X
X
PUT LINE # IN TSLNUM
X

221

Source Code

B6AE
B6AE
B6Bl
B6B3
B6B4
B6BS

B6B8
B6B8

B6BB
B6BE
B6BE
B6C'"
B6C2
B6C4
B6C6

2"'A2A9
B"''''S "B6B8
68
68
4CSFA9

2"'BEB6

2"'28B9

ASBE
85811.
ASBF
8S8B
6'"

XGOI
JSR
BCS
PLA
PLA
JMP

:ERLN
JSR

JSR
RESCUR

LDA
STA
LDA
STA
RTS

GETSTMT
:ERLN

EXECNL

RESCUR

ERNOLN

SAVCUR
STMCUR
SAVCUR+l
STMCUR+l

LINE POINTERS AND STMT ADDRESS
IF NOT FOUND ERROR
CLEAN UP STACK

GO TO EXECUTE CONTROL

RESTORE STMT CURRENT

LINE # NOT FOUND

RESTORE STMCUR
X
X
X

XGS - Perform GOSUB [GOSUB, LIST, READ]

B6C7
B6C7 2"'8AB8
B6CA
B6CA 11.9"''''
B6CC 4C83B6

XGS
JSR

XGSI
LDA
JMP

XNEXT - Execute NEXT

B6CF

B6CF
B6Dl
B6D3

B6DS
B6DS

B6D8
B6DA
B6DC
B6DE

A4A8
B18A
8SC7

2"'41B8

B"'3C "B716
F"'3A "B716
CSC7
D"'FS "B6DS

B6E'" A"''''6
B6E2 2"'9EB8

B6ES ASE'"
B6E7 48

B6E8 ASC7
B6EA 2"'89AB

B6ED 2"'3BAD
B6F'" 2"'16AC

222

XNEXT

:XN

LDY
LDA
STA

JSR

BCS
BEQ
CMP
BNE

LDY
JSR

LDA
PHA

LDA
JSR

JSR
JSR

:SAVDEX

#'"
PSHRSTK

GET VARIABLE ~

STINDEX
[STMCUR],Y
ZTEMP2+l

GET ELEMENT

POPRSTK

:ERNFOR
:ERNFOR
ZTEMP2+1
:XN

GET STMT INDEX

GET GOSUB TYPE
PUT ELEMENT ON RUN STACK

GET STMT INDEX
GET VARIABLE ~

SAVE

PULL ELEMENT FROM RUN STACK
VARJ!TYPE RETURN IN A

IF AT TOP OF STACK, ERROR
IF TYPE = GOSUB, ERROR
DOES STKVARJ = OUR VAR #

GET STEP VALUES IN FRI

#FSTEP
:PL6RS

, GET DISPL INTO ELEMENT
, GET STEP INTO FRI

SAVE TYPE OF STEP [+ OR -]

FRI

GET VARIABLE VALUE

ZTEMP2+1
GETVAR

GET NEW VALUE

FRADD
RTNVAR

GET LIMIT IN FRI

GET EXP FRI [CONTAINS SIGN]
PUSH ON CPU STACK

GET VAR t
GET VARIABLE VALUE

ADD STEP TO VALUE
PUT IN VARIABLE TABLE

Source Code

B6F3 MI00 LDY #FLIM GET DISPL TO LIMIT IN ELEMENT
B6FS 209EB8 JSR :PL6RS GET LIMIT INTO FRI
B6F8 68 PLA GET SIGN OF STEP
B6F9 1006 -B701 BPL :STPPL BR IF STEP +

COMPARE FOR NEGATIVE STEP

B6FB 203SAD JSR FRCMP COMPARE VALUE TO LIMIT
B6FE 1009 -B709 BPL : NEXT IF VALUE >= LIMIT, CONTINUE
B700 60 RTS ELSE DONE

COMPARE FOR POSTIVE STEP

B701 :STPPL
B701 203SAD JSR FRCMP COMPARE VALUE TO LIMIT
B704 F003 -B709 BEQ : NEXT IF = CONTINUE
B706 3001 -B709 BMI : NEXT IF < CONTINUE
B708 60 RTS ELSE RETURN

B709 :NEXT
B709 A910 LDA #GFHEAD+FBODY GET # BYTES IN FOR ELEMENT
B70B 2078B8 JSR :REXPAND GO PUT IT BACK ON STACK
B70E 2037B7 JSR :GETTOK GET TOKEN [RETURNS IN A]
B711 C908 CMP #CFOR IS TOKEN = FOR?
B713 D032 -B747 BNE :ERGFD IF NOT IT'S AN ERROR
B71S 60 RTS

B716 :ERNFOR
B716 2026B9 JSR ERNOFOR

XRTN - Execute RETURN
B719 XRTN
B719 2041B8 JSR POPRSTK GET ELENENT FROM RUN STACK
B71C B016 -B734 BCS :ERRTN IF AT TOP OF STACK, ERROR
B71E D0F9 -B719 BNE XRTN IF TYPE NOT GOSUB, REPEAT

B720 2037B7 JSR :GETTOK GET TOKEN FROM LINE [IN A]
B723 C90C CMP #CGOSUB IS IT GOSUB?
B72S F00C -B733 BEQ :XRTS BR IF GOSUB
B727 C91E CMP iCON
B729 F008 A8733 BEQ :XRTS BR IF ON
B72B C904 CMP #CLIST
B72D F004 -B733 BEQ :XRTS BR IF LIST
B72F C922 CMP #CREAD MAYBE IT'S READ
B731 D014 -B747 BNE :ERGFD IF NOT, ERROR
B733 :XRTS
B733 60 RTS

B734 :ERRTN
B734 2020B9 JSR ERBRTN ; BAD RETURN ERROR

:GETTOK - GET TOKEN POINTED TO BY RUN STACK ELEMENT

ON EXIT A - CONTAINS TOKEN

B737 :GETTOK
B737 2018B8 JSR SETLINE SET UP TO PROCESS LINE
B73A 800B -8747 BCS :ERGFD IF LINE # NOT FOUND, ERROR

B73C A4B2 LDY SVDISP GET DISPL TO TOKEN
B73E 88 DEY POINT TO NXT STMT DISPL
B73F B18A LDA [STMCUR],Y GET NEXT STMT DISPL
B741 8SA7 STA NXTSTD SAVE

B743 C8 INY GET DISPL TO TOKEN AGAIN
B744 B18A LDA [STMCUR],Y GET TOKEN
B746 60 RTS

B747 ERGFD

223

Source Code

B747 20BEB6
B74A 2022B9

JSR
JSR

XRUN - Execute RUN
B74D

B74D
B750
B752

B755

B755

B757
B759
B75B
B75E
B761
B763

21H0B9
B003 "B755
20F7BA

A900

85A0
85A1
2018B8
20E2A9
3012 "B775
20F8B8

XClR - Execute ClR
B766
B766
B769
B76C
B76E
B770
B772
B774

B775

20C0B8
20AFB8
A900
85B7
85B8
85B6
60

B775 4C50M

XIF - Execute IF

B778
B778 200FAC

B77B A5D5
B77D F009 "B788

B77F 2010B9
B782 B003 "B787

B784 4CA3B6

B787
B787 60

XRUN

JSR
BCS
JSR

:NOFILE

LDA

STA
STA
JSR
JSR
BMI
JSR

XCLR
JSR
JSR
LDA
ST~
STA
STA
RTS

: RUNEND
JMP

XIF

*

JSR

LDA
BEQ

JSR
BCS

JMP

:TREOS
RTS

RESCUR
ERGFDEL

TEST FOR END OF STMT

TSTEND
:NOFILE
FRUN

RESTORE STMT CURRENT

CHECK FOR END OF STMT
IF END OF STMT, BR
ELSE HAVE FILE NAME

GET 1ST LINE # OF PROGRAM

TSLNUM
TSLNUM+1
SETLINE
TENDST
: RUNEND
RUNINIT

ZVAR
RSTPTR
#0
DATALN
DATALN+1
DATAD

SNX1

POP1

FR0M
: FALSE

EXPRESSION TRUE

TSTEND
:TREOS

TRUE AND NOT EOS

XGOTO

TRUE AND EOS

GET SMALLEST POSSIBLE
LINE NUM
X
X
SET UP LINE POINTERS
TEST FOR END OF STMT TABLE
IF AT END , BR
CLEAR SOME STORAGE

FALL THRU TO CLR

GO ZERO VARS
GO RESET STACK PTRS
CLEAR DATA VALUES

;NO PROGRAM TO RUN

EVAL EXP AND GET VALUE
INTO FR0
GET 1ST MANTISSA BYTE
IF = 0, # = 0 AND IS FALSE

TEST FOR END OF STMT
IF AT EOS, BRANCH

JOIN GOTO

* EXPRESSION FALSE

B788
B788
B78A
B78C

224

A59F
85A7
60

: FALSE
LDA
STA
RTS

LLNGTH
NXTSTD

GET DISPL TO END OF LINE
SAVE AS DISPL TO NEXT STMT

XEND - Execute END

B7BD XEND
B7BD 20A7B7 JSR STOP
B790 4C50A0 JMP SNXI

XSTOP - Execute STOP

B793 XSTOP
B793 20A7B7 JSR STOP

PRINT MESSAGE

B796 206EBD JSR
B799 A9B6 LDA
B79B B595 STA
B79D A9B7 LDA
B79F B596 STA

B7Al 2035B5 JSR

B7A4 4C74B9 JMP

B7A7 STOP
B7A7 20E2A9 JSR
B7AA 3007 'B7B3 BMI

B7AC B5BB STA
B7AE BB DEY
B7AF BIBA LDA
B7Bl B5BA STA
B7B3 :STOPEND
B7B3 4C72BD JMP

B7B6 53544F5050 :MSTOP DC
4544A0

XCONT - Execute Continue

B7BE
B7BE
B7Cl
B7C3

B7C5
B7C7
B7C9

B7CB

20E2A9
10F0 'B7B3
A5BA

B5A0
A5BB
B5Al

20A2A9

B7CE 20E2A9
B7Dl 30A2 'B775
B7D3 20DDA9
B7D6 20D0A9
B7D9 20E2A9

B7DC 3097 'B775
B7DE 4CIBBB

XCONT
JSR
BPL
LDA

STA
LDA
STA

JSR

JSR
BMI
JSR
JSR
JSR

BMI
JMP

XTRAP - Execute TRAP

B7El
B7El

B7E4
B7E6
B7EB
B7EA
B7EC

20E0AB

A5D4
B5BC
A5D5
B5BD
60

XTRAP
JSR

LDA
STA
LDA
STA
RTS

PRCR
#:MSTOP&255
SRCADR
:MSTOP /256
SRCADR+l

LPRTOKEN

:ERRM2

TENDST
:STOPEND

STOPLN+l

[STMCUR) ,Y
STOPLN

SETDZ

'STOPPED

TENDST
:STOPEND
STOPLN

TSLNUM
STOPLN+l
TSLNUM+l

GETSTMT

TENDST
: RUNEND
GET LL
GNXTL
TENDST

: RUNEND
SETLNI

GETINT

FR0
TRAPLN
FR0+1
TRAPLN+l

Source Code

GO SET UP STOP LINE t

PRINT CR
SET POINTER FOR MESSAGE
X
x
X

PRINT IT

PRINT REST OF MESSAGE

GET CURRENT LINE tHIGH
IF -, THIS IS DIRECT STMT
DON 'T STOP
SAVE LINE # HIGH FOR CON
DEC INDEX
GET LINE # LOW
SAVE FOR CON

SET L/D DEVICE =0

; IS IT INDIRECT STMT?
;IF YES, BR

SET STOP LINE # AS LINE
FOR GET
X
X
X

GET ADR OF STMT WE
STOPPED AT

;AT END OF STMT TAB ?

GET NEXT LINE ADDR IN CURSTM
X
SEE IF WE ARE AT END OF
STMT TABLE
BR IF MINUS
SET UP LINE POINTERS

CONVERT LINE # TO POSITIVE
INT
SAVE LINE # LOW AS TRAP LINE
IN CASE OF LATER ERROR
X
X

225

Source Code

XON - Execute ON

B7ED
B7ED 2eJ8AB8
B7FeJ 2eJE9AB
B7F3 A5D4
B7F5 FeJ2eJ 'BB17

B7F7
B7F9
B7FA
B7FC
B7FE

A4A8
88
B18A
C917
FeJeJ3 'B803

B800 20CAB6

B803
B803
B805
B807
B807
B80A
B80C

B80E
B811
B813

B814

A5D4
85B3

20D5AB
C6B3
F006 'B814

2010B9
90F4 'B807
60

B814 4CA6B6

B817
B817 60

XON

:GO

JSR
JSR
LDA
BEQ

LDY
DEY
LDA
CMP
BEQ

JSR

LDA
STA

:ONl

:ON2

:ERV

JSR
DEC
BEQ

JSR
BCC
RTS

JMP

RTS

:SAVDEX
GETlINT
FR0
:ERV

STINDEX

[STMCUR], Y
#CGTO
:GO

SAVE INDEX INTO LINE
GET 1 BYTE INTEGER
GET VALUE
IF ZERO , FALL THROUGH TO
NEXT STMT

GET STMT INDEX
BACK UP TO GOSUB/GOTO
GET CODE
IS IT GOTO?
IF YES, DON'T PUSH ON
RUN STACK

THIS IS ON - GOSUB: PUT ELEMENT ON RUN STACK

XGSl

FR0
ONLOOP

GET PINT
ONLOOP
: ON2

TSTEND
:ONl

XG02

PUT ELEMENT ON RUN STACK
FOR RETURN

GET INDEX INTO EXPRESSIONS
SAVE FOR LOOP CONTROL

GET + INTEGER
IS THIS THE LINE # WE WANT?
IF YES, GO DO IT

ARE THERE MORE EXPRESSIONS
IF YES, THEN EVAL NEXT ONE
ELSE FALL THROUGH TO
NEXT STMT

JOIN GOTO

; FALL THROUGH TO NEXT STMT.

Execution Control Statement Subroutines

SETLINE - Set Up Line Pointers

ON ENTRY

ON EXIT

BB18 SETLINE
B81B 20A2A9 JSR GETSTMT

B81B SETLNl
B81B A002 LDY #2

TLSNUM - LINE #

STMCUR - CONTAIN PROPER VALUES
LLNGTH - X
NXTSTM - X
CARRY SET BY GETSTMT IF LINE # NOT FOUND

GET STMCUR

GET DISP IN LINE TO LENGTH
B81D B18A LDA [STMCUR] ,Y GET LINE LENGTH
BB1F 859F STA LLNGTH SET LINE LENGTH

B821 C8 INY POINT TO NEXT STMT DISPL
B822 84A7 STY NXTSTD SET NXT STMT DISPL

B824 60 RTS

FIXRSTK - Fix Run Stack - Remove Old FORs

ON ENTRY A - VARIABLE # IN CURRENT FOR

ON EXIT RUNSTK CLEAR OF ALL FOR'S

226

B825
B825 85C7

B827 2081B8

B82A
B82A 2041B8
B82D B008 'B837
B82F F006 'B837
B831 C5C7
B833 F00B 'B840
B835 D0F3 'B82A

B837
B837 A5C4
B839 8590
B83B A5C5
B83D 8591
B83F 60

B840
B840 60

FIXRSTK
STA

JSR

:FIXR
JSR
BCS
BEQ
CMP
BEQ
BNE

:TOP
LDA
STA
LDA
STA
RTS

:FNVAR
RTS

ZTEMP2+1

SAVE TOP OF RUN STACK

:SAVRTOP

POPRSTK
:TOP
:TOP
ZTEMP2+1
:FNVAR
:FIXR

Source Code

SAVE VAR # OF THIS FOR

SAVE TOP OF RUN STACK IN
ZTEMP]

POP AN ELEMENT FROM RUNSTK
IF AT TOP - WE ARE DONE
IF CC = 08 ELEMENT WAS GOSUB
IS STK VAR # = OUR VAR #1
IF YES , WE ARE DONE
ELSE LOOK AT NEXT ELEMENT

FOR VAR # NOT ON STACK ABOVE TOP OR GOSUB
[RESTORE TOP OF STACK)

TEMPA RESTORE TOPRSTK
TOPRSTK X
TEMPA+1 X
TOPRSTK+1 X

FOR VAR # FOUND ON STACK

POPRSTK - Pop Element from Run Stack

8841
B841

B841 A58F
B843 C591
B845 9008 'B84F
B847 A58E
B849 C590
B84B 9002 'B84F

B84D 38
B84E 60

B84F
B84F A904
B851 2072B8

B854 A003

B856 B190
8858 85B2
B85A 88
B85B B190
B85D 85A1
B85F 88

XPOP
POPRSTK

LDA
CMP
BCC
LDA
CMP
BCC

SEC
RTS

: NTOP
LDA
JSR

LDY

LDA
STA
DEY
LDA
STA
DEY

ON EXIT A - TYPE OF ELEMENT OR VAR #
X - DISPL INTO LINE OF FOR/GOSUB TOKEN
CUSET - CARRY SET STACK WAS EMPTY
CARRY CLEAR - ENTRY POPED
EQ SET - ELEMENT IS GOSUB
TSLNUM - LINE #

TEST FOR STACK EMPTY

RUNSTK+1
TOPRSTK+1
:NTOP
RUNSTK
TOPRSTK
:NTOP

GET 4 BYTE HEADER

GET START OF RUN STACK HIGH
IS IT < TOP OF STACK HIGH
IF YES, WE ARE NOT AT TOP
GET START OF RUN STACK LOW
IS IT < TOP OF STACK LOW
IF YES, WE ARE NOT AT TOP

ELSE AT TOP : SET CARRY
RETURN

[COMMON TO GOSUB AND FOR)

#GFHEAD GET LENGTH OF HEADER
: RCONT TAKE I T OFF STACK

#GFDISP GET INDEX TO SAVED LI NE
DISPL

[TOPRSTK) ,Y GE T SAVED LINE DISPL
SVDISP SAVE

POINT TO LINE # IN HEADER
[TOPRSTK),Y GET LI NE # HI GH
TSLNUM+1 SAVE LINE # HIGH

GET DISPL TO LI NE # LOW

227

Source Code

B86" B19" LDA [TOPRSTK].Y GET LINE # LOW
B862 85A" STA TSLNUM SAVE LINE # LOW

B864 88 DEY POINT TO TYPE
B865 B19" LDA [TOPRSTK]. Y GET TYPE
B867 F""7 A B87" BEQ :FND IF TYPE = GOSUB. SET ELEMENT

GET 12 BYTE FOR BODY

B869 48 PHA SAVE VAR #
B86A A9"C LDA #FBODY GET # BYTES TO POP
B86C 2"72B8 JSR : RCONT POP FROM RUN STACK
B86F 68 PLA GET VAR t

B87" :FND
B87" 18 CLC CLEAR CARRY [ENTRY POPPED]
B871 6" RTS

:RCONT - Contract Run Stack

B872
B872 A8
B873 A29"
B875 4CFBA8

: RCONT
TAY
LDX
JMP

:REXPAN - Expand Run Stack

B878 :REXPAN
B878 2"81B8 JSR
B87B A8 TAY
887C A29" LDX
887E 4C7FA8 JMP

ON ENTRY A - # OF BYTES TO SUBTRACT

#TOPRSTK
CONTLOW

; Y=LENGTH
;X = PTR TO RUN STACK

ON ENTRY A - # OF BYTES TO ADD

ON EXIT ZTEMPI - OLD TOPRSTK

:SAVRTOP

#TOPRSTK
EXPLOW

SAVE RUN STACK TOP
Y=LENGTH
X=PTR TO TOP RUN STACK
GO EXPAND

:SAVRTOP - Save Top of Run Stack in ZTEMPl

B881
B881 A69"
B883 86C4
B885 A691
B887 86C5
B889 6"

:SAVRTOP
LDX
STX
LDX
STX
RTS

TOPRSTK
TEMPA
TOPRSTK+l
TEMPA+l

SAVE TOPRSTK
X
X

:SAVDEX - Save Line Displacement

B88A
B88A A4A8
B88C 84B3
B88E 6"

:SAVDEX
LDY
STY
RTS

STINDEX
SAVDEX

GET STMT INDEX
SAVE IT

:MV6RS - Move 6-Byte Value to Run Stack

B88F :MV6RS
B88F A9"6 LDA
B891 85C6 STA
B893 :MV
B893 B5"" LDA
B895 91C4 STA
B897 E8 INX
B898 C8 INY
B899 C6C6 DEC
B89B D"F6 A B893 BNE
B89D 60 RTS

228

ON ENTRY

#6
ZTEMP2

0.X

X - LOCATION TO MOVE FROM
Y- DISPL FROM ZTEMPI TO MOVE TO
ZTEMPI - LOCATION OF RUN STK ELEMENT

GET # OF BYTES TO MOVE
SAVE AS COUNTER

GET A BYTE
[TEMPA].Y PUT ON STACK

POINT TO NEXT BYTE
POINT TO NEXT LOCATION

ZTEMP2 DEC COUNTER
:MV IF NOT = 0 DO AGAIN

Source Code

:PL6RS - Pull 6 Bytes from Run Stack to FRl

BB9E :PL6RS
BB9E A906 LDlI
BBA0 B5C6 STA
BBA2 A2E0 LDX
BBA4 :PL
BBA4 B190 LDA
BBA6 9500 STA
BBAB EB INX
BBA9 CB INY
BBM C6C6 DEC
BBAC D0F6 "BBA4 BNE
BBAE 60 RTS

ON ENTRY

#6
ZTEMP2
#FRl

Y = DISPL FROM TOPRSTK TO MOVE FROM
TOPRSTK - START OF ELEMENT

GET # OF BYTES TO MOVE
SAVE AS COUNTER

[TOPRSTK], Y GET A BYTE
SAVE IN Z PAGE 0 , X

ZTEMP2
:PL

INC TO NEXT LOCATION
INC TO NEXT BYTE
DEC COUNTER
IF NOT =0, DO AGAIN

RSTPTR - Reset Stack Pointers [STARP and RUNSTKj

BBAF RSTPTR
BBAF A5BC LDA STARP GET BASE OF STR/ ARRAY

SPACE LOW
BBBl B5BE STA RUNSTK RESET
BBB3 B590 STA MEMTOP
BBB5 B50E STA APHM SET APPLICATION HIMEM
BBB7 A5BD LDA STARP+l GET BASE STR/ARRAY SPACE

HIGH
BBB9 B5BF STA RUNSTK+l RESET
BBBB B591 STA MEMTOP+l X
BBBD B50F STA APHM+l SET APPLICATION HIMEM
BBBF 60 RTS

ZVAR - Zero Variable

BBC0 ZVAR

BBC0 A6B6 LDX VVTP MOVE VARIABLE TABLE POINTER
BBC2 B6FS STX ZTEMPl X
BBC4 A4B7 LDY VVTP+l X
BBC6 B4F6 STY ZTEMPl+l X

ARE WE AT END OF TABLE ?

BBCB :ZVARl
BBCB A6F6 LDX ZTEMP1+l GET NEXT VARIABLE ADDR HI GH
BBCA E4B9 CPX ENDVVT+l IS IT < END VALUE HIGH
BBCC 9007 "BBD5 BCC : ZVAR2 IF YES, MORE TO DO
BBCE A6F5 LDX ZTEMPl GET NEXT VARIABLE AD DR LOW
BBD0 E4BB CPX ENDVVT IS IT < END VALUE LOW
BBD2 9001 "BBD5 BCC :ZVAR2 IF YES, MORE TO DO
BBD4 60 RTS ELSE , DONE

ZERO A VARIABLE

BBDS :ZVAR2
BBD5 1\.000 LDY Hl TURN OFF
BBD7 B1F5 LDA [ZTEMP1], Y DIM FLAG
BBD9 29FE AND #$FE
BBDB 91FS STA [ZTEMP1],Y
BBDD A002 LDY #2 INDEX PAST VARIABLE HEADER
BBDF A206 LDX #6 GET # OF BYTES TO ZERO
BBEl A900 LDA #0 CLEAR A

BBE3 : ZVAR3
BBE3 91F5 STA [ZTEMP1], Y ZERO BY'I'E
BBE5 CB INY POINT TO NEXT BY'I'E
BBE6 CA DEX DEC POINTER
BBE7 D0FA "BBE3 BNE : ZVAR3 IF NOT = 0, ZERO NEXT BYTE

229

Source Code

B8E9 ASFS

B8EB 18
B8EC 6908
B8EE 8SFS

B8F0 ASF6

B8F2 6900
B8F4 8SF6

B8F6 D0D0 A B8C8

LDA

CLC
ADC
STA

LDA

ADC
STA

BNE

ZTEMPl

#8
ZTEMPl

ZTEMPl+l

#0
ZTEMP1+l

:ZVARl

GET CURRENT VARIABLE
POINTER LOW

INCR TO NEXT VARIAB LE
SAVE NEW VARIABLE POINTER
LOW
GET CURRENT VAR IABLE
POINTER HIGH
ADD IN CARRY
SAVE NEW VARIABLE POINTER
HIGH
UNCONDITIONAL BRANCH

RUNINIT - Initialize Storage locations for RUN

B8F8 RUNINIT
B8F8 A000 LDY
B8FA 84BA STY
B8FC 84BB STY
B8FE 84B9 STY
B900 84FB STY
B902 84B6 STY
B904 84B7 STY
B906 84B8 STY
B908 88 DEY
B909 84BD STY
B90B 8411 STY
B90D 4C41BD JMP

#0
STOPLN
STOPLN+l
ERRNUM
RADFLG
DATAD
DATALN
DATALN+l

TRAPLN+l
BRKBYT
CLSALL

CLEAR A
CLEAR LINE # STOPPED AT
X
CLEAR ERROR #

;CLEAR FLAG TOR TRANSENDENTALS
;CLEAR DATA POINTERS '
;X
;X

SET TRAP FLAG TO NO TRAP
SET BRK BYTE OFF [$FF]
GO CLOSE ALL DEVICES

TSTEND - Test for End of Statement

B910
B910
B912
B913
B91S

A6A8
E8
E4A7
60

Error Messages

B916
B918
B91A
B91C
B91E
B920
B922
B924
B926
B928
B92A
B92C
B92E
B930
B932
B934
B936
B938
B93A
B93C
B93E

230

E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6 B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9
E6B9

ON EXIT CC SET

*
TSTEND

LDX
INX
CPX
RTS

STINDEX

NXTSTD

CARRY SET - END OF STMT
CARRY CLEAR - NOT END OF STMT

Error Message Routine

ERRNSF INC
ERRDNO INC
ERRPTL INC
ERSVAL INC
XERR INC
ERBRTN INC
ERGFDE INC
ERLTL INC
ERNOFOR INC
ERNOLN INC
EROVFL INC
ERRAOS INC
ERRDIM INC
ERRINP INC
ERRLN INC
ERROOD INC
ERRSSL INC
ERRVSF INC
ERVAL INC
MEMFULL INC
ERON INC

ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM
ERRNUM

FILE NOT SAVE FILE
tDN0 > 7
LOAD PGM TOO BIG
STRING NOT VALID

;EXECUTION OF GARBAGE
BAD RETURNS
GOSUB/FOR LINE DELETED
LINE TO LONG
NO MATCHING FOR
LINE NOT FOUND [GOSUB /GOTO]
FLOATING POINT OVERFLOW
ARG STACK OVERFLOW
ARRAY/STRING DIM ERROR
INPUT STMT ERROR

;VALUE NOT <32768
READ OUT OF DATA
STRING LENGTH ERROR
VARIABLE TABLE FULL
VALUE ERROR
MEMORY FULL
NO LINE # FOR EXP IN ON

