
for the Atari

HJS1EIRS MANUAL

KYAN SOFTWARE INC.
SAN FRANCISCO, CALIFORNIA

K¥AN IPASCAIL

Conforms to the ISO Standard
for Pascal Compilers.

This software is designed for
any 8-bit Atari computer

with at least 48K of memory

This software is compatible with
the Kyan Programming Toolkits

Copyright, 1986
Kyan Software Inc.

San Francisco, California

TABLE OF CONTENTS

CHARTER PAGE

PREFACE iii
Software License Agreement iv
Warranty vi
Tech Support viii

INTRODUCTION
ISO Pascal ix
Kyan Pascal x
Kyan Pascal: A Product in

Evolution xiii
Other References xiv
How to Use This Manual XV

GETTING STARTED

Atari DOS 2.5 i-i
Quick Guide to DOS 2.5 Utilities 1-4

Duplicating a Disk 1-4
Formatting a Disk 1-6
Copying a File 1-6
Deleting a File 1-7
Listing a Directory 1-8

Using and Configuring Kyan Pascal 1-9

THE EDITOR

Overview n-i
Entering the Editor n-2
Creating a File n-3
Editing an Existing File II-4
Cursor Movement Commands II-5
Delete Commands II 6
Move Text Commands II-6
Editor Menu n-8
Conclusion 11-15

KYAN PASCAL

TABLE OF CONTENTS

CHAPTER PAGE

III. KYAN PASCAL

The Pascal Compiler III-l
Compiling a Program 1II-2

Compiler Options IU-4
Error Messages IH-6

Output Control III-7
Printing Files III-7
Redirecting Output IH-8

Include III-9
Strings III-l 1
Graphics III-14
Sound ID-18
Chaining Programs III-19
Other Notes and Features III-23

AutoRun Programs/Standalone Disks HI-23
Running a Compiled Program HI-24
Random Numbers III-24
Address Function HI-24
Page Procedure III-25

Conclusion HI-25

IV. TUTORIAL

Pascal Programs IV-3
Entering Formulas IV-11
Decision Making IV-21
Integers and For Loops IV-29
Strings and Arrays IV-37
Boolean Variables IV-49
Scalar Variables IV-55
Procedures IV-67
Functions IV-77
Scope and Nests IV-83
Arrays IV-95
Records IV-113
Sets IV-127
Files IV-135
Pointers IV-155

KYAN PASCAL

TABLE OF CONTENTS

CHAPTER PAGE

V. ASSEMBLY LANGUAGE
PROGRAMMING

Use of the Kyan Assembler V-l
Assembly Language Routines V-4
Assembly Code and Procedures V-8
Miscellaneous Operations V-23
Conclusion V-25

VI. WORKING WITH KIX

Overview VI-1
The KIX Environment VI-2
Device Control VI-3
Listing Directory and File Contents VI-4
Manipulating Files, Devices, and Disks VI-6
Wildcards VI-9

APPENDICES
A Guide to ISO Standard Pascal
B Kyan Pascal Technical Specifications
C Compiler Error Messages
D DOS 2.5 Error Messages
E Assembler Error Messages
F Runtime Error Messages

INDEX

SUGGESTION BOX

KYAN PASCAL.

PREFACE

Notice

Kyan Software reserves the right to make improvements to the products
described in this manual at any time and without notice. Kyan Software
cannot guarantee that you will receive notice of such revisions, even if you are
a registered owner. You should periodically check with Kyan Software or your
authorized Kyan Software dealer.

Kyan Software programs are sold only on the condition that the
purchaser agrees to the terms contained in the Software License
Agreement that begins on the following page. Please read this
agreement before using the software.

Copyright 1986 by Kyan Software, Inc.
1850 Union Street #183
San Francisco, CA 94123
(415) 626-2080

Kyan Pascal and KIX are trademarks of Kyan Software Inc.

Acknowledgement

Kyan Software would like to acknowledge the major contribution to this
manual made by:

Technical Writers Inc.
P.O. Box 6687
New York, NY 10128
(212) 861-0216

PREFACE

Software License Agreement

IMPORTANT: Kyan Software products are sold only on the
condition that the purchaser agrees to the terms of the
following license. PLEASE READ THIS AGREEMENT
CAREFULLY. If you do not agree to the terms, return the
unused package to Kyan Software or to your dealer immediately
for a refund. If you agree to the terms contained in this
License Agreement, complete the enclosed registration card and
return it to Kyan Software.

When you purchase a Kyan Software product, you acknowledge
that:

1. Kyan Software has a valuable proprietary interest in the computer programs
and printed documentation (hereafter called "SOFTWARE"). What you have
purchased is a non-transferable and non-exclusive license to use the
SOFTWARE. Kyan Software retains ownership of the SOFTWARE.

2. You may not copy or reproduce the SOFTWARE for any purpose, other
than to make backup or archive copies as provided for in Section 117 of the
U.S. Federal Copyright Law, without the express permission of Kyan
Software.

3. You may not copy, distribute, or otherwise make the SOFTWARE
available to any third party without the express permission of Kyan Software.

4. If you merge or use the Kyan Pascal Runtime Library (LIB) in conjunction
with another program, it continues to be the property of Kyan Software.
However.

Kyan Software hereby grants you a non-exclusive license to
merge or use the Runtime Library (LIB) in conjunction with
your own programs provided that:

a) You acknowledge Kyan Software's copyright and ownership
of the Library in a prominent location in the written
documentation and on the magnetic media.

PREFACE

Software License Agreement (cont.)

b) You include a Kyan Software DISCLAIMER OF
WARRANTY in the written documentation.

c) You notify Kyan Software in writing that you are exercising
your rights under this agreement.

This license to merge or use portions of the
SOFTWARE in your own programs is limited to the
LIB file only. All other files are specifically
excluded from this license. Please contact Kyan
Software for information regarding the license and
use of other Kyan software modules.

5. This license is effective until terminated. You may terminate it at any
time by destroying the SOFTWARE along with all copies, modifications and
merged portions in any form. It will also terminate if you fail to comply with
any term or condition of this Agreement. You agree upon such termination to
destroy the SOFTWARE together with all copies, modifications and merged
portions in any form.

Copyright

This users manual and the computer software (programs) described in it are
copyrighted by Kyan Software Inc. with all rights reserved. Under the
copyright laws, neither this manual nor the programs may be copied, in whole
or part, without the written consent of Kyan Software Inc. The only legal
copies are those required in the normal use of the software or as backup copies.
This exception does not allow copies to be made for others, whether or not
sold. Under the law, copying includes translations into another language or
format.

PREFACE

Limited Warranty

Kyan Software warrants the diskette(s) on which the Kyan software is
furnished to be free from defects in materials and workmanship under normal
use for a period of ninety (90) days from the date of delivery to you as
evidenced by your proof of purchase.

Kyan Software also warrants that this software performs substantially in
accordance with the published specification statement, the documentation, and
authorized advertising. Kyan Software, if notified of significant errors within
90 days from the date of purchase, will at its option:

a) correct demonstrable and significant program or docu¬
mentation errors within a reasonable period of time; or

b) provide the customer with functionally equivalent software; or

c) provide or authorize a refund.

Except for the limited warranty described in the preceding paragraphs, Kyan
Software makes no other warranties, either express or implied, with respect to
the software, its merchantability or its fitness for any particular purposes.

Some states do not allow the exclusion or limitation of implied warranties for
liabilities for incidental or consequential damages, so the above limitations or
exclusions may not apply to you.

This Agreement constitutes the entile agreement between the parties
concerning the subject matter hereof.

PREFACE

WELCOME TO THE
KYAN SOFTWARE FAMILY

Kyan Pascal is the core of a powerful software development system.
It has been tested for conformance to the ISO Pascal standard (level 0). Kyan
Pascal is designed to be used with Kyan's Programming Toolkits. These
toolkits, when used in conjunction with Kyan Pascal, make software
development faster and easier. Kyan Pascal consists of this user manual and
one flippy disk (where program files are recorded on both sides of the disk).

We strongly recommend that you make and use backup copies of the Kyan
Pascal disk. Keep your original Kyan disk in a safe location in case
something happens to your copies. (Remember... Murphy is alive and well,
and he loves to mess with computers!)

Kyan Software has enclosed an owner registration card. Please fill in and
return this card as soon as possible. Registered owners of Kyan Software
products are eligible for technical support and periodic low-cost software
upgrades. Registered owners can also subscribe to "Update Kyan”, a
bimonthly newsletter which contains programming tips, utility programs, and
the latest information regarding upgrades and new product releases.

Copy Protection

Kyan Software products are not copy-protected. As a result, you are able to
make backup copies and load your software onto a hard disk or into RAMdisk.
We trust you. Please do not violate our trust by making or distributing illegal
copies.

PREFACE

Technical Support

Kyan Software has a technical support staff ready to assist you with any
problems you might encounter. If you have a problem, we request that you
first consult this users manual. We have worked very hard to identify and
include in this manual, the answers to questions and problems most frequently
encountered

If you have a problem which is not covered in the manual, our support staff is
ready to help. If the problem is a prognun which won't compile or run (and
you are sure that it should), we can best help if you send us a description of
the problem and a listing of your program (better yet, send us a disk with the
listing on it). We will do our best to get back to you with an answer as
quickly as possible.

If you question can be answered on the phone, then give us a call. Our
technical staff is available to assist on Monday through Friday between the
hours of 9 AM and 5 PM, West Coast Time. You may reach them by calling:

Technical Support: (415) 626-2080

Suggestion Box

Kyan Software likes to hear from you. Please write if you have sugges-tions,
comments and, yes, even criticisms of our products. We do listen. It is your
suggestions and comments that frequently lead to new products and/or product
modifications.

We encourage you to write. To make it easier, we have included a form in the
back of this manual. This form makes it easier for you to write and easier for
us to understand and respond to your comments. Please let us hear from you.

Mailing Address: Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

INTRODUCTION

ISO PASCAL

Pascal is a language used to program computers. It was developed in the late
1960's by Niklaus Wirth, a professor of computer science at a major European
university. Professor Wirth had become frustrated by the lack of a structured
computer language which could be taught to students and used in large
software development projects.

Professor Wirth teamed up with Kathleen Jensen, and the Pascal language was
formally introduced in 1971. Their principal objectives in introducing the
language were "...to make available a language suitable to teach programming
as a systematic discipline based on certain fundamental concepts clearly and
naturally reflected by the language..." and "...to develop implementations of
this language which are both reliable and efficient on presently available
computers." (Reference: "Pascal User Manual and Report", Jensen and Wirth,
Springer-Verlag, Berlin, 1974).

As a programming language, Pascal has a number of significant advantages.

1. Pascal compilers are available for almost any computer, ranging
from the smallest micro-computers to the largest super¬
computers. This means that programs written in Pascal can
easily be transported from one computer to another.

2. Pascal is a structured programming language. Programs written
in Pascal are well-organized, understandable and easy-to-follow.
This structure facilitates the development and subsequent
maintenance of large, complex computer programs.

3. Pascal is designed to encourage good programming habits. It is a
self-documenting and self-structuring language. Its structure
promotes top-down programming and modularization. Program
modules allow the programmer to create user-defined functions
and procedures. This means that students who learn Pascal also

KYAN PASCAL ix.

INTRODUCTION

learn how to program more skillfully and more effectively.
These skills are carried forward and can be applied to other
programming languages.

4. Pascal takes advantage of the latest developments in computer
science and hardware. Programmers are able to take full
advantage of the hardware they are using and are not constrained
by limitations imposed by the programming language.

These advantages have resulted in Pascal becoming a widely used language for
both elementary and advanced programming. Pascal has also been selected by
the College Entrance Examination Board as the required language for high
school students who seek advanced placement in college computer courses.

KYAN PASCAL

Kyan Pascal is a full implementation of the Pascal programming language
based on the ISO (International Standards Organization) standard for Pascal. In
addition to supporting all of the standard functions and procedures, Kyan Pascal
includes many extensions to the language. It is a very powerful software
development tool.

The following notes describe the general structure and some of the features of
Kyan Pascal. More detailed technical information is presented in later sections
of the manual.

Compiler/Assembler

Kyan Pascal is actually two products in one — a Pascal compiler and a 6502
assembler. The Pascal compiler takes Pascal source code and produces
assembly language source code; the assembler takes the compiler output and
produces an executable machine code file.

The assembler makes two passes through the assembly source code before
producing an executable file. This two-pass approach allows all forward
references to be resolved and results in generation of the fastest and most
efficient machine code possible for the 6502 microprocessor. It also results in
an executable file which requires 10 - 20 percent less memory since jumps and
jump tables are not needed.

KYAN PASCAL x.

INTRODUCTION

Speed

Kyan Pascal produces code that runs about twice as fast on a 6502 micro¬
processor as the best selling Pascal does on a Z80 (assuming equal CPU clock
rates). The benchmark used for this comparison is the Sieve of Eratosthenes
Algorithm and the time required to generate the first 1,899 prime numbers
(execution time: 12 seconds).

Arithmetic Precision

The arithmetic unit used in Kyan Pascal is either a 16 bit integer or 13 decimal
digit Binary Coded Decimal. Kyan Pascal uses BCD real numbers to eliminate
round-off errors of binary representations (i.e., the result of a simple division
is displayed as 3.0 instead of 2.9999999).

Despite the high level of arithmetic precision, floating point benchmarks show
that Kyan Pascal produces code that runs at approximately the same speed as
compilers with 7 to 9 digit precision. Since calculation speed is proportional
to the square of the precision of the real number, Kyan Pascal is actually
running 2 to 4 times faster than programs offering the equivalent precision.

Linking

In Kyan Pascal, program modules can be linked together by "including" Pascal
or assembly language source files into the main program. When the main
program is compiled, the "included" source code files are
called and compiled along with the main program. This "include" linking
technique is superior to object module linking because it is faster;
does not require two passes of the object modules to produce an executable file;
and, does not introduce non-standard effects on modules of the Pascal program
(i.e., no scope rules, no parameter checking, and no mechanism for assigning a
lexical level to variables).

KYAN PASCAL xi.

INTRODUCTION

Pack And Unpack

PACK and UNPACK are standard procedures in Pascal. Kyan Pascal
automatically packs all structures at the byte level. The only variable type
which is not fully packed is boolean. Because of the poor bit handling of the
6502 microprocessor, Kyan Pascal does not support the packing of booleans.
Packed and unpacked structures are identical.

Kyan Pascal's Runtime Library

The Runtime Library is a software module which contains the general purpose
routines used in most Pascal programs. Routines in the Library include the
input/output functions, the floating point package, the transcendental
functions, and set routines.

The purpose of the Runtime Library is to conserve space on the disk. Rather
tlian appending a copy of all Pascal routines to each program, the Runtime
Library allows many programs to share one copy of the routines. Since the
Runtime Library is approximately 10K in size, you can see how much disk
space you gain if you want to put 3 or 4 programs on the same disk.

NOTE 1: If you want to run your compiled programs
independently of the Kyan Pascal source disk, the Library must
be copied onto your program disk.

NOTE 2: If you are an advanced Pascal programmer and want
to append portions of the Runtime Library directly to your
Pascal program, please contact Kyan Software. We offer a
Code Optimizer Toolkit which includes the source code for the
Ruutime Library.

KYAN PASCAL xii.

INTRODUCTION

The KIX File Management System

Kyan Pascal has both a menu-driven user interface and a command-line file
management system called KEX™. Beginners may want to rely on the menus
until they gain proficiency with Pascal programming. Advanced programmers
will want to by-pass the menus and take advantage of the command
environment of KIX. KEX provides the programmer with powerful and
extensive control over file management. Please see Chapter VI for more
information about KIX.

Error Reporting

Kyan Pascal provides features that enable the programmer to find the syntax
errors that account for over 90% of all compiler failures. Over 100 error
messages report not only the type of error found, but also the line containing
the error. In addition, Kyan Pascal does not stop looking for errors after the
first one is found. Although compilation stops, error detection continues and
all errors encountered are listed at the same time.

