
Using
Fig-FORTH

on the Atari SCO

Stephen A. Cohen
May 2, 1983

This manual teaches:
How to use FORTH with enough proficiency to be able to write

most basic programs- This manual will not make you an expert
in FORTH, but following the directions in this manual will
give you enough capability on your disk to do integer or
Floating Point math, numeric input and output, and random
disk accessing, which is enough to complete most programs.
Your FORTH disk will also allow you to do graphics and sound
on the Atari 800 by using the Atari BASIC graphics and sound >

commands, as explained on pages 13 and 14 of the APX manual
which comes with the FORTH disk- This manual does not deal
with sound and graphics; however, almost everything else ^
about fig-FORTH except the assembler is explained in detail
in this manual .

General notes regarding this manuals
1. <CR> stands for Carriage Return. Where <CR> appears,

press the key marked RETURN on the keyboard.
2. This manual took much time and effort to produce.

Please treat it with care. It is the author's sincere
hope that this manual will be helpful 1 to you and to
others. It is not easy to make copies of such a lengthy
manual as this, so please take care of it so that others
may read it after you.

3. If you would like to become an expert in FORTH, which is
an extremely powerful and fast language once it has been
mastered fully, you will have to read some of the
following books and spend some time on the computer
experimenting with FORTH in addition to reading this
manual

s

Starting FORTH by Leo Brodie
gvstems Guide to figzEgrth by C. H. Ting
The APX manual on Extended fig-FORTH by Patrick L.

Mul 1 ar ky
It is of use to know something about assembly languages
if you would like to become an expert in FORTH or any
other language.

CONTENTS

Making yourself a FORTH disk 1-1
Editing in Forth 2-1

screen editing 2-1
disk editing 2-3

f i g—FORTH vs FORTH-79 3-1
The F'rinter 3-1
A sel -f-teachi ng lesson (lesson 1) A-i
A self -teaching lesson (lesson 2) B-l
Glossary of most FORTH commands C-l
Index to Glossary of most FORTH commands D-l
Numeric input from the keyboard E—

1

Complete VLIST of FORTH VOCABULARY F-l
Sample Random Disk Access Program G-l

Though he has tried to avoid any errors in this
manual, the author does not guarantee that he is
perfect; errors may appear. This manual is believed
to be accurate but its accuracy is not guaranteed.
If any reader should find errors or have suggestions
for improving the manual , the author would appreciate
being contacted at school or (preferably) at home.

HOMEs
Stephen Cohen
6961 E. Walsh PI.
Denver, CO SO22

4

(303) 377-6869

SCHOOL that Author attends;
George Washington High School
655 S. Monaco Pkwy.
Denver, CO S0224
(303) 399-7770 (computer lab phone)

HOW TO MAKE YOURSELF A FORTH DISK

TURNING THE COMPUTER ON:
A. Make sure there are NO DISKS in any disk drives. A disk

can easily be erased by being in the drive when the drive
is turned an.

B. Turn on the main power supply.
C. Turn on the disk drive. If there are 2 drives on the

computer then the one on top is drive 1 and that is the
one you need. The POWER ON light will go on, and so will
the BUSY light. The drive should make a little noise for
a few seconds, then the BUSY light will go out.
WHENEVER you turn on an ATARI you MUST wait for this

light to go out before you put a disk in the drive.
D. Turn on the monitor and turn the volume up to some

audible 1 evel

.

E. Make sure that there are no cartridges in the cartridge
slots of the computer. Above the keyboard of the compu-
ter the words PULL OPEN appear. Open the computer. (By
the way, opening the computer turns it off if it was
already turned on.) There are 2 cartridge slots inside.
If there are any cartridges in the slots then pull them
out. Then shut the computer by pushing the swinging door
back down until it clicks shut.

F. If the computer has a printer, turn on the interface and
the printer. If the computer has another drive, you may
turn this on, too.

G. Now you are ready to insert anyvdisk into the disk drive
and turn on the computer, thus BOOTING the disk.
The on/off switch far the computer is on the right side
as you face the computer near the back on the side of the
computer

.

Formatting your disk for Atari DOS:
A. Boat an Atari DOS Disk.
B. The DOS MENU should appear on the screen. Select choice

I (FORMAT DISK).
The computer will ask — > WHICH DRIVE TO FORMAT ?
Answer — > 1

The computer will say — > TYPE "
Y

" TO FORMAT DISK 1

BEFORE YOU TYPE ANYTHING remove the DOS disk from the
drive and insert the disk that you want formatted.

WARNING: Formatting a disk erases the disk.

Type — > Y
The formatting will be complete when the computer says:
SELECT ITEM OR RETURN FOR MENU

3. SAVEing FORTH onto your disk:
A. Boot a f i g-FORTH Master disk.

The computer should greet you with — > fig-FORTH 1-1
B. Tvpe the -following (spacing is important) :

18 LOAD Zh LOAD 50 LOAD 56 LOAD 60 LOAD <CR>
C. The computer should LOAD the above-numbered screens,

which takes it a couple of minutes.
During this the computer should print:
R Isn't unique
I Xsn"t unique
N Isn ? t unique
0m Isn ? t unique
Isn't unique

D. When the computer is done LOADing screens 18,36,50,56 and
60 it will print ok.
ok is the FORTH prompt and is FORTH' s way of telling you
that it has done whatever you wanted and is waiting for
you to type something.

E. Type the following, and remember that the computer should
print "ok" after everything you type:

EDITOR DEFINITIONS <CR>
s CLEAR DUP 15 > IF CLEAR ELSE • NO m DROP THEN § <CR>

(notes the *
m must be typed without a space between

the period and the quote. A space should follow the
quote, though «

)

The computer will print — > CLEAR Isn't unique ok
If anything else appears on the screen, you have done
something wrong. In this case, go to the top of this
page and start over with step 3.

If everything seems to be working correctly, types
FORTH DEFINITIONS <CR>

F. Do not turn the computer off, but remove the FORTH Master
disk from the drive and insert your disk (which you have
formatted for DOS*

)

G. Type — > SAVE <CR>
The computer should now save FORTH onto your disk. This
takes about a minute, after which the computer prints ok.

H. Remove your disk from the drive and insert the Master
disk again. Types
14 LIST MARK 15 LIST MARK <CR>
The computer should read and list screens 14 and 15 from
the Master disk. These screens contain the error messa-
ges which you are now going to save onto your disk.

I. Remove the Master disk and reinsert your disk. Types
FLUSH <CR>
Screens 14 and 15 (the error messages) will now be copied
onto your disk. Check to see if this worked by typings
14 LIST 15 LIST <CR>
The screens should list exactly as they did before. If

they do not, then ask someone for help.

fMow you have a working FORTH disk. Whenever you want to use
FORTH , all you will have to do is boot your disk.

EDITING

There are 2 main types of editing. They are:
1. Screen Editing
2. Disk Editing

1. The Atari screen editor (for editing a line while typing it.)

This editing is done by using the Control key with the
up, down, forward, and back arrow keys, and by using the
Control key with the INSERT, DELETE, and CLEAR keys.

Holding down the CTRL key and pressing one of the arrow
keys (on which the arrow is in inverse print) will move the
cursor anywhere on the screen, depending on which arrow you
press. Going off the top of the screen will bring you to
the bottom, and vice versa. Going off one of the sides will
bring you back to the opposite side. Holding a key down
will cause it to repeat.

To delete characters to the right of the cursor, press
CTRL-DELETE. To erase characters to the left of the cursor,
just press DELETE (or BACKSPACE) without holding down the
CTRL key. BACKSPACE will replace a character to the left of
the cursor with a blank; CTRL-DELETE will delete a character
to the right of the cursor, thus shortening the line the
cursor is on. To delete the entire line that the cursor is
on, press SHIFT-DELETE.

To clear the screen, type CTRL-CLEAR or SHIFT-CLEAR.
Whenever you are typing a line of text and you have messed
it up so much that it would be easier to do it over instead
of editing it, type CTRL-CLEAR or SHIFT-CLEAR. The screen
will be cleared and you can start over.

To insert spaces to the right of the cursor, type CTRL-
INSERT. Then whatever you type will be typed over these
spaces • EXAMPLE:

Screen says: E X LE

.

You move the cursor so that it is over the P.
You type: CTRL-INSERT
Screen says: EXA PLE (cursor is over space)
You type: M
Screen now says: EXAMPLE

To insert an entire line of spaces on the line that the
cursor is on, press SHIFT-INSERT. This moves the rest of
the lines on the monitor screen down and creates a blank
line where the cursor is.

2-1

When you press RETURN the entire line of text that the
cursor is over is entered into the computer's input buffer.
This means that even i f you are in the middle o-f a line, the
whole line will be accepted as input. The computer does not
usually interpret anything you type until you press RETURN.
Pressing RETURN does not clear to the end o-f the line.

WARNINGS FORTH can interpret only 80 characters at a
time. Having more than 30 characters on a line o-f input
will cause the computer to do weird things.

When you are editing a line that has an error message
on it, delete the error message be-fore pressing RETURN.
Otherwise, the computer will think that you typed in the
error message. Example:

You type a line and accidentally miss one letter in the
word OVER so that it says — > OVR

The computer types — > OVR ? at the end o-f the line
that you have just typed.

Instead of retyping the whole line, you move the cursor
up on the screen to the word 'OVR" and insert an r E ? in the
proper place using the method described on the previous
page. Then you move the cursor to the beginning of the
error message that the computer printed and, using CTRL-
DELETE you delete this message from the screen. Then you
type RETURN. The computer will now accept the line as
though you had correctly re-typed it.

There are a couple of special keys on the Atari that
you should know about 5

The key that has an Atari symbol on it, just to the
left of the right SHIFT key, changes from inverse to normal
print when you press it. Pressing it again will change back
to normal print.

The CAPS loir key, just above the right SHIFT key, will
shift to lower case if you press it and to upper case if you
press it while holding down the SHIFT key.

Stay in upper case normal print when using FORTH,
except in special cases where you might want to print
something in lower case. All FORTH commands are in UPPER
CASE and in normal, not inverse, print. Using inverse print
can cause the computer to lock up.

2-2

The FORTH EDITOR (far editing programs or data on the disk)

The disk is divided into 90 screens. Screens 0—15 are
used by FORTH and hold the language itself and the error
messages. You can type programs, data, messages, or any-
thing onto any of the other screens, numbers 16-89- In
FORTH, when you want to load a program from the disk, you
will type the number o-f the screen that the program is on,
not the name o-f the program.

To list a screen type: (screen#) LIST
Note: wherever spaces appear in this manual, it is necessary
that you type them. For instance, here there must be a
space between the screen number and the word LIST.
LISTing a screen makes that screen the current screen. To
edit a screen you must first make that screen the current
screen by LISTing it.

Example: Type 14 LIST
The computer will list screen number 14, which has on

it some of the error messages used by FORTH.
You will notice that these messages are on separate

lines, and that each line has a number (0-15). A screen
consists of 16 lines, numbered 0—15. Each line holds 64
characters, but trailing blanks are not typed out when the
screen is listed.

Now if you type 16 LIST you will see that screen 16
lists as a bunch of little hearts. Actually, there is
nothing on the disk on screen 16 (assuming that you have
just formatted a new disk). A heart is the Atari character
for 'nothing'

.

Suppose we want to type a program that will print
I ADORE FORTH

Suppose we want this program to be on screen 16 of the
disk. First, we must enter the editor. This is done by
typing — > EDITOR
The computer will print — > ok
Now we must make 16 the current screen. Type — > 16 LIST
This makes 16 the current screen and lists screen 16.
Next we type — > 16 CLEAR (Type the word ' CLEAR-" , not the
CLEAR key.

)

This clears screen 16 of the hearts and fills screen 16 with
b 1 anks.
(If you forget to type the screen number, or try to CLEAR a
screen below number 16, the computer should print NO and the

screen will not be cleared.)
To list the current screen we can now type — > L
L lists the current screen. Note: it is a good idea to
clear the monitor by typing CTRL-CLEAR (the clear key, not
the word CLEAR) before listing a screen on the monitor.
Typing L or LIST to list a screen can cause problems when

there is text an the screen.

COMMENTING AND T I TLX IMG YOUR SCREEN

Now type — > 0 P (MY FIRST SCREEN)

Typing a number (0-15) and then P lets you put a line o-F

text on the line whose number you typed . If you type L now
you will see that

(MY FIRST SCREEN)

now appears on line 0- You should always put the title of
the screen on line 0 in a comment. In FORTH a comment is
put inside parentheses, with at least one space after the
first parentheses. The title of screen 16, then, is now

MY FIRST SCREEN

Type — > IPs FEELINGS . • I ADORE FORTHM CR ;

If you now list the screen you will see that the definition
of the word FEELINGS is on line 1.

Type — > FLUSH
This will save the work you have done onto the disk.
Next type —> 16 LOAD
This loads the definition of FEELINGS from screen 16.
If you now type — > FEELINGS
the computer will print — > I ADORE FORTH

Notes though the computer should print "ok*' whenever you
use the P command, 'ok' should not appear on the line when
you list the screen. If 'ok' appears on the line, get rid
of it. Otherwise, LOADing the screen will cause characters
to disappear from the monitor screen.

For now, if you have any trouble or make any errors and this
program does not work, go back to where you first typed 16
LIST and redo everything from there down.

You have now been introduced to the editor and to a few of
the editor commands. Following is a list of all the
commands

COMMAND : E XPLANAT I ON

(n,m stand for numbers.
< string > stands for any character string.)

EDITOR Enters the Editor vocabulary. You must type
EDITOR in order to be able to use many of the
commands listed below. Type EDITOR before you do
any editing.

n LIST Lists screen n and makes screen n the current
screen

.

Clears screen n, -filling it with blanks. Also
makes screen n the current screen. Type the word
'CLEAR', not the CLEAR key on the keyboard.

Lists the current screen. Also lists, at the
bottom, the line that the Character Pointer (CP)

is on. The CP is symbolized by something that
looks like a *T* . The number of the line that the
CP is on will be listed last.

Types line n and puts the CP at the beginning of

1 i ne n

.

Puts <string> on line n. Erases whatever was on
line n. <string> may be up to 64 characters long.
Any characters beyond that will be cut off.
Notes Though the limit is 64, you should type a

maximum of 63 characters so that the 64th will be
a space. Notes Though, as was explained earlier,
FORTH allows you to type up to 80 characters
without giving an error, 64 is all that will fit-

on one line of disk space.

Erases line n. (Fills the line with blanks.)

Deletes line n and moves up all the following
lines, and creates a new blank line 15. The
contents of line n will be saved in a buffer so
that the line may be reinserted later by the I

Inserts the buffer from the previous D command
into a new line created immediately preceding line
n and then moves all the following lines down one
line. The last line (line 15) will be lost.