Source Code

Error Routine
B940 ERROR
B940 A900 LDA #0
B942 BDFE02 STA DSPFLG FLAG
B945 20A7B7 JSR STOP SET LINE # STOPPED AT

B94B A5BD LDA TRAPLN+l GET TRAP LINE # HIGH
B94A 3015 'B961 BMI :ERRMl IF NO LINE # PRINT MESSAGE

TRAP SET - GO TO SPECIFIED LINE #

B94C 85Al STA TSLNUM+l SET TRAP LINE # HIGH FOR
GET STMT

B94E A5BC LDA TRAPLN GET TRAP LINE # LOW
B950 85A0 STA TSLNUM SET FOR GET STMT
B952 A980 LDA #$80 TURN OFF TRAP
B954 85BD STA TRAPLN+l
B956 A5B9 LOA ERRNUM GET ERROR #
B958 85C3 STA ERRSAV SAVE IT
B95A A900 LDA #0 CLEAR
B95C 85B9 STA ERRNUM ERROR#
B95E 4CAEB6 JMP XGOl JOIN GOTO

NO TRAP - PRINT ERROR MESSAGE

B961 :ERRMl

Print Error Message Part 1 [""ERR]

B961 206EBD JSR
B964 A937 LDA
B966 2030B6 JSR

Print Error Number

B969 A5B9 LDA
B96B 8504 STA
B96D A900 LDA
B96F 85D5 STA

B971 209CB9 JSR

B974 : ERRM2
B974 20E2A9 JSR
B977 3019 'B992 BMI

Print Message Part 2 [AT LINE]

B979 A9AE LOA
B97B 8595 STA
B970 A9B9 LOA
B97F 8596 STA

B981 2035B5 JSR

Print Line Number

B984 A001 LOY
B986 B18A LDA
B988 85D5 STA
B98A 88 DEY
B98B B18A LDA
B980 85D4 STA

B98F 209CB9 JSR

PRCR
#CERR
LSTMC

ERRNUM
FR0
#0
FR0+1

:PRINUM

TENOST
:ERRDONE

#:ERRMS&255
SRCADR
#:ERRMS/256
SRCADR+l

LPRTOKEN

#l
[STMCURJ,Y
FR0+1

[STMCURJ,Y
FR0

:PRINUM

PRINT CR
GET TOKEN FOR ERROR
GO PRINT COOE

GET ERROR #
SET ERROR # OF FR0 AS INTEGER
SET ERROR # HIGH
X

GO PRINT ERROR #

TEST FOR DIRECT STMT
IF OIRECT STMT, DONE

SET POINTER TO MSG FOR PRINT
X
X
X

; SET DISPL
;GET LINE # HIGH
; SET IN FR0 FOR CONVERT
; GET CURRENT LINE # LOW
;GET UNUSED LINE # LOW

SET IN FR0 LOW FOR CONVE RT

PRINT LINE #

231

Source Code

B992
B992
B995
B997
B999

206EBO
A900
85B9
4C61'lAI'l

:ERROONE
JSR
LOA
STA
JMP

Print Integer Number in FRO

B99C
B99C
B99F

B9A2
B9A4
B9A6
B9A8
B9AA
B9AO

21'lAA09
20E608

A5F3
8595
A5F4
8596
2035B5
61'l

:PRINUM
JSR
JSR

LOA
STA
LOA
STA
JSR
RTS

B9AE 21'l415421'l4C :ERRMS DC
494E45A0

PRCR
#0
ERRNUM
SYNTAX

CVIFP
CVFASC

INBUFF
SRCAOR
INBUFF+l
SRCAOR+l
LPRTOKEN

AT LINE

PRINT CR
CLEAR A
CLEAR ERROR

CONVERT TO FLOATING POINT
CONVERT_ TO ASCII

GET AOR OF # LOW
SET FOR PRINT ROUTINE
GET AOR OF # HIGH
SET FOR PRINT ROUTINE
GO PRINT ERROR #

Execute Graphics Routines

XSETCOLOR - Execute SET COLOR
B9B7
B9B7
B9BA
B9BC
B9BE
B9C0

B9Cl

B9C4
B9C6
B9C6
B9C7
B9C7
B9C8
B9C8
B9C9
B9C9
B9CA
B9CB
B9CE
B9CF
B900
B902
B903
B904
B905

B906
B909

B90A
B90A

20E9AB
A504
C91'l5
B01A 'B90A
48

20EI'lAB

A504

+0A

+I'lA

+I'lA
48
20EI'lAB
68
18
6504
A8
68
AA
98

90C402
60

B90A 203AB9

XSETCOLOR
JSR
LOA
CMP
BCS
PHA

JSR

LOA
ASLA
ASL
ASLA
ASL
ASLA
ASL
ASLA
ASL
PHA
JSR
PLA
CLC
AOC
TAY
PLA
TAX
TYA

STA
RTS

:ERSNO
:ERCOL

JSR

XSOUND - Execute SOUND
B900
B90D
B9EI'l
B9E2
B9E4

232

20E9AB
A504
C91'l4
B0F4 'B9DA

XSOUND
JSR
LDA
CMP
BCS

GETlINT
FRI'l
5
:ERCOL

GETINT

FR0

A

A

A

A

GETINT

FR0

CREGS, X

ERVAL

GET lINT
FR0
#4
: ERSNO

GET REGISTER
GET #
IS IT <5?
IF NOT, ERROR
SAVE

GET VALUE

GET VALUE*16+6
X

; x

; X

X

SAVE ON STACKS
GET VALUE 3
GET VALUE 2*16 FROM STACK

ADD IN VALUE 3
SAVE VALUE 2*16 + VALUE 5
GET INDEX
PUT IN X
GET VALUE

;SET VALUE IN REGS

GET 1 BYTE INTEGER
X
IS IT <4?
I F NOT, ERROR

Source Code

B9E6 ASLA GET VALUE *2
B9E6 +IIJA ASL A
B9E7 4B PHA

B9EB A911J11J LOA #IIJ SET TO ZERO
B9EA 80llJ802 STA SREGI X

B9EO A911J3 LOA #3
B9EF BOIIJF02 STA SKCTL

B9F2 211JEIIJAB JSR GETINT GE T EXP2
B9F5 68 PLA GET INDEX
B9F6 48 PHA SAVE AGAIN
B9F7 AA TAX PUT IN INDEX REG
B9F8 A504 LOA FRIIJ GET VALUE
B9FA 90llJIIJ02 STA SREG2, X SAVE IT

B9FO 211JEIIJAB JSR GETINT GET EXP3
BAIIJIIJ A504 LOA FRIIJ GET 16*EXP3
BAIIJ2 ASLA X
BAIIJ2 +IIJA ASL A
BAIIJ3 ASLA X
BAIIJ3 +IIJA ASL A
BAIIJ4 ASLA X
BAIIJ4 +IIJA ASL A
BAIIJ5 ASLA X
BAIIJ5 +IIJA ASL A
BAIIJ6 48 PHA SAVE IT

BAIIJ7 2 IIJE IIJAB JSR GETINT GET EXP4
BAIIJA 6B PLA GET 16*EXP3
BAIIJB AB TAY SAVE IT
BAIIJC 6B PLA GET INDEX
BAIIJO AA TAX PUT IN X
BAIIJE 9B TYA GET EXP3*16
BAIIJF 18 CLC
BAIIIJ 6504 AOC FRIIJ GET 16*EXP3+EXP4
BA12 900102 STA SREG3,X STORE IT
BA15 60 RTS

XPOS - Execute POSITION
BA16 XPos
BA16 20E0AB JSR GETINT GET INTEGER INTO FR0
BA19 A504 LOA FR0 SET X VALUE
BAIB 8555 STA SCRX X
BAlD A505 LOA FR0+l X
BAIF 8556 STA SCRX+l X

BA21 20E9AB JSR GETlINT SET Y VALUE
BA24 A504 LOA FRIIJ X
BA26 B554 STA SCRY X
BA2B 60 RTS

XCOLOR - Execute CO LOR

BA29 XCOLOR
BA29 20E0AB JSR GETINT GET INTEGER INTO FR0
BA2C A504 LOA FR0
BA2E 85CB STA COLOR
BA30 60 RTS

XDRAWTO - Execute DRAWTO

BA31 XORAWTO
BA31 2016BA JSR XPOS GET X,Y POSITION
BA34 A5CB LOA COLOR GET COLOR

BA36 BOFBIIJ2 STA SVCOLOR SET IT

233

Source Code

BA39 A911 LDA #rCDRAW GET COMMAND
BA3B A2e16 LDX #6 SET DEVICE
BA3D 2e1C4BA JSR GLPCX SET THEM

BA4e1 A9e1C LDA #$elC SET AUX
BA42 9D4Ael3 STA ICAUXl , X
BA 4 S A9e1e1 LDA #eI SET AUX
BA47 9D4Bel3 STA ICAUX2 , X
BA4A 2e124BD JSR !O7
BA4D 4CB3BC JMP IOTEST

XGR - Execute GRAPHICS

BASel XGR
BASel A2e16 LDX #6 GET DEVICE
BAS2 86Cl STX IODVC ;SAVE DEVICE #
BAS4 2e1F l BC JSR CLSYSI GO CLOSE IT
BAS7 2e1EelAB JSR GETINT GET INTEGER INTO FRei

BASA A273 LDX #SSTR&2SS SET INBUFF TO POINT
BASC AeiBA LDY #SSTR/2S6 TO FILE SPEC STRING
BA SE 86F3 STX INBUFF ; X
BA6e1 84F4 STY INBUFF+l ; X

BA62 A2e16 LDX #6 GET DEVICE #
BA64 ASD4 LDA FRei ;SET SOME BITS FOR GRAPHICS
BA66 29FeI AND #$FeI
BA68 49lC EOR HCGR
BA6A AS TAY
BA6B ASD4 LDA FRei GET AUX2 [GRAPHICS TYPE]
BA6D 2e1DlBB JSR SOPEN OPEN
BA7e1 4CB3BC JMP IOTEST TEST I/O OK

BA73 S33A9B SSTR DB 'S: ' ,CR

XPLOT - Execute PLOT

BA76 XPLOT
BA76 2e1l6BA JSR XPOS SET X,Y POSITION

BA79 ASC8 LDA COLOR GET COLOR
BA7B A206 LDX #6 GET DEVICE #
BA7D 4CAIBA JMP PRCX GO PRINT IT

Input/Output Routin es

BA80 LOCAL

GETLINE - Get a Line of Input

BA8e1 GNL I NE
BA80 A6B4 LDX
BAS2 D00E "BA92 BNE
BAS4 A99B LDA
BA86 209FBA JSR

BAS9 GLINE
BAB9 A6B4 LDX
BASB D0 0 S "BA92 BNE
BASD A5C2 LDA
BA8F 209FBA JSR

BA92 GLGO
BA92 A6B4 LDX
BA94 A90S LDA

234

GLINE - GET LINE [PROMPT ONLY]
GNLINE - GET NEW LINE [CR , PROMPT]

ENTDTD IF ENTER DEVICE NOT ZERO
GLGO THEN DO PROMPT
#CR PUT EOL
PUTCHAR

ENTDTD IF ENTER DEVICE NOT ZERO
GLGO THEN DON'T PROMPT
PROMPT PUT PROMPT
PUTCHAR

ENTDTD
#rCGTR

Source Code

BA96 20C4BA JSR GLPCX
BA99 200ABD JSR 101 GO DO I/O
BA9C 4CB3BC JMP IOTEST GO TEST RESULT

PUTCHAR - Put One Character to List Device

BA9F PRCHAR
BA9F PUTCHAR
BA9F A6BS LOX
BAAl PRCX
BAAl 4B PHA
BAA 2 20C6BA JSR

BAAS BD4A03 LOA
BAA8 8S2A STA
BAM BD4B03 LOA
BAAD 8S2B STA

BAAF 68 PLA
BAB0 AS TAY
BABl 20B8BA JSR

BAB4 98 TYA
BABS 4CB6BC JMP

BAB8 : PDUM
BAB8 BD4703 LOA
BABB 48 PHA
BABC BD4603 LOA
BABF 48 PHA
BAC0 98 TYA
BACl A092 LOY
BAC3 60 RTS

BAC4 8SC0 GLPCX
BAC6 GLPX
BAC6 86Cl STX
BACS 4CA6BC JMP

XENTER - Execute ENTER

BACB XENTER
BACB A904 LOA
BACD 20DDBA JSR
BAD0 8584 STA
BAD2 4C60A0 JMP

FLiST - Open LIST File

BADS FLIST
BADS A908 LOA
BAD7 20DDBA JSR
BADA 8SBS STA
BADC 60 RTS

BADD ELADVC
BADD 48 PHA
BADE A007 LOY
BAE0 84Cl STY

BAE2 20A6BC JSR
BAES A90C LOA
BAE7 2026BD JSR

BAEA A003 LOY
BAEC 84C0 STY
BAEE 68 PLA
BAEF A000 LOY
BAFl 20F88B JSR

LISTDTD GET LIST DEVICE

SAVE 10 BYTE
GLPX SET DEVICE

ICAUX1,X SET UP ZERO PAGE lOCB
ICAUX1-IOCB+ZICB ; X
ICAUX2,X ; X
ICAUX2-IOCB+ZICB ; X

:PDUM

RETURN HERE FROM ROUTINE

IOTES2

ICPUT+l,X

ICPUT,X

#$92

STA IOCMD

IODVC
LDDVX

#$04
ELADVC
ENTDTD
SYNTAX

#$08
ELADVC
LISTDTD

#7
IODVC

LDDVX
#lCCLOSE
108

#lCOIO
IOCMD

#0
XOP2

; TEST STATUS

GO TO PUT ROUTINE
X
X
X
X

;LOAD VALUE FOR CIO ROUTINE

AS I/O DEVICE
LOAD DEVICE X

OPEN INPUT
GO OPEN ALT DEVICE
SET ENTER DEVICE

OPEN OUTPUT
GO OPEN ALT DEVICE
SET LIST DEVICE
DONE

USE DEVICE 7
SET DEVICE

; BEFORE
;GO CLOSE DEVICE
;O PEN OF NEW ONE

CMD IS OPEN

GET AUX2
GO OPEN

235

Source Code

BAF4 A907
BAF6 60

RUN from File

LOA
RTS

#7 LOAD DEVICE
AND RETURN

BAF7 A9 FF FRUN LOA #$FF SET RUN MODE
BAF9 0002 'BAFD BNE : LD0

XLOAD - Execute LOAD Command

BAFB
BAFB
BAFD
BAFE
BB00
BB03

BB04

A930
48
A934
23DDBA
68

BB04 48
BB05 A907
BB07 85C0
BB09 85CA

BB0B
BB0E
BB10
BBl3
BB16
BB19
BBIC

BBIE
BB20
BB21
BB23
BB26
BB27
BB29

BB2C
BB2F
BB31
BB33
BB36
BB38

20A6BC
M0E
2010BD
20B3BC
AD8005
008105
0038 ' BB56

A28C
18
A580
700005
A8
A581
7D3105

CDE602
903A 'BB3B
D005 'BB38
CCE502
9003 'BB3B
4CIAB9

BB3B 9501
BB3D 9400
BB3F CA

BB40
BB41
BB43

BB45
BB48
BB4B
BB4D
BB4F
BB50
BB52
BB53
BB53

BB56
BB56
BB58
BB5A

236

CA
E382
B0DB 'BB23

21188BB
2366B7
A900
85CA
68
F001 'BB53
60

4C50A0

A900
85CA
2016B9

XLOAD
LOA #0

:LD0 PHA
LOA #04
JSR ELADVC
PLA

XLOADI
PHA
LOA
STA
STA

nCGTC
IOCMD
LOADFLG

SET LOAD MODE
SAVE R/L TYPE
GO OPEN FOR INPUT
THE SPECIFIED DEVICE
GET R/ L TYPE

SAVE R/L TYPE
CMD IS GET TEXT CHARS

SET LOAD IN PROGRESS

JSR
LOY
JSR
JSR
LOA
ORA
BNE

LDDVX LOAD DEVICE X REG
#ENDSTAR-OUTBUFF ; Y=REC LENGTH
103 GO GET TABLE BLOCK
IOTEST TEST I / O
MISCRAM+OUTBUFF IF FIRST 2
MISCRAM+OUTBUFF+l ; BYTES NOT ZERO
: LOFER THEN NOT SAVE FILE

LOX #STARP
:LDI CLC

LOA OUTBUFF
ADC MISCRAM, X
TAY
LOA OUTBUFF+l
ADC MISCRAM+l,X

CMP HIMEM+l
BCC : LD3
BNE : LD2
CPY HIMEM
BCC : LD3

:LD2 JMP ERRPTL

:LD3 STA l,X
STY 0,X
DEX

DEX
CPX
BCS

JSR
JSR
LOA
STA
PLA
BEQ
RTS

:LD4
JMP

: LOFER
LOA
STA
JSR

#VNTP
:LDI

:LSBLK
XCLR
#0
LOADFLG

:LD4

SNXI

#0
LOADFLG
ERRNSF

START AT STARP DISPL

ADD LOMEM TO
LOAD TABLE DISPL

IF NEW VALUE NOT
LESS THEN HIMEM
THEN ERROR

ELSE SET NEW TABLE VALUE

DECREMENT TO PREVIOUS TBL
ENTRY

IF NOT AT LOWER ENTRY
THEN CONTINUE

LOAD USER AREA
EXECUTE CLEAR
RESET LOAD IN PROGRESS
X
LOAD R/S STATUS
BR IF LOAD
RETURN TO RUN

;GO TO SYNTAX

RESET LOAD IN PROGRESS
X
NOT SAVE FILE

Source Code

XSAVE - Execute SAVE Command

BB5D
BB5D A908
BB5F 20DDBA

BB62

XSAVE
LDI\
JSR

*08
ELADVC

GO OPEN FOR OUTPUT
THE SPECIFIED DEVICE

BB62 A90B
BB64 85C0

XSAVE I
LDA
STA

HCPTC
IOCMD

I /O CMD IS PUT TEXT CHARS
SET I/O CMD

BB66
BB68
BB69
BB6B
BB6D
BB70
BB7l
BB73
BB75
BB78
BB79
BB7B

A280
38
B500
E580
9D000 5
E8
B500
ES81
9D0005
E8
E08E
90EB "BB68

BB7D 20A6BC
BB80 A00E
BB82 2010BD
BB85 20B3BC

LDX *OUTBUFF
: SV1 SEC

LDA 0, X
SBC OUT BUFF
STA MISCRAM,X
INX
LDA 0 , X
SBC OUTBUFF+l
STA MISCRAM,X
INX
CPX *ENDSTAR
BCC : SVI

MOVE RAM TABLE PTRS
[OUTBUFF THRU ENSTAR]
TO LBUFF
AS DISPLACEMENT
FROM LOW MEM

JSR
LDY
JSR
JSR

LDDVX ; OUTPUT LBUFF
#ENDSTAR-OUTBUFF ; FOR PROPER LENGTH
103
lOT EST ; TEST GOOD I /O

LSBLK - LOAD or SAVE User Area as a Block

BB88
BB88
BB8B
BB8D
BB8F
BB91
BB93
BB96
BB97
BB98
BB9B
BB9E
BBA1

20A6BC
AS82
85F3
A583
8SF4
AC8D05
88
98
AC8C05
2012BD
20B3BC
4CF1BC

:LSBLK
JSR
LDA
STA
LDA
STA
LDY
DEY
TYA
LDY
JSR
JSR
JMP

XCSAVE - Execute CSAVE

BBA4 XCSAVE
BBA4 A908 LDA
BBA6 20B6BB JSR

BBA9 4C62BB JMP

XCLOAD - Execute (lOAD

BBAC XCLOAD
BBAC A904 LDA
BBAE 20B6BB JSR

BBB1 A900 LDA
BBB3 4C04BB JMP

COPEN - OPEN Cassette

BBB6
BBB6 48
BBB7 A2CE
BBB9 86F3

COPEN
PHA
LDX
STX

LDDVX
VNTP
INBUFF
VNTP+1
INBUFF+l
MISCRAM+STARP+1

MISCRAM+STARP
104
IOTEST
CLSYS1

#8
COPEN

XSAVE1

#4
COPEN

#0
XLOAD1

LOAD DEVICE X REG
SET VAR NAME TBL PTR
AS START OF BLOCK ADR

A,Y BLOCK LENGTH

; GO DO BLOCK I/O

;GO CLOSE DEVICE

GET OPEN FOR OUTPUT
OPEN CASSETTE

DO SAVE

GET OPEN FOR OUTPUT
OPEN CASSETTE

GET LOAD TYPE
DO LOAD

ON ENTRY: A - TYPE OF OPEN [IN OR OUT]
ON EXIT: A - DEVICE *7

#:CS TR& 25S
INBUFF

237

Source Code

BBBB A2BB LDX # : CSTR/2S6
BBBD B6F4 STX INBUFF+l

BBBF A207 LDX #7
BBCl 68 PLA
BBC2 AB TAY
BBC3 A980 LDA #$80

BBCS 20D1BB JSR SOPEN
BBC8 20B3BC JSR IOTEST
BBCB A907 LDA #7
BBCD 60 RTS

BBCE 433A9B :CSTR DB 'C:' ,CR

SOPEN - OPEN System Device

ON ENTRY
*

x - DEVICE
Y - AUXl
A - AUX2

SET COMMAND TYPE
GET AUX 2

GO OPEN

GET DEVICE

INBUFF - POINTS TO FILE SPEC

BBDl SOPEN
BBDl 48 PHA
BBD2 A903 LDA nCOIO
BBD4 20C4BA JSR GLPCX
BBD7 68 PLA
BBD8 9D4B03 STA ICAUX2,X
BBDB 98 TYA
BBDC 9D4A03 STA ICAUX1,X

BBDF 2019BD JSR 105
BBE2 4CS1DA JMP INTLBF

XXIO - Execute XIO Statement

BBES XXIO
BBES 2004BD JSR GIOCMD
BBE8 4CEDBB JMP XOPl

XOPEN - Execute OPEN Statement

BBEB
BBEB A903
BBED 8SC0
BBEF 209FBC

BBF2 2"'''4BD
BBFS 48
BBF6 2004BD
BBF9 A8
BBFA 68
BBFB
BBFB 48
BBFC 98
BBFD 48

BBFE 20E0AA
BC0 1 2079BD

BC04 2"'A6BC
BC"'7 68
BC08 9D4B03
BC"'B 68
BC0C 9D4A03
BC0F 200ABD

BC12 2099BD

238

XOPEN
LDA nCOlO

XOP l STA IOCMD
JSR

JSR
PHA
JSR
TAY
PLA

XOP2
PHA
'rYA
PHA

JSR
JSR

JSR
PLA
STA
PLA
STA
JSR

JSR

GIODVC

GIOCMD

GIOCMD

EXEXPR
SETSEOL

LDDVX

ICAUX2,X

ICAUX1,X
101

RSTSEOL

SAVE AUX2
GET COMMAND
GET DEVICE/COMMAND
SET AUX2 & AUX 1

; x

DO COMMAND
RESET INBUFF

GET THE COMMAND BYTE
CONTINUE AS IF OPEN

LOAD OPEN CODE

GET DEVICE

GET AUXl

GET AUX2
AUX2 IN Y
AUXl IN A

SAVE AUXl

SAVE AUX2

GET FS STRING
GIVE STRING AN EOL

LOAD DEVICE X REG

SET AUX 2
GET AUX 1

GO DO I / O

RESTORE STRING EOL

Source Code

BC15 2051DII JSR INTLBF
BC 18 4CB3BC JMP lOT EST GO TEST I/O STATUS

XCLOSE - Execute CLOSE

BC1B XC LOSE
BC1B A90C LOll HCCLOSE CLOSE CMO

GDVCIO - General Device 1/0

BC 1D GDVCIO
BC1D 85C0 STA IOCMD SET CMD
BC1F 209FBC JSR GIODVC GET DEVICE
BC22 2024BO GOIOl JSR 107 GO 00 I/O
BC25 4CB3BC JMP IOTEST GO TEST STATUS

XSTATUS - Execute STATUS

BC28 XSTATUS
BC2B 209FBC JSR GIODVC GET DEVICE
BC2B A90D LDA nCSTAT STATUS CMD
BC2D 2026BD JSR 108 GO GET STATUS
BC30 20FBBC JSR LDIOSTA LOAD STATUS
BC33 4C2DBD JMP ISVARl GO SET VAR

XNOTE - Execute NOTE

BC36 XNOTE
BC36 A926 LDA #$26 NOTE CMD
BC38 201DBC JSR GDVCIO GO 00
BC3B BD4C03 LDA ICAUX3,X GET SECTOR N/ . LOW
BC3E BC4D03 LDY ICAUX4,X AND HI
BC41 202FBD JSR ISVAR GO SET VAR
BC44 20A6BC JSR LDDVX GET DEVICE X REG
BC47 BD4E03 LDA ICAUX5,X GET DATA LENGTH
BC4A 4C2DBD JMP ISVARl GO SET VAR

XPOINT - Execute POINT

BC4D XPOINT
BC4D 209FBC JSR GIOOVC GET I/O DEVICE NO.
BC50 20D5AB JSR GETPINT GET SECTOR NO.
BC53 20A6BC JSR LDDVX GET DEVICE X
BC56 A5D4 LDA FR0 SET SECTOR NO.
BC58 9D4C03 STA ICAUX3,X
BC5B A5D5 LDA FR0+1
BC5D 9D4D03 STA ICAUX4 , X
BC60 20D5AB JSR GETPINT GET DATA LENGTH
BC63 20A6BC JSR LDDVX LOAD DEVICE X
BC66 A504 LDA FR0 GET AL
BC68 9D4E03 STA ICAUX5 , X SET DATA LENGTH
BC6B A925 LDA #$25 SET POINT CMD
BC6D 85C0 STA IOCMD
BC6F 4C22BC JMP GDIOl GO DO

XPUT - Execute PUT

BC72 XPUT
BC72 209FBC JSR GIODVC GET DEVICE

BC75 20E0AB JSR GETINT GET DATA
BC78 A5D4 LDA FR0 X
BC7A A6Cl LDX IODVC LOAD DEVICE #
BC7C 4CA1BA JMP PRCX GO PRINT

XGET - Execute GET

BC7F XGET
BC7F 209FBC JSR GIODVC GET DEVICE

BC82 GETl
BC82 A907 LDA HCGTC GET COMMAND
BC84 B5C0 STA IOCMD SET COMMAND

239

Source Code

BC86 M01 LDY #l SET BUFF LENGTH=l
BC88 2010BD JSR 103 DO 10
BC8B 20B3BC JSR IOTEST TEST I /O
BC8E M00 LDY #13 GET CHAR
BC90 B1F3 LDA [INBUFF] . Y x
BC92 4C2DBD JMP ISVARl ASSIGN VAR

XLOCATE - Execute LOCATE

BC95 XLOCATE
BC95 2016BA JSR XPOS GET X.Y POS ITION
BC98 A206 LDX #6 GET DEVICE #
BC9A 20C6BA JSR GLPX ; X

BC9D D0E3 - BC82 BNE GETl GO GET

GIODVC - Get 1/0 Device Number

BC9F GIODVC
BC9F 2002BD JSR GIOPRM GET PARM
BCA2 85C l STA IODVC SET AS DEVICE
BCA4 F00A -BCB 0 BEQ DNERR BR IF DVC=0

LDDVX - Load X Register with 1/0 Device Offset

BCA6 LDDVX
BCA6 A5Cl LDA IODVC GET DEVICE
BCA8 ASLA MULT BY 16
BCA8 +0A ASL A
BCA9 ASLA
BCA9 +0A ASL A
BCM MiLA
BCM +0A ASL A
BCAB AS LA
BCAB +0A ASL A
BCAC AA TAX PUT INTO X
BCAD 3001 - BCBI'! BMI DNERR BR DN0>7
BCAF 60 RTS AND RETURN
BCB0 20 18B9 DNERR JSR ERRDNO

10TEST - Test 1/0 Status

BCB3 IOTEST
BCB3 20FBBC JSR LDIOSTA LOAD I / O STATUS
BCB6 IOTES2
BCB6 3001 -BCB9 BMI SICKIO BR IF BAD
BCB8 60 RTS ELSE RETURN
BCB9 SICKIO
BCB9 A000 LDY #0 RESET DISPLAY FLAG
BCBB 8CFE02 STY DSPFLG