KYAN PASCAL: A Product in Evolution

A programming language is different from other types of software. Unlike a
word processing or spreadsheet package, it is extremely difficult to define all
the possible uses of the software. As an analogy, consider a spoken language
such as English or French: How many different ways are there to use the
language syntax? You can write a poem, a letter, or the great (or not so great)
American novel. Will the language support all of these applications? Will
the typewriter you use have all the symbols and characters you need? Will the
readers of your creation know what all the symbols, characters, and words
mean?

We are confronted with similar questions when implementing a programming
language. Jensen and Wirth solved most of the Pascal syntax problems. But,
Kyan must deal with the problem of accurately interpreting this syntax and
correctly compiling a listing which is meaningful to the computer. We
constantly face the question, "What program construction (legal or illegal) can
cause a crash during compilation or runtime?"

KYAN PASCAL xiii.

INTRODUCTION

During the development and beta testing of each new product, we subject it to
a battery of test programs to make sure it works properly under as many
conditions as possible. When we release the product, we have a high level of
confidence that it will perform in a satisfactory manner.

However, once the product is in the field, users inevitably write programs
which uncover bugs. When this occurs, the customer calls our tech support
group and points out the problem (sometimes in very graphic terms). In 99
cases out of 100, we are able to correct the problem and send the customer a
new disk. This fix is then added to the list of changes which will be released
in the next general REVISION of the compiler (i.e., version 1.1 to 1.2).

Over a period of time, the bugs we find become far more subtle-99% of the
users would never encounter them. But, since we want to ship the best
possible product, we continue to document and fix every bug identified.

Then, just when the product is "perfect," the engineers or marketing staff come
up with some new enhancements to the product (i.e., "Let's increase the size of
the symbol table and add some new extensions!"). We then go through
another development cycle and release a product UPGRADE (i.e., Version 1.3
to 2.0). And, the whole process begins again.

So, a programming language product like Kyan Pascal is never done-it is
constantly evolving to a better and more refined state. We can never say with
absolute certainty that it is "bug-free." However, we can say that when you
buy a product from Kyan Software, you receive the highest quality possible,
good technical support, and periodic revisions and product upgrades at the
lowest possible cost.

OTHER REFERENCES
This manual is only an introduction to the basics of Pascal. If you would like
to learn more about the history of Pascal or programming in Pascal or
Assembly language, the following books may be of interest.

Oh! Pascal!. Second Edition
D. Cooper and Michael Clancy, W.W. Norton & Co. 1985

Standard Pascal User Reference Manual.
D. Cooper, W.W. Norton & Co., 1983

KYAN PASCAL xiv.

INTRODUCTION

Programming in Pascal.
P. Grogono, Addison-Wesley Publishing, 1978.

Pascal. A Problem Solving Approach.
E.B. Kaufman, Addison-Wesley Publishing, 1982.

Introduction to Pascal, R. Zaks,
Sybex, Inc., 1981

Pascal User Manual and Report. (ISO Pascal Standard!
K. Jensen and N. Wirth, Third Edition, Springer-Verlag, 1974, 1985.

Programming a Micro-computer; 6502.
C.C. Foster, Addison-Wesley Publishing, 1978.

6502 Assembly Language Programming.
L. A. Leventhal, Osbome/McGraw-Hill, Inc., 1979

HOW TO USE THIS MANUAL

The KYAN PASCAL MANUAL is directed primarily to the novice and
intermediate-level programmer. Someone who knows little or nothing about
Pascal should read the chapters of the manual in strict sequence. If you know
Pascal, you may want to skip the tutorial, but you should read the chapter on
Kyan Pascal Programming to learn about the features that are unique to Kyan’s
implementation.

The manual is divided into 6 chapters and 6 appendices.

Chapter 1, "Getting Started," is intended for all users. It explains
how to boot Kyan Pascal, make backup copies, and use the Kyan disk
most effectively with your hardware configuration.

Chapter 2, "The Text Editor," explains the Kyan text editor. It
shows how to select the editor from the Main Menu, create a source
code file, and how to save that file. It provides a detailed explanation
of all the features available with the Kyan Text Editor.

KYAN PASCAL xv.

INTRODUCTION

Chapter 3, "Kyan Pascal Programming," explains the features
of Kyan’s Pascal compiler. It shows how to call the compiler and
choose the options available to the programmer. The special features
include special graphics capabilities, including files, and chaining
procedures.

Chapter 4, "The Pascal Tutorial," is a 2-part introduction to the
Pascal language. It covers 15 lessons that introduce all of the major
elements of the language. Novice users should read the tutorial
carefully.

Chapter 5, "Assembly Language Programming," illustrates
how to include assembly code within a Pascal program. Since this
section does not explain assembly programming techniques, only
advanced programmers will need to read it. The ability to include
assembly code, however, greatly increases the power of your
programs.

Chapter 6, "The KIX File Management System" explains all
the commands available to advanced programmers who desire to use
the KIX system.

The Appendices contain technical information and other useful reference
material which will facilitate programming with Kyan Pascal. It is
worthwhile to spend a few minutes perusing this material.

KYAN PASCAL xvi.

I GETTING STARTED

Kyan Pascal is designed to run on any 8-bit Atari computer with at least 48K
of random access memory. The software uses Atari's DOS 2.5 operating
system which is included on the disk. This chapter describes:

o The DOS 2.5 operating system
o Using the DOS 2.5 menu
o Creating a backup copy of Kyan Pascal
o Configuring Kyan Pascal for your computer.

Kyan Pascal consists of a flippy disk which contains files on both sides.
Before you use Kyan Pascal, you should make a backup copy of
both sides* This chapter describes how to do this.

If you are already familiar with DOS 2.5, you can go directly
to the section entitled "Using and Configuring Kyan Pascal."

Atari DOS 2.5
Kyan Pascal includes and uses version 2.5 of Atari's Disk Operating System.
It is included on Side 1 of your Kyan Pascal disk.

If you are not familiar with DOS 2.5, we suggest that you to stop reading the
manual at this time and boot this disk (remember, Side 1). Explore the DOS
menu and the functions available. When you are finished, please return to this
manual.

If you want to learn more about the capabilities and features of DOS 2.5, you
should contact Atari Corp. for more information.

Note: If you are an experienced, user, you may want to use a more powerful
DOS from a third party. Most DOS's are compatible, and we have gone out of
our way to make Kyan Pascal that way. Some DOS’s, however, may not be
compatible. The only sure way to find out if a DOS is compatible with Kyan
Pascal is to try it.

KYAN PASCAL I - 1

1. CiMTING STARTED

A Word About Disk Density

There are three different densities used by Atari DOS's - single, enhanced, and
double. DOS 2.5 supports single and enhanced densities only, and the Kyan
Pascal disk is shipped in single density. Double density provides twice as
much disk space but is not supported by DOS 2.5. If you want to use a
double density disk format, you must provide a DOS which supports it

DOS Filenames

When you list a directory of your Kyan Pascal disk, you will see that the files
all have different names. With just about every DOS for your Atari, the
filename must follow these rules.

1. The filename must be preceded by a device name
such as Dl: or D: for disk drive 1, or D8: for disk
drive 8 (usually a RAMdisk).

2. In DOS 2.5 the filename must be in CAPITAL letters.

3. The first character of the filename must be a letter.
Following characters can be letters or numbers. Other
characters are not permitted.

4. The filename can have a maximum of 8 characters.
(NOTE: You can add an optional three character
extension to the filename. It must be separated from
the main filename by a period and must follow the same
naming conventions.)

The following is a list of legal filenames:

D:FILENAME.EXT
D2:PROGl.V2
D1:PR.I
D4:PROGRAM.P

D2:PROGl
D8:PC
D3:A1B2C3D4L56

KYAN PASCAL 1-2

I. GETTING STARTED

The following is a list of illegal filenames.

FILENAME.EXT
D9:PROGRAM.P
Dlrfiles.i
D2:1STPR0G.P
D8:MY FIRST.FILE

[no device is specified]
[max number of devices is 8]
[lower case characters not allowed]
[first character must not be a number]
[spaces not allowed and extension
may not exceed 3 characters]

When you use the KIX File Management System, you will find that it allows
you to use lower case letters when typing. However, you are only able to do
this because KIX automatically converts the filenames to uppercase when it
writes them to the disk.

Atari has a unique input/output system in which peripherals, or devices, each
have a device name. You have already seen that D stands for disk drive, but
there are more. P is for printer; S is for screen; K is for keyboard; and more.
A colon (:) must follow the letter of the device name; the filename will follow
only if a disk drive is being used. (Note: only the disk drive has a number
after its letter.) You can experiment with different device names; your files
will be read from or written to the different devices that you specify.

KYAN PASCAL l - 3

]. GETTING STARTED

Main Menu

When you boot Kyan Pascal, the DOS will be loaded into memory and the
Kyan boot screen will appear. You should press <RETURN> and type
"MENU", followed by another <RETURN>. The Kyan Pascal Main Menu
program will now be load and run.

User Device: Dl:

KYAN PASCAL MAIN MENU

Option Description
ED Editor
PC Pascal Compiler
AS Assembler
DOS DOS Menu
CAT Concatentate Files
CD Change Device
CHMOD Change Protection Status
CP Copy Files
FORMAT Format a Disk w
LS List Directory
MV Rename File
PWD Print Working Directory
RM Delete File
SD Screen Dump

Type MENU to repeat this Main Menu

To select an option, you must press <Return> followed by the name of an
option and <Return> again. If you want to begin writing or editing a
program, select ED. If you want to compile a source code file, select PC. Or,
if you want to perform a file management task, select DOS. If you want to
use the KIX commands, select one of them.

NOTE: For the moment, ignore the KIX commands. They are for advanced
programmers. If you are just beginning, don’t confuse yourself by trying to
learn too many things at once. Kyan Pascal can be run exclusively from the
DOS menu and, until you are comfortable with Pascal programming, don't
bother with the KIX. When you are ready. Section VI which explains KIX.

KYAN PASCAL 1-4

I. GETTING STARTED

For now, let's select the DOS. The DOS menu appears on the screen.
Remember, you can call the DOS menu by typing "DOS" any time you see
the KIX prompt (%).

REMEMBER: You can return to the Kyan Pascal Main Menu at any time
you see the system prompt by typing "MENU".

Quick Guide to Selected DOS 2.5 Utilities

The following instructions will help you get started with Kyan Pascal. They
explain how to:

o Copy a disk
o Format a blank disk
o Copy a file
o Delete a file
o View a disk directory

Read these sections carefully and follow the instructions that are relevant to
your disk drive and system configuration. You will be making a backup copy
of the Kyan Pascal disk.

Duplicating a Disk

You should immediately make a backup copy of your write-protected Kyan
Pascal source disk. Use this backup copy whenever you are programming.
That way, if the contents of a disk are accidentally destroyed, you will still
have your source disk untouched. (Please refer to the enclosed Copyright
Notice and License Agreement for a description of the limitation on the use of
backup copies.)

The following instructions explain how to make a backup copy of a disk.
When using the Duplicate function, you do not need to use a pre-formatted
disk. The Duplicate function formats for you automatically.

KYAN PASCAL I - 5

I. GETTING STARTED

Duplicating A Disk

1. If you are not already in the DOS menu, type DOS and press <Return>.
This will load the DOS menu.

2. Press J for "Duplicate a Disk".

3. The computer will ask you which drives are the source and destination. If
you have one disk drive, type 1,1 which means drive 1 will be used as both
the source and destination drive. If you have two drives, type 1,2 which
specifies drive 1 as the source and drive 2 as the destination. If you system is
set up differently, remember that the first number is the source drive (i.e., it
contains the disk that is to be copied) and the second number is the destination
drive (i.e., it contains the blank disk onto which the source disk will be
copied).

4. The computer will ask you to insert the disk(s) and press return to begin
copying. First, the source will be read into memory. Then, if you are
copying with one drive, you will be prompted to insert the destination disk.
The destination disk will be formatted and written to. Two passes are required
to completely read and write the source disk, so, if you are copying with one
drive, you will again be prompted to exchange disks.

5. When the copy is complete, the following message will appear:

TYPE LETTER OR RETURN FOR MENU

KYAN PASCAL 1-6

I. GETTING STARTED

Formatting a Disk

You should always keep several pre-formatted disks handy. Use them to store
the Pascal programs you write.

Formatting a Disk

1. If you are not already in the DOS 2.5 menu, type DOS and press
<Return>.

2. Type P to "Format a Single Density Disk".

3. The computer will ask which drive has the disk to be formatted, and you
should type the appropriate number.

4. The computer will ask if you are sure you want to destroy the contents of
the disk. If you are sure, type Y. The disk will then be formatted.

Copying a File

To copy a file from one disk to another, use the "Copy File" commands found
in the DOS menu.

Copying A File (one disk drive system)

1. If you are not already in the DOS 2.5 menu, type DOS and press
<Return>.

2. Press O to "Duplicate a File".

3. Enter the filename when the computer prompts for the name of the file that
you want to copy.

4. Insert the source disk and follow the prompts. The file will be copied onto
the destination disk in the same drive with the same name as the source file.

KYAN PASCAL I - 7

I. GETTING STARTED

Copying A File (two disk drive system)

1. If you are not already in the DOS 2.5 menu, type DOS and press
<Return>.

2. Press C to "Copy a File".

3. When the computer asks for source and destination filenames, respond with
the filename of the file to be copied, followed by a comma and the name of the
new file copy. Note that there are no spaces between the filenames and the
comma. An example is: D:UBX>2:UB

Deleting a File

To delete a file from a disk, you must use the "Delete File" command found in
the DOS menu. Always be absolutely certain that you really want to delete a
file before you do it. Once a file is deleted, it is gone forever.

Deleting A File

1. If you are not already in the DOS menu, type DOS and press <Return>.

2. Press D for "Delete File".

3. When prompted, enter the filename of the file to be deleted.

4. The computer will ask if you really want to delete the file. If you do, type
Y and the file will be deleted from the disk.

KYAN PASCAL I - 8

I. GETTING STARTED

Listing a Disk Directory

When you want to see what files are contained on a disk, you must use the
"List Directory" command found on the DOS 2.5 menu. Try this series of
commands with a Kyan Pascal backup disk.

Listing A Disk Directory

1. If you are not already in the DOS menu, type DOS and press <Return>.

2. Press A for a "Directory List".

3. Press <Return> to list the files on drive 1 to the screen. Type Dn: (n
being the drive number) to list the files on another drive. If you follow the
directory device name with a comma and another device name, such as P: for
the printer, the directory will be sent to that device.

CONCLUSION

If you are new to DOS 2.5, this section should have provided you with enough
information to begin writing and saving your Pascal source code files. If you
still feel a little confused, reread the section, or obtain a DOS 2.5 reference
manual.

Final Note: Often during the use of DOS 2.5, the computer will ask if you
want to cancel "MEM.SAV." This file is not needed with Kyan Pascal and
you should respond with a Y to delete this file from the disk.

KYAN PASCAL I - 9

I. GETTING STARTED

Using and Configuring Kyan Pascal

Kyan Pascal is designed to run on most Atari 8-bit systems. The software
will work on any 48K Atari -- from an expanded Atari 400, to a 130XE, to a
radically upgraded one-meg ’’super Atari." Only one disk drive is needed,
although the software can be used with extra disk drives, hard disks, and/or
RAMdisks.

To start programming with Kyan Pascal, first boot the DOS 2.5 operating
system by turning on the power and inserting Side 1 of the Kyan Pascal disk
(a backup copy!). DOS 2.5 will load and then Kyan Pascal. The Main Menu
will appear on the screen and you are ready to begin programming.

Kyan Pascal is shipped on a "flippy" disk, i.e., files are included on both sides
of the disk. Since Atari disk drives can only read one side of a disk jQiuim&t
Zflidhg disk to read the files on To flip the disk, you must
remove the disk from the drive, turn it over, and re-insert it.

Kyan Pascal — Side 1

Side 1 of the disk contains the DOS 2.5 operating system, the Kyan system
files (PC, ED, AS, STDLIB.S), and the KJX commands. Side 1 is the disk
you will use as your source disk.