Spreads the current screen at line n, creating a
new blank line immediately preceding line n and
moving all the following lines down. The last
line (line 15) will be lost.

Finds <string> in the current screen, starting
from where the CP is. The CP will be left at the
end of the string.

Backs up the CP to the beginning of the string
just found using F.

Moves the CP n characters forward (or backward if
n is negative)

.

X <string>

C (string)

Finds <string> and extracts it, thus shortening up
the line. This is the main f i nd-and-del ete
command. The search -for <string> will start at
the current position of the CP.

Inserts <string> in the current line at the CP.
Warning: You cannot insert blanks using this
command, except when they are inside a string,
in "57 *".

FLUSH Saves your work onto the disk. Actually, it only
saves the changes you have made onto the disk, so
that if you haven't yet edited the screen it will
not be written to the disk.

EMPTY-BUFFERS

n m COPY

WARNINGS
DO NOT Type SAVE (this reformats your disk)
ALWAYS use FLUSH to save your work.

If you acci dental y use SAVE instead of FLUSH, it
is suggested that you reformat your disk -For FORTH
starting with step 3 under MAKING YOURSELF A FORTH
DISK in this manual. If you start from step 3,
you will have lost the screen you just edited but
you will not have lost the rest of the screens 18-
89 on your disk.

Empties the disk buffers. This is what you type
if you want FORTH to forget about everything you
have just edited. The screen you were working on
will be left as it was before you started editing.

copies screen n onto screen m. Destroys any old
information on screen m.

MARK Marks the entire current screen as having been
modified. FLUSH will then write the entire screen
onto the disk. Use MARK to copy a screen onto
another disk in this way:

With a disk in the drive, type — > n LIST MARK
Then replace the disk with another one in thi
drive. Type — > FLUSH
Screen n will now be copied onto the new disk.

n m INDEX Lists, on the monitor, the first line of all the
screens n through m. N must be smaller than m.
This is why it is a good idea to put the title of
each screen on line 0 of the screens so that by
INDEXing your disk you can quickly see what i s on
each screen. INDEX is used as a type of direc-
tory;, or catalog, of the disk.
IMotes using INDEX often writes any changes you
have made onto your disk, so that if you want to

2-6

abort what you have done you should type
EMPTY-BUFFERS be-fore you type n m INDEX.

A HELPFUL HINT FOR EASIER EDITING

The author of this manual has -found it much easier to re-enter a

line using the "P" command when it needs changing than to edit it

using the F, X, C, and other commands. A way not to have to
retype the entire line is to do the following:
1) List the screen
2) Move the cursor up to the line that needs changing, using the
up arrow with the CTRL key as described in the screen editing
section of this manual.
3) Insert the letter "P" after the line number, which the
computer printed when it listed the screen. Make sure to insert
a space be-fore and after the P.

4) By using the screen editor, make whatever changes you need to
make to the line.
5) Press RETURN.
6) Hit the CLEAR key while holding down the CTRL key to clear the
monitor

•

7) Type L to list the screen and see if you have correctly
changed it.

This is much faster and easier than editing the line any other
way. In effect, you are retyping the entire line but taking
advantage of the screen editor to save you work.

EXAMPLE:
If line 12 lists as
12 : JUNK 10 20 RT +;/;
and you want to change it to
12 : JUNK 10 20 ROT + ;

you first move the cursor to over the colon with the up and right
arrow keys and the CTRL key as described in the section on the
screen editor in this manual, then type CTRL-INSERT twice so that
the screen says:
12 : JUNK 10 20 RT /;

The cursor will now be over the second space after the 12.

Next you type P so that the screen says:
12 P s JUNK 10 20 RT +-/-

Now move the cursor so it is over the "T" by typing the right-
arrow with the CTRL key. Then press CTRL-INSERT:
12 P : JUNK 10 20 R T + ;/;
Now type 0 so the screen says:
12 P : JUNK 10 20 ROT +;/;
Now move the cursor so it is over the first semicolon and type
the space bar to replace the semicolon with a space:
12 P : JUNK 10 20 ROT + /;

The cursor will be over the slash. Type CTRL-DELETE to get rid of

the slash. The screen says:
12 P : JUNK 10 20 ROT + ;

2-7

Press RETURN.
The computer should put "ok" at the end of the line.
Now, before you type anything else, you must press CTRL-CLEAR to
clear the monitor. Otherwise, you may have problems.
Now, if you list the screen using L line 5 should list ass
5 : JUNK 10 20 ROT +

;

Thus, by pressing a -Few keys, you can edit any line!
The only other commands you really need to use ares
CLEAR, LIST, L, D, S, FLUSH, and INDEX . (as well as P)

Of course, you can use the rest of the commands if you want to,
but, as I said, I have found it easier to combine the P command
with the screen editing capabilities of the ATARI as this example
showed

LEAVING THE EDITOR

You exit the editor whenever you type any of the followings
(This may not be a complete list)

FORTH
Any colon definition

Sometimes you will accidentally exit the editor. You will know
this has happened when you type an editor command (such as L) and
the computer prints a question mark. Reenter the editor by
typing EDITOR. Your work will not have been lost, so don't
worry

!

To purposefully exit the editor, type — > FORTH

LOADING PROGRAMS FROM THE DISK

Once you have FLUSHed your program onto the disk, you must type
(screen#) LOAD before you can run the program.

n LOAD interprets (compiles) screen number n from the disk.

Typing a program on a screen does not allow you to run it until
you type (screen*) LOAD
LOAD interprets, or compiles, the screen so that you can run your
program using any words you define on the screen.
You will usually want to type FLUSH after you edit a screen and
before you load the screen so that the program will be saved on
the disk.

WARNING^ Make sure you know the difference between LOAD and LIST

Whenever you want to EDIT a screen, you must first LIST it.
Whenever you want to run a screen, you must first LOAD it.

Editing a screen that you have just LOADed instead of LISTed can
cause your disk to be ruined.

2-8

DIFFERENCES BETWEEN f i g-FQRTH AND FORTH—79 (in Starting FORTH)

(This is for those who have read Starting FORTH which is about
FORTH-79 and is a little different from f i g—FORTH.)

(To those who have not read Start i_na FORTH: it is a good book!)

In f i g—FORTH, to define a variable, type
n VARIABLE <name>
n will be the starting value of the variable.
(In the book, you just type VARIABLE <name>)

In fig-FORTH, each disk block is 128 bytes and each screen is

made up of 8 blocks. Each block is 2 lines of the screen. This
is important to know when reading from or writing to the disk
from a program.
(In the book, a screen is the same as a block and both are 1024

bytes)

The word CREATE is not used in fig-FORTH as it is in FORTH—79.
You should not normally use this word in fig-FORTH.

• ®

THE PRINTER

To print on the printer, type — > PON
Everything that is printed on the screen will now print also on

the printer (assuming that the printer is turned on!) until you
type POFF.
Note: ,ok\ the FORTH prompt, will not print on the printer.

To quit printing on the printer, type — > POFF

To list a screen number n on the printer type — > PON n LIST POFF

PFLAG is the printer flag. It is a system variable that is set
to 1 by PON and to 0 by POFF. If you type — > 1 PFLAG !

this is the same as PON.
Typing PFLA6 3 wi 1 1 put the value of PFLAG on top of the stack,
so that you can see whether the printer is on or not.

To use the printer, both it and the interface must be turned on.

To advance the paper in the printer, first turn the switch on

the left of the printer to LOCAL. Then push the second switch
from the left to FORWARD and hold it there until the paper has
advanced far enough. When you are done, switch back to ON LINE
from LOCAL. The printer will not accept input from the computer
when the switch i s on LOCAL.

You can also "rewind" paper back through the printer by following
the above procedure but holding the switch on REVERSE instead of

FORWARD

.

A SELF-TEACHING PROGRAM TO START YOU IN FORTH

Boot your FORTH disk.

Note: if you are doing this as an assignment for a class type PON
to connect the printer to the computer so that you will have a
printed record of everything that you do. (Make sure that you
are using a computer that has a printer attached and that has
paper in the printer.) For information on the use of the printer
read the section on the printer in this manual.

Type — > 10 4 + . (including the period).
The computer should print — > 14 ok
FORTH can be used in immediate mode; a set of commands need not
be saved onto a disk to be executed. What you have just done is
calculated 10+4 in immediate mode. Words in the input stream
(the stream of characters that you type or, later, that you will
load from the disk) are interpreted in a left-to-right order, so
that the number 10 was interpreted and put on top of the stack,
followed by the number 4, then the word * (which adds the top of
the stack to the second item on the stack) was executed, then the
word . (which prints the number on top of the stack and removes
the top number from the stack) was executed. The stack was left
empty. If there had been anything on top of the stack before you
typed "10 4 + ." it would be still on top of the stack.

Type — > s FOUR-MORE 4 * . |

Now type — > 8 FOUR—MORE
The computer should print the number 12, followed by ok which is
the FORTH prompt.
You have just typed a simple program: it adds 4 to the number on
top of the stack and prints the sum. In FORTH, you define words
(commands) that "chunk" a whole series of commands together so
that the series of commands can be carried out merely by typing
the word you have defined. In this case, you defined a sequence
that will add 4 to the top of the stack as FOUR-MORE
The hyphen in FOUR-MORE is important; a word must not have spaces
in it because looking for spaces is how the FORTH interpreter
separates one word (command) from another. Note that you must
always have at least one space between commands for this reason.

Type — > s *2+4 2 * FOUR-MORE ; (make *2+4 one word)
Now type — > 10 S2+4
The computer will print — > 24 (followed by ok)
This demonstrates 2 points:

1) Any character (except a space) can be used in the name of
a word. The "*" and the "2" in "*2+4" are only
characters in the word "*2+4". They have no other
significance. However, the "2" and the M *" in the
definition itself are significant, they stand for "put a
2 on top of the stack" and "multiply the top two numbers
on the stack".* The first word following the colon (:)

can have any arbitrary characters in it, though, as you

A-l

are de-fining this word. ("*2+4" in the example above)
2) Previous definitions can be used in the definition of new

words. You are using FOUR-MORE (which you de-fined
above) as part of the de-finition of #2-h4.

An explanation of what just happened to the stack follows.

The stack started empty. Then the number 10 was put on top of
the stack, so the stack looked like thiss

I 10 !

i i

I s

Then the word "*2+4" was executed.
"*2+4" as " s *2+4 2 * FOUR-MORE ;

"

.

stack s

! 2 !

! 10 !

Then the ward "*" was executed, so the stack looked like thiss

! 20 !

Then the word "FOUR-MORE 81 was executed- Remember that you
defined "FOUR—MORE" as ": FOUR-MORE 4 + . ; ". First, a 4 was
put on the stacks

! 4 !

: 20 :

Then the word " + •• was executed

s

! 24 !

Then the word "." was executed. This printed the number on top
of the stack (24) and left the stack empty

s

Remember that you defined
First a 2 was put on the

Now that you fully understand the workings of the stack (you do,
don't you?) we shall continue...

Type — > s FOUR—MORE 13 + . I

Of course thi s is an unusual definition for a word called
FOUR-MORE, but it is to demonstrate a point.
The computer will respond — > FOUR-MORE Isn't unique
This is because you have now defined FOUR-MORE more than once.
Type — > 9 FOUR-MORE
The computer will print 22, The latest definition of a word is

always used.
Type — > 5 *2+4
The computer prints 14 instead of 23- (remember that you de-fined
£2+4 to double a number and then execute FOUR-MORE.) The reason
that 4 was added instead of 13 is that the current definition o-f

FOUR-MORE at the time that you de-fined *2+4 was the definition
that added 4. Note that by later changing the definition of
FOUR-MORE you did not also change *2+4, even though it uses
FOUR-MORE as part of its definition. A definition of a word is
not changed by changing the definitions of the words that it uses
after the word has been defined.

You should be able to see that if a word has a complicated, long
definition that relies on previous definitions, it will be very
hard to change the program; you will most likely have to redefine
the words that are called upon and then retype the definition of
the final word. Disk editing makes this easier...

Type — > 17 LIST
Screen 17 should list as a bunch of hearts. This means the
screen is totally blank; it has not been used before. Note: if
you are doing this with the printer, you will note that the
hearts are printed on the monitor only, not also on the printer.
If screen 17 has something on it, then use a different screen by
typing — > (screentt) LIST Then subsitute (screen#) for 17 from
here on in this sel f -teacher . Note: valid screen numbers are
16-89.

Type — > EDITOR
This gets you into the EDITOR vocablulary, which means that you
will be able to edit the disk. Whenever you want to start a
session of editing the disk you must first type EDITOR.
Type — > 17 CLEAR (Not the CLEAR key, which will clear the
monitor screen, but the word "CLEAR"

)

This clears the hearts from screen 17 and fills screen 17 with
bl anks.
Type — > L
This will list the screen again. You can use L instead of LIST
only when you are in the EDITOR vocabulary and you have already
referenced the screen number using LIST or CLEAR.
The screen should now be blank.
Type — > 5 P s FOUR—MORE 4 + - ;

This Puts the line of text following the space after the P on
line 5 of the screen.
List the screen using L
You will notice that the definition of FOUR-MORE appears on line
3

.

Now type — > 8 P s *2+4 2 * FOUR-MORE ;

When you list the screen you will see the definition of *2+4 on
1 i ne 8.
Type — > FLUSH
This saves the work you have done onto the disk.

Type — > 17 LOAD
This reads screen 17 into the computer exactly as if you had

typed everything on the screen into the computer- If you have
been -Following along from the beginning of this section, the
computer will print — > FOUR-MORE Isn't unique

:*2+4 Isn't unique
because those two words are not being defined for the first time.
Type — > 20 *2+4
The computer will print 44. Now, how do we quickly change the
definition of FOUR—MORE and *2+4 at the same time, to multiply by
2 and then add 13 instead of 4?
Type — > EDITOR (You must type "EDITOR" to reenter the editor,

because by loading the new definitions of FOUR-MORE and *2+4
you left the editor. See the EDITING manual under LEAVING
THE EDITOR if you would like a further explanation of why
you have to type "EDITOR".)

Type — > 17 LIST
We want to change the definition of FOUR-MORE, which is on line
5.
One way to do this is to completely retype line 5.

Type — > 5 P s FOUR-MORE 13 + . 5

Now list the screen by typing L
Line 5 should contain the new definition of FOUR-MORE.

FLUSH and then LOAD screen 17 again. Remember that whenever you
want to LOAD a screen, you must always type the number of
th# screen firsts for instance here you type 17 LOAD
If you just type "LOAD" without a number, the computer may
lock up.