BCBE C980 CMP #ICSBRK IF BREAK
BCC0 D00A -BCCC BNE : SIOl SIMULATE ASYNC
BCC2 8411 STY BRKBYT BREAK
BCC4 A5CA LDA LOADFLG ;IF LOAD FLAG SET
BCC6 F003 -BCCB BEQ : SIOS
BCC8 4C00A0 JMP COLDS TART ;DO COLDSTART
BCCB :S IOS
BCCB 60 RTS

BCCC A4Cl :5101 LDY IODVC PRE- LOAD I/O DEVICE
BCCE C988 CMP #$88 WAS ERROR EOF
BCDI'! F00F -BCEl BEQ : SI04 BR IF EOF
BCD2 85B9 :SI02 STA ERRNUM SET ERROR NUMBER

BCD4 C007 CPY #7 WAS THIS DEVICE #7
BCD6 D003 -BC DB BNE :SI03 BR IF NOT
BCD8 20F 1BC JSR CLSYSD CLOSE DEVICE 7

BCDB 2072BD :SI03 JSR SETDZ SET L/D DEVICE 0
BCDE 4C40B9 JMP ERROR REPORT ERROR

240

Source Code

BCEI C007 :SI04 CPY #7 WAS EOF ON DEVICE
BCE3 D0ED "BCD2 BNE :SI02 BR IF NOT
BCE5 A25D LDX #EPCHAR WERE WE IN ENTER
BCE7 E4C2 CPX PROMPT
BCE9 D0E7 "BCD2 BNE :SI02 BR NOT ENTER
BCEB 20FlBC JSR CLSYSD CLOSE DEVICE 7
BCEE 4C53A0 JMP SNX2 GO TO SYNTAX

CLSYSD - Close System Device

BCFl CLSYSD

BCF l 20A6BC CLSYSI JSR LDDVX
BCF4 F00B "BD0 l BEQ NOCD0 DON'T CLOSE DEVICE0
BCF6 A90C LDA #ICCLOSE LOAD CLOSE CORD
BCF8 4C26BD JMP lOB GO CLOSE

LDIOSTA - Load 1/0 Status

BCFB LDIOSTA
BCFB 20A6BC JSR LDDVX GET DEVICE X REG
8CFE BD4303 LDA ICSTA,X GET STATUS
BD0l NOCD0
8D0l 60 RTS RETURN

GIOPRM - Get 1/0 Parameters

BD02 GIOPRM
BD02 E6A8 INC STINDEX SKIP OVER #
BD04 20D5AB GIOCMD JSR GETPINT GET POSITIVE INT
BD07 A5D4 LDA FR0 MOVE LOW BYTE TO
BD09 60 RTS

1/0 Call Routine

BD0A A0FF 101 LDY #255 ; BUFL = 255
BD0C D002 "BD10 8NE 103
BD0E A000 102 LDY #0 BUFL = 0
BD10 A900 103 LDA to BUFL < 256
8D12 9D4903 104 STA ICBLH,X SET 8UFL
BD15 98 TYA
BD16 9D4803 STA ICBLL,X
BD19 A5F4 105 LDA INBUFF+l LOAD INBUFF VALUE
BDlB A4F3 LDY INBUFF
BDlD 9D4503 106 STA ICBAH,X SE BUF ADR
BD20 98 TYA
BD2l 9D4403 STA ICBAL, X
BD24 A5C0 107 LDA IOCMD ; LOAD COMMAND
BD26 9D4203 108 STA ICCOM,X SET COMMAND
BD29 2056E4 JSR CIO ;GO DO I/O
8D2C 60 RTS ; DONE

ISVAR - 1/0 Variable Set
BD2D ISVARl
BD2D A000 LDY to GET HIGH ORDER BYTE
BD2F ISVAR
8D2F 48 FHA PUSH INT VALUE LOW
BD30 98 TYA
BD3l 48 PHA PUSH INT VALUE HI
BD32 200FAC JSR POPI GET VARIAB LE
BD35 68 PLA
BD36 85D5 STA FR0+1 SET VALUE LOW
BD38 68 PLA
BD39 85D4 STA FR0 SET VALUE HI
BD3B 20AAD9 JSR CVIFP CONVERT TO FP
BD3E 4C16AC JMP RTNVAR AND RETURN TO TABLE

241

Source Code

CLSALL - CLOSE AlIlOCBs [except 0]

B041 CLSALL

TURN OFF SOUNO

B041 A900 LOA #@
B043 A207 LOX #7
B045 :CL
B045 900002 STA SREG3-1,X
B048 CA OEX
B049 00FA -B045 BNE :CL

B048 A007 LOY #7
B040 84Cl STY IOOVC
B04F 20FIBC CLALLI JSR CLSYSO
B052 C6Cl OEC roovc
B054 00F9 -B04F BNE CLALLI
B056 60 RTS

PREADY - Print READY Message

B057 PREAOY
8057 A206 LOX #RML-l
B059 86F2 PROYI STX CIX
B05B B067BO LOA RMSG, X
BOSE 2fl9FBA JSR PRCHAR
B061 A6F2 LOX CIX
B063 CA OEX
B064 10F3 -B059 BPL PROYI
B066 60 RTS
B067 9B59444145 RMSG OB CR, 'YOAER' ,CR

529B
= 0007 RML EQU *-RMSG

PRCR - Print Carriage Return

B06E A200 PRCR LOX #0
B070 F0E7 -B059 BEQ PROYI

SETDZ - Set Device 0 as LIST/ENTER Device

B072 A900 SETOZ LOA to
B074 8584 STA ENTOTO
B076 85B5 STA LISTOTO
B078 60 RTS

SETSEOL - Set an EOL [Temporarily] after a String EOL

B079 SETSEOL
B079 2098AB JSR AAPSTR
B07C A504 LOA FR0-2+EVSAOR
B07E 85F3 STA INBU FF
B080 A505 LOA FR0- l+EVSAOR
B082 85F4 STA INBUFF+l

B084 A406 LOY FR0-2+EVSLEN
B086 A607 LOX FR0-l+EVSLEN
B088 F002 -B08C BEQ :SSEl
B08A A0FF LOY #$FF

B08C BIF3 :SSEl LOA [IN8UFF],Y
B08E 8597 STA INOEX2
B090 8498 STY INOEX2+l
B092 A99B LOA tCR
B094 9lF3 STA [INBUFF], Y
B096 8592 STA MEOLFLG
B098 60 RTS

B099 RSTSEOL
B099 A498 LOY INOEX2+1

242

START AT OEVICE

CLOSE OEVICE
OEC OEVICE #
BR IF NOT ZERO

GET REAOY MSG LENGTH- l
SET LEN REM
GET CHAR
PRINT IT
GET LENGTH

BR IF MORE

SET FOR LAST CHAR
ANO GO 00 IT

GET STRING WITH ABS AOR
PUT IT'S AOR
INTO INBUFF

GET LENGTH LOW
IF LEN < 256
THEN BR
ELSE SET MAX

GET LAST STR CHAR+l
SAVE IT
ANO IT ' S INOEX
THEN REPLACE WITH EOL

INOICATE MOOIFIEO EOL
OONE

RESTORE STRING CHAR
LOAO INOEX

Source Code

BD9B A597 LDA INDEX2 LOAD CHAR
BD9D 91F3 STA [INBUFF], Y DONE
BD9F A900 LDA #0
BDA1 8592 STA MEOLFLG RESET EOL FLAG
BDA3 60 RTS DONE
BDA4 = 0001 PATCH DS PATSIZ

SIN[X] and COS[X]

BDA5 38 SINERR SEC ;ERROR - SET CARRY
BDA6 60 RTS

BDA7 A904 SIN LDA #4 FLAG SIN[X] ENTRY RIGHT NOW
BDA9 24D4 BIT FR0
BDAB 1006 ABDB 3 BPL BOTH
BDAD A902 LDA #2 ; SINe-X]
BDAP D002 ABDB 3 BNE BOTH
BDB1 A901 COS LDA #1 ;FLAG COS[X] ENTRY
BDB3 85F0 BOTH STA SGNFLG
BDB5 A5D4 LDA FR0 ; FORCE POSITIVE
BDB7 297F AND #$7F
BDB9 85D4 STA FR0
BDBB A95F LDA #PIOV2&$FF
BDBD 18 CLC
BDBE 65FB ADC DEGFLG
BDC0 AA TAX
BDC1 A0BE LDY #PIOV2/$100
BDC3 2098DD JSR FLD1R
BDC6 2028DB JSR FDIV X/[PI/2] OR X/90
BDC9 9001 ABDCC BCC SINF7
BDCB 60 SINOVF RTS OVERFLOW
BDCC SINF7
BDCC A5D4 LDA FR0
BDCE 297F AND #$7F CHECK EXPONENT
BDD0 38 SEC
BDDl E940 SBC #$40
BDD3 302B ABE00 BMI SINF3 QUADRANT 0 - USE AS IS
BDD5 C904 SINF6 CMP #FPREC- 2 FIND QUAD NO & REMAINDER
BDD7 10CC ABDA 5 BPL SINERR OUT OF RANGE
BDD9 AA TAX X->LSB OR FR0
BDDA B5D5 LDA FR0+1,X LSB
BDDC 85F1 STA XFMFLG
BDDE 2910 AND #$10 CHECK 10'5 DIGIT
BDE0 F002 ABDE4 BEQ SINF5
BDE2 A902 LDA #2 ODD - ADD 2 TO QUAD #
BDE4 18 SINF5 CLC
BDE5 6SF1 ADC XFMFLG
BDE7 2903 AND #3 QUADRANT = 0,1,2 , 3
BDE9 65F0 ADC SGNFLG ADJUST FOR SINE VS COSINE
BDEB 85F0 STA SGNFLG
BDED 86F1 STX XFMFLG SAVE DEC PT LOC
BDEF 20B6DD JSR FMOVE COPY TO FR1
BDF2 A6F1 LOX XFMFLG
BDF4 A900 LDA #0
BDF6 95E2 SINF1 STA FR1+2 , X CLEAR FRACTION
BDF8 E8 INX
BDF9 E003 CPX #FPREC-3
BDFB 90F9 ABDF6 BCC SINF1
BDFD 2060DA JSR FSUB LEAVE REMAINDER
BE00 46F0 SINF3 LSR SGNFLG WAS QUAD ODD
BE02 900D ABEll BCC SINF4 NO
BE04 20B6DD JSR FMOVE YES - USE 1. 0 - REMAINDER
BE07 A271 LDX #FPONE&$FF
BE09 A0BE LDY #FPONE/$l00
BE0B 2089DD JSR FLD0R
BE0E 2060DA JSR FSUB
BEll SINF4 NOW DO THE SERIES THING
BEll A2E6 LOX #FPSCR&$FF SAVE ARG
BE 13 A005 LDY #FPSCR/$100

243

Source Code

BE15
BE18
BE1B
BE1E
BE20
BE22
BE24
BE26
BE29
BE2B
BE2D
BE30
BE33
BE35
BE37
BE38
BE3A
BE3C
BE3E
BE40
BE41

BE47

BE4D

BE53

BE59

BE5F

BE65

BE6B

BE71

BE77
BE79
BE7B
BE7D
BE7F
BE81
BE83
BE85
BE87
BE89
BE8B
BE8D
BE8F
BE91
BE93
BE95
BE97
BE9A
BE9A

BE9C
BE9E
BEAl
BEA4
BEA7
BEA9
BEAB
BEAD

244

20A7DD
20B6DD
20DBDA
B085 'BDA5
A906
A241
A0BE
2040DD
A2E6
A005
2098DD
20DBDA
46F0
9009 'BE40
18
A5D4
F004 'BE40
4980
85D4
60
BD03551499
39
3E01604427
52
BE46817543
55
3F07969262
39
BF64596408
67
4001570796
32
= 0006
4090000000
00
3F01745329
25
4001000000
00

A900
85F0
85Fl
A5D4
297F
C940
3015 'BE9A
A5D4
2980
85F0
E6Fl
A97F
25D4
85D4
A2EA
A0DF
2095DE

A2E6

A005
20A7DD
20B6DD
20DBDA
B039 'BEE2
A90B
A2AE
A0DF

JSR
JSR
JSR
BCS
LDA
LDX
LDY
JSR
LDX
LDY
JSR
JSR
LSR
BCC
CLC
LDA
BEQ
EOR
STA

FST0R
FMOVE
FMUL
SINERR
#NSCF
#SCOEF&$FF
#SCOEF/$100
PLYEVL
#FPSCR&$FF
#FPSCR/ $100
FLD1R
FMUL
SGNFLG
SINDON

FR0
SINDON
#$80
FR0

, X->FRl
,X**2->FR0

EVALUATE P[X**2]

X-> FRl
SIN[X] = X*P[X**2]
WAS QUAD 2 OR 3?
NO - THRU
YES
FLIP SIGN
[UNLESS ZERO]

SINDON RTS
SCOEF . BYTE

,RETURN
$BD,$03,$55,$14,$99,$39 , - .00000354149939

. BYTE

. BYTE

. BYTE

. BYTE

$3E,$01,$60,$44,$27,$52

$BE,$46,$81,$75 , $43,$55

$3F,$07 , $96,$92,$62,$39

$BF,$64,$59,$64,$08,$67

0.000160442752

- . 004681754355

0.0796926239

-.6459640867

PIOV2 . BYTE $40,$01,$57,$07,$96,$32 ,PI/2

NSCF EQU (*-SCOEF) /FPREC
. BYTE $40,$90,O,O,O,O ,90 DEG

PIOV18 . BYTE $3F,$01,$74,$53,$29,$25 ,PI / 180

FPONE . BYTE $40,1, 0, 0, 0, 0 , 1.0

ATAN[X] - Arctangent

ATAN LDA
STA
STA
LDA
AND
CMP
BMI
LDA
AND
STA
INC
LDA
AND
STA
LDX
LDY
JSR

ATANl
LDX

LDY
JSR
JSR
JSR
BCS
LDA
LDX
LDY

#0
SGNFLG
XFMFLG
FR0
#$7F
#$40
ATANl
FRO
#$80
SGNFLG
XFMFLG
#$7F
FRO
FRO
#FP9S&$FF
#FP9S/$100
XFORM

#FPSCR&$FF

#FPSCR/$100
FST0R
FMOVE
FMUL
ATNOUT
#NATCF
#ATCOEF&$FF
#ATCOEF/$ 100

ARCTAN[X]
SIGN FLAG OFF
& TRANSFORM FLAG

CHECK X VS 1. °
X<1.0 - USE SERIES DIRECTLY
X>=1.0 - SAVE SIGN & TRANSFORM

REMEMBER SIGN

FORCE PLUS

CHANGE ARG TO [X-l] / [X+l]

ARCTAN [X], - l<X<l BY SERIES
OF APPROXIMATIONS

X->FSCR
X->FRl
X*X->FR0
0' FLOW

Source Code

BEAF 2040DD JSR PLYEVL ; p[X*XJ
BEB2 B02E "BEE2 BCS ATNOUT
BEB4 A2E6 LDX #FPSCR&$FF
BEB6 A005 LDY #FPSCR/$100
BEBS 209SDD JSR FLD1R ;X->FRl
BEBB 20DBDA JSR FMUL ;X*p[X*xJ
BEBE B"' 22 "BEE2 BCS ATNOUT 0'FLOW
BEC0 A5Fl LDA XFMFLG WAS ARG XFORM'D
BEC2 F010 "BED4 BEQ ATAN2 NO
BEC4 A2F0 LDX #PIOV4&$FF YES-ADD ARCTAN [1.0J PI/4
BEC6 A0DF LDY #PIOV4/$100
BECS 209SDD JSR FLD1R
BECB 2066DA JSR FADD
BECE A5F0 LDA SGNFLG GET ORG SIGN
BED0 05D4 ORA FR0
BED2 S5D4 STA FR0 ATAN [-XJ = - ATAN[XJ
BED4 A5FB ATAN 2 LDA DEGFLG RADIANS OR DEGREES
BED6 F00A "BEE2 BEQ ATNOUT RAD - FINI
BEDS A26B LDX #PIOV1S&$FF DEG - DIVIDE BY PI/1S0
BEDA A0BE LDY #PIOV1S/$100
BEDC 209SDD JSR FLD1R
BEDF 202SDB JSR FDIV
BEE2 60 ATNOUT RTS

SQR[X] - Square Root

BEE3 3S SQRERR SEC ;SET FAIL
BEE4 60 RTS

BEE5 A900 SQR LDA #0
BEE7 S5Fl STA XFMFLG
BEE9 A5D4 LDA FR0
BEEB 30F6 "BEE3 BMI SQRERR
BEED C93F CMP #$3F
BEEF F017 "BF0S BEQ FSQR X IN RANGE OF APPROX - GO DO
BEFl lS CLC
BEF2 6901 ADC #l
BEF4 S5Fl STA XFMFLG NOT IN RANGE - TRANSFORM
BEF6 S5E0 STA FRl MANTISSA = 1
BEFS A901 LDA #l
BEFA S5El STA FR1+l
BEFC A204 LDX #FPREC- 2
BEFE A900 LDA #0
BF00 95E2 SQRl STA FR1+2,X
BF02 CA DEX
BF03 10FB "BF00 BPL SQRl
BF05 202SDB JSR FDIV X/100**N
BF0S FSQR ;SQR[XJ , 0.1<=X<1.0
BF0S A906 LDA #6
BF0A S5EF STA SQRCNT
BF0C A2E6 LDX #FSCR&$FF
BF0E A005 LDY #FSCR/$100
BF10 20A7DD JSR FST0R ;STASH X IN FSCR
BF 13 20B6DD JSR FMOVE ;X->FRl
BF16 A293 LDX #FTWO&$FF
BF1S A0BF LDY #FTWO/$100
BF1A 20S9DD JSR FLD0R ;2.0->FR0
BF1D 2060DA JSR FSUB ;2.0-X
BF20 A2E6 LDX #FSCR&$FF
BF22 A005 LDY #FSCR/$100
BF24 209SDD JSR FLD1R ;X->FRl
BF27 20DBDA JSR FMUL ;X* [2.0 -XJ :lST APPROX
BF2A A2EC SQRLP LDX #FSCR1&$FF
BF2C A005 LDY #FSCR1/$100
BF2E 20A7DD JSR FST0R ;Y->FSCRl
BF31 20B6DD JSR FMOVE ;Y- >FRl
BF34 A2E6 LDX #FSCR&$FF
BF36 A005 LDY #FSCR/$100
BF3S 20S9DD JSR FLD0R

245

Source Code

BF3B 202BOB
BF3E A2EC
BF40 A005
BF42 209BOO
BF45 20600A
BF4B A26C
BF4A A00F
BF4C 209BOO
BF4F 200BOA
BF52 A504
BF54 F00E ABF64
BF56 A2EC
BF5B A005
BF5A 209BOO
BF50 20660A
BF60 C6EF

BF62 10C6 ABF2A
BF64 A2EC
BF66 M05
BF6B 20B900

BF6B A5F1
BF60 F023 ABF92
BF6F 3B
BF70 E940
BF72 1B
BF73
BF73 +6A
BF74 lB
BF75 6940
BF77 297F
BF79 B5E0
BF7B A5Fl
BF70
BF70 +6A
BF7E A901
BFB0 9002 ABFB4
BFB2 A910
BFB4 B5El
BFB6 A204
BFBB A900
BFBA 95E2
BFBC CA
BFBO 10FB ABFBA
BFBF 200BOA

BF92 60
BF93 4002000000

00

BF99 = OB00
OB00

JSR FOIV ,X/Y
LOX #FSCR1&$FF
LOY #FSCR1/$100
JSR FL01R
JSR FSUB , [X/Y]-Y
LOX #FHALF&$FF
LOY #FHALF/$100
JSR FL01R
JSR FMUL ,0.5*[[X/Y] - Y]=OELTAY
LOA FR0 ,DELTA 0.0
BEQ SQROON
LOX tFSCR1&$FF
LOY #FSCR1/$100
JSR FL01R
JSR FAOO ,Y=Y+OELTA Y
DEC SQRCNT COUNT & LOOP

BPL SQRLP
SQROON LOX #FSCR1&$FF , DELTA = C!l - GET Y BACK

LOY #FSCR1/$ 100
JSR FL00R

WAS ARG TRANSFORMED
LOA XFMFLG
BEQ SQROUT NO FINI
SEC
SBC #$40
CLC YES - TRANSFORM RESULT
RORA DIVIDE EXP BY 2
ROR A
CLC
AOC #$40
AND #$7F
STA FRl
LOA XFMFLG
RORA
ROR A
LOA U MANTISSA = 1
BCC SQR2 WAS EXP ODD OR EVEN
LOA #$10 ODD - MANT = 10

SQR2 STA FRl+l
LOX #FPREC-2
LOA #0

SQR3 STA FR1+2,x CLEAR REST OF MANTISSA
OEX
BPL SQR3
JSR FMUL SQR [X] = SQR[X/100**N]

* [10**N)
SQROUT RTS
FTWO . BYTE $40,2,0 , 0,0 ,0 , 2.0

ORG
LOCAL

Floating Point

FPORG

ASCIN - Convert ASCII Input to Internal Form

OB00
OBIil0
DB00
OB00
DB03
DB06

246

20Al0B
20BBDB
8039 AOB41

*

AFP
CVAFP
ASCIN

JSR
JSR
BCS

ON ENTRY

ON EXIT

INBUFF - POINTS TO BUFFER WITH ASCII
CIX - INDEX TO 1ST BYTE OF t

CC SET - CARRY SET IF NOT t
CARRY CLEAR OF t

SKPBLANK
: TSTCHAR
: NONUM

SEE IF THIS COULD BE A NUMBER
BR IF NOT A NUMBER

Source Code

SET INITIAL VALUES

D808 A2ED LDX #EEXP ZERO 4 VALUES
D80A M04 LDY #4 X
D80C 2048DA JSR ZXLY X
D80F A2FF LDX #$FF
D8ll 86Fl STX DIGRT SET TO $FF

D813 2044DA JSR ZFR0 CLEAR FR0

D816 F004 ·D81C BEQ :IN2 UNCONDITIONAL BR

D818 :INI
D81 8 A9FF LDA #$FF SET 1ST CHAR FLAG TO NON

ZERO
D81A 85F0 STA FCHRFLG X

D81C :IN2
D81C 2094DB JSR : GETCHAR GET INPUT CHAR
D81F B021 ·D842 BCS :NONI BR IF CHAR NOT NUMBER

IT'S A NUMBER

D821 48 PHA SAVE ON CPU STACK
D822 A6D5 LDX FR0M GET 1ST BYTE
D824 0011 ·D837 BNE : INCE INCR EXPONENT

D826 20EBDB JSR NIBSH0 SHIFT FR0 ONE NI B8LE LEFT

D829 68 PLA GET DIGIT ON CPU STACK
D82A 05D9 ORA FR0M+FMPREC-1 OR INTO LAST BYTE
D82C 85D9 STA FR0M+FMPREC-l SAVE AS LAST BYTE

COUNT CHARACTERS AFTER DECIMAL POINT

D82E A6Fl LOX DIGRT GET ~ OF DI GITS RIGHT
D830 30E6 ·D818 BMI :INI IF = $FF, NO DECIMAL POI NT
D832 E8 INX ADD IN THIS CHAR
D833 86Fl STX DIGRT SAVE
D835 D0El ·D818 BNE :INI GET NEXT CHAR

INCREMENT # OR DIGIT MORE THAN 9

D837 : INCE
D837 68 PLA CLEAR CPU STACK
D838 A6Fl LDX DIGRT HAVE DP?
D83A 1002 ·D83E BPL :INCE2 IF YES , DON ' T INCR E COUNT
083C E6ED INC EEXP INCR EXPONENT
083E : INCE2
D83E 4C 1 8D8 JMP :INI GET NEXT CHAR

D841 : NONUM
D841 60 RTS RETURN FAIL

NON - NUMERIC IN NUMBER BODY

D842 : NONI
D842 C92E CMP # ' . ' IS IT DEC I MAL POINT?
D844 F014 ·D85A BEQ :OP IF YES, PROCESS IT
0846 C945 CMP # ' E ' IS IT E FOR EXPONENT?
D848 F019 ·D863 BEQ ,EXP IF YES , DO EXPONENT

D84A A6F0 LDX FCHRFLG IS THIS THE 1ST CHAR
D84C D068 ·D8B6 BNE :EXIT IF NOT, END OF NUMERIC I NPUT
D84E C92B CMP #'+ ' IS IT PLUS?