Kyan Pascal — Side 2

Side 2 of the Kyan Pascal disk contains the Kyan Assembler, Pascal Runtime
Library (LIB), and various Pascal "include" files (which will be used in
programming with Kyan Pascal)

Side 2 also contains two demonstration programs (both source and object code
versions). To run these demo programs (PRINT and PRIME), boot Side 1 and
press <RETURN>; then, insert Side 2 into the disk drive, enter the filename
of the demo program (be sure to enter the OBJECT CODE filename which has
no ”.P' extension), and again press <RETURN>. The program will now run.
To examine the demo source code, use the Editor to load the demo source code
file.

KYAN PASCAL I - 10

I. GETTING STARTED

Single Drive Users

Single Density; Place Side 1 of the Kyan Pascal disk in the drive and boot;
you can now call any of the programs listed on the Menu, but, since the disk
is full, you cannot store any of your programs on this side. You must use
Side 2 to load, save, and/or run your programs. When you want to call any
Kyan system program, always remember to remove Side 2 and re-insert Side 1
in the disk drive. (Important Note: Due to hardware limitations, single
disk/single density users may not be able to effectively use some KIX
commands (e.g., LS).

Enhanced Density; With the extra capacity of the enhanced density disk, you
can store your own programs on Side 1 of the disk along with the Kyan files
(thus eliminating disk swapping). If you choose this option, be sure to copy
the Kyan Runtime Library (LIB) from Side 2 to Side 1 of the disk along with
any "include" files used in your programs.

Multiple Drive Users

With more than one drive, you will find it most convenient to store your
Pascal programs on a separate program disk. Place the Kyan Pascal disk (Side
1) in drive 1 and leave it there. Place your program disk, with copies of
include files and the Kyan Pascal Runtime Library (LIB) in drive 2.

When you boot Kyan Pascal, Drive 1 (Dl:) will automatically be set-up as
the default drive. To set-up the second drive as the default device, use the KIX
command CD (i.e., CD D2:). Now, all of your Pascal programs will be
called from and written to drive 2.

RAMdisk Users

All of the Kyan Pascal system files (ED, PC, AS, STDLIB.S) and most of the
KIX files can be loaded into RAMdisk. To load these files, use the KIX copy
command "CP" (e.g., CP D8:ED).

The "DUP.SYS" file which is part of DOS 2.5 is automatically loaded into
RAMdisk on boot-up. If you do not want to use DOS 2.5 (i.e., you want to
work with KIX commands exclusively), you should delete this file from
RAMdisk to free-up space for more KIX commands.

KYAN PASCAL 1-11

I. GETTING STARTED

Searching for Files

The KIX system automatically searches for Kyan system files in up to three
locations. First, it looks in RAMdisk (device D8:); if not found there, it
looks for the Kyan file in the User device (e.g., D2:); and, finally, it looks in
the system device (Dl:). Thus it isn't necessary to have a copy of Kyan
system files in the current (or default) directory.

KYAN PASCAL I - 12

II THE EDITOR

OVERVIEW

Kyan Pascal includes a full-screen, insert mode editor that you can use to write
and edit programs. Insert-mode editing requires that you place the cursor where
you want to enter text and begin typing. If you are editing existing text, place
the cursor where you want to begin inserting text and start typing; if you are
entering new text, just begin.

This section explains how to use the text editor to:

* Enter the EDITOR
* Create a file
* Edit an existing file
* Use the cursor control commands to control printing
* Delete and move lines of program text
* Use the special functions menu

The Editor has a HELP screens to assist you with the Control-Key commands.
To look at the HELP screen, type the letter "H" when you are at the Editor
Menu. The <ESC> key allows you to toggle between the Editor Menu and
your text screen.

Note: The Kyan Pascal compiler is fully compatible with any text editing
program which generates standard ASCII text files. You can therefore use your
favorite text editor or word processor (e.g., AtariWriter) to write and edit
programs.

KYAN PASCAL II - 1

II. THE EDITOR

SOURCE CODE VERSUS OBJECT CODE FILES

When you write a Pascal program using the Editor, you create a text file
which is known as source code. When you name a source code file, you
should append a M.P" to the filename to indicate that it is a Pascal source code
file. When this file is compiled, a machine code file is created which is known
as object code.

The object code file is saved on the disk along with your source code. The
object code file has the same filename as the source file but without a ” J*'. If
you look at a disk directory, you will see both the source code file
("MYPROG.F') and the object code file ("MYPROG”). Later, when you want
to run the program, be sure to specify the object code, not the source code file.

ENTERING THE EDITOR
When you boot Kyan Pascal, you will see the Kyan Pascal Copyright screen.
After a few seconds, you will see the Main Menu screen. The first command
on the menu is ED. You will use this command to enter the EDITOR and
begin writing the program.

What happens next depends upon whether you are creating a new file or editing
a file that already exists.

KYAN PASCAL II - 2

11. THE EDITOR

CREATING A FILE
Once you have entered the Editor, the message appeals:

Filename?

At this point, you can enter the filename identifier of any file -- even if it
doesn’t exist. You must remember, however, to include the device name (i.e.,
Dl:, D2:, D8:, etc.) in the filename. The KJX operating environment will use
the default device (usually set to Dl:) if no other device name is used before
the filename.

Since this is your first Pascal file, enter the filename D1:TRIAL.P (or
whatever drive you are using for your user disk in place of Dl:). Since your
file doesn't really exist yet, the editor will respond with the message

FILE NOT FOUND.
PRESS ANY KEY TO CONTINUE.

When you press a key, the screen will go blank and the blinking cursor will
appear in the home position (i.e., the upper left hand comer of the screen)..
All text that you enter will now become part of your program file. Press
<RETURN> at the end of each line of program text When you have
finished typing the program, press <ESC> to get to the Editor Menu and then
either the S, X, or Q key. You don't need to do this now since you haven’t
written a program yet

For practice, however, try entering the following program. Don't bother
saving or even trying to compile it. Just make sure that you can enter it.

PROGRAM Trial(Input,Output); <RETURN>
<RETURN>
BEGIN <RETURN>

Writeln('Hi, This is Kyan Pascal.') <RETURN>
END. <RETURN>

KYAN PASCAL II - 3

II. THE EDITOR

EDITING AN EXISTING FILE

To edit an existing file, follow the same procedure for creating a file. First
select ED from the Main Menu. This time, however, when the screen requests
a Filename, enter the name of a File that already exists on the disk. Your
existing file will be loaded into memory and appear on screen, ready for any
changes you wish to make to it.

The Kyan text editor is an insert editor. Whenever you enter text, it appears
where the cursor is positioned. If text exists after the cursor, it will be moved
forward to make room for the new text as you type. As you will see, it is
important to position the cursor correcdy when you edit the text of a program.
To make editing text easier, Kyan Pascal has a number of control-sequence
commands that let you

* move the cursor
* delete text
* move blocks of text

A control-sequence command is executed by pressing the <CONTROL> key
while simultaneously pressing the appropriate letter key. The keys must be
pressed at the same time — they are not entered one after the other. For
example, <CONTROL>-S means that you should press the <CONTROL>
key and the letter S at the same time (i.e., just like pressing <SHIFT>-"5" for
thecharacter).

KYAN PASCAL II 4

]l. THE EDITOR

Cursor Movement Commands

The following control-key commands let you move the cursor to different
positions in the text.

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

<CONTROL>

- V' moves the cursor 1 space back (to the left)

- moves the cursor 1 space forward (to the right)

moves the cursor 1 character up

- "=" moves the cursor 1 character down

- "L" moves the cursor 1 word back (to the left)

- "R" moves the cursor 1 word forward (to the right)

- "U" moves the cursor 20 lines back (up)

- "D" moves the cursor 20 lines forward (down)

- "CLEAR” moves the cursor to beginning of text

- "E" moves the cursor to the end of text

Try using these commands to move the cursor around a file. At this point it
doesn't matter if you are actually writing a program. Just enter text and get
comfortable moving the cursor around the screen.

Notice that the control key sequences to move move the cursor one character
left, right, up, and down are the arrow keys. You can hold down a control key
sequence and it will repeat automatically until you release the keys.

If you are editing and cannot remember a cursor control command, just escape
to the Editor Menu and press "H". A HELP screen will appear which lists the
control key sequences and the actions.

KYAN PASCAL II - 5

II. THE EDITOR

Delete Commands

Text can be deleted from you file by using the following commands (note that
DEL/BS is the DELETE BACK SPACE key):

<CONTROL> - DEL/BS deletes the character the cursor is on
and pulls the text following the cursor
one character back.

DEL/BS deletes the character to the left of the
cursor and pulls the text following the
cursor one character back.

<SHIFT> - DEL/BS deletes the entire line the cursor is on.

Note: The <CONTROL>-"M" command (Move to buffer) works well for
deleting large amounts of text. Iliis command is described in the next section.

Move Text Commands

You may find that you want to delete, copy, or move an entire section of text
in your file. Each of these activities is accomplished with "cut and paste"
commands. Each activity starts by defining or "cutting" a block of text using
the <CONTROL> * M command. Then, depending on the desired end, the
block is "pasted" in the location(s) specified using the <CONTROL> - P
command.

Just for practice, enter some text in the file. If you are already working in a
file, decide what text you want to delete, copy, or move. Don’t worry that this
is not a real program. Remember that you are just learning how to use the
text Editor commands. Once you have text printed on the screen, try some of
the following commands.

KYAN PASCAL 11-6

II. THE EDITOR

CUTTING A BLOCK OF TEXT

1. Move the cursor to the beginning of the block you want to cut.

2. Press <CONTROL> - M.

3. Move the cursor to the end of the block. The block will be
highlighted as you move the cursor.

4. Press <CONTROL> - Ml again. The block will disappear, but
don't worry. The block is stored in the computer's memory.
[Note: The cut buffer will hold up to 2K of text]

DELETING A BLOCK OF TEXT

If you only want to delete the block, you are finished. In the preceding step,
the block has been cut from your text file and stored in a memory buffer. If
you don’t want it anymore, just leave it there! The buffer will be erased when
you perform the next "cut" command or when you exit from the editor.

COPYING A BLOCK OF TEXT

1. Copying the block consists of pasting the cut block in one or more
locations. Press <CONTROL> - P. This will paste a copy of the
block back in its original location.

2. Move the cursor to the next place where the block should be
pasted and press <CONTROL> - P. Another copy of the block
will be printed there.

3. Repeat the paste procedure as often as you want

KYAN PASCAL II - 7

II. THE EDITOR

MOVING A BLOCK OF TEXT

1. Moving the block consists of pasting the cut block in a new
location. Move the cursor to the location where you want the
block pasted.

2. Press <CONTROL> - P. The block will reappear in the new
location.

Try cutting and pasting text until you are comfortable with the procedure.
You should become skilled enough so that you don’t worry about losing text
every time you try to move lines of your program.

EDITOR MENU
Whenever you Jire entering program text, you can access the Editor Menu.
This menu lists the commands which allow you to change characteristics of
the program without losing the data you have already written. Don’t worry if
you need to call the Editor Menu while you are in the middle of typing a
program. Your program will still be there when you return from doing
whatever you decide to do.

To enter the Editor Menu, press <ESC>. Try it. You won’t lose the text
you are working on. Press <ESC> again. The text of your program
reappears on the screen. You can keep pressing <ESC> to alternate between
your program text and the Editor Menu.

The Editor Menu allows you to make changes that affect the entire program.
You can:

♦Get HELP
♦ Change the filename of the file you are working on
♦ Insert another file in the text
♦ Go to a specific line number in your program
♦ Change a string of characters in your program
♦ Find a string of characters
♦ Save your text and leave the Editor

KYAN PASCAL II - 8

II. THE EDITOR

Editor Menu

When you are editing text, you access the Editor Menu by pressing the
<ESC> key. The following menu appears on the screen.

EDITOR COMMANDS

Filename: Dl.MYFILE.P

A:
B:

<ESC> to Resume

COMMAND
H
X
s
F
Q
I
G
A
B
C

DESCRIPTION
Cursor Control Help
Save File & Exit Editor
Save File & Resume Editing
Set Filename
Discard File & Quit
Insert File
Go To Line Number
Set "A" String
Set "B” String
Change A Strings to B Strings

To select an item from the menu, press the key that represents the selection.

For the present, we'll skip the Save commands. If you want to see the Help
menu, press "H". The other commands are explained below. Each function
description has a PROCEDURE that illustrates how to use the function. To
try these procedures, you must have some text entered on the Editor screen.
Since you won't be running a program, for the time being, you can use any
text you want when you try the procedure.

KYAN PASCAL II - 9

II. THE EDITOR

SET FILENAME

This command lets you rename the file you are working on. You can change
just the filename, or you can also change the volume if you are going to save
the file on a different disk

CHANGING A FILENAME

1. Press F. The following request will appear:

NEW FILENAME (BLANK TO QUIT) ?

2. Type the new filename (Device:Filename). If you want to quit and
leave the Filename unchanged, just press <RETURN>.

3. After entering the new filename, press <RETURN>. The new
filename will appear at the top of the screen.

INSERT FILE

This command lets you insert another file into the current program.

INSERTING A FILE ~

1. Press <ESC> to leave the Editor Menu and return to your program.

2. Move the cursor to the point in your program where you want the
file inserted.

3. Press <ESC> to return to the Editor Menu.

4. Press I. The following request will appear:

FILENAME OF FILE TO INSERT?

5. Type the filename of the file you want to insert and press
<RETURN>. To cancel the process press, <RETURN> without
entering a filename. You will be returned to your text

KYAN PASCAL II - 10

II THE EDITOR

GOTO line number

This command lets you move the cursor immediately to a line number in the
file which you specify. The GOTO command is useful when you are working
on a large program and you need to position the cursor.

REMEMBER: Line numbers should not be entered as part of the program; the
number specifies the line on the editor screen or on the printed listing of the
program file.

mm

1. Press G. The following request will appear: LINE NUMBER ?

2. Enter the number of the line you want the cursor moved to.

3. Press <RETURN>. Your program will appear on the screen with
the cursor positioned on the line you have specified.

CHANGE STRING

This command lets you change some or all occurrences of a string used in
your program. This command is equivalent to the "Search and Replace"
function in other text editors. For example, you might want to change the
expression A+B*C to A+B*D.

The Change String function distinguishes between upper and lower case
letters. For example, a search for "CAT" will not find the word "cal”. The
maximum length of the string is 40 characters.

CUAMGIMIi. SIBlEfiS

1. Press A. The screen will display: A:

2. Type the string you want to replace, exactly as it appears in the
text, and press <RETURN>.

3. At the bottom of the screen, you will see the string appear:

"A" String is:

KYAN PASCAL 11-11

II. THE EDITOR

4. Press B. The screen will display: B:

5. Enter the new string to replace the old one and press
<RETURN>.

6. At the bottom of the screen, the new string appears:

"B" String is:

7. Now press C. The following prompt will appear:

CHANGE ALL STRINGS OR SOME
(A/S/Q)?

You have 3 choices.

A causes ALL occurrences of the string to be changed. After
pressing A, the program is displayed with the new string.

S lets you change SOME occurrences of the string. The program
will be displayed with the cursor positioned on the first
occurrence of the string you want to change. If you want that
string changed, press Y. If you do not want to change this
occurrence of the string, press N. The cursor advances the
next occurrence and you can repeat your choice. This
continues until no more instances of the string can be found.

Q lets you QUIT the Change String function and returns you to
the Editor Menu where you can select another function.

KYAN PASCAL 11-12

II. THE EDITOR

FIND STRING

This command lets you find a particular string in your program. It is like the
search and replace function, but it just locates the desired string without
changing it.

ElMBiNG STRINGS

1. Press A. The screen will display: A:

2. Enter the string you want to find and press <ESC>
NOTE: Be sure to Press <ESC> and NOT <RETURN>.

3. You can now search forward or backwards through the file by
pressing either <CONTROL>-Z or <CONTROL>-W.

<CONTROL>-Z moves the cursor forward through the file to the
next occurrence of the string. Pressing the control sequence
continues the search until you reach the end of the program.