Type — > 5 *2+4
The computer prints 23 because we have now not only redefined
FOUR-MORE, we have also redefined *2+4 to use the new definition
of FOUR-MORE. (Remember that a screen that is LOADed from the
disk is treated by FORTH exactly as though it had been typed in
by hand.

>

You can see that the EDITOR makes it easy to change a program (a

program is a set of definitions of words) by allowing you to
redefine only one word and yet, at the same time, redefine all
the words that call on that word.

Now let us see how we can better use the editor.

Get into the EDITOR and list screen 17.
If you do not remember how to do this, type — > EDITOR and then
type 17 LIST*
Let * s give screen 17 a title.
Type — > 0 P C MY FAVORITE SCREEN — *2+4 DEFINITION)

Anything that appears within parentheses is a comment in FORTH;
FORTH will ignore it. It is there only for the benefit of people
(including yourself!) who will want to know what a screen does.
Note that in a comment, there must be a space after the opening
parentheses and that the comment continues until a closing
parentheses is encountered by FORTH.

Now list screen 17. The comment should appear on line 0.
What if we want to change a line? There must be an easier way

A-4

than retyping it, as we did be-fore.
Read the section on the EDITOR in this manual and then change
line 0 to say (MY SCREEN — *2+4 WORD DEFINITION)

'

If you have too many problems, you can abort by typing:
EMPTY—BUFFERS
This makes the computer forget any editing you have done since
you last FLUSHed your work onto the disk. You can then get back
into the EDITOR, type 17 LIST, and start all over.

When you have successfully changed line 0 without having to
retype the entire line by hand, you will have learned a valuable
lessons how to use the EDITOR.

Now change line 5 so that the word FOUR-MORE again adds 4
instead of 13 to the top of the stack and prints the result.
List screen 17 now to see that you changed it correctly.

Make sure to save your work onto the disk by typing FLUSH.

Now, why did you really want a title for the screen on line 0 in
the first place?

Type — > 14 20 INDEX
Line 0 of screens 14 through 20 will be printed. Titles for your
screens should always appear on line 0 so that you can easily see
what is on your disk by typing INDEX.

If you now LOAD screen 17, the title will not hamper the computer
because it is a comment (it appears in parentheses).

You can now test your program out by typing — > 3 *2+4
The computer should print 10, which is the correct answer.

I-f you have been doing all this on the printer, now type — > POFF
This stops everything from going to the printer as well as the
screen

•

Notes if the printer was already not in use, then typing POFF
does nothing.

A-5

A SELF-TEACHING LESSON ON REAL NUMBERS IN FORTH
AND SOME BASIC LOOPS

Boat your FORTH disk.

If you are doing this lesson -for credit -for a class, type PON
(you should be working on a computer that has a printer
connected) so that you will have a printed record o-f the -fact
that you have done this record- (See section 3 in this manual
about the printer i-f you do not understand why you should type
PON.)

Type 5 4/.
The computer prints 1 as the answer because FORTH deals in
integers unless specifically instructed otherwise.
Type 5 FLOAT 4 FLOAT F/ F.
The computer prints 1.25
The word FLOAT will make the number on top o-f the stack into a
real number. A real number (floating point number) uses 6 bytes,
or 3 stack positions. When you typed 5 that put the integer 5 an
top o-f the stack as a single-length integer. This used one
position on the stack, or 2 bytes. When you typed FLOAT the
integer 5 was dropped from the top of the stack and FORTH put a
six-byte representation of the real number 5.0 on top of the
stack. The stack looked like this:

! high part of 5.0 •

! medium part of 5-0 !

! low part of 5-0 t

; i

When you typed 4 FLOAT the number 4.0 was similarly put on top of
the stack in 3 stack positions. Now the stack looked like thiss

! high part of 4.0
I medium part of 4.0
I low part of 4.0
! high part of 5-0
! medium part of 5.0
! low part of 5-0

The word F/ treats the top 6 positions of the stack as 2 real
numbers and calculates the second real number on the stack
divided by the top real number on the stack, removing the 2 real
numbers from the stack and putting the quotient (a real number)
on the stack. The stack now looked like this:

\ high part of 1.25
! medium part of 1-25
! low part of 1.25

i

i

i

i

i

i

i

!

i

i

i

i

I

The word F. prints the floating point number on top of the stack
and drops it from the stack. The stack was left empty.

Notes F. will print the number in Atari BASIC format. If the
number is very large or very small, it will be printed in E
notation. This is scientific notation. For instance, if you
calculate 90000 times 90000, the result will be printed as
3. 1E+9 which means 3. 1 X 109.

One word that switches from integer to real representation on the
stack is FLOAT, as we have seen. FLOAT is not the only way to
get a real number onto the stack, though.

Type FP 3 FP 1.5 Ft F«
The computer prints 4.5
FP is a word that converts the character string immediately
following (and delimited by a blank) to a real number and puts
that number on top of the stack.
Type FLOATING 1.5 P 2.1 F+ F.
The computer prints 3.6
FLOATING and FP are synonymous; they do exactly the same thing.

Be sure that you know the difference between FLOAT and FP or
FLOATING:
FLOAT makes the number on top of the stack real 5 there must

already be an integer on top of the stack when you execute
FLOAT.

FP and FLOATING interpret the following character string and
convert it to a real number and put this number on the
stack

.

Now that you know how to put a real number on the stack, how do
you convert it back to an integer?

Type 5 FLOAT 2 FLOAT F/
Since you did not ask the computer to print the result, the real
number 2.5 is now on top of the stack in the top 3 positions of
the stack.
Type FIX •

The computer first converts the top three positions on the stack
(which are one real number) into one integer (after rounding) and
then prints the result, 3. (2.5 rounds up to 3.)

Get into the EDITOR and title a blank screen C LESSON 2)

On lines 1-4 put the fallowing programs

FP 0 FVARIABLE IMUM

: REAL—DIV. FLOAT NUW F! FLOAT NUW F3 F/ F. j

3 PROMPT-HE TYPE 2 INTEGERS WITH A SPACE AFTER EACH" CR
THEN TYPE REAL—DIV. * CR |

List the screen to make sure it is right, then save it on your
disk (using FLUSH as always) and LOAD the screen.

Type PROMPT—ME
The computer should print:

TYPE 2 INTEGERS WITH A SPACE AFTER EACH
THEN TYPE REAL-DIV.
ok

Type a 4 REAL-DIV.
The computer should print 1.5

This program demonstrates a few points:
1) To declare a real variable, put a real number on the stack,

then type FVARIABUE <name>
The variable will be assigned a starting value of the real
number on the stack

2) After FLOATing the top of the stack we must temporarily get
it out of the way by storing it in a variable (there are
other ways to get a real number out of the way, but that is
one of the easiest) before we can FLOAT the second- Then we
fetch the first real number from the variable and put it
back on top of the second one on the stack

3) To print text we use the word • followed by the text we
wish to print. A quote mark marks the end of the text that
is to be printed. There must be a space after the . and
the first space fallowing . " will not be printed. The fact
that the last character printed is a period is only a
coincidence; .

m is not a command at the end of the sentence;
it is merely the end of the text and the quote that marks
the end of the text.

4) CR is a command to print a carriage return and go to the
next line.

5) If a definition is too long to fit on one line on the
screen, you can continue it on the next line. Actually, a
definition can be quite long, using up many lines on the
screen. No one line can have more than 64 characters,
however, as explained in the section on the EDITOR.

VALID COMMANDS USING REAL NUMBERS

You might have gotten the impression that any command can be made
to work for real numbers by putting an F in front of it as in F+,

F, , F*, and FVARI ABLE. This is not the case; there are only a
few specific commands for real numbers. They are all described
in the glossary of FORTH commands, appendix C in this manual.

of Floating Point commands in fig-FORTH:
not be complete)

FVARI ABLE FDUP FDROP FSWAP
FLOATING FP F9 F!

F+ F- F* F/
FIX FLOG FLOG 10 FEXP
F0= F= F<

This is a list
(This list may

FCONSTANT
FOVER
F.
FLOAT
FEXP10

There are no commands that will add, subtract, multiply or divide
an integer and a real number. You must first change the integer
to a real number and perform a floating-point operation <F+, F~,
F*, F/, etc) to get a real result or change the real number to an
integer and perform an integer operation to get an integer
result. Integers and real numbers are not interchangeable; you
must always be aware that a real number is not represented on the
stack in the same way as an integer and that it uses 3 stack
posi t i ons.

Some operations with real numbers leave a flag on the stack,
though, and a flag is only one stack position* For instance* F-
will leave a 1 (true) or a 0 (false) flag on the stack. You
cannot SWAP or FSWAP this flag and any real number on the stack
because the flag is one stack position and the real number is 3
stack positions. (For an explanation of F= or any other command;,
see the glossary of FORTH commands.)

DOING A LOOP

On the same screen, now put the following definition starting on
1 ine 7s

5 TEN—TENS 11 1 DO 10 . CR LOOP ;

FLUSH the screen and LOAD it. (Ignore any Not unique messages
that appear on the monitor.) Type TEN—TENS
The computer will print 10 ten times.
The command DO takes the top two numbers off of the stack (a 1

and an 11 in this example) and stores them as the index and limit
to a loop (1 is the index? 11 is the limit.) Execution continues
until the word LOOP is encountered. LOOP increments the index by
one and then compares the index to the limit. If the index is
less than the limit, everything from the first word after DO is
repeated. If the index is equal to or greater than the limit,
the loop is not repeated

.

Note that the index is incremented by the word LOOP, not by DO,
and that the index is not compared to the limit by DO but by
LOOP. Because of these facts, a loop will always be executed at
least once (even if the limit is less than the starting index)
and that the index will go from the lower bound (the starting
index) to one less than the upper bound. That is why 10 was
printed ten times and not eleven; the index went from 1 to 10,
not from 1 to 11.

How do we find out what the index to the loop is?
On line 8 of your screen put
s DIGITS 10 0 DO I . CR LOOP ;

FLUSH and LOAD the screen.
Execute the word DIGITS by typing DIGITS
The computer should print the digits 0 through 9.
The word I puts the index of the loop on the stack. Note again
that the loop went from 0 to 9, not from 0 to 10. The loop
repeats while the index is less than the limit (has not yet
reached the limit).

B-4

What if we want to execute a loop that increments by some value
other than 1? We use +LOOP instead of LOOP in the -Following way:

Qn line 9 o-f vour screen put
: ODDS 11 1 DO I . CR 2 +LOOP ;

When you execute the word ODDS (after FLUSHing and LOADing the
screen) the odd digits will be printed.

DO ... +LOOP acts like DO ... LOOP except that the index is
incremented by whatever number i s on top o-f the stack when +LOOP
is executed instead o-f always being incremented by 1.

On line 10 put
: BACKWARDS 10 20 DO I . CR -1 +LQOP 5

When you execute the word BACKWARDS the numbers 20 downto 11
should be printed. Remember that the loop is not executed when
the limit has been reached. This means that when the increment
is negative, the loop repeats while the index is greater than the
1 imit

.

How about nested loops?

On line 11 of your screen put
s NESTED 6 1 DO I 1 DO I . LOOP CR LOOP ;

Note that I always puts the index of the innermost loop that it
is in on the stack and predict what NESTED should do.

Test your prediction? Were you right? This is what should have
been printed by the computer:

1

1

1 2
1 *"> "T
J» .«— w
12 3 4

Can you see why? The index for the outer loop acted as the limit
for the inner loop! CR was not executed until the inner loop was
done executing each time, so the inner loop printed its indices
all on the same line.
When the limit was 1 and the starting index for the inner loop
was 1, the inner loop executed itself once because a loop will
always execute at least once no matter what the limit.
For each of the succesive times through the outer loop, the inner
loop executed one time less than the index for the outer loop
because a loop will repeat only while its index has not vet
Cached the limit.

B-5

TWO THINGS TO REMEMBER ABOUT LOOPS

s

I is the only word that will allow you to see the index -For a

loop. It always puts the index o-f the innermost loop it is in on
the top of the stack.

A loop must be contained entirely in a definition. You cannot
define a word such as
s WRONG 10 0 DO ;

The words DO and LOOP (or +LOOP) must be in the same definition.
Each DO must have exactly one LOOP or +LOOP associated with it in

a definition.

In addition to DO . « . LOOP and DO ... +LOQP there are the
fallowing control structures which you can read about in the
GLOSSARY OF FORTH COMMANDS in this manuals

BEGIN . . . UNTIL
BEGIN ... WHILE . .. REPEAT
IF ... THEN
IF . . . ELSE . . . THEN

If you have been printing on the printer, type POFF to stop
printing to the printer. Take the paper out of the printer and
show it to your teacher to show that you have completed this
lesson. If you have not been printing on the printer, typing
POFF will not do anything.

You may now take your disk out of the drive and then turn the
computer off.

e-6

GLOSSARY OF FORTH COMMANDS

A Quick note on the data stack (just 'stack' for short):
Arithmetic, comparisons, and most other operations in FORTH are
done on the stack. The stack holds numbers in a Fi rst-In-Last-
Qut way. This means that if you put a 1 on the stack, then a 2,
and then get the top item from the stack, you will get the 2 and
the 1 will be left as the top item on the stack.

There are 2 ways to represent the stack:

SI!
! 4 ! or (6,10,4,1)
! 10 i

16!
both represent a situation in which 1 is the top item on the
stack, 4 is the second item, 10 is the third, and 6 is the
fourth. Taking the top item off the stack would make 4 the new
top item, 10 the new second item, etc.

Abbreviations used in this glossary:
n, nl, n2, etc. stand for integers. An integer uses 2

bytes, or 1 position on the stack.
An integer must be between -32768 and 32767. In some
unusual cases, an integer is unsigned (must be
positive) and must be between 0 and 65535, but for most
purposes use the -32768 to 32767 boundaries.

c, cl, c2, etc. stand for an integer between 0 and 255,
inclusive. An integer such as this can be stored in
one byte of memory (but uses a full position when put
onto the stack.) Integers between 0 and 255 can be
treated as string characters because each character has
an ASCII value between 0 and 255. Example: 65 is a
capital A.

d, dl, d2, etc. stand for double-length integers, or for a
combination of 2 integers. A double-length integer
uses 4 bytes, or 2 positions on the stack.
Double length integers must be in the range of
approximately plus or minus 2 billion. (2 to the 31st
power)

.

fp, fpl, fp2, etc. stand for floating-point (real) numbers.
These use 6 bytes, or 3 positions on the stack.