247

Source Code

DB50 F0C6 "DB IB BEQ :INI GO FOR NEXT CHAR
DB52 C92D CMP #1_' IS IT MINUS?
DB54 F000 "DB56 BEQ :MINUS

DB56 MINUS
DB56 B5EE STA NSIGN SAVE SIGN FOR LATER
DB5B F0BE "DBIB BEQ :INI UNCONDITIONAL BRANCH FOR

NEXT CHA!!,

DB5A :DP
DB SA A6Fl LDX DIGRT IS DIGRT STILL = FF?
DB5C 105B "DBB6 BPL :EXIT IF NOT, ALREADY HAVE DP
DB5E EB INX INCR TO ZERO
DB SF B6Fl STX DIGRT SAVE
DB61 F0B5 "DBIB BEQ :INI UNCONDITIONAL BR FOR NEXT

CHAR

DB63 :EXP
DB63 A5F2 LDA CIX GET INDEX
DB65 B5EC STA FRX SAVE
DB67 2094DB JSR :GETCHAR GET NEXT CHAR
DB6A B037 "DBA3 BCS :NON2 BR IF NOT NUMBER

IT'S A NUMBER IN AN EXPONENT

DB6C :EXP2
DB6C AA TAX SAVE 1ST CHAR OF EXPONENT
DB6D A5ED LDA EEXP GET # OF CHAR OVER 9
DB6F 4B PHA SAVE IT
DB70 B6ED STX EEXP SAVE 1ST CHAR OF EXPONENT
DB72 2094DB JSR :GETCHAR GET NEXT CHAR

DB75 B017 "DBBE BCS :EXP3 IF NOT # NO SECOND DIGIT
DB77 4B PHA SAVE SECOND DIGIT

DB7B A5ED LDA EEXP GET 1ST DIGIT
DB7A ASLA GET DIGIT * 10
DB7A +0A ASL A
DB7B B5ED STA EEXP X
DB7D ASLA X
DB7D +0A ASL A
DB7E ASLA X
DB7E +0A ASL A
Dfl7F 65ED ADC EEXP X
DBBI B5ED STA EEXP SAVE
DBB3 6B PLA GET SECOND DIGIT
DBB4 IB CLC
DBB5 65ED ADC EEXP GET EXPONENT INPUTTED
DBB7 B5ED STA EEXP SAVE

DBB9 A4F2 LOY CIX INC TO NEXT CHAR
DBBB 209DDB JSR :GCHRI X

DBBE :EXP3
DBBE A5EF LDA ESIGN GET SIGN OF EXPONENT
DB90 F009 "DB9B BEQ :EXPI IF NO SIGN, IT IS +
DBn A5ED LOA EEXP GET EXPONENT ENTERED
DB94 49FF EOR #$FF COMPLEMENT TO MAKE MINUS
DB96 IB CLC X
0897 6901 ADC #l X
DB99 B5ED STA EEXP SAVE
DB9B :EXPI
DB9B 6B PLA GET # DIGITS MORE THAN 9
DB9C IB CLC CLEAR CARRY
DB9D 65ED ADC EEXP ADD IN ENTERED EXPONENT
DB9F B5ED STA EEXP SAVE EXPONENT
DBAI 0013 "DBB6 BNE :EXIT UNCONDITIONAL BR

248

D8A3
D8A3
D8A5
D8A7
D8A9

C928
F006 'D8AD
C92D
D007 'D882

:NON2
CMP
REQ
CMP
BNE

D8A8 :EMIN
D8AB 85EF STA
D8AD :EPLUS
D8AD 2094DB JSR
08B0 90BA 'D86C BCC

D8B2
08B2 A5EC
D8B4 85F2

D8B6

D8B6 C6F2

D8B8 A5ED
D8BA
D8BC
D8BE
D8C0
D8C1

A6Fl
3005 'D8C3
F003 'D8C3
38
E5F1

D8C3
D8C3 48
D8C4

D8C4
D8C5
D8C6
D8C6
D8C7
D8C9

D8CB
D8CE
D8CE

D8D0
D8Dl
D8D3

D8D5
D8D8

+2A
68

+6A
85ED
9003 'D8CE

20EBDB

A5ED

18
6944
85D4

2000DC
B00B 'D8E5

:NOTE
LOA
STA

:EXIT

DEC

LDA
LDX
BMI
BEQ
SEC
SBC

:EXIT1
PHA
ROLA

ROL
PLA
RORA
ROR
STA
BCC

JSR
:EVEN

LDA

CLC
ADC
STA

JSR
BCS

Source Code

NON-NUMERIC IN EXPONENT

'+'
:EPLUS
#'­
:NOTE

ESIGN

:GETCHAR
:EXP2

E NOT PART OF OUR #

FRX
CIX

FALL THRU TO EXIT

IS IT PLUS?
IF YES BR
IS IT A MINUS?
IF NOT, BR

SAVE EXPONENT SIGN

GET CHARACTER
IF A #, GO PROCESS EXPONENT

POINT TO 1 PAST E
RESTORE CIX

WHOLE # HAS BEEN INPUTTED

BACK UP ONE CHAR

CIX DECREMENT INDEX

CALCULATE POWER OF 10 = EXP - DIGITS RIGHT
WHERE EXP ENTERED EXPONENT [COMPLEMENT OF -]

+ # DIGITS MORE THAN 9

EEXP
DIGRT
:EXIT1
:EXITI

DIGRT

GET EXPONENT
GET # DIGITS RIGHT OF DECIMAL
NO DECIMAL POINT
OF DIGITS AFTER D.P.=0
GET EXP - DIGITS RIGHT
X

SHIFT RIGHT ALGEBRAIC TO DIVIDE BY 2 POWER OF 103

A

A
EEXP
:EVEN

NIBSH0

EEXP

#$44
FR0

NORM
:IND2

SET CARRY WITH SIGN OF
EXPONENT

GET EXPONENT AGAIN
SHIFT RIGHT

SAVE POWER OF 100
IF NO CARRY # EVEN

ELSE SHIFT 1 NIBBLE LEFT

ADD 40 FOR EXCESS 64 + 4
FOR NORM
X
X
SAVE AS EXPONENT

NORMALIZE NUMBER
IF CARRY SET, IT'S AN ERROR

249

Source Code

SET MANTISSA SIGH

D8DA A6EE LDX NSIGN IS SIGN OF I MINUS?
D8DC Fl!H!6 'D8E4 BEQ :INDON IF NOT, BR

D8DE A5D4 LDA FR0 GET EXPONENT
D8E0 098'" ORA #$8'" TURN ON MINUS # BIT
D8E2 85D4 STA FR0 SET IN FR0 EXP
D8E4 : INDON
D8E4 18 CLC CLEAR CARRY
08E5 :IND2
D8E5 60 RTS

FPASC - Convert Floating Point to ASCII

ON ENTRY FR'" - # TO CONVERT

*
*

D8E6 CVFASC
D8E6 FASC
08E6 2"'51DA JSR

D8E9 A930 LDA
08EB 807F05 STA

D8EE A504 LOA
08F0 F"'28 'D91A BEQ
D8F2 297F ANO
D8F4 C93F CMP
D8F6 9"'28 '092'" BCC
D8F8 C945 CMP
D8FA B"'24 '0920 BCS

*
*

08FC 38 SEC
D8FO E93F SBC

D8FF 2"'70DC JSR

D902 20A40C JSR
0995 9989 ORA
0997 9D8995 STA

099A AD89"'5 LOA
0990 C92E CMP
D99F F9"'3 'D914 BEQ
D911 4C88D9 JMP
D914 :FN6
D914 2"'C1DC JSR
0917 4C9CD9 JMP

*

D91A :EXP'"
091A A9B9 LOA
091C 8D8"'''' 5 STA
091F 6'" RTS

D929 :EFORM
D929 A991 LOA
D922 2979DC JSR

250

ON EXIT INBUFF - POINTS TO START OF
HIGH ORDER BIT OF LAST BYTE IS ON

INTLBF ;SET INBUFF TO PT TO LBUFF

#'''' ' ; GET ASCII ZERO
LBUFF-1 ; PU1' IN FRONT OF LBUFF

TEST FOR E FORMAT REQUIREO

FR0
:EXP0
t$7F
#$3F
:EFORM
#$45
:EFORM

PROCESS NOT E FORMAT

#$3F

:CVFR0

:FNZERO
#$89
LBUFF,X

LBUFF
' • '
:FN6
:FN5

:DECINB
:FN4

EXPONENT IS ZERO - #

#$8"'+$3'"
LBUFF

PROCESS E FORMAT

U
:CVFR9

GET EXPONENT
IF EXP = 0, I "', SO BR
AND OUT SIGN
IS IT LESS THAN 3F
IF YES , E FORMAT REQUIRED
IF IT IS > 44
IF YES, E FORMAT REQUIRED

SET CARRY
GET DECIMAL POSITION

CONVERT FR'" TO ASCII CHAR

FIND LAST NON-ZERO CHARACTER
TURN ON HIGH ORDER BIT
STORE IT BACK IN BUFFER

GET 1ST CHAR IN LBUFF
IS IT DECIMAL?
BR IF YES
ELSE JUMP

DECIMAL INBUFF
00 FINAL ADJUSTMENT

IS ZERO

GET ASCII '" WITH MSB
PUT IN BUFFER

GET DECIMAL POSITION
CONVERT FR9 TO ASCII IN
LBUFF

Source Code

0925 UlA40C JSR :FNZERO GET RIO OF TRAILING ZEROS
0928 E8 INX INCR INDEX
D929 86F2 STX CIX SAVE INDEX TO LAST CHAR

ADJUST EXPONENT

092B A5D4 LOA FR3 GET EXPONENT
092D ASLA MULT BY 2 [GET RID OF

SIGN TOO]
092D +0A ASL A
D92E 38 SEC
D92F E983 SBC t$40*2 SUB EXCESS 64

0931 AE8305 LDX LBUFF GET 1ST CHAR IN LBUFF
0934 E030 CPX t'3' IS IT ASCII 37
0936 F017 "D94F BEQ :EF1

PUT DECIMAL AFTER 1ST CHAR [IT'S AFTER 2NO NOW]

D938 AE8135 LDX LBUFF+l SWITCH D. P. + 2NO DIGIT
D93B AC8235 LOY LBUFF+2 X
D93E 8E8235 STX LBUFF+2 X
0941 8C8135 STY LBUFF+1 X

0944 A6F2 LDX CIX IF CIX POINTS TO D.P.
0946 E302 CPX #2 THEN INC
D948 D332 "D94C BNE :NOINC X
D94A E6F2 INC CIX X

D94C :NOINC
D94C 18 CLC X
094D 6931 AOC #1 X

CONVERT EXP TO ASCII

D94F :EF1
D94F 85ED STA EEXP SAVE EXPONENT
0951 A945 LDA t'E ' GET ASCII E
D953 A4F2 LOY CIX GET POINTER
0955 209FDC JSR :STCHAR STORE CHARACTER
0958 84F2 STY CIX SAVE INDEX

095A A5EO LDA EEXP GET EXPONENT
D95C 100B "0969 BPL :EPL BR IF PLUS

EXPONENT IS MINUS - COMPLEMENT IT

095E A933 LDA .3 SUBTRACT FROM 3 TO
COMPLEMENT

D963 38 SEC X
0961 E5EO SBC EEXP X
0963 85EO STA EEXP

D965 A920 LDA t' - ' GET A MINUS
0967 D302 "D96B BNE :EF2

D969 :EPL
D969 A92B LDA # '+' GET A PLUS
D96B :EF2
D96B 209FDC JSR :STCHAR STORE A CHARACTER

D96E A233 LOX #3 SET COUNTER FOR OF TENS
D973 A5ED LDA EEXP GET EXPONENT

0972 :EF3
D972 38 SEC
D973 E93A SBC U3 SUBTRACT 13

251

Source Code

D975 9003 'D97A BCC :EF4 IF < 0, BRANCH
D977 E8 INX INCR * OF 10'S
D978 D0FB 'D972 BNE :EF3 BR UNCONDITIONAL

D97A :EF4
D97A 18 CLC ADD BACK IN 10
D97B 690A ADC #10 X
D97D 48 PHA SAVE

D97E BA TXA GET # OF 10'S
D97F 209DDC JSR : STNUM PUT 10'S IN EXP IN BUFFER
D982 6B PLA GET REMAINDER
D983 0980 ORA #$80 TURN ON HIGH ORDER BIT
D985 209DDC JSR :STNUM PUT IN BUFFER

FINAL ADJUSTMENT

D98B : FN5
D9BB ADB005 LOA LBUFF GET 1ST BYTE IN LBUFF

[OUTPUT]
D98B C930 CMP # ' 0' IS IT ASCII 0?
D980 000D 'D99C BNE :FN4 IF NOT BR

INCREMENT INBUFF TO POINT TO NON-ZERO

D98F 18 CLC ADD 1 TO INBUFF
D990 A5F3 LDA INBUFF X
0992 6901 ADC #1 X
D994 85F3 STA INBUFF X
D996 A5F4 LDA INBUFF+1 X
D998 6900 ADC #0 X
D99A 85F4 STA INBUFF+l X
D99C :FN4
D99C A5D4 LDA FR0 GET EXPONENT OF ~

D99E 1009 'D9A9 BPL :FADONE IF SIGN + , WE ARE DONE

D9A0 20CIDC JSR :DECINB DECR INBUFF
D9A3 M00 LDY #0 GET INDEX
D9A5 A92D LDA #'- ' GET ASCII -
D9A7 91F3 STA [INBUFF], Y SAVE - IN BUFFER

D9A9 :FADONE
D9A9 60 RTS

IFP - Convert Integer to Floating Point

D9AA
D9AA

D9AA A5D4
D9AC 85F8
D9AE A5D5
D9B0 85F7

D9B2 2044DA
D9B5 F8

D9B6 A010
D9BB
D9BB 06F8
D9BA 26F7

252

*
*
*

CVIFP
IFP

LDA
STA
LDA
STA

JSR
SED

LDY
:IFPl

ASL
ROL

ON ENTRY FR0 - CONTAINS INTEGER

ON EXIT FR0 - CONTAINS FLOATING POINT t

MOVE INTEGER AND REVERSE BYTES

FR0 GET INTEGER LOW
ZTEMP4+l SAVE AS INTEGER HIGH
FR0+l GET INTEGER HIGH
ZTEMP4 SAVE AS INTEGER LOW

ZFR0 CLEAR FR0
SET DECIMAL MODE

DO THE CONVERT

#16 GET t BITS IN INTEGER

ZTEMP4+1 SHIFT LEFT INTEGER LOW
ZTEMP4 SHIFT LEFT INTEGER HIGH

Source Code

CARRY NOW SET IF THERE WAS A
BIT

D9BC A203 LDX #3 BIGGEST INTEGER IS 3 BYTES
D9BE :IFP2

DOUBLE # AND ADD IN IF CARRY SET

D9BE B5D4 LDA FR0,X GET BYTE
D9C0 75D4 ADC FR0,X DOUBLE [ADDING IN CARRY

FROM SHIFT
D9C2 95D4 STA FR0 , X SAVE
D9C4 CA DEX DECREMENT COUNT OF FR0 BYTES
D9C5 D0F7 -D9BE BNE :IFP2 IF MORE TO DO , DO IT

D9C7 88 DEY DECR COUNT OF INTEGER DIGITS
D9CB D0EE -D9B8 BNE : IFP1 IF MORE TO DO, DO IT
D9CA D8 CLD CLEAR DECIMAL MODE

SET EXPONENT

D9CB A942 LDA #$42 INDICATE DECIMAL AFTER LAST
DIGIT

D9CD B5D4 STA FR0 STORE EXPONENT

D9CF 4C00DC JMP NORM NORMALIZE

FPI - Convert Floating Point to Integer

ON ENTRY FR0 - FLOATING POINT NUMBER

ON EXIT FR0 - INTEGER

CC SET CARRY CLEAR - NO ERROR
* CARRY SET - ERROR

D9D2 FPI

CLEAR INTEGER

D9D2 A900 LDA #0 CLEAR INTEGER RESULT
D9D4 85F7 STA ZTEMP4
D9D6 85F8 STA ZTEMP4+1

CHECK EXPONENT

D9D8 A5D4 LDA FR0 GET EXPONENT
D9DA 3066 -DA42 BMI :ERVAL IF SIGN OF FP# IS - THEN

ERROR
D9DC C943 CMP #$43 IS FP# TOO BIG TO BE INTEGER
D9DE B062 -DA42 BCS :ERVAL IF YES, THEN ERROR
D9E0 38 SEC SET CARRY
D9E1 E940 SBC #$40 IS FP# LESS THAN 17
D9E3 903F -DA24 BCC : ROUND IF YES, THEN GO TEST FOR

ROUND

GET # OF DIGITS TO CONVERT = [EXPONENT -40+1]*2
[A CONTAINS EXPONENT - 40]
[CARRY SET]

D9E5 6900 ADC #0 ADD IN CARRY
D9E7 ASLA MULT BY 2
D9E7 +0A ASL A
D9E8 85F5 STA ZTEMP1 SAVE AS COUNTER

*
DO CONVERT

D9EA :FPI1

253

Source Code

MULT INTEGER RESULT BY 111

D9EA 23SADA JSR : ILSHFT GO SHIFT ONCE LEFT
D9ED B3S3 ADA42 BCS :ERVAL IF CARRY S ET THEN # TOO BIG

D9EF ASF7 LDA ZTEMP4 SAVE INTEGER *2
D9Fl 8SF9 STA ZTEMP3 X
D9F3 ASF8 LDA ZTEMP4+l X
D9FS 8SFA STA ZTEMP3+1 X

D9F7 23SADA JSR :ILSHFT MULT BY *2
D9FA B346 ADA42 BCS :ERVAL # TOO BIG
D9FC 23SADA JSR :ILSHFT MULT BY *2 [NOW * 8 IN ZTEMP4]
D9FF B341 ADA42 BCS :ERVAL BR IF # TOO BIG

DA31 18 CLC ADD IN * 2 TO = *13
DA32 ASFS LDA ZTEMP4+l X
DA34 6SFA ADC ZTEMP3+l X
DA36 8SFS STA ZTEMP4+l X
DA3B ASF7 LDA ZTEMP4 X
DA3A 6SF9 ADC ZTEMP3 X
DA3C 8SF7 STA ZTEMP4 X
DA3E B332 ADA42 BCS :ERVAL IF CARRY SET ERROR

ADD IN NEXT DIGIT

DA13 23B9DC JSR :GETDIG GET DIGIT IN A
DA13 18 CLC
DA14 6SFS ADC ZTEMP4+l ADD IN DIGIT
DA16 8SFS STA ZTEMP4+1 X
DAIS ASF7 LDA ZTEMP4 X
DAIA 6931il ADC #3 X
DAIC B324 ADA42 BCS : ERVAL BR IF OVERFLOW
DAlE 8SF7 STA ZTEMP4 ;X

DA21il C6FS DEC ZTEMPI DEC COUNTER OF DIGITS TO DO
DA22 D3C6 AD9EA BNE :FPII IF MORE TO DO, DO IT

ROUND IF NEEDED

DA24 : ROUND
DA24 23B9DC JSR : GETDIG GET NEXT DIGIT IN A
DA27 C93S CMP '5 IS DIGIT <5?
DA29 933D ADA3S BCC :NR IF YES, DON'T ROUND
DA2B IS CLC ADD IN 1 TO ROUND
DA2C ASFS LDA ZTEMP4+1 X
DA2E 6931 ADC U X
DA33 8SF8 STA ZTEMP4+l X
DA32 ASF7 LDA ZTEMP4 X
DA34 691il3 ADC #3 X
DA36 8SF7 STA ZTEMP4 X

MOVE INTEGER TO FR3

DA38 :NR
DA38 ASFS LDA ZTEMP4+1 GET INTEGER LOW
DA3A 8SD4 STA FR3 SAVE
DA3C ASF7 LDA ZTEMP4 GET INTEGER HIGH
DA3E 8SDS STA FR3+1 SAVE

DA43 18 CLC CLEAR CC FOR GOOD RETURN
DA41 61il RTS

DA42 :ERVAL
DA42 3S SEC SET CARRY FOR ERROR RETURN
DA43 61il RTS

ZFR3 - ZERO FRI'l

ZFl - ZERO 6 BYTES AT LOC X

254

Source Code

ZXLY - ZERO PAGE ZERO LOC X FOR LENGTH Y

DA44 ZFRei
DA44 A2D4 LDX #FRei GET POINTER TO FR1

DA46 ZF1
DA46 Aelel6 LDY #6 GET # OF BYTES TO CLEAR
DA48 ZXLY
DA48 A9e1e1 LDA #eI CLEAR A
DA4A :ZF2
DA4A 95e1e1 STA eI,X CLEAR A BYTE
DA4C E8 INX POINT TO NEXT BYTE
DA4D 88 DEY DEC COUNTER
DA4E DeiFA ADA4A BNE :ZF2 LOOP
DAS'" 6'" RTS

INTLBF - IN IT LBUFF INTO INBUFF

DAS1 INTLBF
DAS1 A9"'S LDA ~LBUFF/256
DAS3 8SF4 STA INBUFF+l
DASS A98'" LDA #LBUFF&2S5
DAS7 8SF3 STA INBUFF
DAS9 6'" RTS

:ILSHFT - SHIFT INTEGER IN ZTEMP4 LEFT ONCE

DASA ILSHFT
DASA : ILSHFT
DA5A 18 CLC CLEAR CARRY
DA5B 26F8 ROL ZTEMP4+1 SHIFT LOW
DA5D 26F7 ROL ZTEMP4 SHIFT HIGH
DA5F 6'" RTS

Floating Point Routines

FADD - Floating Point Add Routine

ADDS VALUES IN FR'" AND FRI

ON ENTRY FR'" & FRI - CONTAIN # TO ADD
*

ON EXIT

FSUB - Floating Point Subtract Routine

FR'" - RESULT

DAG'" FSUB
DA6'" ASE'" LDA

SUBTRACTS FRI FROM FR'"

ON ENTRY FR'" & FRI - CONTAIN # TO SUBTRACT

ON EXIT FR'" - RESULT

BOTH RETURN WITH CC SET:

FRI

CARRY SET IF ERROR
CARRY CLEAR IF NO ERROR

GET EXPONENT OF FRI
DA62 498'" EOR #$8'" CHANGE SIGN OF MANTISSA
DA64 SSE'" STA FRI SAVE EXPONENT

DA66 FADD
DA66 :FRADD

255

Source Code

DA66 ASE0 LOA FRl GET EXPONENT FRl
DA68 297F AND #$7F TURN OFF MANTISSA SIGN BIT
DA6A 8SF7 STA ZTEMP4 SAVE TEMPORARILY
DA6C ASD4 LOA FR0 GET EXPONENT FR0
DA6E 297F AND #$7F TURN OFF MANTISSA SIGN BIT
DA70 38 SEC CLEAR CARRY
DA7l ESF7 SBC ZTEMP4 SUB EXPONENTS
0."73 1010 "DA8S BPL : NSWAP IF EXP[FR0]>= EXP[FR1] ,

NO SWAP

SWAP FR0 AND FRl

DA7S A20S LDX #FMPREC GET IN DEX

DA77 : SWAP
DA77 BSD4 LDA FR0 ,X GET BYTE FROM FR0
DA79 B4E0 LDY FR1,X GET BYTE FROM FRl
DA7B 9SE0 STA FR1,X PUT FR0 BYTE IN FRl
DA7D 98 TYA GET FRl BYTE
DA7E 9504 STA FR0 , X PUT FRl BYTE IN FR0
DA80 CA DEX DEC INDEX
DA81 10F4 "DA77 BPL :SWAP IF MORE TO DO, GO SWAP
DA83 30El "DA66 BMI :FRADD UNCONDITIONAL

DA8S : NSWAP
DA8S F007 "DA8E BEQ : NALIGN IF DIFFERENCE = 0 , ALREADY

AL I GNED
DA87 C90S CMP #FMPREC IS DIFFERENCE < # OF BYTES
DA89 B019 "DAA4 BCS :ADDEND IF NOT, HAVE RESULT IN FR0

DA8B 203EDC JSR RSHFTl SHIFT TO ALIGN

TEST FOR LIKE SIGN OF MANTISSA

DA8E :NALIGN
DA8E F8 SED SET DECIMAL MODE
DA8F ASD4 LDA FR0 GET FR0 EXPONENT
DA91 4SE0 EOR FRl EOR WITH FRl EXPONENT
DA93 301E "DAB3 BMI :SUB IF SIGNS DIFFERENT - SUBTRACT

ELSE ADD

ADD FR0 & FRl

DA9S A204 LDX #FMPREC- l GET PO I NTER FOR LAST BYTE
DA97 18 CLC CLEAR CARRY
DA98 : ADDl
DA98 BSDS LDA FR0M , X GET BYTE OF FR0
DA9A 7SEl ADC FRIM,X ADD IN BYTE OF FRl
DA9C 9SDS STA FR0M , X STORE
DA9E CA DEX DEC POINTER
DA9F 10F7 "DA98 BPL :ADDl ADD NEXT BYTE

DAAl D8 CLD CLEAR DECIMAL MODE
DAA2 B003 "DAA7 BCS :ADD2 IF THERE IS A CARRY, DO IT
DAA4 :ADDEND
DAA4 4C00DC JMP NORM GO NORMALIZE

ADD IN FIND CARRY

DAA7 :ADD2
DAA7 A90l LDA #l GET 1 TIMES TO SHIFT
DAA9 203ADC JSR RSHFT0 GO SHIFT

DAAC A90l LDA #01 GET CARRY
DAAE 85D5 STA FR0M ADD IN CARRY
DAB0 4C00DC JMP NORM

SUBTRACT FRl FROM FR0

DAB3 SUB
DAB3 A204 LDX #FMPREC-l GET POINTER TO LAST BYTE
DABS 38 SEC SET CARRY

256

DAB6 :SUB1
DAB6 B5D5 LOA
DABB F5E1 SBC
DABA 9505 STA
DABC CA DEX
DABD 10F7 'DAB6 BPL

DABF 9004 'DAC5 BCC
DACl DB CLD
DAC2 4C00DC JMP

DAC5 :SUB2
DACS ASD4 LDA
DAC7 49B0 EOR
DAC9 8504 STA

DACB 3B SEC
DACC A204 LDX
DACE :SUB3
DACE A900 LDA
DAD0 F5DS SBC
DAD2 95D5 STA
DAD4 CA DEX
DAD5 10F7 'DACE BPL

DAD7 D8 CLD
DAD8 4C00DC JMP

FMUL - Multiply FRO by FR1

*
DADB FMUL

DADB A5D4 LOA
DADO F045 'DB24 BEQ
DADF ASE0 LOA
DAEl F03E "DB2 1 BEQ

DAE3 20CFDC JSR
DAE6 3B SEC
DAE7 E940 SBC
DAE9 3B SEC
DAEA 65E0 ADC
DAEC 303B 'DB26 BMI

DAEE 20E0DC JSR

DAFl : FRM

Source Code

FR0M,X GET FR0 BYTE
FR1M,X SUB FR1 BYTE
FR0M,X STORE

DEC POINTER
:SUBl SUB NEXT BYTE

:SUB2 IF THERE IS A BORROW DO IT
CLEAR DECIMAL MODE

NORM

TAKE COMPLEMENT SIGN

FR0 GET EXPONENT
#$B0 CHANGE SIGN OF MANTISSA
FRe PUT IT BACK

COMPLEMENT MANTISSA

SET CARRY
#FMPREC-l GET INDEX COUNTER

#0 GET ZERO
FR0M,X COMPLEMENT BYTE
FR0M,X STORE

MORE TO DO
:SUB3 BR IF YES

CLEAR DECIMAL MODE
NORM GO NORMALIZE

ON ENTRY t ARE IN FR0 AND FR1

ON EXIT FR0 - CONTAINS PRODUCT
RETURN WITH CC SET

CARRY SET IF ERROR
CARRY CLEAR IF NO ERROR

SET UP EXPONENT

FR0
MEND3
FRl
MEND2

MDESUP

#$40

FRl
:EROV

GET EXP FR0
IF = 0, DONE
GET FR1 EXP
IF =0, ANSWER =0

DO COMMON SET FOR EXPONENT
SET CARRY
SUB EXCESS 64
SET CARRY TO ADD 1
ADD 1 + FRl EXP TO FR0 EXP

,IF - THEN OVERFLOW

FINISH MULTIPLY SET UP

MDSUP , DO SET UP COMMON TO DIVIDE

DO THE MULTIPLY

GET t OF TIMES TO ADD IN MULTIPLICAND

257

Source Code

OAF 1 A50F
OAF3 29e1F
OAF 5 85F6

OAF7
OAF7 C6F6
OAF9 3006 'DB01
OAFB 2 ""'H 00
OAFE 4CF70A

OB01
OB01 A50F
OB03
OBel3 +4A
OB04
DB04 +4A
OB05
OB05 +4A
DBel6
OBel6 +4A
OB07 85F6

OB09
OBel9 C6F6
OBeiB 3e1e16 'OB13
OBeiO 200500
OB10 4C090B

OBl3

OBl3 2e1620C

OB16 C6F5
OB18 DelD7 'OAFI

OBIA
OBIA A5EO
OBIC 8504

OBIE
OBIE 4Cel40C

DB21
OB21 2fl440A
OB24
OB24 18
OB25 60

DB26
OB26 38
OB27 6fl

258

LOA
ANO
STA

FRE+FMPREC
#$flF
ZTEMPl+l

GET LAST BYTE OF FRE
ANO OUT HIGH ORDER NIBBLE
SET COUNTER FOR LOOP CONTROL

ADO IN FRI

FRMI
OEC
BMI
JSR
JMP

:FRM2
LOA
LSRA
LSR
LSRA
LSR
LSRA
LSR
LSRA
LSR
STA

:FRM3
OEC
BMI
JSR
JMP

:NXTB

JSR

OEC
BNE

MDEND
LOA
STA

MENDI
JMP

MEND2
JSR

MEND3
CLC
RTS

EROV
SEC
RTS

ZTEMPl+l
:FRM2
FRAlfl
:FRMI

DEC MULT COUNTER
IF - THIS LOOP DONE
ADD FRI TO FRfl [6 BYTES]
REPEAT

GET # OF TIMES TO ADD IN MULTIPLICAND * 10

FRE+FMPREC

A

A

A

A
ZTEMPl+l

ADD IN FR2

ZTEMPl+l
:NXTB
FRA2fl
:FRM3

GET LAST BYTE OF FRE
SHIFT OUT LOW ORDER NIBBLE

; x

x

x

SAVE AS COUNTER

DECREMENT COUNTER
IF -, DO NEXT BYTE
ADD FR2 TO FRfl [6 BYTES]
REPEAT

SET UP FOR NEXT SET OF ADDS

SHIFT FRfl/FRE RIGHT ONE BYTE
[THEY ARE CONTIGUOUS]