<CONTROL>-W moves the cursor backward through the file
until it finds the next occurrence of the string. Repeating the process
continues the search until you reach the beginning of the program.

Saving Files And Quitting

The Editor Menu gives you 3 ways to save your program and leave the Editor
mode. By making the appropriate selection, you can

* save your program and exit the Editor mode
* save your program but return to it for more editing
* quit the Editor without saving the program

Whenever you save a program, it will be saved with the filename specified at
the top of the Editor Menu.

Remember, when you are in the process of writing or editing a program and
you want to save it, press <ESC> to get the Editor Menu.

If you have been editing an existing file and save it under its existing filename,
the most recent version will overwrite the old version, and the old file will be

KYAN PASCAL 11-13

II. THE EDITOR

lost. If you want to save both versions of the program, select the CHANGE
FILENAME function and change the filename of the latest version of the
program before you save it.

Once you have set the filename that will identify your program on the disk,
select one of the Save and Exit options.

SAVE AND EXIT Press X

This option saves your file under the filename indicated at the top of the menu
and exits the editor. You are returned to the system prompt.

SAVE AND RESUME Press S

This option saves the file under the filename indicated at the top of the menu
and returns you to the program. (NOTE: You should use the SAVE AND
RESUME selection often while you are writing a program. This will insure
that you always have a fairly recent copy of the program in case a problem
develops with your computer or disk drive.)

DISCARD AND QUIT Press Q

This option exits the Editor without saving the program. When you select
this option, the following message appears:

THE CHANGES YOU HAVE MADE HAVE NOT BEEN SAVED.
ARE YOU SURE (Y/N) ?

NOTE: Press Y only if you are absolutely certain that you do not want to
save a copy of the current program. You will be returned to the operating
system and will see the system prompt.

Press N if you decide that you don't want to discard the file. You will be
returned to your file in the Editor.

KYAN PASCAL II - 14

II. THE EDITOR

CONCLUSION
You should now be fairly comfortable with the text editor and the cursor
control commands. You should also be able to use the Editor Menu to
rename, include, or save files that you write, as well as locate lines and change
strings.

HELP Screens

The Editor Menu contains a HELP screen which can assist you if you forget
one of the control key commands. You can call the HELP screen by pressing
"HM in the Editor Menu.

Other Text Editors

The Kyan Text Editor is simply a word processing program that lets you enter
source code in a form that the Pascal compiler can understand and translate into
object code. You may already have a word processing program which you are
familiar with and prefer over the Kyan Editor. If this is the case, feel free to
use your own editor. The only requirement is that your editor must
generate a sequential ASCII text file. Otherwise, the Kyan Pascal
compiler will not be able to read your Pascal source code file.

KYAN PASCAL 11 - 15

II. THE EDITOR

This page left blank for your notes.

KYAN PASCAL II - 16

Ill KYAN PASCAL

Kyan Pascal contains many features that are not part of standard Pascal. These
features make writing Pascal programs even easier; they also make the
programs more powerful.

This section explains how to

* Compile Source Code Programs
* Direct Input and Output
* Include Other Files in a Program
* Chain Files
* Declare and Manipulate Strings
* Use Graphics and Sound
* Create "Stand-Alone" Disks and "Auto-Run" Files
* Run a Program

If you are new to Pascal programming, read the section on compiling a source
axle file. Then skip the rest of this section until you have studied the
Tutorial.

If you already know Pascal, read this section to become acquainted with Kyan
Pascal's special features.

THE PASCAL COMPILER

SECTION II explained how to use the Text Editor to write and save a Pascal
source code program. This program contains all the program logic and Pascal
syntax. The computer, however, can not understand the program as it now
exists. Your Source Code or Source Program must be translated into
statements that make sense to the computer itself. Another program must
translate the Source Code into Object Code. This translator is called a
Compiler.

The Pascal Compiler reads the filename of your program and then, after
locating the file, translates all the Pascal statements into what is known as

KYAN PASCAL III - 1

PASCAL PROGRAMMING

Assembly Code. A second software module, known as the Assembler, then
translates the Assembly Code into Object Code which the computer can run.

When the Compiler creates an Object Code file from a Pascal source code file,
it identifies the new file by deleting the .P extension to the name of the
Source file. If you compile a program named MYFILE.P, the Object Code
file will be named MYFILE.

COMPILING A PROGRAM

To compile a program, first enter the Main Menu.

NOTE: If you are in the Editor, save your current program and exit the
Editor. When you see the system prompt (%), type MENU. If your are in
some other menu, follow the directions at the bottom of the screen until you
are back in the Main Menu. If you are using a single drive system, you
should make sure that Side 1 of the Kyan Pascal disk (or the disk with the
Kyan system files) is in the drive. If you are using multiple drives, remember
to use complete filenames to get back to the Main Menu.

When the Main Menu appears, it looks like:

Prefix: Dl:

KYAN PASCAL MAIN MENU

Option Description

ED EDITOR
PC PASCAL COMPILER
AS ASSEMBLER
DOS DOS 2.5 MENU
KIX KIX COMMAND MENU

Press <RETURN> to enter a command

Note the device prefix at the top of the menu. This is the default prefix when
you boot the Kyan.Pascal Disk.

KYAN PASCAL III - 2

KYAN PROGRAMMING

To begin the process of compiling a program, press <RETURN> and type
PC. The Compiler Menu will appear on the screen. This menu lists the
options that are available with the Compile command.

4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c ********* *****************************

KyanjPascal Compiler
Copyright, 1986, Kyan Software Inc.

COMPILER OPTIONS

Option Description

-D Emit line number and filename on Runtime
error. Default: Do not generate.

-O Filename Give the compiled file a new filename.
Default Object file is assigned the source
filename less the "P" extension.

-P Show progress of compiler and assembler.

-S Generate intermediate assembly language
file. Do not assemble into object code.
Default Generate object code file.

>Device Direct compiler error listing to Device.
Default: output to screen only. Alternately,
specify filename and save as text file.

Enter Device:Filename and Options
PC:

* * * 4c * ** * * * * *** * * * * *♦ * * * * * % * * 4c * * * * * * * 4* * * * * * * * * * * 4c * * * * * * * * * + * *

NOTE: If you do not specify an option, the compiler automatically assumes
the option default

KYAN PASCAL III - 3

PASCAL PROGRAMMING

The Compiler Options

The compiler menu lets you select options that affect the output of the
compiled code.

-() l)cvicc:Filename

Assigns a new filename to the compiled file. Use it to redirect the compiled
file to another disk or rename the compiled program.

> Device:Filename

Directs an error listing to the device and filename specified. A file saved to
disk would be denoted: "D2:ERROR.LST". Alternately, a listing may be
sent to the printer by specifying "P:”. The default device is "S:”, or the
screen. Error listings identify Pascal syntax problems which the Compiler
encounters when it tries to translate source code into Assembly code. If syntax
errors are detected, you must re-edit and recompile the source code.

-S

The compiler generates an Assembly code source file but does not assemble
the file (i.e., it does not generate an object code file). The assembly language
Tile will have the filename "ROUT". To save this file, use the DOS 2.5 or
KIX rename command and add a ”.S" extension to the filename (e.g.,
MYPROG.S).

-D

This compiler option is useful for debugging Runtime errors in the program.
When this option is specified. Runtime errors will return the filename and line
number of the offending statement

-P

This option lets you observe the progress of the compiler and assembler.
First a file is opened which is the intermediate assembly language fde
("P.OUT"); then, the Pascal source code is compiled (dots are printed on the
screen): then, P.OUT is closed and assembly begins. With this option you
can observe the relative speed of DOS 2.5 (in opening and closing the files),
the Pascal compiler, and the macro assembler.

KYAN PASCAL III-4

KYAN PROGRAMMING

When you decide which options you want to use when compiling the program,
follow these instructions. (NOTE: The DevicerFilename and option specifica¬
tions can appear in any order).

1. Enter the DevicerFilename of the Pascal source code file.

2. To change the Filename, use the -O option.

3. Include a -S, -P or a -D for the other options.

4. If you want to redirect error listings, conclude the options
list with the >Device:Filename directive.

IMPORTANT NOTE: During the compilation of a Pascal program, the
compiler calls the following files: your Pascal program source code file; any
"included" files called in your program; the Kyan STDLIB.S macro file; and
AS, the Kyan macro assembler. All of these files must be found in the
RAMdisk or on the current working device for the program to compile. If a
files is not found, an error message will be printed or the compiler will crash!

Examples

Suppose you want to compile the file named MYPROG.P which is stored
on the disk in drive 1 (Dl:). The following illustrates the use of compiler
option commands which could be entered after the PC prompt.

1. MYPROG.P

Compiles MYPROG.P with all the default options.

2. MYPROG.P -O D2:MYPROG

Compiles MYPROG.P from the default device (usually Dl:) and
writes the object code file, MYPROG, to disk drive 2 (D2:)

3. MYPROG.P -S >P:

Creates an Assembly language source code file named
P.OUT and directs error messages to the printer.
No object code is created.

KYAN PASCAL III - 5

PASCAL PROGRAMMING

ERROR MESSAGES

If the compiler discovers any syntax errors in the program it is trying to
translate, it does not produce Assembly code. Instead, it generates a list of
lines containing errors. Each line is identified by its position in the program.
(Note: Line numbers are not used in Pascal programs as they are used in
BASIC. The line numbers in error messages are only used for identifying a
line of source code where an error exists.)

After the line number, the line itself is displayed. A caret (A) indicates where
the error occured in the line, and an error message describes the type of error
which the compiler identified.

For example, if you tried to compile a program containing the following
statement in the tenth line of code

Writeln(’Error illustration').

the compiler would return the following error message:

ERROR ON LINE 10 OF FILE "MYPROGP"
Writeln('Error illustration').

A

OR "END” EXPECTED

The compiler error message indicates that the tenth line of code contains an
error. It then says that the line should end with a semicolon or that there
should be an END statement before the period.

As you gain experience compiling programs, you realize that a single error
often generates an entire series of syntactical errors. For example, the
compiler counts up the number of opening and closing segment indicators to
make certain that there is an equal number of both- BEGIN/END statements,
are a prime example. If you omit any part of a pair of such statements, every
BEGIN/END pair and every period may cause an error in the program.

Since the compiler checks only for syntactical errors, you may write a program
that produces an object code file, but then produces unexpected results or even
fails to run. The problems may be threefold.

1. You may have written the formula for a circle as "r*r" instead of
"3.14*r*r" . This mistake will simply cause the program to

KYAN PASCAL III - 6

KYAN PROGRAMMING

miscalculate results.

2. You may have introduced errors that cause the Assembler to crash.
These are called Assembler errors.

3. Or, finally, you may have introduced system errors that only
become apparent when the program runs. These are called
runtime errors.

NOTE: For a complete list of error messages and their
meanings, please refer to the Error Message List in the
Appendices.

OUTPUT CONTROL

Kyan Pascal has special features that allow you to list a source code file on the
printer and redirect output within a program to the printer.

Printing Source Files

Often, you will want a hard copy of the program you are working on. It’s
always easier to spot mistakes on paper than it is to see them on the screen.
Kyan Pascal offers you two options for printing a listing of your programs.
The first option is to use the CAT command which is described in the KIX
section (Chapter VI) of this manual. The second option is to use the PRINT
program which is described below.

The PRINT program allows you to print a listing of any source program.
You can load and run this program whenever you see the system prompt. If
you are editing a program, press X to save the file and exit the Editor. If you
are in the Main Menu, type <RETURN> to get the % prompt

To print any text file enter "PRINT" at the % prompt The computer will
load the program and display the prompt "Filename:". Enter the complete
filename of the program you want to print. Make sure that the printer is
turned on before you execute this command.

After you enter the filename, the program will ask if you want program line
numbers printed. It is usually best to select this option. When you compile

KYAN PASCAL III - 7

PASCAL PROGRAMMING

the program, the Compiler lists the line number and the line containing the
error. If you already have a copy of the program with the lines numbered, it is
easier to locate the lines with errors.

Redirecting Output Within a Program

Kyan Pascal allows you to redirect program output from the screen to the
printer. You can redirect the output back and forth as many times as you
want.

Before you can redirect output within a program, however, you must fust set¬
up a file called "printer”. Then, declare a variable "printer" as a file of text
(i.e., VAR PrintenText;). In the body of your program (before your fust
use of output redirection) insert a Rewrite statement which defines this file to
be the printer (e.g., Rewrite (Printer, 'P:');). Then in the body of your
program, use the following command syntax to direct output to the printer:

Write or Writeln (Printer, '....text....');

If you want to direct output to a second printer, simply insert a new Rewrite
statement (e.g., Rewrite (Printer, ’P2:');). Output wifi then be directed to
printer 2.

See the second lesson in the Tutorial for a sample program that illustrates the
redirection output to the printer.

KYAN PASCAL III - 8

KYAN mXiRAMMIHCi

INCLUDE

Kyan Pascal lets you "include" other procedures, functions, or text files within
a program. This include capability allows you to create a library of frequently
used functions and procedures.

The Include feature also allows you to incorporate routines found in Kyan's
Advanced Graphics, System Utilities, and other programming toolkits into
your own Pascal programs.

Including Subroutines

To "include" a subroutine, put the INCLUDE statement in the declaration of
the program between the list of variables and the body of the program that
calls the included subroutine.

#i Device:Filename

The pound sign (#) and the letter I (or ”i") must appear in the first two
columns. If you use the filename without a device prefix, the compiler will
use the default prefix.

For example, assume the following procedure has been saved on drive 2 with
the filename HELLOJ.

**

PROCEDURE HELLO;

BEGIN
WrifelnfHello, World.')

END;
**

KYAN PASCAL III - 9

PASCAL PROGRAMMING

You can include the PROCEDURE HELLO in the following program as
follows.

PROGRAM Main;

#i D2:HELLO.I (* full devicetfilename is specified *)

BEGIN
Hello

END.

When including files, you must obey the Pascal rules of syntax. The included
file(s) (like Functions and Procedures) must be located between the variables
list and the body of the program. To help avoid syntax errors, try to visualize
the included lines of text inserted in the main program in place of the include
statement If the resulting program follows Pascal rules of syntax, then the
block is properly included.

Once you know how to include other files, you can begin including the special
Kyan procedures and functions that are contained on the KyanPascal disk.
This enables you to use special String and Graphics features.

KYAN PASCAL III - 10

KYAN PROGRAMMING

STRINGS

String is not a predefined Pascal data type. But if you declare a String as an
array of characters, you may use the following string subroutines which have
been predefined in Kyan Pascal.

Length
Index
Substring
Concatenate

To use a string manipulation routine, declare a String, declare the maximum
size of the string as a Constant named Maxstring, and include the string
routines you will use.

The following example creates a String ten characters long and then includes
the Length routine which can be called from within the body of the program.

PROGRAM SampleString;

CONST
Maxstring = 10;

TYPE
String - ARRAY[l..Maxstring] OF Char;

VAR
Line : String;

#i DlrLength.I

BEGIN

END.

The value of Maxstring can be any size that meets the needs of the program.
It cannot, however, exceed the maximum integer size for Kyan Pascal
(MAXINT = 32767).

KYAN PASCAL III - 11

PASCAL PROGRAMMING

Length

The Length routine returns the actual length of a string. This routine assumes
it has reached the end of the string when it encounters either the first blank
space or the last character of a full string.

Use the Length function to test strings or to eliminate trailing spaces when
you print the string. The following program illustrates both of these
applications and the use of the include file Length.!.

PROGRAM DemoLength;

CONST
Maxstring = 10;

TYPE
String = ARRAY[1..Maxstring] OF Char;

VAR
s : String;

#i DLLength.I (* predefined Kyan routine *)

BEGIN
s := 'abed
Writeln(s: Length(s));

Writeln(The string is Length(s), ’ characters long')
END.

The string in this program is defined as an array of 10 characters. The actual
suing defined in the program, however, contains only four characters. The
Length function is used to eliminate the trailing 6 spaces when the string is
printed on the screen. The function is also used in the final Writeln statement.