<string> stands for any character string as read in from
the input stream at the time the command is executed.

addr, addrl, etc. stand for addresses in memory. An address
is a single-length number, so addr is the same as n.
The abbreviation addr is used to show that the number
will refer to a memory location in the computer. Each
byte of memory in the computer has its own address.

f , f 1 , etc. stand for boolean flags. A flag is a single-
length number. 0 is false; anything other than 0 is
true. Usually, 1 is used for true, though any other
non-zero value would also work.

Whenever it is said that a string has a byte count in the
first byte, that means that the first byte of the string
holds a number between 1 and 255 that is the length of the
string. The actual string starts in the next byte of
memory. Examples if the string "COMP" i s at address 5427
with a byte count, that means memory location 5247 holds the
number 4 (the length), location 5248 has the ASCII value of
C, 5249, 5250, and 5251 hold the values for O, M„ and P
respectively. If the string is not said to have a byte
count in the first byte, then the string actually starts at
the given address.

In the STACK EFFECTS column, whatever the command expects on top
of the stack will be on the left, and what will be left on the
stack will be on the right. For instance, the stack effects of
MOD ares <n 1 , n2—n3) «, This means the word MOD needs two
arguments on the stack <n2 is on top of the stack? nl is the
second item from the top) and will replace the ®two arguments with
one number. The explanations of what the arguments should be and
what the result is will appear in the EXPLANATION column of each
command.

COMMAND STACK EFFECTS EXPLANATION

STACK MANIPULATION COMMANDS

s

DUP (n—

n

? n)
Duplicates an item on the stack

DROP (n—)

Drops the top item from the stack.

SWAP (nl,n2—n2 9 nl)
Swaps the first and second items on the stack

OVER (ni,n2—nl 9 n2,nl)
Copies the second item on the stack to the
top of the stack.

ROT (nl,n2,n3—n2,n3,nl)
Rotates the third item to the top of the
st ac k

«

C-2

-DUP

Notes to rotate the other direction,
ROT ROT- That will do this:
(nl , n2, n3—n3, nl,n2)

type

(n—n

)

or (n—n,n)
Duplicates the top item on the stack if it
is not 0. Example: 5 -DUP leaves two 5s on
top of the stack, but 0 —DUP leaves only
one 0 on top of the stack.

2DUP

2SWAP

20VER

FDUP

FDROP

(d—d,d)
Duplicates a double-length integer on th<

stack, or does this: (nl,n2—nl,n2,nl,n2)
(41,42—42, dl)

SWAPs doubl e— 1 ength integers.

(41,42—dl , d2, dl

)

VERs double-length integers.

(fp—fp,fp)
Duplicates a real number on
Will also do this:
(n 1 , n2, n3—n I,n2,n3,nl,n2;,n3)

(fpl—)

DROP for real numbers.

the stack

FSWAP <fpl,fp2—fp2,fpl)
SWAPs real numbers.

FOVER (fpl , fp2—f pi , f p2, f pi

)

OVER for real numbers.

FROT (fpl, f p2, f p3—f p2, f p3, f p 1

)

ROT for real numbers.

>R

R

(n—)

(——n)

Move item from data stack (regular stack)
to return stack (a special stack used by
the FORTH interpreter to keep track of the
program that is running.) Use this word
only if you know exactly what you are
doing. Otherwise, you could lock up the
computer

.

item from return stack to data
stack

.

R> (—n

)

Move top item from return stack to data
stack.
Note: if, in a definition, you do >R and
then R>, vou will not crash the system.
Both must appear in the same de-finition.

C-3

In this way
? you can use the return stack

as temporary storage for a number.
Example: to de-fine a word to duplicate the
second item on the stack (nl,n2—n 1 , n 1 „ n2>
one way would be — > s DUP—2ND >R DUP R> f

ARITHMETIC OPERATION COMMANDS

s

+ (ni,n2--n3)
Adds ni+n2. Examples 14+ would leave a 5
on the stack* The 4 and the 1 are lost*

- (nl,n2—n3)
Subtracts nl-n2. Examples 5 3 — will
leave a 2 on the stack.,

* (nl,n2—n3)
Multiplies nl*n2.

/ (nf ,n2—n3)
Divides (integer division) nl/n2. The
quotient will be an integer, and will al-
ways round down* Examples! 10 2 /
leaves a 5 on the stack . 11 2 / leaves a 5
on the stacks also* 5 9/ leaves a 0 on
the stack.

MOD (n 1 , n2—n3)
Leaves nl mod n2 on the stack* 5 2 MOD
leaves a 1 on the stack. 9 5 MOD leaves a
4 on the stack . Notes MOD is the same as
the remainder o-f an integer division.

/MOD (nl s n2—-n3, n4)
n3 is the mod, n4 is the quotient. Calcu-
lates the integer quotient and the remain-
der. 11 3 /MOD leaves a 3 on top of the
stack (the quotient) and a 2 as the second
item on the stack (the mod).

*/ (nl,n2,n3—n4)
Calculates nl*n2/n3.

*/MOD (nl , n2 5 n3—n4„ nS)
Multiplies n 1 *n2 j, then divides by n3. n4 is
the mod (remainder) and n5 is the quotient.

MAX (nl,n2—nl) or (ni,n2—n2)
Leaves the maximum at the two top numbers
on the stack.

C-4

MIN (nl,n2—nl) or (nl,n2—n2)
Minimum.

ABS (nl—n2>
Absolute value.

MINUS (n— -n)
Change the sign of the number on top of the
stack.

D+ (011,012—d3>
Adds double-length integers.

DABS (dl—d2)
Absolute value for double-length integers.

DMINUS (d— -d)
Change the sign o-f a double-length integer.

F+ (f p 1 , f p2—f p3)
Adds two real numbers.

F- (fpl,fp2—f p3)
Subtracts f p 1-f p2.

F* <fpl.,fp2—fp3)
Multiplies fpl*fp2.

F/ (f pi , f p2—fp3)
Divides (real number division) fpl/fp2. If
fpl is 5 and fp2 is 2 then fp3 will be 2.5

FLOG (fpl—f p2>
Calculates the natural logarithm (to the
base e) of fpl-

FEXP (fpl—f p2>
Calculates the antilog to the base e of
fpl.

FLOG10 (fpl—f p2>
Replaces fpl on top of the stack with its
common logarithm (base 10).

FEXP 1

0

Calculates the antilog (base 10) of fpl.
This is the same as calculating 10 raised
to the fplth power. If fpl were a 3, then
fp2 would be 1000.

NUMERIC CONVERSION COMMANDS

s

FLOAT (n—f p)
Converts an integer to a floating point
number. To get the real quotient of 3/4
you would have to types 3 FLOAT 4 FLOAT F/
This would leave .75 on top of the stack.

FIX (-Fp—n)
Converts a real number to an integer. The
integer is rounded. Fixing 3.3 would leave
3 on top of the stack, but FIXing 3.6 would
leave 9 on the stack.

FLOATING < string

>

FP < string

(—fp)
Reads from the input stream and converts it
to a real number. Examples if you type
FLOATING 6.42 the number 6.42 will be left
on top of the stack. The string must be a
valid FORTRAN—sty 1 e string such as 1.23, -

5.36E9, etc. If the string is invalid, fp
will be an unpredictable value.

(—fp)
Synonymous with FLOATING (above)
the same thing as FLOATINGo

FP does

NUMBER (addr d)
Converts the character string stored at
addr (with a byte count in the first byte)
to a double-length integer.

Notes if there is a decimal point in the
string, then the location of the decimal
point, relative to the end of the string,
will be stored in the user variable DPL.
Examples converting the string 11 123. 4"

would yield the double-length integer 1234
and DPL would be set to equal 1. If there
is no decimal point in the string, DPL will
be 0.

Notes a doubl e— 1 ength integer is stored on
the stack with the high 2 bytes first.
This means that to convert a double-length
integer to a si ngl e—1 ength integer, (assu-
ming that the doubl e—1 enght integer is in
the range of a single-length integer) you
just have to DROP once. To do thiss (d—n

)

just type DROP. To convert a si ngl e—1 ength
integer to a double length (n—d) just put
a 0 on top of the stack.

COMPARISON

(nl,n2—f

)

f will be 1 (true) if nl<n2. Otherwise, f

will be 0m Example: typing 3 8 < leaves a
1 on top of the stack.

(nl,n2—f)
True if nl>n2.

<nl , n2—f)

True if nl=n2.

0< (n—f)

True if n is negative.

0= (n

—

4)

True i-f n=0.
Note: 0= also will change the value of a
true flag to false and of a false flag to
true. Example: if the top of the stack is
0 (false) then 0= leaves a 1 (true). If
the top of the stack is anything other than
0 (true) then 0= leaves a 0 (false). In
this way, 0= i s a logical NOT operator.

IK (nl,n2—f)
True if unsigned nl is less than unsigned
n2. Any integer can be treated as though
it has a sign (in which case it ranges from
-32768 to +32767) or as though it is
unsigned (0 to 65535). If the number is
unsigned, then the sign bit is used as the
highest-order bit.

F0= (fp—f)
True if the top of the stack is a real
number 0.

F= (f pl,f p2—f

)

True if fpl=fp2.

F< (fpl,fp2—f)
True if fp Kfp2.

Note: — which is described on page C-4 can be used as a test
for unequal ity because it will leave a non-zero value
on top of the stack if two numbers are not equal. Note
that this value may not be a 1 but it will be a non-
zero value and thus be a true flag. To make any non-
zero value a 1 use 0= 0=. This can be understood
better if you read the note on the following page.

C-7

LOGICAL OPERATORS

AND (nl,n2—nS)
Logical AND- Both arguments must be true
for the result to be true.
1 and 1 is 1 »

I and 0 is 0.
0 and 1 is 0.
0 and 0 is 0.
Notes The arguments are ANDed bit by bit.
For instance, if you calculate 25 and 11,
the fallowing happens 9

.

25 is binary 11001
II is binary filfiii
Result is binary 01001 which is 9.
Thus, typing 25 11 AND leaves 9 on top of
the stack e

The most common use of AND is with flags,
so remember that if you are ANDing two
flags that are 1 (true) or 0 (false) then
both must be true for the result to be
true.

R (nl,n2— n3)
Logical OR. Either argument must be true
for the result to be true. Notes the
arguments are ORed bit by bit.
1 or 1 is 1.

1 or 0 i s 1

.

0 or 1 is 1.

0 or 0 i s 0

.

XOR (nl,n2~n3)
Logical ex 1 usi ve OR. One of the arguments
must be true for the result to be true.
Notes the arguments are XORed bit by bit.
1 xor 1 is 0.
1 x or 0 is 1

.

0 x or 1 is 1

.

0 x or 0 is 0

.

Notes 0=* which is described on the previous page can be used
as a logical NOT operator because it will change any
non-zero value (true) to 0 (false) and 0 (flase) to 1

(true)

.

C-S

MEMORY ACCESS — VARIABLES, ETC.

CONSTANT {string

>

(string) < —n)

(n—)

Creates a constant called -(string)
(< string) must be one word) with value n.

Then whenever the word (string) is execu-
ted, n will be put on the stack. Example:
if you type 12 CONSTANT MONTHS/YR then
whenever you type MQNTHS/YR the number 12
will be put on the stack. Note: Never use
the word CONSTANT inside a colon defi-
nition. You set all constants before you
write colon definitions.

VARIABLE < string)

< string) (—addr)

(n—)

Creates a variable called <string

>

(<string> must be a valid name) and gives
the variable a starting value of n. When
the word (string > is executed, the address
of the variable in memory will be put on
the stack. Examples if you type
9 VARIABLE LIVES then the value of LIVES is
nine. If you want to see what the value of
LIVES is, you type LIVES ». Typing LIVES

the address of the variable on the
, and then the word 3 fetched the

value stored at that address and put it on
top of the stack. If you want to change
the value of LIVES to 8, for instance, you

!. This puts an 8 on top of
then puts the address of LIVES

i 8, then executes the command

type 8 LIVES
the stack,
on top of thi

! which stores the second value on the
stack in the address on top of the stack.

(n, addr)

Stores the
integers use
word is used
in variables.

!-byte
! bytes
most

number
) in the

(si ngl e— 1 ength
This

ng values

3 (addr n)
Fetches the 2-byte value stared in the
address on top of the stack and puts this
single-length integer on top of the stack.

(n, addr)

Adds n to the contents of the address.
This is used most o-f ten -for incrementing
variables (or decrementing them if n is
negati ve) •

Example: if there is a variable called
COOKIES which is set to 9, then typing
12 COOKIES * would change the value o-f

COOKIES to 21.

(c, addr)

Stores c into addr. This is used when you
want to store the number c into only one
byte, instead o-f 2 as you would with !.

This is most useful for storing characters,
which use only one byte of memory.

(addr c

)

Fetches the value of the byte whose address
is addr . Useful for fetching characters
from memory.

Adds n bytes to the parameter field of the
most recently defined word. In plain Eng-
lish (for those who don't speak FORTH
fluently) this means that you can set aside
memory in the computer to be used for
storing an array of numbers.
Examples If you type
0 VARIABLE SCORES 12 ALLOT
you have an array called SCORES which will
hold 14 characters (variables get 2 bytes
automatically, and allotting 12 more gives
SCORES 14 bytes) or 7 single-length inte-
gers (integers use 2 bytes). Then, to
access any position of the array, you
merely type SCORES which puts the address
of the beginning of the array on top of the
stack, then add an offset. Examples to get
the address of the 3rd position in the
SCORES array, (which holds, let us say,
integers) you type — > SCORES 4 +. SCORES
put the address of scores on the stack. 4
+ added the offset (for the 1st position in
the array you would add nothing, for the
2nd you add 2 (remember that an integer
uses 2 bytes) , and for the 3rd you add 4 e

On top of the stack you now have the ad-
dress of the 3rd position of the SCORES
array.
Notes to easily calculate the offset into
an integer array, you can define a word
such as s OFF 1 - 2 * + 5

Then to put the address of the 3rd position

C-10

SCORES array
3 OFF
how this is

on top of the ^tack,

the same as typing

of the
type
Can vou
SCORES 4 + ?
WARNING: If you try to use more positions
in an array than you allotted to the array,
the computer can lock up. Do not, for
example, try to access the 18th position o-f

an array that you only alloted 17 positions

FCQNSTANT < string

>

< string

>

—fo>

FVARI ABLE <

<str ing> (

ing>

-addr

)

F3

(fp—)

Creates a real -number constant. Example:
FLOATING 3.1415 FCQNSTANT PI creates a

constant called PI. When you type PI the
real number 3.1415 will be put on the
stack.

<-fp—)

Creates a real-number variable called
<string> with a starting value o-f fp.