RSHFflE ;SHIFT FR0/FRE RIGHT

TEST FOR # OF BYTES SHIFTEO

ZTEMPI
:FRM

SET EXPONENT

EEXP
FRfl

NORMI

ZFRfl

DECREMENT LOOP CONTROL
IF MORE ADDS TO DO, DO IT

GET EXPONENT
STORE AS FRfl EXP

NORMALIZE

CLEAR FRfl

CLEAR CARRY FOR GOOD RTN

SET CARRY FOR ERROR ROUTINE
RE~'URN

FDIV - Floating Point Divide

D626

D626 A5E0
D62A F0FA 'D626
D62C A5D4
D62E F0F4 'D624

D630 20CFDC

D633
D634
D636
D637
D639

36
E5E0
16
6940
30E6 'D626

D636 20E0DC
D63E E6F5
D640 4C4ED6

= 00D9
D643

D643 A200
D645
D645 65D5
D647 95D4

D649 E8
D64A E00C
D64C D0F7 'D645

D64E

D64E
D650
D651
D652
D652
D655
D656
D656
D65C
D65E

D65F

DB61

A005
38
F8

69DA00
F9E600
99DA00
88
10F4 "DB52
D8

9004 "D665

E6D9

FDIV

LDA
BEQ
LDA
BEQ

JSR

SEC
SBC
CLC
ADC
6MI

JSR
INC
JMP

QTEMP
:NXTQ

LDX
: NXTQ1

LDA
STA

INX
CPX
BNE

:FRD1

LDY
SEC
SED

:FRS2
LDA
SBC
STA
DEY
6PL
CLD

BCC

INC

Source Code

ON ENTRY FR0 - DIVIDEND
FR1 - DIVISOR

ON EXIT FR0 - QUOTIENT

RETURNS WITH CC SET:
CARRY CLEAR - ERROR
CARRY SET - NO ERROR

DO DIVIDE SET UP

EQU

FR1
:EROV
FR0
MEND3

MDESUP

FR1

#$40
:EROV

MDSUP
ZTEMP1
:FRD1

FR0+FMPREC

GET FR1 EXP
IF =0, THEN OVERFLOW
GET EXPONENT FR0
IF = 0, THEN DONE

DO COMMOM PART OF EXP SET UP

SUB FR1 EXP FROM FR0 EX

ADD IN EXCESS 64
IF MINUS THEN OVERFLOW

DO SETUP COMMON FOR MULT
;LOOP 1 MORE TIME FOR DIVIDE
; SKIP SHIFT 1ST TIME THROUGH

SHIFT FR0 /FRE LEFT ONE 6YTE
[THEY ARE CONTIGUOUS]

FR0+1,X
FR0,X

#FMPREC*2+2
:NXTQ1

DO DIVIDE

GET POINTER TO BYTE TO MOVE

GET BYTE
MOVE IT LEFT ONE BYTE

POINT TO NEXT BYTE
HAVE WE DONE THEM ALL?
IF NOT, BRANCH

SUBTRACT FR2 [DIVISOR * 2] FROM FRE [DIVIDEND]

#FMPREC

FRE,Y
FR2 , Y
FRE , Y

:FRS2

:FAIL

QTEMP

SET LOOP CONTROL
SET CARRY
SET DECIMAL MODE

GET A 6YTE FROM FRE
SUB FR2
STORE RESULT
DEC COUNTER
BR IF MORE TO DO
CLEAR DECIMAL MODE

IF RESULT <0 [FRE < FR2] 6R

INCR # TIMES SUB [QUOTIENT]

259

Source Code

DB63 D0E9 'DB4E

DB65
DB65 200FDD

DB68
DB6A
DB6C
DB6E
DB70

D870
DB72
D873
D874
D874
DB77
DB7A
DB7D
DB7E
D880

D881

D883

D885

D887

06D9
06D9
06D9
06D9

A005
38
F8

B9DA00
F9E000
99DA00
88
10F4 'D874
D8

9004 'DB87

E6D9

D0E9 'D870

D887 2009DD

DB8A C6F5
D8BC D0B5 'D843

D88E 2062DC

D891 4C1AD8

BNE

FAIL
JSR

ASL
ASL
ASL
ASL

:FRD2

LDY
SEC
SED

:FRSl
LDA
SSC
STA
DEY
BPL
CLD

8CC

INC

8NE

:FAIL2
JSR

DEC
BNE

JSR

JMP

:FRDl ; SUB AGAIN

SUBTRACT OF FR2 DIDN 'T GO

FRA2E ; ADD FR2 BACK TO FR0

SHIFT LAST BYTE OF QUOTIENT ONE NIBBLE LEFT

QTEMP
QTEMP
QTEMP
QTEMP

SHIFT 4 BITS LEFT
X
X
X

SUBTRACT FRl [DIVISOR] FROM FRE [DIVIDEND]

#FMPREC

FRE,Y
FR1,Y
FRE,Y

:FRSl

:FAIL2

QTEMP

:FRD2

SET LOOP CONTROL
SET CARRY
SET DECIMAL MODE

GET A BYTE FROM FRE
SUB FRl
STORE RESULT

BR IF MORE TO DO
CLEAR DECIMAL MODE

IF RESULT < 0 [FRE < FR1] 8R

INCR # TIMES SU8 [QUOTIENT]

SU8 AGAIN

SU8TRACT OF FRl DIDN'T GO

FRA1E

ZTEMPl
:NXTQ

RSHF0E

MDEND

ADD FRl BACK TO FR0

DEC LOOP CONTROL
GET NEXT QUIOTIENT BYTE

;SHIFT RIGHT FR0/FRE TO CLEAR
EXP

; JOIN MULT END UP CODE

:GETCHAR - Test Input Character

ON ENTRY INBUFF - POINTS TO 8UFFER WITH INPUT
CIX - POINTS TO CHAR IN BUFFER

D894 :GETCHAR
D894 20AFD8 JSR
DB97 A4F2 LDY
DB99 9002 'D89D BCC

DB9B B1F3 LDA

D89D :GCHRl
D89D C8 INY
D89E 84F2 STY
D8A0 60 RTS

ON EXIT

TSTNUM
CIX
:GCHRl

CIX - POINTS 'ro NEXT CHAR
CC - CARRY CLEAR IF CHAR IS NUMBER

CARRY SET IF CHAR NOT NUMBER

GO TEST FOR NUMBER
GET CHARACTER INDEX
IF CHAR = NUM, SKIP

[INBUFF], Y GET CHARACTER

CIX
POINT TO NEXT CHAR
SAVE INDEX

SKPBLANK-SKIP BLANKS
STARTS AT CIX AND SCANS FOR NON BLANKS

260

Source Code

DBAI SKBLANK
DBAI SKPBLANK
DBAI A4F2 LDY CIX ;GET CIX
DBA3 A920 LDA #$20 ;GET A BLANK

DBA5 DIF3 :SBI CMP [INBUFF], Y ;IS CHAR A BLANK
DBA7 D003 'DBAC BNE :SBRTS ;BR IF NOT
DBA9 C8 INY ; INC TO NEXT
DBAA D0F9 'DBAS BNE :SBI ;GO TEST

DBAC 84F2 :SBRTS STY CIX ; SET NON BLANK INDEX
DBAE 60 RTS ;RETURN

TSTNUM-TEST CHAR AT CIX FOR NUM
- RTNS CARRY SET IF NUM

DBAF TSTNUM
DBAF A4F2 LDY CIX ;GET INDEX
DBBI BIF3 LDA [INBUFF], Y ;AND GET CHAR
DBB3 38 SEC
DBB4 E930 SBC #$30 ;SUBTRACT ASCLT ZE~O
DBB6 9018 'DBD0 8CC :TSNFAIL ;BR CHAR<ASCLT ZERO
DBB8 C90A CMP #$0A ; TEST GT ASCLT 9
DBBA 60 RTS ;DONE

:TSTCHAR - Test to See if This Can Be a Number

DBBB :TSTCHAR
DBBB A5F2 LDA
DBBD 48 PHA
DB BE 2094DB JSR
DBCl 901F 'DBE2 BCC

DBC3 C92E CMP
DBCS F014 'DBDB BEQ
DBC7 C92B CMP
DBC9 F007 'DBD2 BEQ
DBCB C92D CMP
DBCD F003 'DBD2 BEQ

DBCF :RTFAIL
DBCF 68 PLA
DBD0 38 :TSNFAIL
DBDI 60 RTS

DBD2 :TSTNI
DBD2 2094DB JSR
DBDS 900B 'DBE2 BCC
DBD7 C92E CMP
DBD9 D0F4 'DBCF BNE
DBDB :TSTN
DBDB 2094DB JSR
DBDE 9002 'DBE2 BCC
DBE0 B0ED 'DBCF BCS

DBE2 :RTPASS
DBE2 68 PLA
DBE3 85F2 STA
DBE5 18 CLC
DBE6 60 RTS

ON EXIT CC - CARRY SET IF NOT A #
CARRY CLEAR IF A #

CIX GET INDEX
SAVE IT

:GETCHAR GET CHAR
:RTPASS IF #8 RETURN PASS

' • ' IF D. P. , OK SO FAR
: TSTN
'+' IF +8 OK SO FAR
:TSTNI
#' -' IF -8 OK SO FAR
:TSTNI

; CLEAR STACK
SEC ;SET FAIL

:GETCHAR GET CHAR
: RTPASS IF # , RETURN PASS
#' . ' IS IT D.P.
:RTFAIL IF NOT, RETURN FAIL

:GETCHAR ELSE GET NEXT CHAR
:RTPASS IF #, RETURN PASS
:RTFAIL ELSE, RETURN FAIL

RESTORE CIX
CIX X

CLEAR CARRY
RETURN PASS

NIBSHO - Shift FRO One Nibble Left

DBE7
DBE7 A2E7

NIBSH2
LDX

NIBSH2 - SHIFT FR2 ONE NIBBLE LEFT

#FR2+l POINT TO 1ST MANTISSA BYTE

261

Source Code

DBE9 D002 "DBED BNE :NIBl

DBEB NIBSH0
DBEB A2D5 LDX #FR0M POINT TO MANTISSA OF FR0
DBED : NIBI
DBED A004 LDY #4 GET # OF BITS TO SHIFT
DBEF :NIBS
DBEF 18 CLC CLEAR CARRY
DBF0 3604 ROL 4,X ROLL
DBF2 3603 ROL 3 , X ; X
DBF4 3602 ROL 2,X ; X
DBF6 3601 ROL I,X X
DBF8 3600 ROL 0,X X
DBFA 26EC ROL FRX SAVE SHIFTED NIBBLE

DBFC 88 DEY DEC COUNT
DBFD D0F0 "DBEF BNE :NIBS IF NOT = 0, REPEAT
DBFF 60 RTS

NORM - Normalize Floating Point Number

DC00 NORM
DC00 A200 LDX #0 GET ZERO
DC02 86DA STX FR0+FPREC FOR ADD NORM SHIFT IN A ZERO
DC04 NORM1
DC04 A204 LDX #FMPREC - 1 GET MAX # OF BYTES TO SHIFT
DC06 A5D4 LDA FR0 GET EXPONENT
DC08 F02E "DC38 BEQ :NDONE IF EXP=0, # =0
DC0A : NORM
DC0A A5D5 LDA FR0M GET 1ST BYTE OF MANTISSA
DC0C D01A "DC28 BNE : TSTBIG IF NOT = 0 THEN NO SHIFT

SHIFT 1 BYTE LEFT

DC0E A000 LDY #0 GET INDEX FOR 1ST MOVE BYTE
DC10 :NSH
DC10 B9D600 LDA FR0M+1 , Y GET MOVE BYTE
DCl3 99D500 STA FR0M, Y STORE IT
DC16 C8 INY
DC17 C005 CPY #FMPREC ARE WE DONE
DC19 90F5 "DC10 BCC :NSH IF NOT SHIFT AGAIN

DECREMENT EXPONENT

DC1B C6D4 DEC FR0 DECREMENT EXPONENT

DC1D CA DEX DEC COUNTER
DC1E D0EA "DC0A BNE : NORM DO AGAIN IF NEEDED

DC20 A5D5 LDA FR0M IS MANTISSA STILL 0
DC22 D004 "DC28 BNE :TSTBIG IF NOT , SEE IF TOO BIG
DC24 85D4 STA FR0 ELSE ZERO EXP
DC26 18 CLC
DC27 60 R'rs

DC2B :TSTBIG
DC28 A5D4 LDA FR0 GET EXPONENT
DC2A 297F AND #$7F AND OUT SIGN BIT
DC2C C971 CMP f49+64 I S IT < 49+64?
DC2E 9001 "DC3 1 BCC :TSTUND IF YES, TEST UNDERFLOW
DC30 60 RTS SO RETURN
DC31 :TSTUND
DC31 C90F CMP #-49+64 IS IT >=-49+64?
DC33 B003 "DC3B BCS :NDONE IF YES, WE ARE DONE
DC35 2044DA JSR ZFR0 ELSE # IS ZERO

DC38 :NDONE
DC38 18 CLC CLEAR CARRY FOR GOOD RETURN
DC39 60 RTS

262

Source Code

RSHFTO - Shift FRO Rightllncrement Exponent

RSHFTl - Shift FRl Right/Increment Exponent

ON ENTRY A - # OF PLACES TO SHIFT

DC3A RSHFT0
DC3A A2D4 LDX #FR0 POINT TO FR0
DC3C D002 'DC40 BNE :RSH

DC3E RSHFT1
DC3E A2E0 LDX #F R1 POINT TO FR1

DC40 : RSH
DC40 B6F9 STX ZTEMP3 SAVE FR POINTER
DC42 B5F7 STA ZTEMP4 SAVE # OF BYTES TO SHIFT
DC44 B5FB STA ZTEMP4+l SAVE FOR LATER

DC46 :RSH2
DC46 A004 LDY #FMPREC-1 GET # OF BYTES TO MOVE
DC4B :RSH1
DC4B B504 LDA 4,X GET CHAR
DC4A 9505 STA 5,X STORE CHAR
DC4C CA DEX POINT TO NEXT BYTE
DC4D BB DEY DEC LOOP CONTROL
DC4E D0FB 'DC4B BNE : RSH1 IF MORE TO MOVE, DO IT
DC50 A900 LDA #0 GET 1ST BYTE
DC52 9505 STA 5,X STORE IT

DC54 A6F9 LDX ZTEMP3 GET FR POINTER
DC56 C6F7 DEC ZTEMP4 DO WE NEED TO SHIFT AGAIN?
DC5B D0EC 'DC46 BNE :RSH2 IF YES , DO IT

FIX EX PONENT

DC5A B500 LDA 0, X GET EXPONENT
DC5C 1B CLC
DC5D 65FB ADC ZTEMP4+1 SUB # OF SHIFTS
DC5F 9500 STA 0,X SAVE NEW EXPONENT
DC61 60 RTS

RSHFOE - Shift FRO/FRE 1 Byte Right [They Are Contiguous}

DC62 RSHF0E
DC62 A20A LDX #FMPREC*2 ; GET LOOP CONTROL

DC64 : NXTB1
DC64 B5D4 LDA FR0,X GET A BYTE
DC66 95D5 STA FR0+1,X MOVE IT OVER

DC6B CA DEX DEC COUNTER
DC69 10F9 'DC64 BPL :NXTB1 MOVE NEXT BYTE
DC6B A900 LDA #0 GET ZERO
DC6D B5D4 STA FR0 SHIFT IT IN
DC6F 60 RTS

:CVFRO - Convert Each Byte in FRO to 2 Characters in LBUFF

DC70
DC70 B5F7

DC72 A200
DC74 A000

:CVFR'"
STA

LDX
LDY

ON ENTRY A - DECIM AL POINT POSITION

ZTEMP4

CONVERT A BYTE

SAVE DECIMAL POSITION

SET INDEX INTO FR0M
SET INDEX INTO OUTPUT
LINE [LBUFF)

263

Source Code

DC76 :CVBYTE
DC76 2033DC JSR :TSTDP PUT IN D. P . NOW?
DC79 : CVBl
DC 79 38 SEC DECREMENT DECI MAL POSITION
DC7A E90 1 SBC #1 X
DC7C B5F7 STA ZTEMP4 SAVE IT

DO 1ST DIGIT

DC7E B5D5 LDA FR0M, X GET FROM FR0
DCB0 LSRA SHIFT OUT LOW ORDER BITS
DCB0 +4A LSR A
DCBl LSRA TO GET 1ST DIGI'r
DCBl +4A LSR A
DCB2 LSRA , X
DCB2 +4A LSR A
DCB3 LSRA X
DC83 +4A LSR A
DCB4 209DDC JSR :STNUM GO PUT # IN BUFFER

DO SECOND DIGIT

DCB7 B5D5 LDA FR0M, X GET NUMBER FROM FR0
DC89 290F AND #$ 0F AND OUT HIGH ORDER BI TS
DCBS 209 DDC JS R : STNUM GO PUT # IN BUFFER

DCBE EB INX INCR FR0 POINTER
DCBF E005 CPX #FMPREC DONE LAST FR0 BYTE?
DC91 90E3 'DC76 BCC :CVBYTE IF NOT , MORE TO DO

PUT I N DECIMAL POINT NOW?

DC93 : TSTDP
DC 9 3 A5 F7 LDA ZTEMP4 GET DECIMAL POS ITION
DC 9 5 D00 5 'DC9C BNE :TSTl IF NOT = 0 RTN
DC97 A92 E LDA # ' . GET ASCII DECIMAL POI NT
DC99 209 F DC JSR :STCHAR PUT D. P . IN BUFFER
DC9C :TSTl
DC9C 6 0 RTS

:STNUM - Put ASCII Number in LBUFF

ON ENTRY

:STCHAR - Store Character in A in LBUFF

DC9D : STNUM
DC9D 0930 ORA #$30
DC9 F : STCHAR
DC9F 99800 5 STA LBUFF , Y
DCA2 CB INY
DCA3 60 RT S

A - DIGIT TO BE CONVERTED TO ASCII
AND PUT IN LBUFF

Y - INDEX IN LBUFF

CONVERT TO ASC I I

PUT IN LBUFF
INCR LBUFF POINTER

:FNZERO - Find Last Non-zero Character in LBU FF

DCA4 :FNZER0
DCA4 A20A LDX

DCA6 : FN3
DCA6 BDB00 5 LDA
DCA9 C92E CMP
DCAB F00 7 'DCB4 BEQ
DCAD C930 CMP
DCAF D007 'DCBB BNE
DCB l CA DEX
DCB2 D0F2 'DCA6 BNE

264

ON EXIT

n0

LBUFF , X
' . '
: FN l
' 0 '
: FN2

:FN3

A - LAST CHAR
X - POINT TO LAST CHAR

POINT TO LAST CHAR I N LBUFF

GET THE CHARACTER
IS IT DECIMAL?
IF YES , BR
IS IT ZERO?
IF NOT , BR
DECREMENT INDEX
UNCOND I TIONAL BR

DCB4 FN1
DCB4 CA DEX
DCB5 BDB005 LDA LBUFF , X
DCBB :FN2
DCB8 60 RTS

:GETDIG - Get Next Digit from FRO

ON ENTRY

ON EXIT

DCB9 :GETDI G
DCB9 20EBDB JSR NIBSH0

DC8C A5EC LDA FRX

DCBE 290F AND #$0F
DCC0 60 RTS

:DECINB - Decrement INBUFF

DCC1 : DECINB
DCC1)8 SEC
DCC2 A5F) LDA INBUFF
DCC4 E901 SBC #l
DCC6 B5F) STA INBUFF

FR0 - #

A - DIGIT

Source Code

DECREMENT BUFFER INDEX
GET LAST CHAR

SHIFT FR0 LEFT ONE NIBBLE

GET BYTE CO NTAINING
SHIFTED NIBBLE
AND OUT HIGH ORDER NIBBLE

SUBTRACT ONE FROM INBUFF
X
X
X

DCC8 A5F4 LDA INBUFF+1 X
DCCA E900 SBC #0 X
DCCC 85F4 STA I~UFF+l ; X
DCCE 60 RTS

MDESUP - Common Set-up for Multiply and Divide Exponent

ON EXIT FR1 - FR1 EXP WITH OUT SIGN
A - FR0 EXP WITHOUT SIGN
FRSIGN - SIGN FOR QUOTIENT

DCCF MDESUP
DCCF A5D4 LDA FR0 GET FR0 EXPONENT
DCD1 45E0 EOR FR 1 GET FRl EXPONENT
DCD) 2980 AND #$80 AND OUT ALL BUT SIGN BIT
DCD5 B5EE STA FRSIGN SAVE SI GN

DCD7 06E0 ASL FR 1 SHIFT OUT SIGN IN FRl EXP
DCD9 46E0 LSR FRI RESTORE FRI EXP WITHOUT SIGN
DCDB A5D4 LDA FR0 GET FR0 EXP
DCDD 297F AND #$7F AND OUT SIGN BIT
DCDF 60 RTS

MDSUP - Common Set-up for Multiply and Divide

ON ENTRY A - EXPONENT
CC - SET BY ADD OR SUB TO GET A

DCE0 MDSUP
DCE0 05EE ORA FRSIGN OR IN SIGN BIT
DCE2 B5ED STA EEXP SAVE EXPONENT FOR LATER
DCE4 A900 LDA #13 CLEAR A
DCE6 B5D4 STA FR0 CLEAR FR13 EXP
DCEB B5E0 STA FR I CLEAR FR0 EXP

DCEA 202BDD JSR ~lVFR12 MOVE FRl 'ro FR2

DCED 20E7DB JSR NIBSH2 SHIFT FR2 1 NIBBLE LEFT
DCF0 A5EC LDA FRX GET SHIFTED NIBBLE

265

Source Code

DCF2 290F AND #$0F AND OUT HIGH ORDER NIBBLE
DCF4 85E6 STA FR2 STORE TO FINISH SHIFT

DCF6 A905 LDA #FMPREC SET LOOP CONTROL
DCF8 851'5 STA ZTEMPl , X

DC FA 2034DD JSR MVFR0E MOVE FR0 TO FRE
DCFD 2044DA JSR ZFR0 CLEAR FR0

DD00 60 RTS

FRA

FRAHl - ADD FRl 'ro FR0 [6 BYTES]

FRA20 - ADD FR2 TO FR0 [6 BYTES]

FRA1E - ADD FRl TO FRE

FRA2E - ADD FR2 TO FRE

DD01 FRA10
DD01 A2D9 LDX #FR0+FMPREC POINT TO LAST BYTE OF SUM
DD03 D006 'DD0B BNE :1'1

DD05 FRA2e1
DD05 A2D9 LDX #FR0+FMPREC
DD07 D008 'DDll BNE :1'2

DD09 FRA1E
DD09 A2DF LDX #FRE+FMPREC
DD0B :1'1
DD0B A0E5 LDY #I'Rl+FMPREC
DD0D D004 'DD13 BNE :FRA
DD0F FRA2E
DD0F A2DF LDX #FRE+FMPREC
DDll :1'2
DDll A0EB LDY #FR2+FMPREC

DD13 :FRA
DD13 A905 LDA #FMPREC GET VALUE FOR LOOP CONTROL
DD15 85F7 STA ZTEMP4 SET LOOP CONTROL
DD17 18 CLC CLEAR CARRY
DD18 F8 SED SET DECIMAL MODE
DD19 :FRAl
DD19 B500 LDA 0,X GET 1ST BYTE OF
DD1B 790000 ADC 0,Y ADD
DD1E 9500 STA 0,X STORE
DD20 CA DEX POINT TO NEXT BYTE
DD21 88 DEY POINT TO NEXT BYTE
DD22 C6F7 DEC ZTEMP4 DEC COUNTER
DD24 101'3 'DD19 BPL :FRAl IF MORE TO DO , DO IT
DD26 D8 CLD CLEAR DECIMAL MODE
DD27 60 RTS

MVFR12 - Move FRl to FR2

DD28 MVFR12
DD28 A00S LDY #FMPREC SET COUNTER
DD2A :MV2
DD2A B9E000 LDA FR1,Y GET A BYTE
DD2D 99E600 STA FR2 , Y STORE IT

DD30 88 DEY DEC COUNTER
DD31 10F7 'DD2A BPL :MV2 IF MORE TO MOVE, DO IT
DD33 60 RTS

266

Source Code

MVFROE - Move FRO to FRE

0034
0034
0036
0036
0039

003C
0030
003F

0040
0042
0044
0046
0048
004A
0040
0050
0052
0054
0057
0059
005B
DOSE
0060
0061
0063
0065
0067
0069
006B
0060
006F
007l
0073
0076
0079
007B
0070
007F
0081
0083
0086
0088

0089
0088
0080
008F
0091
0094
0095
0097

A005

B90400
990A00

88
10F7 '0036
60

86FE
84FF
85EF
A2E0
A005
20A700
20B600
A6FE
A4FF
208900
C6EF
F020 '0088
200BOA
8028 '0088
18
A5FE
6906
85FE
9006 '006F
A5FF
6900
85FF
A6FE
A4FF
209800
20660A
B000 '0088
C6EF
F009 '0088
A2E0
A005
209800
3003 '00513
60

86FC
84FO
A005
B1FC
990400
88
10F8 '008F
60

0098 86FC

MVFR0E
LOY

:MVl
LOA
STA

DEY
BPL
RTS

PLYEVL
STY
STA
LOX
LOY
JSR
JSR
LOX
LOY
JSR
DEC
BEQ

#FMPREC

FR(!I,Y
FRE,Y

:MVl

Polynomial Evaluation

Y=A[0]+A[1]*X+A[2] *X**2+ . . . +A[N]*X**N,N>0
=[[... [A[N]*X+A[N-l]]*X+ . .. +A[2J]*X+A[1]]*X+A[0]

INPUT: X IN FR0, N+l IN A-REG
REG [X,Y]->A[N] ... A[0]
OUTPUT Y IN FR0
USES FPTR2, PLYCNT, PLYARG
CALLS FST0R, FMOVE, FLD1R, FADO, FMUL
STX FPTR2 ,SAVE POINTER TO COEFF'S

FPTR2+l
PLYCNT

#PLYARG&$FF
#PLYARG/$1'l0
FST0R
FMOVE
FPTR2
FPTR2+1
FLD0R
PLYCNT
PLYOUT

,SAVE ARG
,ARG->FRl

,COEF->FR0 [INIT SUM]

,DONE?
PLYEVl JSR

BCS
FMUL

PLYOUT
, SUM * ARG
, 0'FLOW

CLC
LOA
AOC
STA
BCC
LOA
AOC
STA

FPTR2
#FPREC
FPTR2
PLYEV2
FPTR2+1
#0
FPTR2+1

PLYEV2 LOX
LOY

FPTR2
FPTR2+1
FL01R JSR

JSR
BCS
DEC
BEQ
LOX
LOY
JSR
BMI

FAOO
PLYOUT
PLYCNT
PLYOUT
#PLYARG&$FF
#PLYARG/$100
FL01R
PLYEVl

PLYOUT RTS

FLOilR
STY

FL00P
FLO'll

STA
DEY
BPL
RTS

Floating Load/Store

LOAO FR0 FROM [X,Y]
STX FLPTR

FLPTR+l
LOY #FPREC-l
LOA [FLPTR],Y

FR0,Y

FLO'll

,BUMP COEF POINTER

,ACROSS PAGE

,GET NEXT COEF
,SUM*ARG + COEF
, 0'FLOW

,DONE ?