KYAN PASCAL III - 12

kyan programming

Index

Index returns the position of one string within another string. To use the
Index function in a program, the file INDEX.I must be included in the
program declaration.

The actual function used in the body of the program takes two parameters,
String 1 and String2.

As an example, a program declares a string as 10 characters long. It then
declares SI and S2 as string variables. If the program defines the substring S2
as ’a ' and the string SI as 'baby the statement
"Index(Sl,S2);"returns the value, 2.

Note that the letter "a" is the second character in the second string. If S2 is
not found in SI, the Index returns zero.

Substring

Substring extracts part of a string. The file SUBSTRING must be included
in the program declaration. The Substring statement takes four parameters: the
source string variable; the destination string variable; the position in the string
where the substring begins; and, the length of the substring to be extracted.
Its syntax is

Substring(String 1 ,String2,Begin,Length);

If the length of the substring is less than Maxstring, trailing spaces are added
to the substring. For example, if Maxstring is defined as 10 and the source
String variable , SI, is defined as 'abedef ', the statement
"Substring(Sl,S2,2,2);M returns the substring 'be *.

The substring begins at the second character in the string and extracts two
characters. The length defined by Maxstring adds the trailing spaces. You can
use the Length function with the Substring function if you want to eliminate
the spaces when writing the substring. Example,
”Writeln(Substring(Sl,S2,2,2): Length(Substring(S2)));"
prints only the characters "be".

KYAN PASCAL 111-13

PASCAL PROGRAMMING

Concat

Concat is an abbreviation for "Concatenate/' which means to join two strings
in a third string. To use this procedure, the file CONCAT.I must be
included in the program declaration.

The statement takes three parameters: the first string variable; the second string
variable; and, the result string. Its syntax is

Concat(Stringl,String2,String3);

If Maxstring equals 10, and SI equals 'Any and S2
equals 'Body ', then the statement "Concat(Sl,S2,S3);,, produces a third
string, S3, that equals 'AnyBody Note again the trailing spaces which may
be eliminated by using the Length function in conjunction with Concat.

GRAPHICS

Kyan Pascal supports the Atari's ability to use graphics with many different
resolutions and a multitude of colors. Routines are available to set graphics
modes, set the screen colors, draw lines, and more.

To use one of the graphics-related routines on the Kyan Pascal disk (Side2), it
must first be included using the #i directive. The graphics files on the disk
are:

GRAPHICS.I
DRAWTO.I
LOCATE. I

PLOT. I
SETCOLOR.I
POSITION.I

KYAN PASCAL III - 14

KYAN PROGRAMMING

Relocating the Program Origin for Graphics

Because graphics use a lot of memory (as much as 8K) and may interfer wilh
your Pascal program, it is necessary to relocate the origin of your program in
memory before using graphics. This is done by inserting the following lines
of assembly language code at the very beginning of your Pascal program (i.e.,
before the "PROGRAM” statement).

#A
ORIGIN EQU $4000

This code is an assembler directive which moves your program up in memory
so that the graphics below it do not overwrite your program.

Different graphics modes require different amounts of memory. For example,
low resolution mode (mode3) requires only 400 bytes; super high resolution
(mode 8), however, requires nearly 8K of memory. You can change the
program origin to a lower location in memory if you are using a graphics
mode which does not require a lot of memory.

How to Set the GRAPHICS Mode

The GRAPHICS.I file, not surprisingly includes the procedure "Graphics."
Call it in the following manner

Graphics (Mode Nuraber);

Mode Number is an integer that corresponds to the particular mode you want
set. The number 0 is the text mode. When you want to use a mode other than
zero, you must call the following procedure immediately before your call
Graphics (ModeNumber).

PROCEDURE UseGraphics;
BEGIN
#A (* Be sure the # sign is placed in column 1 *)

LDA #<_origin ; get MSB of program starting location
STA $6A ; and store in RAM top (106).

END; (* of the Use Graphics procedure *)

KYAN PASCAL III - 15

PASCAL PROGRAMMING

To return to the text mode, you must call Graphics (0). Before doing so, you
must call the following procedure.

PROCEDURE UseText;
BEGIN
#A (* Be sure the # sign is placed in column 1 *)

LDA #$C0 ; put MSB of highest RAM
STA$6A ; location :C000 into RAM top (106)

END; (* of the Use Text procedure *)

After calling this procedure, you may then immediately call Graphics (0).

How to PLOT and DRAWTO

First, you must include the files PLOT.I and DRAWTO.I in your program.
Then, you can call PLOT (to plot a point) in the following manner:

Plot (X_Number, Y_Number, C_Number);

XNumber and Y_Number are integers that correspond to the horizontal and
vertical position, respectively, of the point you want to plot C_Number is an
integer that corresponds the color of the point being plotted.

You can call DRAWTO in the following manner:

Drawto (X_Number, Y_Number, C_Number);

X Number and YNumber are integers that correspond to the horizontal and
vertical position, respectively, of where you want your line drawn to. The line
is drawn from the last position plotted. C Number is also an integer; it
corresponds to the color of the line being drawn.

How to Set the Screen Colors

First, include the SETCOLOR.I file. Then, call the procedure in the
following manner

SetColor (Register, Hue, Luminance);

The parameters Register, Hue, and Luminance are all integers.

KYAN PASCAL III - 16

KYAN PROGRAMMING

How to Locate Data on the Screen

First include the file LOCATE.I. Then call the procedure:

Locate (X_Pos, YJPos, Data);

All of the parameters are integers. XPos and YPos are the horizontal and
vertical positions of the cursor, respectively. Data will be changed to hold the
number of the character or color at the particular position you specify.

How to Position the Cursor

First, include the POSITION.I file. Then,, call the procedure in the following
manner:

Position (X_Pos, Y Pos);

X Pos and Y Pos are integers that correspond to the horizontal and vertical
position of the cursor, respectively. This procedure is the same as GOTOXY,
which is found in other implementations of Pascal.

Points to Remember about Graphics

When using any of the routines that deal with the position of the cursor on the
screen, remember not to exceed the boundaries of the particular graphics mode
you are in.

The Position procedure can be used in the text mode (Graphics 0), as well as in
graphics modes, to position the cursor.

When your program uses graphics, make sure that you reset to Graphics 0
when you end the program; otherwise, garbage (nonsense) will appear on the
screen and STAY THERE!

KYAN PASCAL Ill - 17

PASCAL PROGRAMMING

SOUND

To utilize the Atari's sound capabilities, there is a file SOUND.I on the Kyan
Pascal disk.

Call this procedure in the following manner:

Sound (Voice, Pitch, Distortion, Volume);

All of the parameters are integers. They must be in the following range:

Parameter Range
Voice 0-3
Pitch 0-255
Distortion 0-7
Volume 0-15

To turn off a voice, give its number and zero out the remaining parameters
(e.g., Sound (1,0,0,0)).

NOTE: If the total volume of all the voices exceeds 32, the monitor speaker
is likely to buzz and/or distort the sound output.

KYAN PASCAL III - 18

KYAN PROGRAMMING

CHAINING PROGRAMS

Kyan Pascal features a Chain statement that links compiled files. When you
chain files, the first file calls the object code file of the second program. Linder
certain conditions, it can pass variables to the second file. In essence, when
two files are chained, the last command of the first program tells the computer
to RUN the object code of the second program.

The syntax of the chain statement is

Chain(T) 1:FHJENAME');

To use the Chain feature, put the Chain statement in the last line of the Main
program just before the END statement. (Since control is immediately passed
to the second program, more statements in the first would be irrelevant unless
the second program was being linked as part of a conditional sequence and the
second program itself chained back to the first)

The first file can pass variables to the second file only if the global variables
in the second file are declared in the same order and as the same data types.

An Example Of Chaining

In the following sample programs, the first uses the Chain feature to run the
object code file of the second. The first program asks the user, a salesperson,
to enter the name and price of a product. When the information is entered, the
program chains to the second program. The chained program then requests the
cost of the item to the company. Using this information and the price data
that was passed to the program, it calculates the profit and displays the
information on the screen.

The individual programs are very straight-forward. Note, however, that the
first part of the variable declarations in both programs are identical. Only the
last two variables in the second program's list and the Chain statement at the
end of the first program are different

KYAN PASCAL III - 19

PASCAL PROGRAMMING

First Program

PROGRAM Retail(Input,Output);

TYPE
String = ARRAY[1..15] OF Char;

VAR
PioductName: String;
Price : Real;

BEGIN
Writeln;
Writeln('What is the name of);
Writeln('the product?');
Readln(ProductName);
Writeln;
Writeln(’And what is the price in dollars');
Write('and cents? $');
Readln(Price);
CHAIN ('D1: PROFIT')

END.

Second Program

PROGRAM FindProfit(Input,Output);

TYPE
String : ARRAY[1..15J OF Char;

VAR
ProductName: String;
Price, Cost, Profit : Real;

BEGIN
Writeln;
Writelnf > You have chained to program #2 < ');
Writeln('What was our cost of the', ProductName);
Write('that you sold? ');
Readln(Cost);

KYAN PASCAL III-20

KYAN PROGRAMMING

Writeln;
Writeln('Okay, you sold a ProductName);
Writeln('for $', Price:4:2);
Writeln(’lt cost us $’, Cost:4:2);
Profit := Price - Cost;
Wrilelii('We made a profit of $\ Profit:4:2)

LND.

Comments

1. Compare the declaration sections of both programs. They are
identical until the second program adds two more variables. Note
that these new variables. Cost and Profit, are declared after the
variables which were passed

2. The first program chains to the object code of the second with the
filename ’PROFIT*. It directs the computer find a file named
PROFIT which was successfully compiled previously. This file
may be stored on any device including Dl: and D8: (RAMdisk). The
Kyan Pascal compiler will automatically search all of these locations
for the file to be chained.

3. The syntax of the Chain statement must be followed exactly. This
includes the parentheses and single quotes which surround the
filename.

4. A String Variable may be used as the filename for a Chained
program.

5. The second program receives the variables and string information
from the first It then requests new information and, using both the
new and the passed data, calculates the value of Profit

Important Points About Chaining

When Chaining

1. The filename to the second program must specify an object code
file, not a text file.

KYAN PASCAL 111-21

PASCAL PROGRAMMING

2. No statements in the first program will be executed after the Chain
statement is called. The only exception to this rule is if the Chain
statement is part of a conditional test and if the chained program
itself is chained back to the calling program.

When Passing Parameters

1. The global variables must be declared in the same order in both
programs. Note, however, that the second program can add
additional variables after it duplicates the passed variables of the
first program.

2. The data types of the variables must be identical.

How Kyan Pascal Stores Passed Parameters

1. Variables are stored in the variable stack. When parameters are
passed from program 1 to chained program 2, they remain in the
same stack location (i.e., variables stored in locations A, B and C in
program 1 stay in those locations when passed to program 2). If
new variables are declared in program 2, they will be stored in
subsequent locations (e.g., locations, D, E, F).

2. The Stack begins in high memory and grows downward.

KYAN PASC AL 111 - 22

KYAN PROGRAMMING

Other Notes and Features

AUTO-RUN PROGRAMS/STAND-ALONE DISKS

To create a stand-alone program that runs automatically when the disk is
booted, you must follow these instructions.

1. Compile your program.

2. Copy the following files onto the formatted disk.

DOS.Sys
LIB
MyProg
DUP.Sys
RAMDisk.Com
AutoMake
CAT

(from Side 1 of Kyan Pascal disk)
(from Side 2 of Kyan Pascal disk)
(your object code file)
(Optional from Side 1 of Kyan disk)
(Optional from Side 1 of Kyan disk)
(from Side 1 of Kyan disk)
(From Side 1 of Kyan disk)

Insert the disk in drive 1 and enter the following command at die
KIX prompt:

% CAT_MyProg_Automake_>AutoRun.Sys

These instrucdons append your program to the AutoMake file and creat a new
file called AutoRun.Sys. (You may then delete MyProg and AutoMake from
the disk if you need extra space.) Now, whenever this disk is booted, your
program will execute after DOS is loaded.

CAUTION: DOS.SYS, the Kyan Pascal Runtime Library (LIB), and certain
other software files are copyrighted products of Kyan Software and Atari Corp..
Use of these files on stand-alone disks is subject to restrictions oudined in the
Software License Agreement found in the Preface to this manual. Please be
sure to carefully read the Software License Agreement and understand the •restrictions noted. Failure to comply with these restrictions may result in a
felony violation of Federal Copyright Laws.

KYAN PASCAL III - 23

PASCAL PROGRAMMING

RUNNING A COMPILED PROGRAM

A compiled program can be loaded and run whenever you see the system
prompt (%).

1. Make sure that a copy of the Pascal Runtime Library (LIB) and
copies of any chained files are located on the same disk as the
program to be run or that a device:filename is specified which
indicates the location of these chained files.

2. Enter the full filename of the program and press <Return>.
When you run the program, be sure that you specify the object
code version of the file. The program will load and nm. When
finished, the system will return you to the prompt (%).

RANDOM NUMBERS

The Kyan Pascal disk contains a special routine which is used to generate
random numbers. The file RANDOM.I must be included in the declarations
portion of your program. Then, calling the function Random in the body of
the program will return a random number between 0 and 1.

This routine is written in assembly language. To see a listing of it, use the
Kyan text editor and, when prompted, enter the device:filename for the file
(e g., DlrRANDOM.I).

ADDRESS FUNCTION

ADDRESS is a special predefined, non-standard function used in Kyan Pascal.
It returns an integer which is the actual address in memory of a variable. The
function is frequently used when programming with special libraries such as
Kyan's System Utilities and Advanced Graphics Toolkits.

The syntax for the function is: ADDRESS (Variable.Identifier)

KYAN PASCAL 111-24

KYAN PROGRAMMING

PAGE PROCEDURE

Kyan Pascal supports PAGE as a standard predefined procedure. The function
of this procedure is to skip from the current page to the next page of a Text
file. The procedure causes the system to clear the file buffer by executing a
WR1TELN statement It then advances the output to a new page of the
specified text file or clears the screen and moves the cursor to home.

The syntax for the PAGE procedure is: PAGE (File.Idenlifier).

CONCLUSION

This section has introduced you to the unique aspects of Kyan’s
implementation of Pascal that make it efficient and powerful. It has explained
how to:

* Compile Programs
* Control Output
* Include Files
* Manipulate Strings
* Create Graphics
* Chain Programs
* Create Auto-Run Files on Stand-Alone Disks
* Run a Compiled Program
* Use the Address function
* Generate Random Numbers

The only feature of Kyan Pascal not covered in this section is its use of
memory. Since this information is required only by advanced programmers, it
is included in Appendix B.

KYAN PASCAL III - 25

PASCAL PROGRAMMING

This page left blank for your notes.

KYAN PASCAL III - 26

IV TUTORIAL: PART I

This section contains 15 lessons that introduce you to the Pascal programming
language. The lessons are divided into 2 parts. Part 1 covers the elements of a
Pascal program and introduces the most important commands. Part 2 explains
more advanced techniques used in writing Procedures, Functions, Records, and
Files.

If you are unfamiliar with Pascal, read this section carefully. When you enter
the sample programs, make certain that you enter them exactly as they appear
in the text. A misplaced colon, semicolon, or period will prevent your
program from compiling.

Before attempting to enter and run the programs in the Tutorial, you should
read Sections 1,11, and HI which explain how to format a disk, use the text
editor, and how to compile and nin a Pascal program.

NOTE: FOR USERS WITH SINGLE DISK SYSTEMS

The Tutorial assumes that you are writing and saving your programs on the
disk that you made in Section I. If you have not done so, read "Getting
Started" and configure a disk for use with your system.

The disk created in Chapter 1 contains a limited amount of space because it
also contains Kyan Pascal files. You may find that the disk becomes full as
you work through the Tutorial. To avoid this problem, you should make
several copies of the disk.