Executing the word <string> will then put
the address o-f the variable in memory on

top o-f the stack „ Example: i-f you type
FLOATING 100 FVARIABLE AREA
you will have a variable named AREA that
is set to the value o-f 100. To change the
value o-f AREA to 99.32 you type
FLOATING 99.32 AREA F!
(F! is explained below).
To put the value of AREA on top o-f the
stack as a real (-floating-point) number you
type AREA F3 (F5) is explained below)

(addr -fp)

Put the real number stored starting at addr
on top of the stack. This command is
mostly used with floating point variables.
Note that a real number is stored in 6

—)

Store the real number fp in the
starting at addr. This command is
used with floating point variables.

bytes
mostly

C-ll

GMOVE (addrl, addr2, n —)

Move (or copy) n bytes in memory starting
at addrl to addr2. Example: if a string is
stored at memory location 100 and is 6
bytes long, and you want to copy this
string to start at memory location 500, vou
would type 100 500 6 CMQVE
Now there is a copy of bytes 100 through
105 at bytes 500 through 505. Note that
whatever was in bytes 500 through 505 is
now lost.

FILL (addr

,

n, c—)

Fill n bytes in memory,
with the value c.

starting at addr.

ERASE (addr, n—)

Fill n bytes in memory with zeroes,
starting at addr- Examples 1000 10 ERASE
will fill bytes 1000 through 1009 with
z eroes
Notes this command is useful for clearing
arrays. If you have allotted 100 bytes to
the array SCORES, then to clear the array
you would type SCORES 100 E

BLANKS (addr, n —)

Fills n bytes in memory, starting at addr,
with the number 32, which is the ASCII code
for a blank, or space. This is very useful
for clearing strings in memory. If you
have a string starting at address 5000 and
with a length of 20 characters, then you
can clear this string to blanks by typing
5000 20 BLANKS

NUMBER BASES

DECIMAL (—)

Set decimal base (base 10).

HEX ()
•

Set hexadecimal base (base 16)

.

OCTAL < —)

Set octal base (base 8)

.

BASE (—addr)
A system variable which holds the value of
the current base. To change the base,
store the value you want in BASE. To put
the value of the current base on top of the
stack, type BASE 3

C-12

For instance, the definition of HEX is
: HEX DECIMAL 16 BASE ! ;

TERMINAL OUTPUT

(n—)

Note: this is a period, or dot- It prints
the number on top of the stack. Note that
the number is then dropped from the stack.
To print the number on top of the stack
without losing it, you could type DUP .

Note: the number will be printed starting
wherever the cursor is and there will be a
trailing space printed after the number.
Example: if you type 5 . then the screen
will look like this: 5 . 5 ok
Note: the number on top of the stack is
printed using the current base. This can
be useful in the following way:
To see what the number 19 is in binary, you
could type: DECIMAL 19 2 BASE ! .

The computer will print: 10011
Now type DECIMAL to get back into decimal

. R (nl,n2—)

Prints nl r i ght-just i f i ed in a field n2
characters wide. Example: if you type
37 5 .R the computer will print 3 spaces
and then the number 37, which is 2 digits.
This way, the computer printed a total of 5
characters.

? (addr—)

Prints the single-length integer stored
starting at addr. (Remember that an integer
is 2 bytes.) Typing 500 ? is the same as
typing 500 3 .

D. <d—)

Prints a double-length integer.

D.R (d ,
n—)

Prints a double-length integer, right-
justified in a field of width n.

F. (fp—)

Prints the floating-point (real) number
that is on top of the stack.

C-13

(addr)

Pr i nts
that is

the -Floating-point (real)
stored starting at addr.

number

CR (—)

SPACE (—)

SPACES (n—)

Does a carriage return.

Prints a space.

Prints n spaces.

M
a ing>" —)

Prints a string on screen, delimited by a
quote. The first space after the is
ignored; it separates the command . * from
the string to be typed. Note that there
must be no space between the period and the
first quote.
Examples . I LIKE FORTH" prints
I LIKE FORTH
Note that the computer would print "ok"
after it though. I LIKE FORTHok
so you might want to type instead:
m I LIKE FORTH " with a space before the

last quote so that the computer will prints
I LIKE FORTH ok
Another trick would be to types

I LIKE FORTH" CR so that the computer
will prints
I LIKE FORTH
ok

EMIT (c —)

Pr i nts
on top
prints
capi tal
Notes it

the character
of the stack,
a capital "A"
"B".
is useful to

whose ASCII value is
Examples 65 EMIT
66 EMIT prints a

know the ASCII values
chart offor every character or to have a

these values*

TYPE (addr

,

n —)

Types a string of length n that is stared
starting at the address in memory.
Examples if the string "STUDENTS" were
stored in memory starting at location 1000,
1000 8 TYPE would print "STUDENTS
1000 4 TYPE would print "STUD".
1003 5 TYPE would print "DENTS".

C-14

COUNT (addrl—addr2,n)
Puts the byte count of the string stored at
addrl and the address of the actual
beginning of the string on the stack. This
is used mostly to pr&parB the stack for the
word TYPE (above,

)

-TRAILING (addr , nl—addr , n2)
Adjusts the character count on the stack of
a string stored at addr to ignore trailing
blanks. This word is most often used
immediately before TYPE so that trailing
blanks are not printed after the string.

TERMINAL INPUT

KEY < —c

)

Wait for someone to press a key on the
keyboard, then put the ASCII value of the
key on the stack. The character that is
typed is not printed on the monitor.
Example: if you type KEY then nothing will
happen until you press a key. Then, for
example, say you press the "A" key. The
computer will now print "ok" but the "A"
that you typed will not be shown on the
screen o The number 65 (the ASCII value of
"A") will be on top of the stack.
Note: a simple way to have the computer
print the character you pressed is:
KEY DUP EMIT
This waits for you to press a key and
prints it out while still keeping its value
on the stack. Can you see why this works?

(addr, n —)

Read n characters (or until carriage
return) from the keyboard into the computer
storing the input string at address addr in
memory. An ASCII NUL Character (a zero) is
put at the end of the string in memory.
Example: 5000 20 EXPECT will wait for you
to type a string up to 20 characters in
length, then move that string to start at
memory location 5000. The next byte after
the end of the string, no matter what
length the string is (less than or equal to
20 characters), will be a zero. For
instance, if you type ATARIS ARE NEAT that
string will be stored in memory starting at
50000 (byte 50000 will hold the ASCII value
of "A", etc.) and byte 50015 will hold a
zero (the length of the string is 15, so

C-15

bytes 50000-50014 hold the string itself.)
Because of this, you will be able to find
the end of the strinq by searching the
memory for a zero.

WORD (c—)

Read one word from the input stream, using
the given character as a delimiter. The
character is usually a blank (ASCII 32) as
this way you can separate words from each
other. The word is read to the address
HERE (for an explanation of HERE see HERE

• in this glossary) with a preceding byte
count is This means that HERE will contain
the length byte and the actual string will
begin at HERE + 1.

QUERY (—)

Waits for up to 80 characters to be typed
at the keyboard (fallowed by <CR>) and
moves the input string to an address called
TIB (mnemonic for Terminal Input Buffer)
and sets the system variable IN to 0. For
explanations of IN and TIB see below
Special System Words.

v

CONTROL STRUCTURES (LOOPS AND CONDITIONALS)

note: all of these are sequences of words.
The entire sequence must appear in one
definition. The stack effects of each word
in the sequence are listed after the
sequence. Where three dots appear (...)
they stand for any group of commands that
may be inserted in the sequence.

DO ... LOOP
DO (nl,n2—)

LOOP (—)

Do everything between the DO and the LOOP
nl-n2 times. The computer keeps a counter
for the loop. The counter goes from n2 to
nl but the loop does not repeat once the
counter reaches nl. The counter is
incremented by 1 each time through the
loop. Example: 10 1 DO CR LOOP will print
9 carriage returns (10—1 is 9). The
counter goes from 1 to 9 and then when the
counter is incremented to 10 (the word LOOP
actually increments the counter) the loop
does not repeat.
The way the computer actually keeps track
of a loop is that the word DO puts limit
and the counter on the Return Stack. The
word LOOP increments the counter then
compares the counter and the limit and, if
the counter has not yet reached the limit,
loops back to the first word after DO. If
the counter has reached the limit, the
computer drops the counter and limit from
the Return Stack and continues with the
first word after LOOP.

I < —n)
Puts the counter (index) of the loop on the
stack. Use this word inside loops, as in
10 0 DO I . CR LOOP which will print the
digits 0 through 9.

Causes the index to equal the limit so that
the loop will be exited when the word LOOP
is executed.

DO ... +LQOP
DO (nl,n2—)

+LOOP (n—)

Just like DO ... LOOP except that the
increment does not have to be 1. Use in

LEAVE (—)

C-17

V

this way:
10 1 DO I . CR 2 +LOOP will print the odd
integers 1 to 9. The increment can be
negatives
-10 0 DO I . CR -1 +LOOP will print the
negative numbers 0 to -9. (The loop does
not repeat once the limit has been reached,
so -10 is not printed.)
Note that the words I and LEAVE may be used
in this loop exactly as in a DO ... LOOP
1 oop

.

BEGIN . . . UNTIL
BEGIN
UNTIL

(—)

Cf™)

Do everything between the BEGIN and UNTIL
until there is a true -Flag (a non-zero
value) on top of the stack when the word
UNTIL is executed. The word until takes
the top item off the top o-f the stack and,
if it is a 0 S loops back to the first word
after BEGIN. The word BEGIN does nothing
except mark the beginning of the loop.
Examples if you define TEST as follows
5 TEST PRESS A TO CONTINUE - BEBIN KEY
ASCII A * UNTIL THANK YOU" CR §

the word TEST will wait print a message,
you to press the A key on the
and print another message. If
any key other than A the computer

will simply wait for you to type another
key, until you type A.
Note that you can create an
by putting a 0 on the stack
UNTIL, as in BEBIN CR 0 UNTIL which
print carriage returns forever.

wait for
keyboard

„

you pr

infinite loop
before saying

wi 1

1

FORTH
provides another way to do this. The word
AGAIN which does not appear other than
right here in this glossary acts just like
0 UNTIL. You could write a word to print
'FOREVER* over and over again as follows:
1 INFINITY BEGIN . * FOREVER- CR AGAIN ;

If you execute INFINITY there i s no escape
except pressing the SYSTEM RESET key or
turning the computer off.

BEGIN . WHILE ... REPEAT
BEGIN
WHILE
REPEAT

(
—

(f—)

)

)

In this loop, a flag on top of the stack is
tested by the word WHILE. If the flag is
f al se (0) execution skips to the first

C-18

command after REPEAT. Otherwise, execution
continues up to REPEAT, then loops back to
the first word after BEGIN.
Between BEGIN and WHILE there should be a

test that leaves a flag on the stack. The
word WHILE takes the flag off of the stack
and, if the flag is true, everything
between WHILE and REPEAT is executed. Then
the program loops back to the first word
after BEGIN to repeat the loop. The words
BEGIN and REPEAT do nothing except mark the
beginning and end of the loop.
Example: here is a program that will print
the numbers from 1 to 10. (You could use a

DO loop, as shown on the previous page, but
this is an example of a WHILE loop)
0 VARIABLE X
s TEST2 1 X ! BEGIN X 9 11 < WHILE X 3 .

CR X 8 1 + X ! REPEAT ;

First, we declared our variable X. Then we
defined the word TEST2 to store 1 into X

and, while X was less than 11, print X and
then add 1 to its value. The word TEST2
should, therefore, print the numbers 1

through 10 when executed.

IF END IF (THEN and END IF are synonyms)
)

)

If the flag is true then everything between
the IF and the THEN will be executed.
Otherwise, the program will jump to the
first word after THEN. The word IF expects
a flag on the stack and will remove this
flag from the stack. The word THEN simply
marks the end of the conditional.
Everything after THEN will be executed
whether or not the flag is true.
Example: A word that will print
•NOT EQUAL"" if the top two items on the
stack are equal and 'EQUAL* if they are
equal is defined below:
s WHICH - IF NOT THEN EQUAL. ;

Note that this word takes advantage of the
fact that if two numbers are not equal
their difference is non-zero and any non-
zero number can act as a true flag.
If, after defining WHICH, you typed:
4 5 WHICH the computer would print:

C-19

NOT EQUAL
If you typed:
23 23 WHICH the computer would print:
EQUAL
This works because the word NOT is only
printed if the numbers are not equal but
the word EQUAL is printed either way.

IF
IF
ELSE
THEN

(

<

THEN
-)

)

)

or IF o END IF

This is like an IF . THEN loop except
that if the flag is true, everything
between IF and ELSE is executed and if it
is false everything between ELSE and THEN
is executed- Either way, the program
continues with the first word after THEN.
The word IF takes a flag off of the stack.
The words ELSE and THEN do nothing to the
stack; they only mark the positions that
the program will jump to.
Example: the following definition will
compare the top two numbers on the stack
and print n YES y if they are equal and K N0 y

if they are not equals
I WHAT - IF YES" ELSE NO* THEN CR ;

Whether or not the two numbers on top of
the stack were equal, the program printed a
Carriage Return <<CR>) after printing the
proper message.
If you type 8 8 WHAT the computer will
print YES *

If you type 8 -4 WHAT the computer will
print NO.

SPECIAL SYSTEM WORDS
•••• mami mmm ™ mmm ™" mam* 1 '• mmm mmm mmm "* MBi MM mmm mmm rim mmm n mmm mmm mmm 1MB mmm mmm mmm mmm mmm mmm «a *mmm <md mmm mmm 1 mmm mmm mi mmm mmm

HERE (— addr)
Puts the address of the top of your
dictionary on the stack. This is a special
address because the word WORD moves text to
that address and because your dictionary
ends right below that address. For
instance, if HERE puts 309S4 on the stack,
you should not use any address below 30984
unless you know exactly what you are doing
and it is for a special purpose.
Every time that you define a new word, it
gets added to your dictionary and the value

returned by HERE will increase- The value
returned by HERE will not change unless ycu
change the length ct your dictionary by
de-Fining new words or getting rid of old
words-

PAD £ — addr)
Puts the address of the pad on top of the
stack- The pad is an area of memory that
can be used by the progr ammer for whatever-
use he desires and is of length at least SO
bytes- The pad is often used as an output
buffer which means that text is moved to
the pad and then whatever text is at the
pad is typed out- If you need to
manipulate text, the pad is a good place to
do this- The pad starts about 68 bytes
beyond HERE.

TERMINAL < —f

>

The flag will be true if a terminal break
request is present.. This means that if a

key on the keyboard has been
,

pressed, a

true flag will be put on' the stack.
Otherwise, a flase flag will be put on the

SP3 (— addr)
.Addr will be the address of the top of the
stack. Example: If there is a 7 on" top of
the stack and you type
SPS) 3
The number 7 will be printed and 7 will
still be on top of the stack.