,GET ARG AGAIN
, [=JMP]

X=LSB, Y=MSB, USES FLPTR [PG0]
, SET FLPTR => [x, Y]

,# BYTES ENTER HERE W/FLPTR SET
, MOVE

, COUNT & LOOP

LOAD FRl FROM [X,Y] OR [FLPTR]
FLD1R STX FLPTR , FLPTR=>[X,Y]

267

Source Code

DD9A 84FD STY FLPTR+l
DD9C A13135 FLDIP LDY #FPREC-l # BYTES ENTER W/ FLPTR SET
DD9E BIFC FLDll LDA [FLPTRJ, Y MOVE
DDA0 99EI3I313 STA FRl ,Y
DDA3 88 DEY
DDA4 113F8 "DD9E BPL FLDll COUNT & LOOP
DDA6 613 RTS

STORE FR13 IN [X,YJ OR [FLPTRJ
DDA7 86FC FST0R STX FLPTR
DDA9 84FD STY FLPTR+l
DDAB A0135 FST0P LDY #FPREC-l ENTRY ~l/ FLPTR SET
DDAD B9D400 FST01 LDA FR13,Y
DDB0 91FC STA [FLPTRJ, Y
DDB2 88 DEY
DDB3 10F8 "DDAD BPL FST0l
DDB5 613 RTS

MOVE FR13 TO FRI

DDB6 MV0TOl
DDB6 A205 FMOVE LDX #FPREC-l
DDB8 B5D4 FMOVEI LDA FR0,X
DDBA 95E0 STA FRl,X
DDBC CA DEX
DDBD 10F9 "DDB8 BPL FMOVEI
DDBF 60 RTS

EXP[X] and EXP10[X]
DDC0 A289 EXP LDX #LOG10E&$FF E**X 10**[X*LOG10[EJJ
DDC2 A13DE LDY #LOG10E/$100
DDC4 2098DD JSR FLDIR
DDC7 20DBDA JSR FMUL
DDCA B07F "DE4B BCS EXPERR
DDCC A9013 EXP10 LDA #0 113**X
DDCE 85Fl STA XFMFLG CLEAR TRANSFORM FLAG
DDD0 A5D4 LDA FR0
DDD2 85F0 STA SGNFLG REMEMBER ARG SGN
DDD4 297F AND #$7F : & MAKE PLUS
DDD6 85D4 STA FR0
DDD8 38 SEC
DDD9 E9413 S8C #$413
DDDB 3026 "DE03 BMI EXPI X<l SO USE SERIES DIRECTLY

10* *X = 10**[I+FJ [10**I] * [10**FJ
DDDD C904 CMP #FPREC-2
DDDF 106A "DE4B BPL EXPERR : ARG TOO BIG
DDEI A2E6 LDX #FPSCR&$FF
DDE3 A005 LDY #FPSCR/$100
DDE5 20A7DD JSR FST0R SAVE ARG
DDE8 20D2D9 JSR FPI MAKE INTEGER
DDEB A5D4 LDA FR13
DDED 85F1 STA XFMFLG SAVE MULTIPLIER EXP IN XFORM
DDEF A5D5 LDA FR0+1 CHECK MSB
DDFl D058 "DE4B 8NE EXPERR SHOULD HAVE NONE
DDF3 20AAD9 JSR IFP NOW TURN IT BACK TO FLPT
DDF6 20B6DD JSR FMOVE
DDF9 A2E6 LDX #FPSCR&$FF
DDFB A005 LDY #FPSCR/$1013
DDFD 21389DD JSR FLDI'JR : GET ARG 8ACK
DE013 2060DA JSR FSUB : ARG - INTEGER PART = FRACTION

NOW HAVE FRACTION PART OF ARG [FJ IN FR0 ,
* INTEGER PART [IJ

IN XFMFLG. USE SERIES APPROX FOR
10**F, THEN MULTIPLY BY 10**1

DE03 EXPI
DE03 A90A LDA #NPCOEF
DE05 A24D LDX #P10COF&$FF
DE07 A0DE LDY #P10COF/$10"

268

DE09 2040DD
DE0C
DE0F
DE12
DE14
DE16
DE17
DE17
DE18
DEIA
DEIC
DElE
DE20
DE22
DE24
DE26
DE28
DE29
DE2B
DE2D
DE2E
DE30
DE32
DE34
DE36
DE39
DE3B
DE3D
DE40
DE42
DE44
DE47
DE4A
DE4B
DE4C
DE4D

20B6DD
20DBDA
A5Fl
F023 ADE 39
18

+6A
85E0
A901
9002 ADE 20
A910
85El
A204
A900
95E2
CA
10FB ADE 26
A5E0
18
6940
B019 ADE4B
3017 ADE4B
85E0
20DBDA
A5F0
100D ADE4A
20B6DD
A28F
AflDE
2089DD
2028DB
60
38
60
3D17941900
00

DE53 3D57330500
00

DE59 3E05547662
00

DE5F 3E32196227
00

DE65 3F01686030
36

DE6B 3F07320327
41

DE71 3F25433456
75

DEn 3F66273730
50

DE7D 4001151292
55

DE83 3F99999999
99
= 000A

DE89 3F43429448
19

DE8F 4001000000
00

DE95
DE97
DE99
DE9B
DE9D
DEA0
DEA2

86FE
84FF
A2E0
A005
20A7DD
A6FE
A4FF

JSR
JSR
JSR
LDA
BEQ
CLC
RORA
ROR
STA
LDA
BCC
LDA

EXP2 STA
LDX
LDA

EXP3 STA
DEX
BPL
LDA
CLC
ADC
BCS
BMI
STA
JSR

EXPSGN LDA
BPL
JSR
LDX
LDY
JSR
JSR

RTS
SEC

PLYEVL
FMOVE
FMUL
XFMFLG
EXPSGN

A
FR1
#l
EXP2
#$10

FR1+1
#FPREC-2
#0

EXP3
FRI

FR1+2,X

#$40
EXPERR
EXPERR
FRI
FMUL

SGNFLG
EXPOUT
FMOVE
#FONE&$FF
#FONE/ $100
FLD0R
FDIV

;p[X]

;p[x]*p[x]

Source Code

DID WE TRANSFORM ARG
NO SO LEAVE RESULT ALONE

I/2

SAVE AS EXP-TO-BE
GET MANTISSA BYTE
CHECK BIT SHIFTED OUT OF A
I WAS ODD - MANTISSA = 10

CLEAR REST OF MANTISSA

BACK TO EXPONENT

BIAS IT
OOPS ... IT'S TOO BIG

FRI = 10**I
[l0**I]*[l0**F]
WAS ARG<0
NO-DONE
YES-INVERT RESULT

; [PANT , PANT - FINISHED::]
; FLAG ERROR

EXPOUT
EXPERR

RTS
PH1COF . BYTE

& QUIT
$3D,$17,$94,$19,0,0 ;0.0000179419

. BYTE

. BYTE

.BYTE

. BYTE

. BYTE

. BYTE

. BYTE

. BYTE

. BYTE

$3D,$57,$33 , $05 , 0 , 0 ;0.0000573305

$3E , $05 , $54 ,$76,$62,0 ; 0.0005547662

$3E,$32 , $19,$6 2, $27 ,0 ;0.0032176227

$3F , $01,$68 , $60,$30,$36 ; 0.0168603036

$3F,$07,$32,$03 , $27 , $41 ;0.0732032741

$3F,$25,$43,$34 , $56 , $75 ;0.2543345675

$3F,$66 , $27 ,$37,$30, $50 ;0.6627373050

$40 , $01,$15 , $12,$92,$55 ; 1.15129255

$3F,$99,$99 ,$99,$99,$99 ;0 . 999999999

NPCOEF EQU
LOG10E . BYTE

(*-P10COF)/FPREC
$3F,$43 ,$42,$94,$48, $19 ; LOG10[E]

FONE . BYTE $40 , 1. 0, 0 , 0 , 0 ; 1. 0

z = [X-C]/[X + C]

XFORM STX
STY
LDX
LDY
JSR
LDX
LDY

FPTR2
FPTR2+1
#PLYARG&$FF
#PLYARG/$100
FST0R
FPTR2
FPTR2+1

;STASH X IN PLYARG

269

Source Code

DEA4 2098DD JSR FLDIR
DEA7 2066DA JSR FADD 'X+C
DEM A2E6 LDX #FPSCR&$FF
DEAC A005 LDY #FPSCR/$100
DEAE 20A7DD JSR FST0R
DE81 A2E0 LDX #PLYARG&$FF
DE83 A005 LDY #PLYARG/$100
DEB5 2089DD JSR FLD0R
DEB8 A6FE LDX FPTR2
DEBA A4FF LDY FPTR2+l
DEBC 2098DD JSR FLDlR
DEBF 2060DA JSR FSUB ,X-C
DEC2 A2E6 LDX #FPSCR&$FF
DEC4 A005 LDY #FPSCR/$ 100
DEC6 2098DD JSR FLDIR
DEC9 2028DB JSR FDIV [X-C) / [X+C] Z
DECC 60 RTS

LOG10[X]
DECD A901 LOG LDA #l ,REMEMBER ENTRY POINT
DECF DIil02 "DED3 BNE LOGBTH
DEDl A91il0 LOGl0 LDA #0 CLEAR FLAG
DED3 85F0 LOGBTH STA SGNFLG USE SGNFLG FOR LOG / LOGHl

MARKER
DED5 A5D4 LDA FRIil
DED7 llil02 "DEDB BPL LOG5
DED9 38 LOG ERR SEC
DEDA 60 RTS
DEDB LOG5

* WE WANT X = F*[llil**Y), 1<F<10
* llil**Y HAS SAME EXP BYTE AS X

& MANTISSA BYTE = 1 OR llil
DE DB A5D4 LOGl LDA FR0
DEDD 85EIil STA FRI
DEDF 38 SEC
DEE0 E941il SBC #$40
DEE2 ASLA
DEE2 +0A ASL A
DEE3 85Fl STA XFMFLG REMEMBER Y
DEE5 ASD5 LDA FR0+1
DEE7 29FIil AND #$F0
DEE9 D01il4 "DEEF BNE LOG2
DEEB A901 LDA #l
DEED D01il4 "DEF3 BNE LOG3
DEEF E6Fl LOG2 INC XFMFLG BUMP Y
DEFl A910 LDA #$10
DEF3 85El LOG3 STA FR1+1 SET UP MANTISSA
DEFS A204 LDX #FPREC-2 CLEAR REST OF MANTISSA
DEF7 A91il0 LDA #Iil
DEF9 95E2 LOG4 STA FR1+2,X
DEFB CA DEX
DEFC llilFB "DEF9 BPL LOG4
DEFE 21il28DB JSR FDIV , X = X/[lIil**Y] - S.B.

IND,10]
DF01 FLOG11il , ,LOG11il[X],l<=X<=11il
DF01 A266 LDX #SQR10&$FF
DF03 AIilDF LDY #SQRllil/$100
DF05 2095DE JSR XFORM ,Z = [X-C) / [X+C],C*C 10
DF08 A2E6 LDX #FPSCR&$FF
DF0A MIil5 LDY #FPSCR/ $llillil
DF0C 20A7DD JSR FSTIilR ,SAVE Z
DF0F 21ilB6DD JSR FMOVE
DF12 20DBDA JSR FMUL , Z*Z
DF15 A91ilA LDA #NLCOEF
DF17 A272 LDX #LGCOEF&$FF
DF19 AIilDF LDY #LGCOEF/$llillil
DFIB 2041ilDD JSR PLYEVL p[z*z)
DFIE A2E6 LDX #FPSCR&$FF
DF21il A005 LDY #FPSCR / $11il0
DF22 21il98DD JSR FLDIR

270

DF25
DF28
DF2A
DF2C
DF2F
DF32
DF35
DF37
DF39
DF3B
DF3D
DF3F
DF41
DF42
DF44
DF46
DF46
DF49
DF4B
DF4D
DF4F
DF51
DF53
DF53
OF56
DF56
DF58
DF5A
OF5C
OF5E

2308DA
A26C
A30F
239800
2366DA
238600
A933
85D5
A5Fl
85D4
1337 A OF 46
49FF
18
6931
8504

23MD9
24Fl
1336 A OF 53
A983
3504
8504

23660A

A5F3
F33A A OF64
A289
A3DE
239800

OF61 23280B
DF64 18
DF65 63
DF66 4333162277

66
DF6C 3F53333333

33
DF72 3F49155711

38
DF78 BF51734947

38
DF7E 3F39235761

95
OF84 BF34396333

55
DF8A 3F13393312

64
DF93 3F39393834

60
DF96 3F12425847

42
DF9C 3Fl7371206

08
DFA2 3F28952971

17
DFA8 3F86858896

44
= 330A

OFAE 3E16054449
el0

DF84 BE95683845
00

DFBA 3F02687994
16

DFC0 BF34927890
80

DFC6 3F07331520
30

DFCC BF08922912
44

DF02 3Fl1384009
11

Source Code

JSR
LOX
LDY
JSR
JSR
JSR
LOA
STA
LOA
STA
BPL
EOR
CLC
AOC
STA

LOG6
JSR
BIT
BPL
LOA
ORA
STA

LOG7
JSR

LOGOUT
LOA
BEQ
LDX
LDY
JSR

FMUL
#FHALF&$FF
#FHALF/$133
FLOIR
FAOD
FMOVE
#eI
FR0+l
XFMFLG
FR3
LOG6
#-1

#l
FR0

IFP
XFMFLG
LOG 7
#$80
FR3
FR3

FAOD

SGNFLG
LOG DON
#LOG10E&255
#LOG 13E/$ 100
FLOIR

JSR FOIV
LOGOON CLC

RTS

z*p[z*z]

0.5 + Z*p [Z*Z]

FLIP SIGN

LEAVES FRI ALONE

FLIP AGAIN

; LOG [X] = LOG[X] +Y

;WAS LOG13, NOT LOG
; LOG[X] /LOGlel[E]

SQR13 . BYTE $43 , $33,$16,$22,$77,$66 ;SQUARE ROOT OF 10

FHA LF . BYTE $ 3F , $50 ,0 , 0 , 0,0 ; 3.5

LGCOEF . BYTE $3F , $49,$15,$57,$11,$08 ; 3.4915571108

. BYTE $BF,$51,$73 , $49 , $47,$38 ;-el.51704947e18

. BYTE $3F,$39,$20,$57,$61,$95 ;0.3923576195

. BYTE $BF,$04 , $39 , $63 ,$33 , $55 ;-3.3439633355

.BYTE $3F,$10,$09,$30,$12,$64 ;3.1339301264

.BYTE $3F,$09 , $39,$38,$04,$60 ; 3.0939e183463

. BYTE $3F,$12,$42 , $58 , $47,$42 ;3.1242584742

. BYTE $3F,$17,$37,$12,$36,$38 ; 21 . 1737120638

. BYTE $3F,$28,$95,$29,$71,$17 ;3.28957117

. BYTE $3F,$86,$85,$88 , $96,$44 ;3.8685889644

NLCOEF EQU
ATCOEF . BYTE

(*-LGCOEF)/FPREC
$3E,$16,$05,$44,$49 , 0 ;3 . 3316354449

. BYTE

. BYTE

.BYTE

. BYTE

. BYTE

. BYTE

$BE , $95 , $68 ,$38,$45,3 ;-3.039568345

$3F,$32,$68,$79,$94,$16 ;0.0268799416

$BF,$34,$92,$78,$93,$83 ;-0.3492789380

$3F , $37,$33,$15,$23 , 3 ;0.0703152000

$BF,$38,$92,$29,$12,$44 ;-3.0892291244

$3F,$11,$38,$40,$09,$11 ;3.1138403911

271

Source Code

DFD8 BF14283156 .BYTE $BF,$14 , $28,$31 , $56,$04 ,-0.1428315604
04

DFDE 3F19999877 . BYTE $3F,$19,$99,$98,$77 , $44 ,0.1999987744
44

DFE4 BF3333333 1 . BYTE $BF, $33, $33, $33 , $31, $13 -0.3333333113
13

DFEA 3F99999999 FP9S . BYTE $3F , $99 , $99 , $99 , $99 , $99 , 0.999999999
99
= 000B NATCF EQU (* - ATCOEF)/FPREC

DFF0 3F78539816 PIOV4 . BYTE $3F,$78,$53,$98 , $16 , $34 , PI/4 = ARCTAN [1 .0]
34

Atari Cartridge Vectors

DFF6 = BFF9 ORG CRTGI
BFF9 SCVECT
BFF9 60 RTS
BFFA 00A0 DW COLDSTART , COLDSTART ADDR
BFFC 00 DB 0 , CART EXISTS
BFFD 05 DB 5 , FLAG
BFFE F9BF DW SCVECT COLDSTART ENTRY ADDR

End of BASIC

C000 END

272

Appendix A

Macros in
Source Code

The following is a listing of the macros used in this source listing. You will
be able to tell when a macro was used by a plus (+) sign to the left of the hex
code produced in column two by the assembler.

ASLA:
%L

RORA:
%L

LSRA:
%L

ROLA:
%L

FDB:
%L

MACRO
ASL
ENDM
MACRO
ROR
ENDM
MACRO
LSR
ENDM
MACRO
ROL
ENDM
MACRO
DW
IF
DW
IF
DW
IF
DW
IF
DW
ENDIF
ENDIF
ENDIF
ENDIF
ENDM

LOCAL: MACRO

BYTE:

%L

%L

%L

PROC
ENDM
MACRO
IF
DB
ELSE
IF
DW
ELSE
DB
ENDIF
ENDIF
ENDM

A

A

A

A

REV (%1)
'=% 2 ' <>
REV (%2)
'=%3 ' <>
REV (%3)
'= %4 ' <>
REV (%4)
'=%5' <>
REV (%5)

' %1' = '='
$80+(((%2-*)&$7F) XOR $40)

' %1 ' ' @@ '
(%2

%l

Syntax Table Macro

THIS MACRO IS USED TO SIMULATE THE ACTION OF THE ORIGINAL
ASSEMBLER IN HANDLING SPECIAL SYNTAX TABLE PSEUDO OPS AND
OPERANDS

THE 'SYN' MACRO EXAMINES UP TO 4 ARGUMENTS FOR CERTAIN SPECIAL
CASE NAMES.

IF THE NAME 'JS' IS FOUND, IT GENERATES A SPECIAL 'RELATIVE
SYNTAX JSR ' TO THE LABEL FOUND IN THE NEx'r PARAMETER

273

Appendix A

IF THE NAME ' AD' IS FOUND, IT GENERATES A WORD ADDRESS OF
THE LABEL FOUND IN THE NEXT PARAMETER

ANY
SYN:
:SYAR2
: SYAR3
:SYAR4

%L
: SYAR2

%L
:SYAR2

%L

:SYAR3

:SYAR3

:SYAR4

:SYAR4

274

OTHER NAME
MACRO
SET
SET
SET
IF
DB
SET
ELSE

IF
DW
SET
ELSE
DB
ENDIF

ENDIF

IF
IF
DB
SET
ELSE

IF
DW
SET
ELSE
DB
ENDIF

ENDIF
ENDIF

IF
IF
DB
SET
ELSE

IF
DW
SET
ELSE
DB
ENDIF

ENDIF
ENDIF

IF
IF
DB
ELSE

IF
DW
ELSE

IS ASSUMED TO BE A SIMPLE

'=%2'<>'='
' =%3 '< > ' ='
I =%4 1<) ' = I

'%1' = 'JS'
$B0+(((%2-*)&$7F) XOR $40)
0

' %1 ' 'AD'
(%2)
0

%1

:SYAR2
' %2' = 'JS'
$B0+(((%3-*)&$7F) XOR $40)
0

'%2' = 'AD'
(%3)
0

%2

:SYAR3
'%3' = ' JS'
$80+(((%4-*)&$7F) XOR $40)
0

' %3' ' AD '
(%4)
0

%3

:SYAR4
'%4' = ' JS'
$80+(((%5-*)&$7F) XOR $40)

'%4' = ' AD'
(%5)

DB %4
ENDIF

ENDIF
ENDIF

ENDM

BYTE VALUE

Appendix B

The Bugs in
Atari BASIC

Yes, it's true . There are some bugs in Atari BASIC. Of course,
that's not surprising, since Atari released the product as ROM
without giving the authors a chance to do second-round bug­
fixing. But what hurts, a little, is that most of the fixes for the
bugs have been known since June of 1979.

As this book is being written, rumor has it that at last Atari
is in the final stages of releasing a new version of the BASIC
ROMs. Unfortunately, these modified ROMs will appear too
late for us to comment upon them in this edition. On the other
hand, there are supposed to be fewer than twenty fixes
implemented (which isn't a bad record for a product as mature
as Atari BASIC), so those of you who are willing to PEEK
around a bit can use this listing as at least a road map to the
new ROMs.

In any case, though, we thought it would be appropriate to
mention a few of the bugs we know about, show you why they
exist, and tell how we fixed them back there in the summer of
'79.

The Editing and String Bug
In the course of editing a BASIC program, sometimes the
system loses all or part of the program, or it simply hangs .
Often, even SYSTEM RESET will not return control to the user.

Also, string assignments that involve the movement of
exact multiples of 256 bytes do not move the bytes properly.
For example, A$ = B$(257,512) would actually move bytes 513
through 768 of B$ into bytes 257 through 512 of A$, even if
neither string were DIMensioned to those values.

Both of these are really the same bug. And both are caused
because we strove to be a little too efficient.

There are many ways to move strings of bytes using the
6502' s instruction set. The simplest and most-used methods,
though, are excruciatingly slow. So Paul and Kathleen
invented a super-fast set of move-memory routines, one for

275

Appendix B

moving up in memory (EXPAND, at $A881) and one for
moving down in memory (CONTRACT, at $A8FD).
Unfortunately, the routines are very complex (which is what
makes them fast) and difficult to interface with properly. And
so a bug crept into CONTRACT.

Take a look at the code of FMOVER ($A947). When we get
here, we expect MVLNG to contain the complement of the least
significant byte of the move length while MVLNG + 1 contains
its most significant byte. But look what happens if the original
move length was, for example, $200. The complement of the
least significant byte ($00) is still zero ($00), so the BEQ to
:CONT4 occurs immediately.

But by then, the X register contains the number of pages to
move plus one (X would contain 3 in this example), so we
increment it (it becomes,2) and go to label :CONT3, where we
bump the high-order byte of both the source and destination
addresses . Ah, but therein lies the rub! We haven't yet done
anything with the first values in those source and destination
addresses, so we have effectively skipped 256 bytes of each!

The solution is to replace the BEQ :CONT4 at $A94E with
the following code:

DEX
BNE :CONT2
RTS

Do you see the difference? If we enter with MVLNG equal
to zero, we immediately move 256 bytes (at :CONT2) before ever
attempting to change the source and destination addresses.

And this fix works, honest. We've been using it like this for
over two years in BASIC A + .

Minus Zero
Taking the unary minus of a number (A=O: PRINT -A) can
result in garbage. Usually, this garbage will not affect
subsequent calculations, but it does print strangely. And how
did this come about?

We simply forgot to take into consideration the fact that
zero doesn't really have a sign. Look at the code for the unary
minus operator (XPUMINUS, at $ACA8). Do you see the
problem? We simply invert the most significant bit (the sign bit)
of the floating point number in FRO .

276

Appendix B

What we should have coded would be something like this:

LDA FRO
BEQ :NOINVERT
EOR #$80
STA FRO

:NOINVERT

Luckily, this is not too severe a problem to the BASIC user
(one can always use "PRINT O-A" instead of "PRINT -A"),
but just think - it only cost two bytes to fix this bug.

LOCATE and GET
The GET statement does not reinitialize its buffer pointer, so it
can do nasty things to memory if used directly after a statement
which has changed the system buffer pointer. For example,
GET can change the line number of a DATA statement if it is
used after a READ. Also, the same problem exists for the
LOCATE statement, since it calls GET.

From BASIC, the easiest solution is to use a function or
statement which is known to reset the pointer. Coding
"XX = STR$(O)" works just fine, as does PRINTing any
number.

Within the source listing, the problem exists at location
$BC82, label GET1 . If the code had simply read as follows,
there would be no bug:

GETl
JSR INTLBF; reset buffer pointer
LDA #ICGTC ; continue as before

INPUT and READ
Using either an INPUT or READ statement without a following
variable does not cause a syntax error (as it should). Then,
attempting to execute a statement such as 20 INPUT can cause
total system lock-up.

The solution from BASIC? Be careful and don't do it.
And this is one bug that we will not show the fix for,

simply because it's too long and involved. We will, however,
point to labels :SINPUT and :SREAD (at locations $A6F4 and
$A6F5) in the Syntax Tables and show why the bug exists.

Note that the :SINPUT does a syntax call (SYN IS,) to the
:OPD syntax, which looks for - but does not insist upon - a
file number specifier (# < numeric expression>). Then the

277

Appendix B

syntax joins with :SREAD, which looks for zero or more
variables .

Oops! Zero or more? Shouldn't that be one or more? That's
where the problem lies.

Do Not Use NOT
In all too many cases, the use of the NOT operator is
guaranteed to get you in trouble. If you don't believe it, try
this: PRINT NOT NOT 1.

The explanation of why the bug occurs is too lengthy to
give in detail here; suffice it to say that the precedence of NOT
is wrong. Remember the Operator Precedence Table we
displayed in Chapter 8 of Part 2? Look at what you got for the
go-onto-stack and come-off-stack precedence values for NOT.

Or look at location $AC57, the NOT entry in OPRTAB.
NOT uses a 7 for both its precedence values. But wait a minute.
If two operators have the same apparent precedence (as in
NOT NOT A or even A + B + C), the expression executor will
pop the first one off the stack and execute it . But with a unary
operator, there is nothing to execute yet .

And the same bug exists for both unary minus and unary
plus, so - -3 and + +5 don't execute properly. Of course, since
unary plus doesn't really do anything, it doesn't matter. In the
case of unary minus, though, all but the last minus sign in a
string of minus signs is ignored (that is, - -3 produces -3 as a
result, instead of +3, as it should). But, by an incredible
coincidence, the damage that unary minus causes is invisible to
Execute Expression as a whole and only produces the error
noted.

The fix? Well, if we want to leave NOT where it is in the
order of things, the only way is to restructure the whole
precedence table. But if we are willing to accord it a very high
precedence, like unary plus and minus, we can fix it - and
plus and minus - by changing the bytes at $AC57, $AC64, and
$AC65 to $DC. And, thanks to the differing go-onto-stack and
come-off-stack values, we can stack as many NOTs, pluses, or
minuses as we want.

Are these all the bugs we know about that can be fixed
easily? No. But these are the easiest to understand or the
easiest to fix, and we thought they were instructive.

Of course, unless you have an EPROM board and burner
handy, you may not be able to take advantage of these fixes.

278

Appendix B

But at least now you may be able to work around them as you
program with good old buggy-version Atari BASIC.

And take heart. Remember Richard's Rule: Any nontrivial
piece of software has bugs in it. And the corollary: Any piece of
software which is bug-free is trivial.