TUTORIAL IV 1

NOTE: SOURCE CODE VERSUS OBJECT CODE FILES

When you write a Pascal program, you create a text file which is known as
source code. When you create a source code file, you should append a ".P" to
the filename to indicate that it is a Pascal source code file. When you compile
this file with the Pascal compiler, you create a machine code file which is
known as object code. The object code file is saved on the disk along with
your source code. The object code file has the same filename but without a
".P". If you look at a disk directory, you will see both the source code file
(YOURPROGP") and the object code file ("YOURPROG"). When you run
the program, be sure to specify the object code and not the source code file.

The Tutorial covers the following topics:

-Pan I_

1. The Pascal Program
2. Using Formulas
3. Decision Making
4. FOR Loops
5. Strings and Arrays
6. Boolean Variables
7. Scalar Data Types

Pan II

8. Procedures
9. Functions

10. Scope and Nests
11. Arrays
12. Records
13. Sets
14. Files
15. Pointers

TUTORIAL IV - 2

I. PASCAL PROGRAMS

If (his is your first time writing a program in Pascal, you should pay special
attention to this lesson. It explains:

* the basic format of every Pascal program
* the use of Reserved and Predefined words
* the procedure for compiling and running a Pascal

program

OVERVIEW

The sample program shows how to print a message on the screen. Although
this may not seem like much of an accomplishment, be patient. The program
illustrates some very important points about the Pascal language.

Notice that the program is identified by the word PROGRAM, that it is
given a name, Ego, and that the main part of the program is marked by the
words BEGIN and END. When you enter the program, make certain that
you copy it exactly as you see it Like any computer language, Pascal is very
precise and requires that you adhere to its rules exactly.

THE SAMPLE PROGRAM

The program in this lesson will simply print the message, "My name is
YourName," on the screen.

1. First boot DOS 2.5 and the Kyan Pascal and select the Text Editor
from the Main Menu. (Type "ED" after the prompt). When prompted
for a filename, type DnrEgo.P The screen will display the following
message:

ED: FILE NOT FOUND.
PRESS ANY KEY TO CONTINUE.

TUTORIAL IV - 3

PASCAL PROGRAMS

Press any key, the screen will clear, and the blinking
cursor will appear in the upper left-hand comer. You
can now enter the program which will be called Ego.
To make sure that this is the case, press <ESC>.
Note: the filename at the top of the menu is
DmEgo.P. Press <ESC> again to get back to
the editor.

2. Enter the program listed below, paying special attention
to the punctuation.

PROGRAM Ego(Input,Output);

BEGIN
Writeln;
Writeln;
Writeln('My Name is your name')

END.

3. Press <ESC> to get the Text Editor Menu.

4. Press X to save the program and exit the Text Editor.

5. When the % prompt appears, type PC and press RETURN.

6. When the prompt "pc:" appears, enter DmEgo.P followed
by a hyphen P (-P). The compiler will translate your source code, i.e.
the program, into code that the computer uses to run. The compiler
saves the object code under the filename you have indicated, but
it deletes the .P extension to the filename.

TUTORIAL IV- 4

PASCAL PROGRAMS

7. If no errors are reported, the prompt will reappear.

* II there were error messages, note them, and return to the editor
(you can return to the editor by typing ED when you see the prompt)
Enter Dn:Ego.P to call your file. Make the corrections, save, and
recompile your program, (i.e., repeat steps 3 through 6).

8. To run the program, enter Dn:Ego when the % prompt appears.
Remember to delete the .P extension.

THE LOGIC OF THE PROGRAM

1. The first statement declares the name of the program.
Ego, and tells the computer to expect input from the
keyboard and to produce output on the screen.

*In this program there isn't any input. However, a good
programming technique is to always includes the Input-Output
declarations in the name of the program.

2. The next line, BEGIN, tells the computer that any following statements
are part of the body of the program.

3. The two Writeln statements are Pascal words for "write this line exactly
as indicated." These two statements produce two blank lines on the screen.

4. The third Writeln statement is followed by a
parenthesis, a single quote, and the message to be
printed, which is followed by another single quote and a
closing parenthesis. This statement prints the line on
the screen.

5. The END statement, followed by a period, tells the
computer that the program is completed.

TUTORIAL IV - 5

PASCAL PROGRAMS

TOPICS FOR PROGRAMMERS

Program Format

Every Pascal program begins by declaring the name of the program and by
indicating, inside parentheses, that there will be input and output. This
declaration is ended with a semicolon (;). Any Pascal program assumes that
input will come from the keyboard and that output will go to die screen. Even
though this program does not get any input from the keyboard, you should
form the habit of telling the computer to expect input and to produce output.

The BEGIN and END statements open and close the body of the program.
This part of the program tells the computer what it should do with all the
information that it is processing. Put a period after the END statement to
indicate that the program is finished.

Within the body of the program, use semicolons to indicate the end of separate
commands. Ilie line preceding an END statement, however, requires no
punctuation.

Think of the body of the program as a single, very general statement; it
BEGINs and, after executing a series of commands, ENDs with a period.
Individual commands within the general statement are separated by semicolons.

Indentations show the different parts of the program. The Pascal compiler
(which translates the program into data that the computer understands) ignores
blank spaces. The spaces, however, help you and anyone using your program
to see the structure of the program. Indenting the lines between the BEGIN
and END statements clearly shows that these commands are part of the body
of the program.

If your are going to be a serious programmer, it is very important to write
neatly formatted programs which clearly show the logic of your program.

Reserved and Predefined Words

The Pascal compiler, which translates your Pascal program into data that the
computer understands, immediately recognizes a small list of words. These are
called Reserved words. You can use these words only in situations that
make sense to the compiler. PROGRAM, BEGIN, and END are examples

TUTORIAL IV- 6

PASCAL PROGRAMS

of "Reserved" words. In general. Reserved words indicate commands.

PROGRAM tells the compiler that what follows is an entire
program, and not a Procedure or a Function. [We’ll discuss these
later.]

BEGIN and END tell the compiler that the main body
of the program begins and ends at these points.

In addition to Reserved Words, Pascal uses Predefined Words. Predefined
words indicate different types of data or identify functions that have already
been defined by the program.

Other predefined words tell the compiler to expect whole numbers, characters,
or operations that it should perform.

NOTE: Do not use any of Pascal's reserved words for die name of
anything within the program.

In the manual, RESERVED words are printed in CAPITAL letters; all
Predefined words are printed with only an initial Capital letter.

Declaring a Program

Every Pascal program has two parts: the declaration and the program
body.

The first line of a program tells the compiler that what follows is a program.
This line is the Program Declaration. Indicate that this is a program by
writing the RESERVED word PROGRAM and the name of the program.

Then, inside parentheses, write the words Input,Output. This tells the
compiler to expect input from the keyboard and to direct output to the screen.
(Later, you will learn how to include filenames and other important
information in the Program Declaration.)

The rest of this program consists of the body, which is a list of commands
for the program to execute.

BEGIN tells the compiler that any following statements should
be executed.

TUTORIAL IV - 7

PASCAL PROGRAMS

END tells the computer that the program is over. When it
marks the end of the program, it is followed by a period. If the
END statement indicates the conclusion of a block within the
program, i.e. a Procedure, a Function, or a separate block of
commands, it is followed by a semicolon.

ADVANCED TOPICS

Literals

A Literal is any printed character or characters which appears between single
quotes. A series of characters contained within single quotes is called a String.

In the sample program, the Literal, "My name is YourName", is printed on
the screen exactly as it appears within the single quotes. Such Literals
always follow a Writeln statement.

Comments

Comments may be placed anywhere in a program; and, the more comments
there are, the easier the program is to read. Indicate the beginning of any
comment with a parenthesis and an asterisk. Indicate the closing of any
comment with an asterisk and a parenthesis. The following is a sample
comment

(* This is a comment *)

TUTORIAL IV-8

PASCAL PROGRAMS

CONCLUSION

This sample lesson taught you how to:

* enter and organize a Pascal program
* use RESERVED and Predefined words
* get input and direct output
* compile and run a Pascal program

The next chapter introduces different types of data and demonstrates how to
write a program that uses a formula.

TUTORIAL IV - 9

PASCAL PROGRAMS

This page left blank for your notes.

TUTORIAL IV- 10

2. ENTERING FORMULAS

This program demonstrates how to write and enter formulas. It explains:

* Identifiers: CONSTants and VARiables

* Read and Write Commands: Read, Write, Readln, Writeln

* Directing output to the printer

OVERVIEW

This sample program calculates the cost of constructing a building based upon
the cost of the materials, which is fixed, and the cost of the labor, which
depends upon the number of man-hours woiked and the rate of pay.

Since the total cost depends upon a number of factors, you will enter a formula
that computes the answer for different values. The formula consists of a fixed
value or constant, the cost of materials, and two variables, the hours worked
and the rate of pay.

Notice that in addition to the Program Declaration and the Program Body
discussed in the first sample lesson, this second lesson uses two new terms:
CONST and VAR. Also notice that you are not just printing information
to the screen; you are going to ask the user of your program to enter
information at the keyboard.

THE PROGRAM

After you have entered the Kyan Pascal Editor, enter D2:CONSTRUC.P
press any key at the File Not Found message, and type in the following
program. Remember that the indentations are useful to you, the programmer,
not the Pascal Compiler. The indentations highlight the separate parts of your
program and show the logic of relationships. As in the first lesson, make
certain that you follow the punctuation exactly.

TUTORIAL IV - 11

ENTERING FORMULAS

If you have any question about which disk to use when you have a single or a
double disk drive, or if you are not certain how to enter, save, compile, and run
the program, refer back to lesson 1.

PROGRAM Construction(Input,Output);
(♦Dollar units are thousands*)

CONST
Material = 325.0;

VAR
Hours, Rate, Labor, Total : Real;

BEGIN
Writeln (Enter hours worked, and press RETURN.’);
Writeln (Then enter rate of pay and press RETURN.’);
Readln(Hours);
Readln(Rate);
Labor Hours * Rate;
Total > Labor + Material;
Writeln (’Labor = $’, Labor 8:2, ’ Total = $’, Total : 8:2)

END.

Once you have entered the program, press <ESC> to get the Editor Menu.
Check the deviceifilename to make sure that it is named
D2:CONSTRUC.P. If the name is different, use the F command and
rename the file. Then press X to save it to disk. When you see the prompt

type Menu and <Retum>. Select the compiler option ”PCn and compile
the program.

If the compiler detects any errors, it will print a listing on the screen. Return
to the editor; correct the errors; and recompile the program. If the compiler
does not detect errors, the compiled program will be saved to the disk and the
prompt will reappear. Your program is now ready to be run. Remember that
the compiled version of your program does not have the ”.P" appended to the
filename.

TUTORIAL IV - 12

ENTERING FORMULAS

THE LOGIC OF THE PROGRAM

1. Request the number of hours worked and the rate of pay ; then read the
user’s input.

2. Multiply the Hours times the Rate to calculate the cost of the Labor.

3. Add the cost of the Material to the cost of Labor to determine the Total
cost.

4. Print the Labor and Total cost on the screen in a readable format.

GENERAL COMMENTS

When you program in Pascal, the first line identifies the name of the program
and tells, in parentheses, if there will be input and/or output. The user
provides the input from the keyboard. The computer directs output to the
screen.

If the computer requires values that are fixed, these values must be identified
before the main body of the program begins to execute. You can’t ask the
computer to do something with a value it doesn't know. Similarly, if you are
going to have the user enter values on the keyboard while the program is
running, you must tell the computer at least the names of those values and die
type or types of numbers they will be. With this information, the program
blows that it should save some space in memory for these user-entered values.
Only then will the main program be ready to deal with the numbers it receives.

In Pascal, all of these types of information are labeled by Identifiers.

TUTORIAL IV - 13

ENTERING FORMULAS

This lesson introduces two new types of Identifiers: CONST and VAR.

CONST tells the computer that whenever the identifier
Material appears in the program, the value
declared under the heading CONST will be used.
In the sample program, the value 325.0 is the
constant value assigned to Material.

VAR tells the computer that the identifiers listed under
this heading will be assigned values at some other
time during the execution of the program. At this
point, the computer doesn't care what those values
will be. It just needs to know the type of value.
[You'll learn more about DATA TYPES later.] In
this case, they are what Pascal calls REAL. This
means that they have a decimal point in them.

The BODY of the program starts with the BEGIN statement. The next two
lines print messages on the screen which tell the user how to enter the
necessary information. The next line reads the values entered on the keyboard.
Once the program knows these values, it calculates the Labor and Total costs
of the project The final line prints the results on the screen in a readable
format.

TOPICS FOR PROGRAMMERS

Identifiers

In a Pascal program, an IDENTIFIER is a name. It may be the name ol a
program, of part of a program, or of a value, which can be constant or
variable. Pascal requires only that you tell it the names of the identifiers and
the types of data they will represent before you try to use them in a program.
When you name an identifier, you tell the computer to reserve space in its
memory to store a value. If you don't include the identifier and tlie computer
encounters an unknown value, it doesn't know what that value is supposed to
represent or where to store it. Pascal uses several different types of identifiers.
At this point, we are concerned with only two of them: constants and
variables.

TUTORIAL IV - 14

ENTERING FORMULAS

Naming Identifiers

An IDENTIFIER can have almost any name you want to give it. Only 2
rules govern your choice:

1. The name must start with a letter.

2. Any combination of letters or numbers may follow including
underscore characters). (WARNING: The compiler sees no
difference between upper and lower case characters.)

To make a name unique, make sure that the identifiers within the same
program are different. Your programs will be easier to read and rewrite if the
identifiers clearly indicate what they stand for. For instance, "cost" is a better
identifier than "C" even though both are equally acceptable to the computer.

Constants

Use constants to identify values that you will use frequently in your program.
This practice makes your program easier to understand. If you come back to it
in a few months, chances are that you may not remember what the number
325.0 stood for. But if the value is identified as "Material," you won't have to
puzzle over it. Also, if the cost of material changes, you have to make only
one change in the program. In a long program where a constant is used
frequently, you would have to make many alterations to change one constant.

A constant is first identified by the word CONST; a semicolon (;) ends the
declaration of the constant's value. Once you declare a CONST, you can use
its identifier in any formula You can not, however, try to change its value.
Consequently, the identifier of a constant can only appear on the right side of
an assignment statement. For example, you could use the constant Material
in the following statement:

Total := Material + Labor;

But you could not use the constant Material to store a calculated value as in
the following statement:

Material := Parts + Repairs

Since Material is defined as a constant, it must remain the same throughout
the program.

TUTORIAL IV - 15

entering formulas

Variables

V;iriables will be discussed throughout this manual. For now, it is important
to know that they represent values that will be passed to the main body of the
program at a later point. In this sense, they are the opposite of Constants
which always remain the same. This value might be entered by the user while
the program is running, or it may be a value that another part of the program
will calculate before passing it to the main program.

When the compiler prepares the program for execution, it must expect and
reserve memory space for these, as yet, unspecified values. The label VAR
tells the program that what follows is a list of the identifiers, or names, of the
variables. All you have to do is indicate that you are listing the variables:
Tell the computer the names to expect, and define the type of data that each
variable represents. In this example, we are concerned with Real numbers, i.e.
numbers with a decimal point Other types of data will be discussed in later
examples.

NOTE: A semicolon (;) indicates the end of the variable list

Input and Output

The Pascal program uses four commands to get information from the keyboard
and output it to the screen.

* Read
* Readln
* Write
* Writeln

The two read commands ("Read" and "Readln") tell the computer to accept
information from the keyboard. The two write commands ("Write" and
"Writeln") print information to another device.

Read gets one element of data which has been labelled by
an identifier.

Readln reads an entire line of input (e.g. the computer gets
data until it senses that the <RETURN> key has been
pressed).

TUTORIAL IV - 16

ENTERING FORMULAS

Note: When a Rcadln statement is given in the program, more than one
variable may be input. Simply separate the items by a space. In the sample
program, the user enters one value, presses <RETURN>, and then enters the
next value. It is also possible, because the program is executing a Readln
statement, to enter both values, separated by a space, before pressing the
<RETURN> key.

Write prints the quoted line, or a value represented by an
identifier, on the screen. It does not, however,
advance the cursor to the next line, but waits at the end
of the printed line for the next read or write statement

Writeln prints the quoted line, or a value represented by an
identifier, on the screen. Unlike the Write command,
the Writeln command advances the cursor to the next
line on the screen.