ABCRT (—- empty stack)

Empties the stack, aborts whatever it was
doing-, enters the FORTH vocabulary, and
enters the main FORTH interpreter mode-
ABORT is usually executed by FORTH after
every error , and you can use it in your
programs if a situation arises that would
cause you to want to abort your program.

COMMENT:

f s

Begin a comment. The comment must end with
a closed parentheses- A comment is ignored
by FORTH and is in a program only for the?

reader of the program. Exa/^pjha?
(FORTH IS WONDERFUL)

is a comment- Note that a comment must
have at least one space after the opening
parentheses but does not need a space
be-fore the closing parentheses.

DISK ACCESSING WORDS

LOAD - (n—)

LIST (n—)

List screen number n and make screen number
n the current screen for editing- See the
editing section of this manual for a full
description of this word.

Load screen number n from the disk as
though everything on the screen had been
typed into the computer from the keyboard.
See the editing section in this manual for
more on this word-

BLOCK "
(n-~addr)

^ Block number n will be read from the disk
into a buffer that the computer finds
avbailable- The address of the beginning
of this buffer will be put on top of the
stack. A block is 128 bytes long and is
the basic unit of a FORTH disk,. There are
8 bloc k s to a Sc r een

.

Examples if you want to print out the 5th
through 10th characters on screen 20, you
SBV Gtft t f° .CZi

20 8 * BLOCK 5+6 TYPE
See if you can figure out how this works.
Note: every 2 lines on a screen are 1

block, so to print the 3rd line of screen
30 you execute
30 8 * 1 + BLOCK 64 TYPE
Note: To print cut the 2nd line of a block
(a block is 2 lines) just add 64 to the
starting address. To print line 1 of
screen 25 (remember that lines are numbered
0—15) execute
25 8 * BLOCK 64 + 64 TYPE

Notes if all the buffers are full, the word
BLOCK w i 1 1 p i c k a b u f f er an d , if it h a s
been updated (see below under UPDATE) it
will write the contents of this buffer back
onto the disk and then use this buffer for
the block now being loaded,. If a bu.ri^r
has not been updated* FORTH will overwrite
the buffer with the block now being loaded.

Writes any disk buffers that have been
updated (see UPDATE below) onto the disk.
This command is used to write any black
onto the disk. Some explanation of FLUSH
is given in the editing section of this
manual. FLUSH will see if each disk buffer
has been updated;, and if it has it will
write the buffer to its appropriate block
on the disk and then mark the buffer as
being empty. If the buffer has not been
updated, FLUSH simply marks it as being
empty, because if the contents of the block
have not been changed, FORTH needs not
bother to write the block back onto the
disk.

•)

Marks the last disk buffer that was
accessed as updated, or having been
changed, so that a subsequent FLUSH command
will write the block stored in that buffer
to the disk.
Note: The EDITOR command, MARK, (see the
section on editing in this manual) UPDATES
all S blocks in the most recently LISTed or
CLEARed screen.

Empties all disk buffers without writing
them to the disk (erases all the disk
buffers.) This command is used to forget
any changes that have been made to the disk
since it was last written to.
Motes Remember that a block is written to a

disk without the use of the FLUSH command
if the buffer the block is in is needed for
some other purpose. For this reason, you
should use the EMPTY—BUFFERS command as
soon as you realize that you do not wish to
save your work. If you wait, the work may
be saved to the disk inadvertantly.
See the editing section of this manual for
another explanation of this command.

Sets the system variable OFFSET to 720 so
that drive 2 wi 1 1 be the current disk
drive. See OFFSET in this manual.
Notes the screens on drive 2 are numbered
90 through 179 (remember that on drive 1

they are 0 through 89) . Thus, two ways to
list screen 20 of drive 2 ares

DR1 20 LIST
As you can see, DR1 sets an offset of 720
blocks (remember there are 3 blocks per
screen). This offset stays in effect until
the word DRO is executed or the variable
OFFSET is changed.

DRO (—)

Sets the system variable OFFSET to 0 so
that drive 1 will be accessed.

R/W (addr.n.f—)

Read or Write a disk block. This command
is very seldom used by the programmer
because he usually can do everything he
needs with the the commands listed above.
If f is 1, block n will be read from the
disk into the 12S bytes starting at addr.
If f is 0, the 12S bytes starting at addr
will be written to block n.
This command gives the programmer complete
control over the contents of the disk and
should be used with caution.
Notes for most purposes, the other commands
listed above will suffice for disk-
accessing. R/W is used by the BLOCK and
FLUSH commands.
There may be no error message printed if
the R/W command is unsuccessful.

-DISK (addr „ nl , n2 9 f
-—n3>

This is another seldom-used disk-read/write
command. It reads (if the flag is 1) or
writes (if the flag is 0) a sector (12S
bytes) to or from the disk. Addr is the
starting memory location to be written to
the disk or that the disk should be read
into. Nl is the sector number (0 to 719)
and n2 is the drive number (1 to 4). N3
will be 0 if everything worked, or it will
be the DOS error number if there was an
error e

C-24

DEFINING WORDS

< string (—)

in a colon definition of the first word
(delimited by a blank) following the colon.
The definition must be in high—level FORTH,
and the definition will be compiled into
the parameter field address of the word
being defined.
Ex ampl es
s SQUARE DUP * ;

will define a new word, or command, called
SQUARE that will execute first the command
DUP and then the command *.

5
(—)

End compilation of a colon definition

VARIABLE
This defining word is explained in this
manual in the MEMORY ACCESS section of this
glossary.

CONSTANT
This defining word is explained in this
manual in the MEMORY ACCESS section of this
glossary.

< BUILDS . . . DOES>
< BUILDS < —)

(— addr)

This is a structure used to create new
defining words. <BUILDS and DOES> go in a
colon definition of a new defining word.
The section after the word < BUILDS will be
executed by the defining word in creating a
new command. The section after DOES> will
be executed by the word defined by the
defining word. The address of the
parameter field of the word defined by the
defining word will be put on the stack
before execution of the code after DOES>
begi ns

.

Examples
The way to create an array normally would
be (for instance, an array called THESE of
10 i ntegers)

:

0 VARIABLE THESE 18 ALLOT
(because THESE will need 20 bytes, 2 of
which it is automatically given by the word
VARIABLE. See ALLOT in this manual for an
ex pi anati on .

)

Then, the way to get the address of one of
these integers (for use with a) or !) would
be (for instance, to fetch the 3rd position
of the Array) 2

THESE 4 + 5)

(because the first position is THESE+O, the
second is THE5E+2, etc- Again., see ALLOT
if you do not understand arrays.)
A much easier way would be to define a
defining word called INT-ARRAY that would
define THESE as an array that could be
accessed easily.
s INT—ARRAY < BUILDS 0 VARIABLE 1 - 2 *

ALLOT DOES> SWAP I - 2* + ;

Now when we type
10 INT—ARRAY THESE
we will create (define) an array called
THESE that has room for 10 integers. We
have just done the same thing as we did
before (see above) when we created the
array .

To get the 3rd position of THESE we merely
now have to type
3 THESE 3
To store the number 73 in the 5th position
of THESE, we merely type
73 5 THESE !

Now we shall see how this works. ' The
<BUILDS definition of INT—ARRAY creates an
integer array with the same number of
positions as the number that is on the
stack when INT-ARRAY is executed. The word
VARIABLE creates a variable named whatever
the next word in the input stream is, and the
next word that is found in the input stream
when INT-ARRAY is executed will be the name
of the array we are defining, so the array
will be first defined as a variable. Then
some calculations are done to the number on
top of the stack so that the right number
of bytes are allotted to the array.
The D0ES> definition of INT-ARRAY defines
what the word defined by INT—ARRAY (in this
case THESE) will do. The first thing that
it will do is put its own address
(parameter field address) on top of the
stack. All words defined by D0ES> put
their own address on top of the stack
before doing anything else. Then it will
SWAP this address with the index to the
array, which is expected to be on the stack
when THESE is executed. Then some
calculations will be done so that the
address of the nth position of THESE (n is
the index) is left on the stack.

C-26

The word INT-ARRAY can now be used to
define any number of integer arrays, for
instance 100 INT—ARRAY SCORES would define
the array SCORES.
The author hopes that this example of

defining a defining word called INT—ARRAY
explains the use of < BUILDS D0ES>.

Begin an assembly-language definition of
the first word following the word CODE-
When this word is executed, the assembly-
language routine in the definition will be
executed- The definition will be ended
with a JMP instruction to some other
rout ine.

; CODE is used in this way:
s <string> ; CODE <assembl y-1 anguage>
<string> is the name of a defining word
being defined (see <BUILDS - . . D0ES> to
find out what a defining word is). The
difference between this and <BUILDS .

D0ES> is that you need no word such as
< BUILDS to stfart you off and the D0ES> part
is defined in assembly language instead of
in high-level FORTH- Everything following
the word ; CODE should be an assembly-
language routine that will be executed by
any word defined by the defining word
(< str i ng >) -

-)

Make the most recently defined word
immediate so that it will be executed
instead of compiled in a definition.
EXAMPLE:
s HELLO HELLO THERE" ; IMMEDIATE
defines HELLO to print HELLO THERE instead
of being compiled in a future definition.
For instance, if you now type the following
: DOTHIS 3 HELLO 4 + . ;

the computer will print HELLO THERE while
compiling DOTHIS. Executing DOTHIS will
print the number 7 and not print
HELLO THERE.

Compile the next immediate word;, instead of
executing it. If you defined HELLO as in
the example above, then typed:
: DOTHAT 3 COMPILE HELLO 4 + . ;

the computer would treat HELLO as though it
were not an immediate word. It would

simply compile DOTHAT, and when DOTHAT was
executed the computer would print
HELLO THERE 7

When the word now being de-fined is run,
compile the next word into the dictionary.
Ex amp 1 e

:

You type
s TYPE- IT . " GOOD "

5

I DO- IT 5 • COMPILE TYPE- IT ; IMMEDIATE
s TRY-IT 3 DO-IT 7 + . 5

The computer immediately prints 5 because
DO— IT is an immediate word that prints 5*
However, if you now type TRY-IT the
computer prints
600D 10
The computer prints 600D because the word
DO-IT immediately compiled TYPE-IT, which
prints M GOOD 18

, into the definition of
TRY-IT. The number 10 was printed because
TRY-IT also prints the sum of 3 and 7.
Try to understand how this example worked,
and if you do, then you understand COMPILE
(as well as IMMEDIATE)

-

(comma)
Compiles the number n into the dictionary
at HERE and adds 2 to the address of the
top of the dictionary.
Examples
1 VARIABLE ODDS 3,5,7,9,
creates an array called ODDS that contains
the odd integers 1 through 9.

(
-

—

addr) (single-quote)
Puts the address of the parameter field of
the word <string> on top of the stack.
Notes <string > is the next word in the
input stream when * is executed.
Em ample:
9 S0MEC0MMAND
would put the parameter field address of
S0MEC0MMAND on top of the stack.

—
)

Everything between the C and the 1 will be
executed immediately, not compiled. The
command C stops compilation by setting
STATE to equal 0. (See STATE under SYSTEM
VARIABLES in this glossary.) The command
3 sets STATE to equal 192, thus reentering
compiler mode- Examples
If you type
s TEST 7 E . COMPILING TEST 3 8 + . ;

computer will
"COMPILING TEST IT"
compiled as : TESTIT
executing TESTIT will
print 15-

immediately print
and TESTIT will be

7 3+- ; so that
cause the computer to

VOCABULARIES AND VL I STING AND FORGETTING

FORTH (—)

EDITOR (—)

Enter the FORTH vocabulary (make FORTH the
context vocabulary). When you enter a

command, if it is not in the FORTH
vocabulary the computer will not recognise
it. All of the commands in this glossary
are in the FORTH vocabulary.

Enter the EDITOR vocabulary (make EDITOR
the context vocabulary). When you enter a

command, the EDITOR vocabulary will be
searched. If the command is found there,
that command will be executed. If the
command is not found in the EDITOR
vocabulary, the FORTH vocabulary will be
searched for the command. This is how all
vocabularies other than the FORTH
vocabulary work. The purpose of having a
separate vocabulary is so that there can be
more than one command with the same name,
as long as they are in different
vocabularies.
A list of commands in the EDITOR vocabulary
appears in the Editing section of this

3

VLIST

(—)

Enter the ASSEMBLER vocabulary (make
ASSEMBLER the context vocabulary). The APX
manual EXTENDED figzEQBIb by Patrick L.

Mul larky explains the ASSEMBLER that i s on
your disk.

List all the commands
vocabul ary.

in the contex t

C-29

FORGET < string; (—)

Forget all definitions after and including
<string>. For instance, i f you tvpe
2 THIS . " THIS" ;

: THAT . " THAT" ;

and then type FORGET THIS the computer will
no longer recognize THIS or THAT.
The FORGET command is used if you want to
get rid of old versions of a word so that
you will get no more "Isn't unique"
messages or to get rid of unneeded words to
save memory.
NOTE: You cannot FORGET the self -booting
FORTH definitions because they are
protected by FENCE (see FENCE under SYSTEM
VARIABLES in this glossary).

DEFINITIONS (— >

This makes the context vocabulary also
current vocabulary. This means that
definitions you now type will be in
context vocabul ary,
EXAMPLES to define a new EDITOR command
type EDITOR DEFINITIONS then type
definition of the new command* When
are done, it is a good idea to type
FORTH DEFINITIONS

the
any
the

you
the
you

VOCABULARY <string> < —)

Create a new vocabulary called <string>.
EXAMPLES The EDITOR vocabulary was created
by the creator of the fig-FORTH MASTER disk
typing VOCABULARY EDITOR.
Notes FORTH allows for a maximum of 4
vocabularies, so you can only define a
maximum of 1 vocabulary of your own (in
addittion to the FORTH, EDITOR, and
ASSEMBLER vocabularies.

)

NUMERIC OUTPUT FORMATTING COMMANDS

Note: To get fancier output of numbers than the
commands . , U» , etc. (above, under terminal
output) allow, you can format the output of
numbers.
The format for the number is entered
between the <# and #> commands (explained
below) so all the commands listed below
must appear within the phrase <# . . . #>

C-30

<# < — >

Begins the number -Formatting process.
There must be an unsigned double-length
number on top of the stack., or an unsigned
single-length integer as the second item
and a 0 as the top of the stack. If, in

the output, you are going to want to print
the sign of the number, there must be a

signed number as the third item on the
stack.