279

Appendix C

Labels and
Hexadecimal

Addresses
MOD AF52 CGTO 0017 CVFPI 1'.056 EXEXPR AAE0
MPSTR AB98 CILET 0036 CVIFP 09AA EXOPOP AB0B

n AOC AF53 CIO E456 OATAO 00B6 EXP 00C0
AOFLAG 00Bl ClX 00F2 OATALN 00B7 EXPl OE03

n AFP 0800 CLALLl B04F n DC BORG 0300 EXP10 OOCC
AMULl AF50 CLE 0010 OEGFLG 00FB EXP2 OE20
AMUL2 AF46 CLEN 0042 OEGON 0006 EXP3 OE26
APHM fJ00E CLIST 0004 OIGRT 00Fl EXPAND 1'.881
ARGOPS 0080 CLPRN 0028 OIRFLG 001'.6 EXPERR OE4B
ARGP2 AC06 CLSALL B041 ONERR BCB0 EXPINT AB2E
ARGPOP ABF2 CLSYSl BCFl OOSLOC 000A EXPLOW A87F
ARGPUS ABBA CLSYSO BCFl OSPFLG 02FE EXPOUT OE4A
ARGSTK 0080 CLT 0020 ECSlZE 00A4 EXPSGN OE39
ARSLVL 00AA CMINUS 0026 EEXP 00EO EXSVOP 00AB
ARSTKX 001'.1'. CMUL 0024 ELAOVC BAOO EXSVPR 00AC

n ASClN 0800 CNE 001E ENOSTA 008E FAOO 01'.66
ASLA mac CNFNP 0044 ENOVVT 0088 n FASC OBE6
ATAN BE77 CNOT 0028 ENTOTO 00B4 FBOOY 000C
ATANl BE9A COLOl A00B EPCHAR 0050 FCHRFL 00F0
ATAN2 BE04 COLOST 1'.000 ERBRTN B920 FOB mac
ATCOEF OFAE COLOR 00C8 ERGFOE B922 FOIV OB28
ATEMP 00AF COMCNT 00B0 ERLTL B924 FHALF OF6C
ATNOUT BEE2 CON 001E ERNOFO B926 FlXRST B825
BlNINT 0004 CONTLO ABFB ERNOLN B92B FL001 OOBF
BOTH BOB3 CONTRA ABFO n ERON B93E n FL00P 0080
BRKBYT 0011 COPEN BBB6 EROVFL B92A FL00R 00B9
BYELOC E471 COR 0029 ERRAOS B92C FL011 009E

n BYTE mac COS BOBl ERROIM B92E n FL01P 009C
C 0044 COX 0094 ERRONO B918 FL01R 009B
BYELOC E471 CPC 0090 ERRINP B930 FLIM 0000

n BYTE mac CPLUS 0025 ERRLN B932 FLlST BA05
C 0044 CPNO 001C ERRNSF B916 n FLOG10 OF01
CAASN 0020 CR 009B ERRNUM 00B9 FLPTR 00FC
CACOM 003C CREAO 0022 ERROOO B934 FMOVE 00B6
CAOR 0043 CREGS 02C4 ERROR B940 FMOVEl OOBB
CALPRN 0el38 CRPRN 002C ERRPTL B91A FMOVER A947
CANO 0021'. CRTGl BFF9 ERRSAV 00C3 FMPREC 0005
CASC 0040 CSASN 002E ERRSSL B936 FMUL OAOB
CCHR 003E CSC 0015 ERRVSF B938 n FNTAB 1'.829
CCOM "012 CSEQ 0034 ERSVAL B91C FONE OE8F
CCR 0016 CSGE 0031 ERVAL B93A FP9S OFEA
COATA 0001 CSGT 0033 ESlGN 00EF FPI 0902
COlV 0027 CSLE 002F EVAAOR 0002 FPONE BE71
COLPRN 0039 CSLPRN 0037 EVAOl 0004 FPORG 0800

n CDOL 0013 CSLT 0032 EVAD2 0006 FPREC 0006
n COQ 0010 CSNE 0030 n EVARRA 0040 FPSCR 05E6

COSLPR 003B CSOE 0011 EVDIM 0001 FPSCRl 05EC
CEOS 0014 CSROP 0010 n EVNUM 0001 FPTR2 00FE
CEQ 0022 CSTEP 0011'. EVSADR 0002 FR0 00D4
CERR 0037 CSTR 003D EVSCAL 0000 FR0M 0005
CEXP 0023 CTHEN 001B EVSDIM 0006 FRl 00E0
CFFUN 003D CTO 0019 EVSOTA 0002 FR1M 00El
CFLPRN 003A CUMlNU 0036 EVSLEN 0004 FR2 00E6
CFOR 0008 CUPLUS 0035 EVSTR 008el FRA10 OD01

CGE 001F CUSR 003F n EVl'YPE 0000 FRA1E OD09

CGOSUB 000C CVAFP DB00 n EVVALU 0002 FRA20 0005
CGS 0018 CVAL 0041 EXECNL A95F FRA2E DD0F

CGT 0021 CVFASC DBE6 EXECNS 1'.962 FRADO A03B

281

Appendix C

FRCMP A035 n ICOIN 0001 LSRA mac RNOOIV B0A8
FRCMPP A032 ICOIO 0003 LSTMC B630 RNOLOC 020A
FROIV A040 n ICOOUT 0002 MAXCIX 009F ROLA mac
FRE 000A n ICP8C 000A MOENO OBIA ROM A000
FRMUL A047 n ICPBR 0008 MOESUP OCCF RORA mac
FRSIGN "''''EE ICPTC "'00B MOSUP OCE0 RSHF0E OC62
FRSUB A041 n ICPTR 0009 MEMFUL B93C RSHFT0 OC3A
FRUN BAF7 ICPUT 0346 MEMTOP 0090 RSHFTl OC3E
FRX 00EC ICSBRK 0080 n MENOl OBIE RSTPTR B8AF
FSCR 05E6 n ICSOER 0083 MEN02 OB21 RSTSEO B099
FSCRl 05EC n ICSONR 0081 MEN03 OB24 RTNVAR AC16
FSQR BF08 n ICSEOF 0"'03 MEOLFL 0092 RUNINI B8F8
FST01 OOAO n ICSIVC "''''84 MISCRl 0480 RUNSTK 008E

n FST"'P OOAB ICSIVN 0086 MISCRA "'500 SAVCUR 0"'BE n
MV"'TOl 00B6 SAVOEX "''''B3 FST"'R 00A7 n ICSNEO "'082 MVFA "''''99 SCANT 00AF FSTEP "'006 n ICSNOP "'085 FSUB OA60 n ICSOK 0001 MVFR0E 0034 SCOEF BE41

FTWO BF93 ICSTA 0343 MVFR12 0028 SCRX 0055
GOIOl BC22

"'000 MVLNG 00A2 SCRY 0054 ICSTAT
MVTA 009B SCVECT BFF9 GOVCIO BCIO 0002 n ICSTR
NATCF 00"'B SEARCH A462 GETl BC82 0087 n ICSWPE

AB40 GETlIN ABE9 NCTOFR SETOZ B072 IFP 09AA
NIBSH0 OBEB SET LIN B818 GETINT ABE0 OA5A GETLL A900 n ILSHFT
NIBSH2 OBE7 SETLNl B81B AB08 INBUFF "'0F3
NLCOEF 00"'A SETS EO B079 n GETPI0

AB05 INOEX2 "'097 NOC00 B00 1 00F0
GETPIN

OA51 SGNFLG A9A2 INTLBF
NORM OC00 SICKIO BCB9 GETSTM

BO"'A GETTOK AB3E 101
NORMl OC04 SIN BOA7 GETVAR AB89 n 102 B00E NPCOEF 000A SINOON BE4'" GFOISP 0003 103 B010
NSCF 0006 SINERR BOAS GFHEAO 0004 104 B012
NSIGN 00EE SINFl BOF6 n GFLNO 0001 105 B019
NXTSTO 00A7 SINF3 BE00 GFTYPE 0000 n I06 BOlD
ONLOOP 00B3 SINF4 BEll GIOCMO B004 107 B024
OPETAB AA70 SINF5 BOE4 GIOOVC BC9F 108 B026
OPNTAB A7E3 BODS IOCB 0340 n SINF6 GIOPRM B002

IOCBOR 034'" OPRTAB AC3F SINF7 BOCC GLGO BA92
00C0 OPSTKX 00A9 n SINOVF BOCB GLINE BA89 IOCMO

OUTBUF 008'" 0480 IOOVC 00Cl SIX GLPCX BAC4
IOTES2 BCB6 Pl"'COF OE40 SKBLAN OBAI GLPX BAC6
IOTEST BCB3 n PATCH BOA4 SKCTL 020F n GNLINE BA80
ISVAR B02F PATSIZ 0001 SKPBLA OBAI GNXTL A900 ISVARl B020 PIOV18 BE6B SNTAB A4AF GRFBAS 0270

n LBPR1 057E PIOV2 BE5F SNXl A0 5'" GSTRAO AB9B
n LBPR2 "'57F PIOV4 OFF0 SNX2 A053 GTINTO ABE3 LBUFF "'580 PLYARG 05E'" SNX3 A050 GVVTAO AC28 LOOVX BCA6 PLYCNT 00EF SOPEN BBOl HIMEM 02E5 LOIOST BCFB PLYEVl 005B SOX 0481 HMAOR 02E5 LOLINE B578 PLYEV2 006F SPC 0482 n IBUFFX "''''A 9 LELNUM 00AO PLYEVL 004'" SQR BEES ICAUXl "'34A LGCOEF OF72 PLYOU1' 0088 SQRl BF00 ICAUX2 034B LISTOT 00B5 POKAOR "'095 SQR10 OF66 ICAUX3 034C LLINE B55C POPI AC0F SQR2 BF84 ICAUX4 0340 LLNGTH 009F POPRST B841 SQR3 BF8A ICAUX5 034E LMAOR 02E7 PRCHAR BA9F SQRCNT 00EF ICBAH 0345 LOAOFL 00CA PRCR B06E SQROON BF64 ICBAL "'344 LOCAL mac PRCX BAA l SQRERR BEE3 ICBLH 0349 LOG DECO PROYl B059 SQRLP BF2A ICBLL 0348 n LOGl OEOB PREAOY B057 SQROUT BF92 ICCLOS 000C LOG10 OEOl PROMPT 00C2 SRCAOR 0095 ICCOM 0342 LOG 10E OE89 PSHRST B683 SRCNXT A490 n ICOOC 000E LOG2 OEEF PSTR B480 SRCSKP "'0AA n ICONO "'341 LOG3 OEF3 PTABW "'0C9 SREGl 0208 ICORAW "'011 LOG4 OEF9 PUTCHA BA9F SREG2 0200 n ICFREE 00FF LOGS OEOB QTEMP 0009 SREG3 0201 n ICGBC 0006 LOG6 OF46 RAOFLG "'0FB SSTR BA73 n ICGBR 0004 LOG7 OF53 RADON 0"'0'" STACK 0480 ICGR "'01C LOGBTH OE03 RESCUR B6BE STARP 008C ICGTC 0007 LOGOON OF64 RISASN AEA6 STENUfl 00AF ICGTR 0"''''5 n LOGERR OE09 RISC AB64 STETAB AA00 n ICHIO ~340 n LOGOUT OF56 RML 00"'7 STINOE 00A8 ICLEN 0010 LOMEM 0080 RMSG B067 STKLVL 00A9

n ICMAX "'00E LPRTOK B535 STMCUR 008A

282

Appendix C

STMLBO 00A7 XOATA A9E7 XPCHR B067 XPSNE ACBE
STMSTR 00A8 XOEG B261 XPCOS 8125 XPSQR BlS7
STMTAB 0088 XOIM BI09 XPOIV AC9F XPSTIC B026
STOP B7A7 XOOS A9EE XPOLPR A082 XPSTR B049
STOPLN 008A XOPSLP A082 XPEQ ACOC XPSTRI B02E

STRCMP AF81 XORAWT 8A31 XPEXP B140 XPUMIN ACA8
SVCOLO 02FB XENO 8780 XPFLPR A07B XPUPLU ACB4
SVDISP 0082 XENTER 8ACB XPFRE AFEB XPUSH A016

SVESA 0£197 XERR 891E XPGE ACOS XPUSR B0BA

SVONTC 00B0 XFALSE A000 XPGT ACCC XPUT BC72

SVONTL 00B2 XFMFLG "'0Fl XPIFP AFOI XPVAL B000

SVONTX 00B3 XFOR 8648 XPIFPl AFOS XRAO B266

SVVNTP 0£1AO XFORM OE9S XPIFP2 AF08 XREAO B283

SVVVTE 0£181 XGET BC7F XPINT B000 XREM A9E7

SYN mac XGOI B6AE XPLl£1 B143 XREST B26B

SYNTAX A£l6£1 XG 0 2 86A6 XPLE ACBS XRTN B719

TEMPA 00C4 XGOSU8 86A0 XPLEN AFCA XRUN B740
TENOST A9E2 XGOTO B6A3 XPLOG B139 XSAASN AEA3

n TESTRT A9E7 XGR BAS0 XPLOT 8A76 XSAVE BBSO
TOPRST 0090 XGS B6C7 XPLPRN ABIF XSAVEI BB62
TRAPLN "'0BC XGSI 86CA XPLT ACCS XSETCO B987
TSCOX 00A8 XIF 8778 XPMINU AC80 XSOUNO B900
TSLNUM £I0A0 XINPUT 8316 XPMUL AC96 XSTATU 8C28
TSTALP A3F7 XINT 80E6 XPNE ACBE XSTOP 8793
TSTBRK A9F4 XITBT B3S4 XPNOT ACF9 XTF A009
TSTENO B910 XLET AAE0 XPOINT BC40 XTI A007
TSTNUM OBAF XLIST B483 XPOKE 824C XTRAP B7El
TVNUM 0003 XLOAO BAFB XPOP 8841 XTRUE AO£l5
TVSCIX 00AC XLOAOI BB04 XPOR ACEE XXIO BBES
TVTYPE 0002 XLOCAT BC9S XPOS 8A16 ZFl OA46
VNTO 0084
VNTP 0082 XLPRIN 8464 XPPOL 8£122 ZFP 0002

VNUM 0003 XNEW A0£1C XPPEEK AFEI ZFR0 OA44

VTYPE 0002 XNEXT B6CF XPPLUS AC84 ZICB 0£120

WTP 0086
XNOTE BC36 XPPOWE 8165 ZPAOEC AFBC

WARMFL 0£108
XON 87EO XPPTRI B02A ZPG l 0080

WARMST A040 XOPl B8EO XPRINT 8386 ZTEMPl 00FS

WWTPT 0£190 XOP2 OBFB XPRNO B08B ZTEMP2 00CG

XBYE A9E8 XOPEN 88E8 XPRPRN A070 ZTEMP3 00F9

XCLOAO BBAC XPAASN AOSF n XPSEQ ACOC ZTEMP4 00F7

XCLOSE BClB XPABS B0AE XPSGE ACOS ZVAR 08C£I

XCLR B766 XPACOM A079 XPSGN A019 ZXLY OA48

XCMP A026 XPAOR 80lC XPSGT ACCC

XCOLOR BA29 XPALPR A086 XPSIN BllB
XCOM BI09 XPANO ACE3 XPSLE ACB5
XCONT B7BE XPASC B012 XPSLPR AE26

XC SAVE BBA4 XPATN B12F XPSLT ACCS

283

Symbols
in Operator Name Table 177
with string literals 130

(See also XPACOM)
in Operator Name Table 177
precedence of 69-70
with array, in ONT 180
with PRINT 98

$ in hexadecimal 115
in Operator Name Table 177
in variable names 15, 46

(See alphabetic entry for terms
that begin with":", like
: LPRSCAN) 58
in Operator Name Table 177
with PRINT 98
in Operator Name Table 177
with PRINT 98

in Operator Name Table 178
with PRINT 98

< = (See also XPLE, XPSLE) 178-79
< > (See also XPNE, XPSNE) 178-79
> = (See also XPGE, XPSGE) 178-79
< (See also XPLT, XPSLT)

in ABML 34-39
in Operator Name Table

178-79
precedence of 56

> (See also XPGT, XPSGT)
in ABML 34-39
in Operator Name Table

178-79
precedence of 56

(See also XPEQ, XPSEQ) 41-42,
58-64
in Operator Name Table

178-79
precedence of 55-56

A in Operator Name Table 178
precedence of 55-56,58-64

(See also XPMUL, FMUL,
FRMUL)
in Operator Name Table 178
precedence of 55-56,58-64

+ (See also XPPLUS, XPUPLUS,
FADD, FRADD)
in Operator Name Table 178
unary 179, Appendix B
precedence of 55-56,58-64

Index
(See also XPMINUS, XPUMINUS,

FSUB, FRSUB)
in Operator Name Table 178
unary 179, Appendix B

(See also XPDIV, FDIV, FRDIV)
178

(See also XPDLPRN, XPALPRN,
XPSLPRN)
in variable names 15, 46
mathematical, in Operator

Name Table 179
precedence of 69-70
string, array, DIM, and func­
tion, in ONT 179-80
tokens for 70

(See also XPRPRN)
in Operator Name Table 179
precedence of 69-70

34-37
34,37,41

= < 56
as EOE operator 34-35,58-64

? 95

Numbers
6502 microprocessor 1-2, 40

A
AADD 202, $AF52
AADR66-68
AAPSTR 191, $AB98
ABS (See also XPABS) 69, 180, 206
Absolute Non-Terminal Vector (See

ANTV)
ABML (Atari BASIC Meta-Language)

33-34,37
AD Appendix A
addition (See FADD, FRADD)
ADR 180
AMUL 202, $AF5D
AMUL 2 202, $AF46
AND (See also XPAND) 89,179
ANTV (in ABML) 40-42, 44, 162
APHM 13, 143, $OOOE
application high memory 13
ARGOPS 23, 66, 143, $0080
ARGP2 192, $AC06
ARGPOP 192, $ABF2

285

Index

ARGPUSH 65,191, $ABBA
ARGSTK 23, 66, 143, $0080
arguments 56
Argument Stack 12, 23, 56-67

entry format 66-68
example of use 56-64

arithmetic assignment operator (See
XPAASN)

arithmetic expressions 12, 55-65
array variables 15-16, 18, 66-67, 69-70,

106-7,127
Array/String Table (See String/ Array

Table)
ARSLVL66, 144, $OOAA
ARSTKX 144, $OOAA
ASC (See also XPASC) 180, 204
ASCIN 246, $D800
ASLA: Appel1dix A
assembler 2
assembly language 2-3
ATAN[X] 244, $BE77
Atari BASIC

as a high-level language 2-5
location in memory 14
Meta-Language (ABML) 33
ROM pointer 143, $AOOO

Atari cartridge vectors 272
ATASCII 9, 47, 88, 90, 116, 135-36
AT LINE (in error message) 74,231-32,

$B9AE
ATN (See also XPATN, ATAN) 180,207,

244
AUXI1 (i.e. , AUX1, AUX2, etc.) 99-100

B
BASIC ROM pointer 143, $AOOO
binary 115,119-20
blanks in program lines 27, 29
block move routines 20-23
BNF33
BREAK 50, 96, 101
BRKBYT 101, 110, 143, $0011
buffer (See also INBUFF, OUTBUFF,

LBUFF) 13, 65, 145
bugs Preface, 20-21, Appendix B
BYE (See also XBYE, :SBYE) 105
BYELOC 143, $E471
byte 119-20
BYTE: Appel1dix A

c
CALPRN70
carriage return character 177
cartridge vectors 272

286

CDLPRN70
CDSLPR 70
CFLPRN70
Change Last Token (in ABML) 41-42
CHNG (in ABML) 41-42,45, 162
CHR$ (See also XPCHR) 180, 205
CIO 25, 85, 91, 93, 102, 143, $E456
CIX 26, 29-30, 43, 45, 47
CLOAD (See also XCLOAD, :SCLOAD)

84,237
CLOG 180
CLOSE (See also XCLOSE, :SCLOSE)

100, 146, 239
CLPRN 70
CLR (See also XCLR, :SCLR) 83,103,224
CLSALL 242, $BD41
CLSYSI99, 241, $BCF1
CLSYSD 241, $BCFl
COLDSTART 86,101, 109-110, 147,

$AOOO
COLOR (See also XCOLOR, : SCOLOR)

execution 91, 233
memory location 91-92, 144,

$00C8
color registers (See also CREGS) 91-92,

143
COMMON (unused command; see

XCOM, :SCOM)
compiler 3-4
constants 33-34, 130
CONT (See also XCONT, :SCONT)

71-72, 225
:CONT2183, Appel1dix B, $A954
:CONT3183, Appel1dix B, $A950
:CONT4183, Appel1dix B, $A95B
CONTLOW 20-23, 31, 77, 182, $A8FB
CONTRACT 20-22, 28, 182-83, $A8FD,

Appel1dix B
conversion

ASCII to floa ting point 145,
$00ED-$00F1

decimal to hexadecimal 116-17
floating point to ASCII (See also

CVFASC) 250-52
floating point to integer (See also
CVFPI, FPI) 197, 253-55
hexadecimal to decimal 116
integer to floating point (See also
CVIFP) 252-53

COPEN 237, $BBB6
COS (See also XPCOS, COS[X]) 105, 180,

207,243
COS[X] 243, $BDB1
COX 26,27-30,43,45,48,97-98,144,

$0094
CPC 43-44, 144, 153, $009D

CPU stack 43, 51, 74-75, 109-110
CREGS 143, $02C4
CRTGI 143, $BFF9
CSA VE (See also XCSAVE, : SCSAVE)

84, 237
CSLPRN70
Current Program Counter (See CPC)
CVAFP96, 246, $D800
CVFASC 98,250, $$D8E6
CVFPI (See also FPI) 197, $AD56
CVIFP 252, $D9AA
:CVFRO 263, $DC70

D
Dl169, $A705
DATA (See also XDATA, :SDATA)

103-104, 110, 131,140
DATAD 103-4, 110, 144, $00B6
DATALN 103-4, 110, 144, $00B7
DCBORG 143, $0300
debugger 2
decimal 115-17
:DECINB 265, $DCC1
definition

in language crea tion 33-34
DEG (See also XDEG, :SDEG) 105, 145,

211
DEGFLG 145, $OOFB
deleting lines 28
DEND 81-82
DIM (See a/so XDIM, :SDIM) 16-17, 66,

127
and " (" operator 70, 197
effects on tables 16-17
execution 106-7, 210

DIMENSION TOO SMALL error (See
also ERR DIM) 96

direct statement 32,49,51-52,74
DIRFLG 26,30-32,144, $00A6
Disk Device Dependent Note

Command 100
division (See FDIV, FRDIV, 'I')
DOS (See also XDOS, :SDOS) 105, 109
DOSLOC 143, $OOOA
DPEEK 122
DPOKE 122
DRAWTO (See also XDRAWTO,

:SDRAWTO) 92-93, 146, 233
deus ex machina 40-41,46
DSPFLG 143, $02FE
DST 81-82
DVVT 81-82

Index

E
ECHNG 45, 154, $A2BA
Editor (See Program Editor)
:EGTOKEN (See GETTOK)
ELADVC 83, 235, $BADD
END (SeealsoXEND, :SEND) 71-72, 225
End Of Expression (See EOE operator)
end-of-s~atement token (See also EOS) 76
ENDSTAR 139,143, $008E
ENDVVT 143, $0088
English 37
ENTDTD 85-86,110, $00B4
ENTER (See also XENTER, :SENTER) 23,

25, 123, 128, 140
device 71, 85-86
execution 85-86, 235

EOE operator 57-66
EOL character 58, 95-96, 98, 99-100, 143,

177
EOPUSH 65, 189, $AB15
EOS 169, $A6F8
EOS2 173, $A773
EPCHAR 143
equates

ICCOM value 146
ICSTA value 146
miscellaneous 143
Run Stack 147
variables 147

ERBRTN 230, $B920
ERGFDE 230, $B922
ERGFDEL 77, 79, 224, $B74A
ERLTL 230, $B924
ERNOFOR 78, 230, $B926
ERNOLN 75, 230, $B928
ERNTV 44, 152, $A201
ERON 230, $B93E
EROVFL 230, $B92A
ERRAOS 230, $B92C
ERRDIM 106, 230, $B92E
ERRDNO 230, $B918
ERRINP 96, 230, $B930
ERRLN 230, $B932
:ERRM1231, $B961
:ERRM2 71, 231, $B974
ERRNSF 83, 230, $B916
ERRNUM 72,101,110,144, $00B9
ERROOD 104, 230, $B934
ERROR 71, 88, 101, 106, 231, $B940
error handling 73-74

and DATA-READ 104
and DIM 106
and GOT075
and INPUT 96
and LOAD 83

287

Index

and SETCOLOR 91
and SOUND 93
and TRAP 73, 231
execution 231
in 110 101, 109, 146
in line processing 25-26,28
in LISTing 88
in statement processing 29-30
in syntactical analysis 38-39
messages 230
missing FOR entry 78
missing GOSUB entry 79
missing line number 77
that stops program 73-74

ERRPTL 83,230, $B91A
ERRSAV 144, $00C3
ERSVAL 230, $B91C
ERVAL 91, 93, 230, $B93A
ESRT (in ABML) 40-41, 44, 47, 162
:EVEN 249, $D8CE
EXECNL 32,49,75, 183, $A95F
EXECNS 183, $A962
Execute Expression (See also EXEXPR)

12, 55-70, 105, 189-90
Execution Control 49-54, 75, 77, 83,

183-85
EXECUTION OF GARBAGE error (See

also XERR) 106
executor (See Program Executor)
EXEOL 184, $A989
EXEXPR 64-65,189, $AAEO
EXNXT 65,189, $AAE3
EXOP 65,69,190, $AB20
EXOPOP 65, 189, $ABOB
EXOT 65,189, $AAEE
EXP (See also XPEXP) 180, 208
: EXP 162, $A60D
EXP[Xj 268, $DDCO
EXPI0[Xj268, $DDCC
EXPAND 20-21, 106-7, 144, 181, $A88l,

Appendix B
EXPINT 65, 190, $AB2E
EXPL 173, $A76C
EXPL1173, $A76F
EXPLOW 20-22,31,77-78, 181, $A875
exponential operator (i .e., A **B; see

XPPOWER)
expressions (See also Execute

Expression)
in ABML34
rearrangement of 55-65

Expression Non-Terminal Vector (See
VEXP)

Expression Rearrangement Procedure
(See also expressions, rearrangement
of) 57

288

EXPTST 65,189, $AAFA
EXSVOP 65, 144, $OOAB
EXSVPR 144, $OOAC
Externa l Subroutine Call (See ESRT)

F
FADD 255, $DA66
FAIL 44-45, 153, $A26C
fa lse (See XFALSE, :FALSE)
:FALSE 224, $B788
FDB: Appendix A
FDIV 259, $DB28
files

LIST-ENTER format (See FLIST)
SAVE-LOAD format 81-82

F1XRSTK 226-27, $B825
FLIST 235, $BAD5
fl oating point 126-27

add (See FADD, FRADD)
ASCII to fp conversion 145,
$OOED-$OOFI
fp to ASCII conversion 250-52
$D8E6-$D9A9 '
fp to integer conversion 253-55,
$D9D2-$DA5F
comparisons 196-97
divide (See FDIV, FRDIV)
in ROM 14, 143, 246-72,
$D800-$DFF6
integer to fp conversion 252-53,
$D9AA-$D9CF
load/store 267
multiply (See FMUL, FRMUL)
routines 255-67
subtract (See FSUB, FRSUB)
zero page work area 143, 145,
$00D2-$00EC

FLOG10 270, $DF01
FMOVER 183, Appendix B, $A947
FMUL 257 $DADB
: FNZERO 264, $DCA4
FOR (See also XFOR, :SFOR) 12

entry on Ru ntime Stack 18-19
76-77,133-34 '
execution 77-78, 220-21
tricks with 131

FPl 253, $D9D2
FPORG 143, 246, $D800
FRO 145, $00D4
FROM 145, $00D5
FR1145, $OOEO
FR1M 145, $00E1
FR2145, $00E6
FRA I1I1 (i.e., FRAI0, FRA20) 266, $DDOI
FRADD 196, $AD3B

FRCMP 196, $AD35
FRDIV 196, $AD4D
FRE

floating point memory location
145, $OODA
function (See also XPFRE) 180, 204

FRMUL 196, $AD47
FRSUB 196, $AD41
FRUN 236, $BAF7
FS 172, $A751
FSTEP 168, $A6DE
FSUB 255, $DA60
Function Name Table 180
functions (See entry under individual

function name)

G
GD101101, 239, $BC22
GDVCIO 100-101,239, $BClD
GET (See also XGET, :SGET) 97, 146,

239, Appendix B
GET1239, Appendix B, $BC82
GETlINT 192, $ABE9
GETADR 44, 152, $A215
:GETCHAR 260, $DB94
:GETDIG 265, $DCB9
GETINT 99, 192, $ABEO
GETLL 31, 53, 185, $A9DD
GETLNUM 151, $A19F
GETPTNT 192, $ABD5
GETSTMT 31,52-53,54,75,87, 103-4,

184, $A9A2
GETTOK 128,190, $AB3E
:GETTOK 77, 79, 223, $B737
GETVAR 191, $AB89
GIOCMD 99,241, $BD04
GIODVC 99, 240, $BC9F
GIOPRM 241, $BD02
GLINE 234, $BA89
GNLINE 234, $BA80
GNXTL 31,51,53, 185, $A9DO
GO SUB (See also XGOSUB, :SGOSUB)

12,43,79-80,103,127
entry on Runtime Stack 18-19,
133-34
execution 79, 221-22
in ABML 40, 42
in Operator Name Table 178

GOTO (See also XGOTO, :SGOTO) 75,
123, 128, 177, 221-22

GRAPHICS (See also XGR, :SGR) 86,91,
234

grammar 33-35, 37
:GRF 205, $B030
GRFBAS 143, $0270

Index

GSTRAD 191, $AB9B
GVVTADR 193, $AC28

H
hexadecimal 2, 115-17
high level languages 3
high memory address 13
HIMEM 143, $02E5
HMADR 13, 143, $02E5

ICCOM 146, $0342
TCSTA 146, $0343
IF (See also XIF, :SIF) 76, 154, 224
IFA 174, $A799
INBUFF 23,25,47,88,91,98
INPUT (See also XINPUT, :SINPUT)

95-96, 143, 145, 213-14, Appendix B
INT (See also XPINT) 180, 206
interpreter 1, 3-5
INVAR46
I/O 91-93,95-102,109,234-43
I/O Call Routine 101-2,241, $BDOA
10CB n (i .e., 10CB 0, 10CB 1, etc.)