Output to the Printer

After you name -- or declare -- a Pascal program, you must also tell the
computer to accept input or print output. You do this by telling the program
to acccept input and output files. This use of the term "file” may seem strange
if you are new to the Pascal lanaguage. A file, in Pascal, indicates a device.
The default device for input is the keyboard; for output, it is the monitor
screen.

When the computer reads a statement like

PROGRAM Construction(Input,Output);

it assumes that information entered at the keyboard goes to an input file and
that information to be output is directed to the screen.

Often, however you may want to direct output to another device, either to a
printer or to a disk drive.

Kyan Pascal allows you to redirect output to the printer by setting up a
redirection file called "Printer". First, declare a variable "Printer" as a file of
text Then, in the body of the program, insert a Rewrite statement to initialize

TUTORIAL IV - 17

ENTERING FORMULAS

the filename. Finally, use the following syntax to redirect the output:

Writeln (Printer, text

The following program is the same as the sample program except that it
directs the output to the printer instead of to the monitor.

PROGRAM Constructionflnput, Output);

CONST
Material = 325.0;

VAR

Hours, Rate, Labor, Total : Real;
Printer: Text;

BEGIN
Rewrite(Printer, 'P:');
Writeln ('Enter hours worked and press RETURN');
Writeln (Then enter rate of pay and press RETURN');
Readln (Hours);
Readln (Rate);

Labor := Hours * Rate;
Total > Labor + Material;
Writeln(Printer, 'Labor =$', Labor:8:2, ' Total = $', Total:8:2);

END.

TUTORIAL IV-18

ENTERING FORMULAS

ADVANCED TOPICS

Formating Topics

When you want to control where the output is printed-either to the screen or
the printer-you must tell the computer how to print it. In the original sample
program, notice line 5. It tells the program to print 'Labor = $• and is then
followed by Labor : 8:2. The first statement prints text on the screen.
The second statement tells the computer how to format the printed output of
the value Labor. It indicates that whatever value Labor currently has should
be allowed 8 decimal positions (including the decimal point) and 2 positions
for the following decimal value.

CONCLUSION

In this lesson, you have learned how to:

* Construct a formula
* Declare constants and variables
* Get input and write output
* Format data on the screen.

In the next lesson, you will learn how to manage and manipulate different
types of data.

TUTORIAL IV - 19

ENTERING FORMULAS

(This page left blank for your notes.)

TUTORIAL IV - 20

3. DECISION MAKING

In this lesson, your will learn how to:

♦Assign values to variables
♦Use the IF-THEN-ELSE statement to make decisions

OVERVIEW

In the previous lesson, you learned how to construct a formula that calculates a
value and then how to print that value to the screen. This lesson also gets
information from the user and prints output to the screen. In addition,
however, it makes a decision based upon the information supplied. This
involves using an IF-THEN-ELSE statement

This sample program calculates the amount of social security tax deducted
from a paycheck. It first asks the user to enter three values: the hours worked,
the rate of pay, and the amount of tax already paid. IF the tax on this
payment plus the tax already paid is greater than the maximum tax which can
be collected, the program calculates how much must be paid to reach the
maximum tax. Otherwise (ELSE), the tax is computed and added to the
amount of tax to date. Finally the results are printed on the screen.

Note: The IF statement tests for the existence of a certain condition. When
that condition is true, it performs one group of actions which are listed under
the THEN statement. When the condition is not true, it performs the
sequence of actions which follow the ELSE statement

TUTORIAL IV - 21

DECISION MAKING

THE PROGRAM

Beginning with this lesson, we assume that you know how to enter the Text
Editor and how to write, compile, and run the program.

Remember that every program must be declared, that you must define the
variables, and that the BODY of the program is enclosed between BEGIN
and END statements. Also remember that punctuation must be followed
exactly and that indentation allows you to indicate the logical parts of the
program.

PROGRAM SocialSecurity (Input, Output);

CONST
TaxRate - 0.075;
TaxMaximum « 4275.0;

VAR C These values will be entered by the user *>

Hours, Rate, TaxNow, TaxToDate : Real;

BEGIN (* The BODY of the program*)
(* Get hours, rate, and tax-to-date values *)
Writeln;
Writeln;
Write(Tlours worked = ');
Readln(Hours);
WriteCHourly rate = $');
Readln(Rate);
Write(’Soc Sec Tax paid-to-date = $');
Readln(TaxToDate);

(* Compute Soc Sec Tax for this pay period *)

TaxNow := Hours * Rate * TaxRate;

(* Determine if Tax paid-to-date + tax for this pay
period is greater than the maximum tax allowable *)

TUTORIAL IV - 22

DECISION MAKING

IF TaxToDate + TaxNow > TaxMaximum THEN
BEGIN
TaxNow := TaxMaximum - TaxToDate;
TaxToDate := TaxMaximum
END (* of the IF-TRUE statement ♦)

ELSE (* if the IF statement is false *)
TaxToDate = TaxNow + TaxToDate;

(* Write Results *)
Writeln('Soc Sec Tax This Pay Period = $', TaxNow : 8:2);
Writeln('Soc Sec Tax To Date =. $’, TaxToDate: 8:2)

END.

Remember to save and compile the program. Also remember to delete the .P
extension from the filename when you want to run the program. If you need
to re-edit the program, enter the Editor and use the filename.P to access the
source code file.

THE LOGIC OF THE PROGRAM

1. Declare the program's name and that there will be input and output.

2. Define constants using the "*=" sign.

3. Declare variables and specify their data type.

4. Write requests for information to the screen.

5. Read input from the keyboard.

6. Compute the tax due on the current paycheck.

7. If the tax for this period would make the total tax withheld greater than the
maximum, subtract the tax to date from the maximum. This returns the
amount of tax still due. This is the real amount to be deducted from this
paycheck.

TUTORIAL IV - 23

DECISION MAKING

8. If the tax from this period would not make the total tax paid exceed the
maximum, simply add the amount to the tax paid to date.

9. Write the results to the screen.

GENERAL COMMENTS

A few reminders from the previous lessons should help make this program
easy to understand.

CONSTANTS must be declared, using an equal "=" sign, immediately
before the VARiables.

VARIABLES tell the computer to expect values that will be entered while
the program is running. These variables may be input by the user, they may
be read into the program from another file; or they may be temporary storage
places where the program stores intermediate calculations, hi any case, the
computer will associate the value with the name you have defined. The Data
Type of the variable must be indicated at the end of the variable list In this
case, they are all real numbers, i.e., numbers that may contain decimal points.

The IF-THEN-ELSE Statement examines the current status of the program;
it then performs one action if that condition is true, and another if it is not
true. For example, if 2 numbers are greater than a third number, one action is
taken; if they are not greater than a third number, then another action is taken.
The ELSE part of the IF conditional statement is optional. If the condition is
true, the program executes the commands following the THEN statement. If
the condition is not true, the program simply skips all statements associated
with the THEN statement and goes to the next statement line of the program.

This decision-making ability is the basis for all machine
intelligence decisions.

TUTORIAL IV - 24

DECISION MAKING

TOPICS FOR PROGRAMMERS

Assigning Values: The Assignment Statement

Pascal has two ways of assigning values and it is crucial that you understand
the difference between them.

= is used to assign a value to a constant in the declaration
section of the program.

TaxRate = 0.075

It is also used in conditional statements such as:

If TaxNow = TaxMaximum THEN

or

If X = Y THEN

Otherwise, it is only used to indicate the Identifier of a user-
defined data type (You’ll learn more about this later.).

:= is used to indicate that the value on the left of the symbol
now equals the value or values on the right.

For example,

TaxToDate := TaxToDate + TaxNow

tells the computer to take the current value of TaxToDate,
add it to the value of TaxNow, and then let TaxToDate
represent the new value.

Note: Use "=" to define constants, logical relationships, and user-defined data
types. Use in equations that assign values from the right side of the
equation to the term on the left side.

TUTORIAL IV - 25

DECISION MAKING

Conditional Statements: IF-THEN-ELSE

Conditional statements take the following form:

IF a condition is TRUE
THEN perform these commands
ELSE perform other commands

The sample program uses conditional statements to determine which of two
actions it should take. In this program, there are two possible alternatives
depending upon the total amount of tax paid after tax has been deducted from
the paycheck. If it is more than the maximum, one set of actions is taken. If
it is still less than the maximum, another action is taken.

Note: Ordinarily, if only one action is taken by each decision, a BEGIN and
END statement is not needed. In the sample program, however, if the
condition is true, 2 actions are taken — the current tax is calculated and the tax
to date is updated. Since a group of commands will be executed when the IF
condition is true, they should all be listed within a BEGIN-END pair.
Otherwise, only the first action in the group would be associated with the IF
statements.

Also note that the statements are separated by semicolons except for the last
statement before END. You never need punctuation before END. Since this
END is just the end of the IF-TRUE part of the condition, it is not followed
by a period. A period would indicate the end of the program.

When the IF condition is false, the program skips all the statements in the
THEN section and turns control over to the ELSE statements. In the sample
program, there is only one ELSE command executed, so the BEGIN-END
pair is not required. In fact, this program doesn’t really need the ELSE
statement at all. If the condition is not met, the program skips the THEN
statements, moves to the next command line, and calculates the Tax To Date
value by the alternate method.

TUTORIAL IV - 26

DECISION MAKING

Operators: Arithmetic and Relational

Operators are symbols that are used to indicate relationships between numbers
and other items in a Pascal program.

Arithmetic Operators

A Pascal program can perform the four basic arithmetic operations.

Add +
Subtract
Multiply *
Divide /

When evaluating a mathematical expression, multiplication and division are
performed before addition and subtraction. Thus,

6 + 8/2= 10 (not 7)

Remember that in mathematical expressions, "=" is not an operation. Pascal
uses := to assign the value of an expression to a symbol that represents that
expression.

Relational Operators

Relational Operators are used to indicate logical relationships between items.
They are primarily used in conditional statements to indicate which action the
program should take. The 6 relational operators are:

Equal to =

not equal to < >

less than <

greater than >

less than or equal to <=

greater than or equal to >=

TUTORIAL IV - 27

DECISION MAKING

Look again at the sample program. Arithmetic operators are used in the
calculadons that determine the values of TaxNow and TaxToDate. The
Relational Operator > is used in the condition statement

ADVANCED TOPICS

Nested Conditions

In advanced programming, you may find that several complex conditions
determine which action the program should take. In that case, it is possible to
nest IF-THEN-ELSE statements. Simply replace the ELSE statement
with another IF-TIIEN-ELSE statement. The logic of this nested condition
is illustrated below.

IF condition is true
THEN do x

(Otherwise perform another test by replacing the ELSE
statement with another IF statement)

IF next condition is true
THEN do y
ELSE do z.

It is possible to create complex conditional branches using nested IF-THEN-
ELSE statements, but be careful. It is very easy to have an ELSE statement
inadvertently associated with the wrong IF statement

CONCLUSION

In this lesson you have learned how to:

♦ Assign values to variables
* Write and use conditional statements

In the next lesson, you will learn more about the types of data that a Pascal
program can manipulate.

TUTORIAL IV - 28

4. INTEGERS AND FOR LOOPS

In the last lesson you learned how to assign values to variables and how to tell
the program to make decisions.

In this lesson you will learn:

* how to use the data type INTEGER
* how to use the FOR loop
* how to use 3 predefined functions:

TRUNC, ROUND , and MAXINT

OVERVIEW

This program calculates the average of a series of whole numbers (i.e.,
numbers without fractional or decimal parts) that a user inputs. It is similar to
the previous lesson in that it accepts numbers from the keyboard and performs
a calculation using those numbers.

It is different, however, in that it requests first the number of items to be
averaged. It then requests the numbers to be averaged. The number of times
the request is made depends upon the number of items to be averaged. Next, if
a number is not a whole number, the program converts it to a whole number.
Finally, the program computes the average of the group of numbers.

The program introduces three new concepts: Integers (or whole numbers),
the FOR..DO loop, and the ROUND statement.

I UTORIAL IV ?<)

TUTORIAL IV - 30

INTEGERS AND FOR LOOPS

THE LOGIC OF THE PROGRAM

1. Declare the program.

2. Define the Variables.

♦ List the variable names and, after a colon (:) indicate
the type of data. Real or Integer, that they will represent.

3. Request the number of items and read the input

4. Use the number of items as a control for how many requests will be made
for input.

5. If the user’s entry is not an integer, round off the entry.

6. Calculate the average.

7. Print the average to the screen using formatted decimal positions.

GENERAL COMMENTS

This program illustrates several important programming concepts. Pascal
treats integers very differently than it treats real numbers. Your program
should always determine which type of data it is dealing with. The FOR .1)0
loop shows how to make the computer repeat a sequence of actions a certain
number of times. Finally, the Round function corrects any input mistakes
the user might make. A good program tries to anticipate and correct erroneous
entries.

TOPICS FOR PROGRAMMERS

Data Types: Real Numbers and Integers

Pascal understands a number of data types. So far, you have used two of them
— Real numbers and Integer numbers.

TUTORIAL IV 31

INTEGERS AND FOR LOOPS

Real Numbers

Variables that are Real numbers must be declared as such in the Variables List
The form is:

VAR
X, Y, Z : Real;

X, Y, and Z may be any legal name.

In Lesson 2 you learned about Real numbers. Recall that they are numbers
that contain fractional or decimal values. Integers, on the other hand, are
whole numbers. Kyan Pascal requires that you distinguish between these two
data types very carefully.

Real numbers may be positive or negative and are represented in either decimal
or scientific notation, i.e., 12.8, -15.7, 3.456E+11, or -2.5555E+4. [If you
are unfamiliar with the last two versions, they are simply scientific notation.
It specifies how many decimal places should follow or precede the number.]

A number in decimal notation must have at least one digit before and one digit
after the decimal point Very large or very small numbers are best handled in
scientific notation.

The following decimal and scientific notations represent the same value:
Z > 345.55
Z > 3.455E+2
Z := 34555E-2

The -»- or - 2 after the letter E just indicates how many decimal places the point
should be moved and what direction to move it in.

The range of values that may be assigned to a Real number is from
±9.9999999999E-99 to ±9.9999999999E+99.

TUTORIAL IV - 32

INTEGERS AND FOR LOOPS

Integers

Integers arc whole numbers. Pascal can use any Integer between the range of
-32768 and +32767. Integer variables are declared in the Variable List. The
format of the declaration is identical to that for Real Numbers:

VAR
Number, Count: Integer;

In the sample program, both types of variables are listed under the term VAR
and are separated by a semicolon. A semicolon also indicates the end of the
Variable List

If an arithmetic expression is the result of combining Real and Integer values,
it is considered to be a Real number.

When you want to print numbers, either Real or Integer, to the output device,
remember that you must indicate the number of integer and decimal positions
that the value will have. You do this by following the variable with a colon,
the total number of digits that you want printed, another colon, and the
number of decimal positions.

♦ See Lesson 2 if you don’t remember how to do this.
For example, in this lesson, the program prints
numbers up to 5 digits, and reserves 2 decimal
places for fractions.

If the number has fewer digits than the number of spaces reserved for it, the
correct number will appear on the screen, but the program will fill in the extra
spaces with blanks or zeros. If a number in decimal format has more digits
than the number of spaces reserved for it, a run-time error will occur. That is,
you will not learn about the error until the program is actually run. Run-time
errors also occur when an Integer is greater than 32767 or less than -32768.

A Real, or decimal, number is also limited to 13 significant digits. Writing a
number that requires more than 13 places will not make the number more
accurate. The computer will present the correct number, but it will fill the
digits beyond the 13th place with zeros or blanks. On the other hand, truly
accurate calculations will not be produced if the program does not take
advantage of the full 13 digit capability. Kyan Pascal is unique in that it can
handle figures of this size, so take advantage of this capability. Most Pascal
compilers support less than 8 digits.