#> (d—addr^n)
Completes the number formatting process and
leaves the length of the string and the
address of the string on top of the stack,
so that a subsequent TYPE command will type
out the text string.

SIGN <n,d—d)
Inserts the sign of n into the
string.

(dl—d2>
Converts one digit of the double-length
number on top of the stack, using the
current base, into the otput character
string.

#S (d—0,0)
Converts the double-length number into the
output text string.

HOLD <c—)

Inserts the character whose ASCII value is
c into the output string.

Notes The stack effects of an entire number formatting sequence
are as follows:
<# . . « #> (d—addr,n) or <nl,0—addr,n2)
<# SIGN #> <nl,ld!—addr,n2) or <nl,!nl!,0—addr,n2)
where In! means the absolute value of n.

Notes numbers are converted "backwards"; the first digit
converted is the character printed last.

>

EXAMPLE s

The following definition of TIME, will print out the time if the
number of seconds i s on top of the stack.
58 CONSTANT ASCI I—OF—COLON
. BASE—SIX 6 BASE ! 5

1 2-DIGITS DECIMAL # BASE-SIX # ASCI I-0F-C0L0N HOLD ;

s TIME. <# 2—DIGITS 2-DIGITS DECIMAL #S #> TYPE CR ;

If you were to put the double-length number 4610 on top of the
stack (or the single length number 4610 followed by 0) and then
execute the word TIME, the computer would print l:16s50.

The second number after each colon is converted in base 10, the
first digit after each colon is converted in base 6, and the
hours are converted in base 10.

ANOTHER EXAMPLE:
To define a word NET that would print the number -3294 as
$32.94-
we would use the following definition:
36 CONSTANT ASCII-*
46 CONSTANT ASCI I -POINT
: PREPARE DUP ABS 0 ; (n—n, in! ,0)
8 NET PREPARE <# SIGN # # ASCI I -POINT HOLD

#S ASCII-* HOLD #> TYPE $

Now, typing -3294 NET would cause the computer to print
*32.94-
If we wanted the computer to print -*32.94 instead, we would have
defined NET as
s NET PREPARE <# # # ASCI I-POINT HOLD

#S ASCII-* HOLD SISN #> TYPE 5

CONSTANTS USED BY THE FORTH SYSTEM

BL (—n)

C/L (—n)

0 (—n)

Puts the number 32 (ASCII blank character)
on top of the stack.

Puts the number 64 (characters per line on
a disk screen) on top of the stack.

Puts the number 0 on top of the stack. The
most-often used numbers are defined as
constants because a constant is executed
faster than a number that has to be
interpreted every time that it is used.
Note: if your program needs to use a number
more than 3 times, it is to your advantage
to declare that number as a constant, for
examples IS CONSTANT 18
Note: most numbers (those that have not
been deal ar&d as constants) do the same
thing that constants do—they put their own
value on top of the stack. They execute
more slowly than constants, however.

1 (—n)
Puts the number 1 on top of the stack.

(—n)

(—n>

3/SCR (—n)

B/BUF (—n)

Puts the number 2 cn top of the stack.

Puts the number 3 on top of the stack.

Puts the number 3 (the number of disk blocks per
disk screen) on top of the stack.

••.

Puts the number 123 (the number of bytes
per disk block or disk buffer) on top of
the stack.

FIRST (—addr)
Puts the beginning address of the of the
disk buffers (the address of the first disk
buffer) on top of the stack. This number \

is: HEX 3BE0

LIMIT (—addr)
)

Puts the address of the first byte after
the last disk buffer on top of the stack.
This is the first byte in memory that is
"free", or not used by the FORTH system.
Note: All memory between FIRST and LIMIT is
used for disk buffers.

j>

SYSTEM VARIABLES (USER VARIABLES)

Note: All of these commands are variables.
They all do the following to the stack:
(—addr)
addr will be the address that must be
fetched with 5) or changed with ! to get or
change the value of the variable.
In this section, the explanations of the
commands will only be of what the variables
hold.

SCR

OFFSET

The number of the current screen (the
screen most recently referenced by LIST or
CLEAR

)

The offset (in number of blocks) for the
disk drives. The command BLOCK adds the

stored in OFFSET to the top of the

)

stack before it gets the block with that
number. Since block number 720 is block 0

of drive 2, storing 720 in OFFSET will
cause drive 2 to be re-forenced by future
BLOCK (and most other disk-referencing)
commands

«

BLK
The number of the block being interpreted
(as by a LOAD command). BLK will be set to
0 if input is coming from the Terminal
Input Buffer (the computer is being
operated from the keyboard and not, at the
moment, from the disk).

TIB
The address of the Terminal Input Buffer,
into which all text from the keyboard is
put before being interpreted.

IN
The offset (in number of bytes) into the
input text buffer (whether the TIB or a
disk buffer) to the text being currently
interpreted. The command WORD changes the
value of IN when it finds text in the input
buffer.

WARNING
If WARNING holds a 1, there is a disk
in drive 1 and error messages will be read
from the disk. If WARNING holds a 0, there
is not a disk with error messages and if
there is an error the computer will simply
print "ERROR # n M

, where n is the error
number. If WARNING holds a -1, then the
command (ABORT) will be executed whenever
there i s an error.

DP
The address of the first free byte of
memory above the dictionary. The command
HERE reads DP onto the top of the stack.
The command ALLOT changes the value stored
in DP.

R#
The location of the Character Pointer in
the current screen. This variable is used
by the EDITOR.

STATE
If STATE is 0 f the system is in immediate
mode (interpreting or executing).
Otherwise, the system is in compiling state

(the input stream is being compiled into
the dictionary.) (AJhile a new word is being
de-fined, STATE is non-zero-

No definitions can be forgotten using
FORGET below this address- The contents of
FENCE must be changed to FORGET a

definition below this address. The word
SAVE sets FENCE so that no self -booting
definitions can be forgotten.

This is the address of the latest character
of text that has been converted from a
number during a formatted numeric output
conversi on

.

This is the field width (number of
characters) for formatted output of
numbers.

The data stack pointer is stored in this
variable during compilation of a new
definition for error checking. If the data
stack pointer is not the same after
compilation, there will be an error.

The number of digits to the right of the
decimal point in a double-length integer
that has been input. If a number is typed
with a decimal point in it, the number will
be double-length, the decimal point will be
taken out and DPL will be set. Examples
If you type 12.3 the stack will have a
doubl e— 1 ength number (123) on top and DPL
will be 1 ? because there is 1 digit to the
right of the decimal place. If no decimal
point is typed, DPL will hold -1.

This is an offset into the Text Output
Buffer. The command EMIT increments OUT.

This holds the address of the link field
address of the last word defined in the
current vocabulary. In other words, it is
a pointer to the vocabulary into which new
definitions will be put. (See under
VOCABULARIES in this glossary.)

CONTEXT

VOC-LINK

This holds the address of the link field of
the last word in the vocabulary that is to
be searched first in searching the
dictionary for words. In other words, it
is a pointer to the context vocabulary.
(See under VOCABULARIES in this glossary.)

This holds the link field address of the
most recently defined vocabulary. (It
could hold the link field address of the
word EDITOR, for example.)
When a new vocabulary is de-fined, it is
linked to the the previously defined
vocabulary by using the number in VOC-LINK,
then it changes VOC-LINK to point to
i tsel f

.

DEBUGGING COMMANDS

DUMP CftddrVu—

)

Dump <pr int out) the contents of u (u is an
unsigned integer) memory locations starting
at addr. If you first type HEX the dump
will be in hexadecimal.

CDUMP (addr,u—)

Dump the characters determined by the ASCII
values of u bytes starting at addr. A
clever use of this command is to print out
the contents of any disk sector in the
following ways n BLOCK 128 CDUMP
(This example, and much of this section on
debugging, was taken from the manual
iXIi^iS fiarEQBIb by Patrick L. Mul larky,
copyrighted in 1981 by the author. That
manual, which comes with the EXTENDED fig-
FORTH master disk, explains the debugger
commands fully.

)

B? (—)

Types out the current radix, or base, in
decimal without changing the base. If you
were to simply type BASE 5) • the result
would always be 10, since no matter what
base you are in that number, when expressed
in its own base, is 10. B? will print out
the number 16 if you are in base 16,
though, and still leave you in base 16. •

C-36

(—)

Decompiles the colon definition whose name
is <string>. The computer will print each
address of the parameter field address of
the command whose name is <string>,
followed by the name of the word that is
called on in that address. For example, if
you had previously defined the word SQUARE
as : SQUARE DUP * ; then typing
DECOMP SQUARE would cause the computer to
print
addrl DUP
addr2 *

Note: DECOMP will print out what was com-
piled into the dictionary, not necessarily
what was typed when defining a word.
WARNING: The computer can lock up if you
try to DECOMPILE a word that was not
defined entirely in High-level FORTH by a
colon definition (a word that was partially
defined in assembly language).
Note: The computer will print PRIMITIVE if
you try to DECOMPILE some things, such as
variables, constants, or assembly language
definitions.

Types the number of free bytes of
left for the dictionary. This number will
vary depending on what graphics mode you
are in, since different graphics modes use
different amounts of memory.

Prints the top of the stack in hexadecimal
(base 16)

.

Prints the contents of the stack in the
current base, without changing the contents
of the stack. The numbers will be printed
as unsigned single-length integers, so -1
would print as 65535, -2 as 65534, -32768
as 3276S, but 32767 would be printed as
32767.

s

INDEX TO GLOSSARY OF FORTH COMMANDS

(in order of appearance in glossary)

STACK MANIPULATION COMMANDS
DUP C-2
DROP
SWAP
OVER
ROT
-DUP C-3
2DUP
2SWAP
20VER
FDUP
FDROP
FSWAP
FOVER
FROT
>R
R
R>

ARITHMETIC OPERATION COMMANDS
+ C~4

*

/

MOD
/MOD
*/
*/MQD
MAX

C""*wJ

ABS
MINUS
D+
DABS
DMINUS
F+

F*
F/
FLOG

FLOG 10
FEXP10

NUMERIC CONVERSION COMMANDS
FLOAT C-6
F I X

FLOATING
FP
NUMBER

COMPARISON
C-7

0<
0*
u<
F0=
F»
F<

LOGICAL OPERATORS
AND OS
OR
XOR

MEMORY ACCESS — VARIABLES., ETC.
CONSTANT C~9
VARIABLE
i

a
+! C-10
C!
C3
ALLOT #
FCONSTANT C-ll
FVARI ABLE
F:iD

F!
CMOVE C-12
FILL
ERASE
BLANKS

NUMBER BASES
DECIMAL
HEX
OCTAL
BASE

D-2

TERMINAL OUTPUT

. R
•

D.
D.R
F-

F?
CR
SPACE
SPACES

ii

EMIT
TYPE
COUNT
-TRAILING

L 1

C-14

1

TERMINAL INPUT
KEY
EXPECT
WORD
QUERY

C-16

CONTROL STRUCTURES (LOOPS AND CONDITIONALS)
DO
I

LEAVE
DO . .

BEGIN
BE6 I

M

IF
IF

mm*
a m

IF . . .

IF

LOOP

a u

+LQQP
UNTIL

. . WHILE
THEN
EHDIF
ELSE . . . THEN
ELSE

REPEAT

• •

C-17

C-18

C-19

C-20

SPECIAL SYSTEM WORDS
HERE
PAD
7terminal
sps>
ABORT

C-21

COMMENTS
(

DISK ACCESSING WORDS
LIST
LOAD
BLOCK
FLUSH
UPDATE
EMPTY—BUFFERS
DR1
DRO
R/W

C-22

C-23

C-24

D-3

DISK ACCESSING WORDS (continued from previous page)
-DISK C-24

DEFINING WORDS
.1 C-2!

VARIABLE (see C-9)
CONSTANT (see C~9>
< BUILDS DOES>
CODE
; CODE
IMMEDIATE
[COMPILE]
COMPILE
9 (comma)

< si ngl e-quote)
L tg us Mr 3

C-27

C-28

VOCABULARIES AND VL I STING AND FORGETTING
FORTH C-29
EDITOR
ASSEMBLER
VLIST
FORGET C-30
DEFINITIONS
VOCABULARY

NUMERIC OUTPUT FORMATTING COMMANDS
< #
#>
SIGN
#
#S
HOLD

C~31

CONSTANTS USED BY THE FORTH SYSTEM
BL
C/L
0
i

B/SCR
S/BUF
FIRST
LIMIT

C ™"w -«•»

C-33

SYSTEM VARIABLES
SCR
OFFSET
BLK
TIB
IN
WARN I NG
DP

(USER VARIABLES)

C-34

D-4

\

v..

0

SYSTEM VARIABLES (continued from previous page) >
R# C-34
STATE
FENCE C-35 -)

HLD
FLD
CSr'

DPL
OUT
CURRENT
CONTEXT C-36
VOC-LINK

DEBUGGING COMMANDS
DUMP
CDUMP
B?
DECOMP C-37
PREE
H.

S.

\

J

D-5

ft

NUMERIC INPUT FROM THE KEYBOARD

Because numeric input -from the keyboard is commonly used in
programming but is relatively difficult for a beginning FORTH
programmer, included on the following page of this manual is a
solution to the problem of keyboard numeric input- While this is
not the only way to solve the problem, and not necessarily the
best way, it is a valid solution. Merely copy the program listed
on the two screens on the following page onto your disk, and ail
you will need to to do whenever you need to use it is LOAD screen
24 (or whatever screen you copy it onto on your disk). Then, to
wait for a single-length number to be typed in from the keyboard
and then put that number on the stack, execute INPUT#. Likewise,
execute IMPUTD# for doubl e-1 ength numbers and INPUTF for floating
point (real) numbers.

A word of explanation is in order for how these commands work.
First, you need to know that — > is the "next screen" command.
It causes interpretation of a screen to cease and interpretation
of the next screen to begin. In this case, it is used to stop
interpreting screen 24 and start interpreting screen 25.

The way the D< command works is this:
The stack starts like this: (lol hi 1 1 o2 hi2)
Then, after ROT 2DUP: <loi lo2 hi2 hi 1 hi2 hil)
Then the command calculates £<hi2=hil AND lol<lo2) OR hi2>hil>
which is the same as dl<d2.
The rest of screen 24 i s self-explanatory.