85-87,91-92,95,99-101,105,110
close all (See CLSALL)
control block 146, $0340-$0350
ICCOM value equates 146
[CSTA value equates 146

IOCBORG 143, $0340
10CMD 99,102,144, $OOCO
10DVC 144, $OOCl
IOn (i.e., 101, 102, etc.) 83,100, 101-2
10TEST 86, 91, 93, 100, 101, 240, $BCB3
ISVAR 46, 241, $BD2F
TSVAR1100, 241, $BD2D

J
joysticks (See STICK, :STRIG)
]S Appendix A

L
labels 34
language

creation of 33-39
problems with 1-2
high level 3

LBUFF 23,25,30, 145, $0580
LDDVX 240, $BCA6
LDIOSTA 241, $BCFB
LELNUM 87, 144, $OOAD
LEN (See also XPLEN) 180, 203

289

Index

LET (See also Execute Expression, XLET,
:SLET)8, 11,29,42,105

LIFO (last-in, first-out) stack 12, 43, 133
Line Buffer 23, 25-26
line number 27-28,49-50, 52
line processing 25-28,31-32,95-96
LINE TOO LONG error (See also ERLTL)

25-26, 43, 48
LIST (See also XLIST, :SLIST) 15, 25,

123, 128, 129, 139-40
device 71, 242
entry in Runtime Stack 19
execution 86-87, 216-17, 222
subroutines 88-90

LISTDTD 86-87,110,144, $00B5
: LLINE 87, 88, 218-19, $B55C
LLNGTH 50, 54, 72, 144, $009F
LMADR 13, 143, $02E7
LOAD (See also XLOAD, :SLOAD)

81-86, 109, 123, 139-40
as block (See LSBLK)
execution 83-84,236
file format 81-82

LOADFLG 109-110,144, $OOCA
LOCAL: Appel1dix A
LOCATE (See also XLOCATE,

:SLOCATE) 92, 240, Appendix B
LOG (See also XPLOG) 180, 208, 270,

$DECD
LOGI0 (See also XPLlO) 208
LOGI0[X] 270, $DEDl
LOMEM 23, 115
Ll176, $A7CO
low memory address 13
LPRINT (See also XLPRINT, :SLPRINT)

98-99,216
: LPRTOKEN 71 , 88-89, 90, 218, $B535
:LPTWB 218, $B54F
LSBLK 237, $BB88
:LSCAN 89-90,217-18, $B50C
LSRA: Appel1dix A
:LSTMT 88-89,219-20, $B590
L2 176, $A7C4

M
machine language 1-2
macros Appel1dix A
mantissa 127
MAXCIX 26, 29, 144, $009F
MDESUP 265, $DCEO
MEMFULL 230, $B93C
memo pad 105
memory

290

management routines 20-23
organization 13-14
pointer addresses 13, 83

MEMTOP 20-21,143, $0090
MEOLFLG 143, $0092
meta-language 33
MOD (See modulo)
modulo 120-22
multiplication (See FMUL, FRMUL, "')
multipurpose buffer 13, 65, 82, 110
:MV6RS 228, $B88F
MVFROE 267, $DD34
MYFR12 266, $DD28
MVLNG 183, Appel1dix B

N
NEXT (See also SNEXT) 18, 131

execution 78-79, 222-23
in Pre-compiler 43-45, 151, $A1E2

NEW (SeealsoXNEW, :SNEW) 109-110,
123, 128

NFP 164, $A672
NFSP 176, $A7CE
NFUN 164, A65F
NFUSR 164, $A669
NIBSHO 261, $DBEB
NMAT 164, $A651
NMAT2164, $A659
non-terminal 35, 40
NOP 163, $A62E
NORM 262, $DCOO
NOT (See also XPNOT) 178, Appel1dix B
NOTE (See also XNOTE, :SNOTE) 100,

239
NSMAT 173, $A777
NSML 174, $A78C
NSML2 174, $A790
NSVAR 169, $A708
NSVRL 169, $A710
NSV2 170, $A714
NULL (in ABML) 162
numeric constants 89, 131
numeric variable 7-8, 95
NV 162, $A622
NVAR 163, $A64C
NXSC 44, 153, $A2A1
NXTSTD 50,54,72,144, $00A7

o
ON (See also XON, :SON, ON1) 80, 226
ONl173, $A768
OPD 171, $A72C
OPEN (See also XOPEN, :SOPEN,

COPEN, SOPEN) 99-100,123,146,
238

Operating System (OS) 13-14, 92-93,
105, 109

Operator Execution Table (See also
OPETAB) 9, 187-89

Operator Name Table (See also
OPNTAB) 9, 46, 89, 135-36, 177-80

Operator Precedence Table (See also
OPRTAB) 9-10,56,137-38,193-94,
Appendix B

Operator Stack 12, 23, 56-67
entry format 66
example of use 56-64

Operator Token (in ABML) 42, 131
operators 33-34

array 69
EOE 57-66
BASIC functions as 69
execution of 69-70
precedence of 56-64, 69
SOE 57-66
token 89

OPETAB (See also Operator Execution
Table) 187, $AA70

OPNTAB (See also Operator Name
Table) 135-36, 177, $A7E3

OPRTAB (See also Operator Precedence
Table) 137-38, 193, $AC3F

OPSTKX 66, 144, $00A9
OR (See also XPOR)

in ABML 41,44-45, 162
in Operator Name Table 179

OUTBUFF 23,26-28,30-31,45, 143,
$0080

p

PADDLE (See also XPPDL) 180, 204
Pascal 3
pass/fail 37-40
PEEK (See also XPPEEK) 69, 115, 119-22,

137-38, 180, 203
PEL 175, $A7 A9
PELA 175, $A7B2
PES 175, $A7 AC
PILOT 3
:PL6RS 229, $B89E
PLOT (See also XPLOT, :SPLOT) 92, 234
PLYEVL 267, $0040
POINT (See also XPOINT, :SPOINT)

100-101,239
pointers

line processing 25-27
memory 13
multipurpose buffer 65
tables 20, 83, 110, 143

POKADR 144, $0095
POKE (See also XPOKE, :SPOKE) 105

execution 105,211
how to use 119-22

Index

polynomial evaluation (See also
PLYEVL) 267

POP (See also XPOP, :SPOP) 18, 227
BASIC command 80
in Pre-compiler 44, 152, $A252

POPl192, $ACOF
POPRSTK 77, 78-80, 227, $B841
POSITION (See also XPOS, :SPOS) 92,

233
power of (See also XPPOWER) 208-9
PRl175, $A7AO
PR2 175, $A7 A6
PRCHAR 89,235, $BA9F
PRCR 242, $BD6E
PRCX 92,99,235, $BAA1
PREADY 242, $BD57
precedence (See operators, Operator

Precedence Table)
Pre-compiler 10-11,25-26,33-48
pre-compiling interpreter 5
PRINT (See also XPRINT, :SPRINT)

97-98, 110, 123, 127, 214-16
Program Editor 11, 25-32, 110,

Appendix B
Program Executor 8, 11-12,32
PROMPT 144, $00C2
prompt 95
PS 176, $A7BC
PSHRSTK 77, 78-79,221, $B683
PSL 175, $A7B6
PSLA 175, $A7B9
PSn (i.e., PSI, PS2, etc.) 57,59-65
PTABW 97, 144, $00C9
PTRIG (See also XPPTRIG) 180, 204
PUSH 43, 152, $A228
PUSR 177, $A7DA
PUSRl177, $A7DD
PUT (See also XPUT, :SPUT) 92,99,146,

239
PUTCHAR 235, $BA9F

R
RAD (See also XRAD, :SRAD) 105, 211
RAOFLG 105, 110, 145, $OOFB
RAM tables 10,81-82
:RCONT 228, $B872
READ (See also XREAD, : SREAO) 95-96

bugs Appendix B
entry in Runtime Stack 19
execution 103-4,211-13,222

READY (See also PREADY) 51-52, 110,
242

rearrangement (See expressions,
rearrangement of)

Relative Non-Terminal Vectors (in
ABML)42

291

Index

REM (See also XREM, :SREM) 106, 131,
140, 154

RESTORE (See also XRESTORE,
: SRESTORE) 103-4, 211

RETURN (See also XRTN, :SRET) 12, 18,
79-80, 223-24

Return (in ABML) 41
:REXPAN 228, $B878
Richard's Rule Appendix B
RISASN 96
RND (See also XPRND) 37, 69, 180, 206
RNDLOC 143, $D20A
RNTV44
ROLA: Appendix A
ROM 143, $AOOO
ROM tables 9-10,135-36
RORA: Appendix A
RSHFOE 263, $DC62
RSHFTO 263, $DC3A
RSHFTl 263, $DC3E
RSTPTR 229, $B8AF
RSTSEOL 100, 242, $BD99
RTN (in ABML) 41, 44-45, 162
RTNVAR 96, 193, $AC16
RTS 45, 51, 96, 106
RUN (SeealsoXRUN , :SRUN,

RUNINIT)
as direct statement 49, 52
execution 71-73, 224
initialization 103, 105
with implied LOAD (See also
FRUN) 235

RUNINIT 230, $B8F8
RUNSTK 19,143, $008E
Runtime Stack 10,14

s

and FOR, NEXT, GOSUB,
RETURN 76-80
entry format 18-19
listing 133-34
pointer to 19

SADR66-68
SAP (Simple Arithmetic Process) 33-39
SAVCUR 144, $OOBE
:SAVDEX 228, $B88A
SAVE (See also XSA VE, : SSA VE) 81-83,

85-86,139
as block (See LSBLK)
execution 82-83,237
file format 81-82

SAVE "C:" 84
SA VEOP 57, 59-64
:SAVRTOP 228, $B881
:SBYE 167, $A6BE

292

scalar 126
SCANT 89-90,97-98,144, $OOAF
:SCLOAD 167, $A6BE
:SCLOSE 170, $A721
:SCLR 167, $A6BE
:SCOLOR 167, $A6BD
:SCOM 173, $A760
:SCONT 167, $A6BE
SCRADR90
screen editor 25
SCRX 92,143, $0055
SCRY 92, 143, $0054
:SCSAVE 167, $A6BE
SCVECT 272, $BFF9
:SDATA 176, $A7CB
:SDEG 167, $A6BE
:SDIM 173, $A760
:SDOS 167, $A6BE
:SDRAWTO 172, $A75D
SEARCH 29, 47, 135, 158, $A462
:SEND 167, $A6BE
:SENTER 170, $A724
:SETCODE 27-29, 154, $A2C8
:SETCOLOR (See also XSETCOLOR,

:SSETCOLOR) 91-92,232
SETDZ 242, $BD72
SETLINE 54, 226, $B818
SETLN150, 54, 226, $B81B
SETSEOL 99,242, $BD79
SFNP 177, $A7D6
:SFOR 167, $A6D2
SFP 165, $A678
SFUN 165, $A68A
:SGET 168, $A6E8
SGN (See also XPSGN) 180
:SGOSUB 167, $A6BD
:SGOTO 167, $A6BD
:SGR 167, $A6BD
SICKIO 101, 240, $BCB9
:SIF 174, $A794
SIN (See also XPSIN, SIN [X)) 105, 180,

207, 243
SIN[X] 243, $BDA7
:SINPUT 169, Appendix B, $A6F4
SKBLANK 29,261, $DBA1
SKCTL 143, $D20F
SKPBLANK 260-61, $DBA1
:SLET 167, $A6CO
SLIS 171, $A73C
:SLIST 171, $A733
:SLOAD 170, $A724
:SLOCATE 168, $A6E2
:SLPRINT 169, $A700
SMAT 165, $A694
SMAT2166, $A69C
:SNEW 167, $A6BE

:SNEXT 168, $A6EA
:SNOTE 172, $A74A
SNTAB (See also Statement Name Table)

115, l35-36, 159, $A4AF
SNX286, lOt 148, $A053
SOE operator 57-66
:SON 173, $A763
SOP 166, $A6A2
SOPEN 238, $BBD1
:SOPEN 170, $A71A
SOUND (See also XSOUND, : SSOUND)

93, 232
sound registers (See also SREGI1,

:SKCTL) 93, 143
:SPLOT 172, $A75D
:SPOINT 172, $A74A
:SPOKE 172, $A75D
:SPOP 167, $A6BE
:SPOS 172, $A75D
: SPRINT 169, $A6FC
:SPUT 166, $A6BA
speed comparisons 3-5
SQR (See also XPSQR, SQR[X] 180, 208,

245
SQR[X] 245, $BEE3
:SRAD 167, $A6BE
SRCADR 29, 43, 48, 144, $0095
SRCONT 45-46, 154, $A2E6
:SREAD 169, Appel1dix B, $A6F5
SREGI1 (i.e., SREG1, SREG2, etc.) 143,

$0208, $0201-2
:SREM 176, $A7C8
:SREST 168, $A6EF
:SRET 167, $A6BE
:SRUN 170, $A727
:SSAVE 170, $A724
:SSETCOLOR 172, $A75B
:SSOUND 172, $A759
:SSTATUS 171, $A741
:SSTOP 167, $A6BE
ST (See Statement Table)
stack (See also Argument Stack,

Operator Stack, Runtime Stack,
CPU stack) 2, 12

STACK OVERFLOW error (See also
ERRAOS)66

STARP 18,139,143, $008C
Start Of Expression (See SOE Operator)
STAT 171, $A744
statement

execution 50-51
processing 28-31

Statement Execution Table (See also
STETAB) 9,185-87

Statement Name Table (See also SNTAB)
9, 40, l35-36, 159-61

Index

Statement Name Token 8, 12, 106
Statement Syn tax Table 10-11, 33, 40
Statement Table 10-11, 14, 49-50, 52

entry forma t 17, l31
in LIST 87-88
in NEW 110
in SAVE and LOAD 81-82
listing in token form 129-31
processing 31

STATUS (See also XSTATUS, :SSTATUS)
100, 146, 239

:STCHAR 264, $DC9F
STCOMP 165, $A67E
STENUM 29,48, 144, $OOAF
STEP

execution 77-78
in Operator Name Table 178
in Runtime Stack 19

STETAB (See also Statement Execution
Table) 185, $AAOO

STICK (See also XPSTICK) 180, 204
STINDEX 65,87-88, 144, $00A8
STKLVL 43, 144, $00A9
STMLBD 29-30, 144, $00A7
STMTAB 17, l31, 143, $0088
STMCUR 20,31-32,49-54,64,72,88,

143, $008A
STMSTRT 30, 144, $00A8
:STNUM 264, $DC9D
STOP (See also XSTOP, :SSTOP) 50,

71-72, 124,225
STOPLN 71-72, 110, $OOBA
STR (See also XPSTR)

function 205
routine 165, $A682

STR$180
: STRAP 167, $A6BD
STRCMP 202, $AF81
STRIG (See also XPSTRIG) 180, 204
String! Array Table 10, 106-7, 127

string

pointers into 15-16,143
entry format 18
SAVEingl39
use of, in Execute Expression
66-67

assign operator 200-202
bug Appel1dix B
comparisons (See STRCMP)
constants (literals) 89,131
variables 15-18, 66-67, 70, 96, 107

subscripts (See arrays, '(' and', ')
subtrac tion (See FSUB, FRSUB, '-')
SVAR 165, $A68F
SVCOLOR 92, 143, $02FB
SVDISP 77,79, 144, $00B2

293

Index

SVVNTP 26, 144, $OOAD
SVVVTE 27, 144, $OOBI
:SXIO 170, $A718
symbols 1, 4

in language creation 33-39
SYN: Appendix A
SYNENT 42,151, $AIC3
SYNTAX 74,148, $A060
syntax 1,10-11,23, 29-30

analysis of 37-39
bugs with Appendix B
creation of 35-39
instruction codes 40-42
memory organiza tion 148-53
tables 40-42, 162-77

syntaxer (See Pre-compiler)
Syntax Stack 23, 43

T
tables 9-10

Function Name Table 180
Operator Execution Table 9,

187-89
Operator Name Table 9, 46, 89,

135-36, 177-80
Operator Precedence Table 9-10,

56, 137-38, 193-94, Appendix B
RAM tables 11,81-82, 110, 143
ROM tables 9-10
Runtime Stack 10,14,18-19,

76-80, 133-34
Statement Execution Table 9,

185-87
Statement Name Table 9, 40,

135-36, 159-61
Statement Syntax Table 10-11
Statement Table 10, 14, 17, 31,

49-50,52,81-82, 110, 129-31
String! Array Table 10, 13, 18,

106-7, 127
syntax tables 40-42, 162-77
Variable Name Table 10, 13, 15,

26,46,81-82,110,123,135-36
Variable Value Table 10,13,15-16,

27,46,66-67,78,81-82,106-7,
125-28

TENDST 51,52, 185, $A9E2
terminal symbol 34-36
TERMTST 44-45, 154, $A2A9
TEXP 172, $A755
THEN (See also XIF, :SIF) 58, 76, 178
TNCON 47, 157, $A400
TNVAR 46, 155, $A32A
TO 131, 178
tokens 5-8, 15, 17, 88-89, 135

294

TOPRSTK 143, $0090
transcendental functions 207-9
translators 1-3
TRAP (See also XTRAP, : STRAP) 73, 76,

225,231
TRAPLN 73,76,110,144, $OOBC
true (See XTRUE)
TSCON 47, 157-58, $A428
TSLNUM 27, 52-53, 77, 79, 87, 144,

$OOAO
TSTALPH 157, $A3F3
:TSTCHAR 261, $DBBB
TSTEND 230, $B910
TSTNUM 261, $DBAF
TSVAR 155, $A32E
TVAR 155, $A330

u
UNARY 162, $A618
unary+and -179, Appendix B
USR (See also XPUSR) 180, 206

v
VAL (See also XPVAL) 180, 204
Variable Name Table 10, 13, 26, 46

entry format 15
in NEW 110
in SAVE and LOAD 81-82
listing 123-24, 135-36

variables (See also numeric v, string
v, array v) 8, 95

finding and listing 139-40
listing 123-28
tokens 8, 88-89

Variable Value Table 10, 13, 27, 46,
66-67, 78, 106-7

entry format 15-17
in SAVE and LOAD 81-82
listing 125-28

VEXP (in ABML) 41,44-45, 162
VNT (See Variable Name Table)
VNTD 20,123, 143, $0084
VNTP 15, 123, 139, 143, $0082
VNUM 66-68
VVT (See Variable Value Table)
VVTP 17, 143, $0086

w
WARMFLG 109-110, 143, $0008
WARMSTART 109-110,148, $A04D
WORD 122
WVVTPT 144, $0090

x
XBYE 105,185, $A9E8
XCLOAO 237, $BBAC
XCLOSE 100, 239, $BClB
XCLR 72, 224, $B766
XCMP 196, $A026
XCOLOR 91, 233, $BA29
XCOM 210, $B109
XCONT 71-72, 225, $B7BE
XCSAVE 237, $BBA4
XOATA 103, 185, $A9E7
XDEG 105, 211, $B261
XDIM 106-7, 210, $B109
XDOS 105, 185, $A9EE
XDRAWTO 91, 92-93, 233, $BA31
XENO 52, 71-72, 225, $B780
XENTER 85-86, 235, $BACB
XEOS 167, $A6BO
XERR 106, 230, $B91E
XFALSE 195, $AOOO
XFOR 51, 77-78, 220, $B64B
XFORM 269, $DE95
XGET 97, 239, $BC7F
XGOSUB 79, 87, 103, 221, $B6AO
XGOTO 75, 76, 79-80, 221, $B6A3
XGR 91, 234, $BA50
XGS 222, $B6C7
XIF 76, 224, $B778
XINO 96, 213, $B326
XINA 95-96, 104, 213, $B335
x index 69-70
XINPUT 95-96, 104, 213, $B316
XINT 207, $BOE6
XINX 96, 214, $B389
XIO (See also XXIO, :SXIO) 99-100,238
XIRTS 96,214, $B3A1
XISTR 96, 213, $B35E
XLET 105, 189, $AAEO
XLIST 51, 86-87, 216, $B483
XLOAO 72,83-84, 236, $BAFB
XLOCATE 92, 240, $BC95
XLPRINT 98-99, 216, $B464
XNEW 109,110,147, $AOOC
XNEXT 78-79, 222, $B6CF
XNOTE 100, 239, $BC36
XON 80, 226, $B7EO
XOPEN 99, 238, $BBEB
XOP199, 238, $BBEO
XPAASN 197, $A05F
XPABS 206, $BOAE
XPACOM 197, $A079
XPALPRN 198, $A086
XPANO 195, $ACE3
XP ASC 204, $B012
XPATN 207, $B12F

Index

XPCHR 205, $B067
XPCOS 207, $B125
XPDIV 194, $ACA8
XPOLPRN 197, $A082
XPEOL 215, $B446
XPEOS 98, 215, $B446
XPEQ 195, $ACOC
XPEXP 208, $B140
XPFRE 204, $AFEB
XPGE 195, $AC05
XPGT 195, $ACCC
XPINT 205, $BOOO
XPLlO 208, $B143
XPLE 195, $ACB5
XPLEN 203, $AFCA
XPLOG 208, $B139
XPLOT 92, 234, $BA76
XPLT 195, $ACC5
XPMINUS 194, $AC80
XPMUL 69, 194, $AC96
XPNE 195, $ACBE
XPNOT 195, $ACF9
XPOINT 100, 239, $BC40
XPOKE 105, 211, $B24C
XPOP 80, 227, $B841
XPOR 195, $ACEE
XPOS 92,233, $BA16
XPPOL (See also :GRF) 204, $B022
XPPEEK 203, $AFE1
XPPLUS 194, $AC84
XPPOWER 208, $B165
XPPTRIG (See also :GRF) 204, $B02A
XPRO 98, 214, $B3BE
XPRINT 86, 97-98, 214, $B3B6
XPRIOO 98, 215, $B437
XPRNO 206, $B08B
XPRPRN 197, $A07B
XPRTN 98, 215, $B458
XPSEQ 195, $ACOC
XPSGE 195, $AC05
XPSGN 196, $A019
XPSGT 195, $ACCC
XPSIN 207, $B11B
XPSLE 195, $ACB5
XPSLPRN 199, $AE26
XPSLT 195, $ACC5
XPSNE 195, $ACBE
XPSQR 208, $B157
XPSTICK (See also :GRF) 204, $B026
XPSTR 205, $B049
:XPSTR 98,215, $B3F8
XPSTRIG (See also :GRF) 204, $B02E
XPSxxxx (i.e ., string operator execution

routines) 195 .
XPTAB 98
XPUMINUS 194, Appelldix B, $ACA8

295

Index

XPUPLUS 194, $ACB4
XPUSR 206, $BOBA
XPUT 99,239, $BC72
XPVAL 204, $BOOO
XPxxxx (i.e., operator and function

execution rou tines) 69,194-97,
203-9

XRAO 105, 211, $B266
XR03 96, 212, $B200
XREAO 103-4, 211, $B283
XREM 106, 185, $A9E7
XREST 104, 211, $B26B
XRTN 79, 87, 104, 223, $B719
XRUN 51, 71-73, 224, $B740
XSAASN 200, $AEA3
XSAVE 82-83,237, $BB50
XSETCOLOR 91-92,232, $B9B7
XSOUNO 93, 232, $B900
XSPV 200, $AE96
XSTATUS 100, 239, $BC28
XSTOP 50, 71-72, 96, 225, $B793
XTRAP 76, 225, $B7E1
XTRUE 195, $A005
XXIO 99, 238, $BBE5

y

y index 69-70

z
Z= [X- C]/ [X+C] (See aiso XFORM)

269-70
zero default with DIM 127
zero page

floating point work area 143
pointers 20, 110, 143-44
RAM locations 144

ZFP 143, $0002
ZICB 143, $0020
ZPAOEC203, $AFBC
ZPGl143, $0080
ZVAR 229, $B8CO

296

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.o. Box 5406
Greensboro. NC 27403

My Computer Is:
o PET 0 Apple 0 Atari 0 VIC 0 Other ---0 Don't yet have one ...

o $20.00 One Year US Subscription o $36.00 Two Year US Subscription o $54.00 Three Year US Subscription

Subscription rates outside the US:
o $25.00 Canada o $38.00 Europe, Austral ia, New Zea land/Air Delivery o $48.00 Middle East, North Afri ca, Central America/Air Mail
o $68.00 Elsewhere/Air Mail o $25.00 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, ar charge card.
o Payment Enclosed
o MasterCard
Acct. No.
15-9

o VISA
o American Express

Expires

297

COMPUTE! Books
p.o Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!

Quanlity

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In He call 919-275-9809

Tille Price

The Beginner's Guide to Buying A Personal
Computer $ 3.95**

COMPUTEl's First Book of Atari $12.95*

InsideAtari DOS $19.95*

COMPUTErs First Book of PET/CBM $12.95*

Programming the PET/CBM $24.95**"

Every Kid 's First Book of Robots and
Computers $ 4.95""
COMPUTEl's Second Book of Atari $12.95"

COMPUTErs First Book of VIC $12.95"

COMPUTErs First Book of Atari Graphics $12.95"

Mapping the Atari $14.95*

Home Energy Applications On Your
Personal Computer $14.95"

Machine Language for Beginners $12.95*

. Add $2 shipping and handling. Ou tside US add $5 air mail; $2
surface maiL

.. Add $1 shipping and handling. Outside US odd $5 a ir mail; $2
surface maiL

.•. Add $3 shipping and handling. Outside US odd $10 a ir moil; $3
surface maiL

Please add shipping and handling for each book
ordered.

Total enclosed or to be charged.

All o rders must be prepaid (money order, check, o r c harge). All
payments must be in US funds. NC reside nts odd 4% sa les tax.

Tolal

D Payment enclosed Please charge my D VISA D MasterCard
D American Express Accl No. Expires I

Nome

Address

City

Country
Allow 4-5 weeks for delivery.
15·9

State Zip

299

)

.>

	Cover
	Contents

	Part One - How Atari BASIC Works

	Atari BASIC - A High Lecel Language translator

	Internal Design Overview

	Memory Usage

	Program Editor

	The Pre-compiler

	Execution Overview

	Execute Expression

	Execution Boundry Conditions

	Program Flow Control Statements

	Tokenized Program Save and Load

	LIST and ENTER

	Atari hardware Control Statements

	External DATA I/O Statements

	Internal I/O Statements

	Miscelllaneous Statements

	Initialization

	Part Two - Directly Accessing Atari BASIC

	Hexedecimal Numbers
	PEEKing and POKEing

	Listing Variables in use

	Variable Values

	Examining the Statement Table

	Viewing the Runtime Stack

	Fixed Tokens

	What Takes Precedence?

	Using what we Know

	Part Three - Atari BASIC Source Code

	Appendix

	Macros in Source Code

	Bugs in Atari BASIC

	Labels and Hexadecimal Addresses

	Index