INPUTD# does a carriage return, waits for input from the keyboard
followed by a carriage return, and converts the first number
delimited by a blank to a double-length integer on top of the
stack.
D—N—CONVERT simply DROPs the high-order part of the double-length
integer.
INPUT# is like INPUTD# except the number entered must be between
-32768 and +32767. The high order part of the number entered is
dropped.
INPUTF uses ASCF, a word that is not described in the Glossary.
ASCF converts a string starting at the address on top of the
stack into a real number, which it leaves on top of the stack.
INPUTF does a carriage return, waits for the user to type a
number from the keyboard, and converts the first string delimited
by a blank (space) to a real number, which it leaves on top of
the stack. The number may be typed in E notation (as 8.32E—42
which is 8.32 times 10 to the -42nd power) if the user wishes, or
it may be typed "regularly", but it must not have any spaces in
it or everytning following the first space will be ignored.

;S is a word that, among other things, causes interpretation of
the screen being interpreted to cease.

A sample program that uses numeric input is on the page following
the next page.

SCR # 24
0 < NUMBER INPUT AND DOUBLE-LENGTH ROUTINES)

1 : D< ROT 2DUP > >R - >R U< R> AND R>

2 • w /

3 : D» ROT - > R - R> AND 1

4
5 s D- DMINUS D+ S

S —

>

7
8
9

A JBtSl

IB
11
12
13
14
15

SCR # 25
0 < NUMBER INPUT ROUTINES CONTINUED)

1 J INPUTD# CR QUERY BL WORD HERE NUMBER CR ?

2 : D-N-CONVERT DROP !

3 : INPUT* BEGIN INPUTD# 2DUP 2DUP 327S7 (3 D> ROT
4 -32768 -1 D< OR WHILE CR . " MUST BE BETWEEN" CR
5 .

M -32768 AND 32767 " CR . " ENTER ANOTHER NUMBER
6 REPEAT D-N-CONVERT !

7 s INPUTF CR QUERY BL WORD HERE 1+ ASCF ?

S ;S
9
10
11
12
13
14
15

SCR # 26
0 C QUADS :>

1 : FVAR 0 FLOAT FVARIABLE ?

2 FVAR A FVAR B FVAR C FVAR D s -B 0 FLOAT B F3 F- ?

3 : 2A 2 FLOAT A F3 F* ? 24 LOAD C INPUT ROUTINES)

4 : INPUT-EM .' A*" INPUTF A F! ." B»" INPUTF B F!

5 . " C=" INPUTF C F ! ?

S s DSET B F3 B F3 F* 4 FLOAT A F3 F* C F3 F* F- D F! ?

7 : SQRT FLOG 2 FLOAT F/ FEXP ?

3 : NOT—QUAD . " NOT A QUAD" CR . " X= '« C F3 -B F/ F. ?

9 : 1-SOLUTION . " X= " -B 2A F/ F. ;

10 s 2-S0LUTI0NS . " X» " -B D F3 SQRT F+ 2A F/ F. . OR CR

11 . " X= M -B D F3 SQRT F- 2A F/ F. ?

12 : IMAGINARY NO REAL ROOTS." ?

13 : QUADS INPUT-EM A F3 F0= IF NOT-QUAD ELSE DSET D F3 F0=

14 IF 1-SOLUTION ELSE D F3 0 FLOAT F<

15 IF IMAGINARY ELSE 2-S0LUTI0NS THEN THEN THEN CR ?

VLIST o-f FORTH VOCABULARY

F< F= F0= FCONSTANT FVARIABLE FP FLOATING FLITERAL
FLIT ASCF FEXP10 FEXP FLOG10 FLOG FIX FLOAT F/
F* F- F+ FS F> <F F? F. F. TY F! F3 CIX INBUF
FLPTR FR1 FR0 FPOLY FEX10 FEX FLG10 FLG FDIV FMUL
FSUB FADD FPI IFP FASC AFP XL, XLD FOVER XS,
XSAV FSWAP FDUP FDROP FILTER! SOUND AUDBASE AUDCTL
FIL DRAW GCOM FILDAT ATACHR G" CG") GTYPE PLOT
POS COLORS ROWCRS CPUT XGR &GR GR. SNAME IOCX MASK
CIO SE. SETCOLOR DISKCOPY 7CCOPY MSI WRTO RDIN GKEY
DSETUP +BLK WRT RD GET ADRS BLK# BUFHEAD CODE ASSEMBLER
WHERE EDITOR MARK LINE TEXT DECOMP NXT1 .SETUP 7DOCOL
T?PR DOCOL CKIT .LIT STG BRNCH NP 1WORD 1BYTE PWORD
PDOTQ PPLOOP PLOOP SEMIS BRAN ZBRAN . CLIT . WORD S.
DEPTH CDUMP CDMP DUMP LDMP U. R 7EXIT FREE B? H.
ASCII BEEP POFF PON CSAVE SAVE (SAVE) <FMT) BOOT
VLIST TRIAD INDEX MATCH LIST U? ok 20VER 2SWAP
2DR0P 2DUP D! D3 C? U. 7 . R D. D. R #S #
SIGN #> <# SPACES WHILE ELSE IF REPEAT AGAIN END
UNTIL +LOOP LOOP DO THEN ENDIF BEGIN BACK FORGET

R/W -DISK EXPECT — > LOAD MESSAGE .LINE (LINE)
BLOCK BUFFER DR1 DR0 EMPTY-BUFFERS FLUSH UPDATE +BUF
PREV USE M/MOD */ */MOD MOD / /MOD * M/ M*«
MAX MIN DABS ABS D+- +- S->D COLD ABORT QUIT
< PROMPT DEFINITIONS FORTH VOCABULARY IMMEDIATE INTERPRET
?STACK DLITERAL LITERAL CCOMPILE 3 CREATE ID. ERROR
< ABORT) -FIND NUMBER CNUMBER) WORD GFLAG PFLAG SETUP
UP XSAVE N W IP BINARY POPTWO POP PUSH0A PUT
PUSH NEXT PAD HOLD BLANKS ERASE FILL QUERY
<.."•> -TRAILING TYPE COUNT DOES) <BUILDS ;CODE <?CODE)
DECIMAL HEX SMUDGE 1 C COMPILE ?LOADING ?CSP ?PAIRS
7EXEC 7COMP 7ERROR ! CSP PFA NFA CFA LFA LATEST
TRAVERSE -DUP SPACE ROT > < U < = - C, , ALLOT
HERE 2+ 1+ HLD R# CSP FLD DPL BASE STATE CURRENT
CONTEXT OFFSET SCR OUT IN BLK VOC-LINK DP FENCE
WARNING .WIDTH TIB +ORIGIN B/SCR B/BUF LIMIT FIRST
C/L BL 3 2 1 0 USER VARIABLE CONSTANT ; : C!
! C3 3 TOGGLE +! DUP SWAP DROP OVER DMINUS MINUS
D+ + 0< 0= R R>)R LEAVE ?S RP! SP! SP3 XOR
OR AND U/ U* CMOVE CR 7TERMINAL KEY EMIT ENCLOSE
(FIND) DIGIT I <DO) C+LOOP) CLOOP) 0BRANCH BRANCH
EXECUTE CLIT LIT

SCR # 28
0 < RANDOM DISK ACCESSING PROGRAM — RDA >

1 : NOT 0= ;

2 : VARIABLE 0 VARIABLE ? : CREATE VARIABLE -2 ALLOT ?

3 CREATE FLAG 0 , 1 , CREATE ID 1 t 2 * CREATE NAME 3 , 13 ,

4 CREATE AREA 21 , 2 , CREATE PHONE 23 , 7 ,

5 32 CONSTANT RECLEN B/BUF RECLEN / CONSTANT REC/BLK
S VARIABLE REC# VARIABLE • REC VARIABLE NXT#
7 85 B/SCR * CONSTANT FILES B/SCR REC/BLK * CONSTANT RECS
3
9 : READ REC# 3 REC/BLK /MOD FILES + BLOCK SWAP
10 RECLEN * + ' REC ! ?

1 1 : OFF 3 7 REC 3 + 5

12 : INCREC 1 REC# +! ? : FLAG-IT FLAG OFF C! ?

13 : PAST-LAST ID OFF 3 0= FLAG OFF C3 0= AND ?

14 : EXISTS ID OFF 3 - ?

15 : DELETED FLAG OFF C3 0= PAST—LAST NOT AND 1 —

>

SCR # 23
0 < RDA CONTINUED)

1 s D< ROT > IF 2DR0P 1 ELSE < THEN 5

2 : D> 2SWAP D< ?

3 : INPUTD* CR QUERY BL WORD HERE NUMBER CR 1

4 : D-N-CONVERT DROP ?

5 : INPUT# BEGIN INPUTD# 2DUP 2DUP 9999 0 D> ROT ROT
6 1 0 D< OR WHILE CR . " MUST BE A POSITIVE NUMBER BETWEEN" CR
7 . " 1 AND 9999" CR . " ENTER ANOTHER NUMBER " 2DR0P
8 REPEAT D-N-CONVERT ?

g
10 : ID# . " ENTER ID# OF STUDENT" INPUT# ?

11 : NA-ENTER NAME OFF NAME 2+3 BLANKS BEGIN CR ." ENTER NAME

"

12 . " OF STUDENT" CR QUERY 0 WORD HERE C3 IS > WHILE
13 CR . " MUST BE LESS THAN 19 CHARACTERS" CR REPEAT HERE COUNT
14 NAME OFF SWAP CMOVE ?

15 —

>

SCR # 30
0 (RDA CONTINUED ...)

1 : CONT CR . " PRESS RETURN TO CONTINUE " BEGIN KEY
2 155 UNTIL CR ;

3 s ID-PUT ID OFF ! ;

4 : ID-FIND ID# -1 REC# ! BEGIN INCREC READ DELETED IF 0 REC# 3

5 NXT# ! ELSE DUP EXISTS PAST-LAST OR THEN UNTIL ?

S : CO-ENTER CR . " ENTER AREA CODE " CR BEGIN INPUT* DUP DUP

7 100 < SWAP 999 > OR WHILE . " MUST BE A VALID AREA CODE" CR

S . " ENTER ANOTHER NUMBER" CR DROP REPEAT AREA OFF !
?

9 : NA. NAME OFF 18 -TRAILING TYPE ; : CO. AREA OFF 3 . I

10 : . ID ID OFF 3 . * * PH. PHONE OFF 3 TYPE 45 EMIT PHONE OFF

11 3 4 TYPE 5

12 s SHOWREC CR . " ID* " . ID CR . " NAME " NA. CR

13 . " AREA CODE " CO. CR . " PHONE # " PH. CR ?

14 —

>

SCR # 31
G3 < CONTINUED RDA PROGRAM) no
1 : INFORM CR . " MUST BE 7 CHARACTERS, OR S WITH A DftSH" CR

2 . " ENTER ftNOTHER PHONE NUMBER" CR ?

3 s EXTRACT 1 + DUP 7 + SWftP DO I C3 I 1 - C! LOOP ?

4 . ph—ENTER CR . " ENTER PHONE NUMBER" CR BEGIN BEGIN

5 QUERY BL WORD HERE C3 DUP 7 < SWAP 8 > OR ""^EINFORM REPEAT

6 HERE 9 + HERE 1 + DO BEGIN I C3 45 - WHILE I EXTRACT HERE C3

7 1 - HERE Ci REPEAT LOOP HERE C3 7 = NOT WHILE INFORM REPEAT

S HERE 1 + PHONE OFF 7 CMOVE ; .„

3 : LIST-EM CR .» Console or Printer CC/P) ? " BEGIN KEY DUP DUP

10 67 - SWAP SO - OR NOT IF DROP 0 ELSE 1 THEN UNTIL 80 - IF PON

11 THEN -1 REC# ! 0 BEGIN INCREC READ PAST-LAST NOT WHILE DELETED

12 NOT IF SHOWREC 1+ DUP 4 * IF PFLAG 3 0- IF CONT THEN

13 DROP 0 THEN THEN REPEAT
14 PFLAG 3 0= SWAP 0 > AND IF CONT THEN POFF ?

15 : PAGE 125 EMIT ! —

>

SCR # 32
0 C RDA CONTINUED MORE > M „ eniiMTV CR
1 s DELETE ID-FIND DROP PAST-LAST IF CR." STUDENT NOT FOUND CR

2 ELSE 0 FLAG-IT UPDATE CR NA. ." IS NOW DELETED" CR THEN CONT ,

I IfTS
'^STUDENT^ALREADY EXISTS" CR DROP ELSE NXT# 3 0= NOT

I IF NXT; 3 REci ! THEN READ ID-PUT NA—ENTER CO-ENTER PH-ENTER

7 1 FLAG- IT UPDATE THEN CONT ?

8 —

>

9
10
11
12
13
14
15

SCR # 33
0 < RDA CONTINUED STILL MORE)

1 s MORE CR MORE CHANGES? <Y/N> " BEGIN KEY DUP DUP

2 89 - SWAP 73 = OR NOT IF DROP 0 ELSE 1 THEN UNTIL

3 89 - IF 1 ELSE UPDATE 0 THEN ?

5 : MENU2 BEGIN CR CR . " CHANGE MENU" CR CR . • 1 NAME" CR

c « o QopQ CODE" CR . " 3 PHONE #" CR . " 4 ABORT CHANGES CR

7 CR - ENTER YOUR CHOICE #" CR KEY DUP EMIT 48 - DUP DUP

8 1 <* SWAP 4 > OR IF DROP CR ." INVALID CHOICE" CR 0 ELSE

9 1 THEN UNTIL ?

l! : CHANGE ID-FIND DROP PAST-LAST IF CR . - ^S^BJ^NOT JJOJND^

12 CR CONT ELSE BEGIN SHOWREC MENU2 DUP 1 - IF NA-ENTER ELSE DUP

IX 2 a > IF CO-ENTER ELSE DUP 3 - IF ID PH-ENTER rMtN incn iriti

14 4 - IF 1 ELSE MORE NOT THEN UNTIL THEN ?

15 —>

SCR # 34
0 (THE END OF RDA. TO EXECUTE. TYPE: RDA)

1

2 : GOODBYE CR CR FLUSH . " THANK YOU" CR CR ;

4 : MENU BEGIN CR CR . " MAIN MENU " CR CR . " 1 ADD" CR

5.-2 DELETE" CR . " 3 CHANGE" CR . " 4 LIST-EM" CR

5 ." 5 QUIT" CR CR ." ENTER YOUR CHOICE # " KEY DUP EMIT CR

7 48 - DUP DUP 1 < SWAP 5 > OR IF . " INVALID CHOICE"

S DROP 0 ELSE 1 THEN UNTIL ?

S
10
11 : RDA BEGIN PAGE MENU DUP 1 = IF ADD ELSE DUP 2 = IF

12 DELETE ELSE DUP 3 - IF CHANGE ELSE DUP 4 * IF LIST-EM
13 THEN THEN THEN THEN 5 - UNTIL GOODBYE ?

14 ;s
15