TUTORIAL IV 33

INTEGERS AND FOR LOOPS

FOR..DO Loops

Hie FOR..DO loop is a control statement that causes the program to execute
a series of commands the number of times indicated by the loop. Its format is:

FOR count.name := count.beginning TO count.end DO
BEGIN
statements

END;

Note: A semicolon (;) is used to end the FOR loop. Also remember that all
statements between the BEGIN-END pair are separated from each other by a
semicolon (except the last statement before the END).

This command accepts an initial value and repeats the indicated commands,
increasing the initial value by 1 each time the sequence is executed. When it
completes the number of repetitions indicated by the control value, it moves
on to the statement following the END command.

Integers are most commonly used in FOR loops, although it is possible to
use Real number variables.

The FOR loop can also decrement the loop control variable if you use
DOWNTO instead of TO. The following example is a valid definition of a
control loop:

FOR Count := Number DOWNTO 1 DO

In this example, Number must be greater than or equal to 1. Otherwise, the
FOR loop can not count down to the control number.

TUTORIAL IV - 34

INTEGERS AND FOR LOOPS

ADVANCED TOPICS

Predefined Functions

Kyan Pascal has a number of functions that you may use in computing values.
Three of them are useful in manipulating Real numbers:

TRUNC Truncate
ROUND Round
MAXINT Maximum Integer

The sample program used the ROUND function to round the value entered by
the user to the nearest Integer. This prevented the program from crashing if
the user entered a number with a fractional or decimal part

The 3 functions are defined below:

TRUNC Truncate eliminates any decimal value
after the decimal point.

Trunc(9.6) becomes 9
Trunc(9.1) becomes 9

ROUND Round returns the value that is
closest to the decimal number.

Round(9.6) becomes 10
Round(9.1) becomes 9

MAXINT Maximum Integer is a Pascal
constant that equals the
largest integer that your computer
can handle. In Kyan Pascal, this
integer equals 32767.

TUTORIAL IV - 35

INTEGERS AND FOR LOOPS

CONCLUSION

In this lesson you have learned how to:

* work with Integers
* use FOR..DO loops
* use predefined function words

In the next lesson, you will learn how to manipulate text.

TUTORIAL IV - 36

5 STRINGS AND ARRAYS

This lesson introduces a new type of data - the Character. It shows how to
use this data type to create strings of text. You will learn how to:

* Declare and use the Char data type.
* Use the Reserved Word ARRAY to declare a new data type

called STRING.
* Create WHILE loops that repeats a series of actions.
* Control the format of output

OVERVIEW

Beginning with this lesson the programs become more complex, and they will
often require you to use programming techniques introduced in previous
lessons.

The sample program asks the user to enter words. It then prints a message
telling the user how many words were entered and which is alphabetically first.
Since the size of the list is not known in advance, the program expects a
signal, which in this program is a plus sign (+) to indicate the end of the list.

The program also shows how to format the output to the screen in a pleasing
display.

THE SAMPLE PROGRAM

This program uses the WHILE loop to determine whether the user wants to
end the list. It also uses an IE loop to repeat the request until (lie WHILE
condition is no longer satisfied. Finally, it introduces a new type of data, the
ARRAY, which is used to define a String of characters.

TUTORIAL IV - 37

STRINGS AND ARRAYS

PROGRAM FirstWord (Input,Output);
(* This program requests a list of words, selects the alphabetically
first word, and counts the number of words entered. *)

CONST
Signal = V;

TYPE
String = ARRAY [1..15] OF Char;

VAR
Word, Least Word: String;
LoopCount: Integer;

BEGIN
(* Each time through the loop, increment the counter,

LoopCount, and save the least word *)
Write(*Enter a word or V: *);
Read!n(Word);
Le;istWordWord;
LoopCount > 0;
WHILE Word [1] <> Signal DO

BEGIN
IF Word < LeastWord THEN

LeastWord > Word;
LoopCount:« LoopCount +1;
Write('Entcr a word or " rM: ');
Readln(Word)

END; (♦ of the WHILE loop ♦)
Writeln;
Writeln;
Writeln(LoopCount: 5, ' words were entered.');
Writeln;
Writeln(LeastWord:25);
Writeln;
WritelnC is alphabetically first.*)
END.

After compiling the program, remember to delete the .P filename extension to
run it.

TUTORIAL IV - 38

STRINGS AND ARK A VS

THE LOGIC OF THE PROGRAM

1. Declare the program's name.

2. Assign the "+" to the variable Signal.

3. Define Siring as an ARRAY of Characters.

4. Declare the Variables and their data types.

5. Request and read the first word to be entered.

6. Initialize the variables:
LeastWord := Word
LoopCount := 0

7. Begin the WHILE loop which continues to operate until
a"+" is entered.

a) Compare the entered word to the previous word. If it is
alphabetically first, save it as LeastWord.

b) Increment the LoopCount

c) Repeat the request message.

d) Read the next word.

8. Print the formatted output to the screen.

TUTORIAL IV 39

STRINGS AND ARRAYS

GENERAL COMMENTS

This program introduces a new data type that Pascal understands - Char.
Using Characters, it defines another type of data -- the String. Strings
allow the program to manipulate text and make comparisons between entries.
After asking the user to enter a word, i.e. a String, it compares that string to
the previous string.

The computer can compare Strings because every letter has a numeric value
that represents it to the computer. The letter "a” has the lowest numeric value
and the letter "z" has the highest numeric value. The program simply tells the
computer to check the value of the first letter of each word. If it is less than
the previous value, this word becomes the first word. If the letters are the
same, the program will check the next letter. This checking continues until
the computer delects a difference and defines the least value as the liist woid.

The two control loops, WHILE and IF, are the brains of the program. The
WHILE loop will continue to request words as long as a + has not been
encountered. The IF loop compares the numeric values of the current and the
previous entry and determines which is first

The empty Writeln statements and reserved character positions format the
output to the screen.

Note: The [1] after Word in the WHILE loop condition indicates that the
first character of the entry should be checked. Remember that Word is an
ARRAY. You must tell the program which element of the ARRAY to
check. This will be explained below.

TOPICS FOR PROGRAMMERS

DATA TYPES: Char, ARRAY, and String

Until this lesson, you have used only two types of data that a Pascal program
understands ~ Integers and Real numbers. You also want to be able to work
with text. The Char data type allows your program to manipulate this new
type of information.

TUTORIAL IV -40

STRINGS AND ARRAYS

Char

Char, like Int and Real, is a predefined data type. It tells the computer to
expect a single character. A Char variable can be any printable letter,
number, or symbol; it can also be a space or a <RETURN>. A number that
is represented as a character, however, cannot be used in arithmetic operations.

A Char data type is declared in the same way as an Integer or a Real number.
If your program expects the user to enter a letter to select an item from a
menu, you might declare a variable, Selection, that will represent that choice.
In the declaration part of the program you would enter

VAR
Selection : Char;

This tells the program to expect a variable called "Selection" and that the
variable will be a character.

Arrays

An ARRAY is a collection of similar types of data. The word ARRAY in a
program tells the computer to expect a specific number of items that it will
group together. It is like a list. It could be a list of the days of the week or
the months of the year. It could also be a list of letters, integers, or real
numbers..

When you declare an ARRAY, you must tell the computer how many
elements will be in it. The computer then associates each element in the array
with its position. The format for declaring an array is:

ARRAY [1.JC] OF data type;

The numbers in the brackets indicate the first and last elements in the array,
and an ellipsis (..) separates them. This ellipsis means that all numbers
between the first and last are to be included in the array. Remember that the
number indicates the position of the data element within the array.

The words "Pascal is fun" comprise an array of 13 elements. Element flj is
"P", and element [9] is "s".

When you declare an ARRAY, you must also indicate what type of elements
it will consist of. The sample program defines an ARRAY of characters, but

TUTORIAL IV -41

STRINGS AND ARRAYS

you can define an array of any data type. You can even declare an ARRAY of
an ARRAY.

Strings

A String is a sequence of characters. In Kyan Pascal, strings must be defined
as ARRAYS of characters. The sample program defines String as an
ARRAY of 15 characters. Note that since a String is a user-defined data type,
it must be declared under the heading TYPE. This signals that you are
defining a unique type of data. You must define the TYPE String before you
can identify a variable as a String TYPE.

Once you define a String as an array of a number of characters, the String will
always be of that length. If you use less than the maximum number of
characters, the gap will be filled with spaces. If you try to use more
characters, they will be lost.

Re-examine the sample program to see how it defines the data type String as
an ARRAY of 15 characters. It then declares 2 variables, Word and
LeastWord, to be Strings. When you run the program and enter a word with
less than 15 characters, the program works fine. The missing letters are filled
with spaces. If you try to enter a word with more than 15 letters, the extra
characters will not appear.

If you want to assign String or Character values in the body of a program,
they must be enclosed in single quotes. The following section of a program
assigns the word "Help” to a String and the letter "A" to a Char.

TYPE
String = ARRAY [1.. 10] OF Char;

VAR
Word : String;
Letter : Char;

TUTORIAL IV - 42

STRINGS AND ARRAYS

BEGIN
Word := 'Help
Letter := 'A';

Note that the String defined in the body of the program must contain the exact
number of items that were indicated in the declaration. In this case, the string
contains 4 letters and 6 spaces to fill the 10 elements in the ARRAY of
characters.

More About Reading and Writing

The program in this lesson showed two ways to print messages to the screen —
Write and Writeln. Write prints the text inside the quotes and leaves the
cursor positioned immediately after the text Writeln prints the text, but also
moves the cursor to the next line; in other words, it forces a carriage return. If
you want to have the user enter information on the same line as the text, use
Write; otherwise, use the Writeln command.

Read and Readln get information from the keyboard. Read, however, only
gets 1 piece of data, while Readln gets all the data entered until RETURN
is pressed. Later in this tutorial, you will learn the most common use of the
Read command. For the present, it is best to use only the Readln
statement

Matching The Declared Data Type To The Input

In your programs, you must always declare the type of data that will be entered
for each variable. You should also insure that the user enters data of the
appropriate type. If the program expects the user to enter an Integer and he
enters a letter, it won't know how to treat the data.

This point is so important, it bears repeating.

Note: When a program reads a variable, the data entered at the
keyboard must be the same type of data that was identified in the
declaration.

For example, your program contains the line Readln(Number) and the
variable, Number, was defined as an Integer. If the user enters Tom, the

TUTORIAL IV - 43

STRINGS AND ARRAYS

computer doesn’t know what to do with the data. Similarly, if you defined
Number as a String, a Read(Number) would only get the T and then it
would not know how to treat the letter as a number. A Readln command
would return the entire String, but it still would not know what to do with an
Integer, TOM.

To illustrate the correspondence between data type a variable is declared to be
and the data type of the actual entry. Suppose that the user enters "123 Ralph"
in response to a request for data. The following table shows what the
computer reads, depending upon how the variable is declared and whether the
Read or Readln command is used.

The following table illustrates what happens when the declared data type
doesn't precisely match the type of data the user enters.

The user enters: 123 Ralph

Command VAR Type What the Program reads

Read Int 1 (the number)

Real 1.0 (the number)

Char 1 (the character)

ARRAY[1..9]
OF Char

1 (the character)

Readln Int 123 (the number)

Real 123.0 (die number)

Char 1 (the diameter)

ARRAY[1..9] 123 Ralph
OF Char (the characters)

To read the entry "123 Ralph" as a number and a literal string, use 2 variables.
Define the first as an Integer or Real number and the second as an ARRAY

TUTORIAL IV - 44

STRINGS AND ARRAYS

OF Char. Readln(Xl) will get the number "123" and Readln(X2) will
get the string "Ralph". You may also put the two variables within a single
Readln statement, as in Readln(Xl,X2).

While..Do Loops

The WHILE loop is similar to the IF-THEN-ELSE and the FOR..DO
loops in that it forces the program to execute a command or a sequence of
commands. Its format is also similar.

WHILE conditional statement DO
BEGIN

Command 1\
Command 2;
Command 3

END;

The WHILE loop defines a condition, and as long as that condition is true, it
continues to execute. The FOR loop predetermines the exact number of times
a routine will execute. The IF loop can repeat a routine or begin another one.
WHILE loops continue to execute until the validity of the control statement
is FALSE. This test is made before the WHILE executes. As soon as the test
proves FALSE, the program "falls through" the loop to the next statement
after the end of the loop. You will learn more about Validity statements in the
next lesson.

There is one caution that should be strictly adhered to when you use a
WHILE loop.

Never write a loop that can not exit its
sequence of commands.

The program, at some time, must achieve the condition that will force it to
exit the WHILE loop.

TUTORIAL IV - 45

STRINGS AND ARRAYS

ADVANCED TECHNIQUES

Formatting Output

Advanced programmers use a number of techniques to make die output to the
screen more readable. They may clear the screen before printing text and they
force the output to align on the monitor in a easy-to-read format.

Reserved Places

In the sample program the output was carefully directed so that it is easy to
read. You should use empty Writeln commands to force blank lines between
output. You can also use the :number option to allocate a number of spaces
for any kind of output. The actual text or value will be printed at the leftmost
extreme of the spaces you reserve for it. In the sample program, 5 spaces are
allocated for the number of items entered. Consequently, the number, if it is
less than 10, will be indented five spaces. Then a blank line is printed,
followed by the LeastWord, which is given 25 spaces to insure that it will be
indented on the line. After another blank line, the statement “is alphabetically
firsf contains enough spaces to make it centered under the LeastWord.

Chr

Every ASCII character corresponds to an Integer from 1 to 128. The function
Chr returns the ASCII character that corresponds to the integer indicated in the
parentheses. This is what allows the computer to determine which letter
comes before another.

Some characters don't print to the screen but control how data is printed to the
screen. The statement:

Writeln(Chr(125));

will clear the screen. If you begin your program with this statement, your
output to the screen will be much more readable.

TUTORIAL IV - 46

STRINGS AND ARRAYS

CONCLUSION

By now you are more than a beginner programmer. In this lesson you have
learned how to:

* Use Characters, Arrays, and Strings
* Write or read data
* Format output to the screen

The next lesson explains how to make logical decisions using a new data type:
Boolean.

TUTORIAL IV - 47

STRINGS AND ARRAYS

(This page left blank for your notes.)

TUTORIAL IV - 48

6 BOOLEAN VARIABLES

This lesson introduces the data type ~ Boolean. Boolean variables are either
TRUE or FALSE. In this lesson, you will learn how to use:

* Boolean Variables and Equations
* Boolean Operators
* The operators DIV and MOD
* The order of operations used in evaluating expressions

OVERVIEW

The computer makes decisions based on the logical state of a defined condition.
This logical state is either TRUE or FALSE. Boolean logic is used to
determine the TRUE or FALSE state of complex conditions.

The program in this lesson tests your skill at division. It asks you to enter a
number, a factor of that number, and Anally, the other factor. It then
determines whether the second two numbers are correct Correct answers are
determined by a Boolean equation. If they are correct the user is congratulated
and asked if he wants to try again. If the answers are wrong, the user is asked
if he wants to make another attempt.

The program uses two new operators, DIV and MOD, as part of a Boolean
equation, to determine whether the answers are correct or not. DIV returns the
quotient when two numbers are divided. MOD returns the remainder.

THE SAMPLE PROGRAM

The following division lesson uses a large WHILE loop which continues to
execute the program as long as the answer to "try again" is Yes. A nested IF
loop controls the output, which depends upon whether the answer is right or
wrong. The test for the correct answer is a Boolean variable, Correct.

TUTORIAL IV - 49

BOOLEAN VARIABLES

PROGRAM DivLesn (Input,Output);
(♦ This program requests information from the user and tests
whether the second two numbers are factors of the first ♦)

VAR
X, W, Z : Integer;
Ans : Char;
Correct: Boolean;

BEGIN
Ans := *Y';
WHILE Ans = ’Y’ DO

BEGIN
Write('Enter an Integer ’);

Readln(X);
Write('One of its factors is ');

Readln(W);
Write(X:3, * divided by’, W:3, ’ is');

Readln(Z);
Correct(X MOD W =0) AND (X DIV W = Z);
IF Correct THEN

BEGIN
Write(’Correct! Another? Enter Y or N ');

Readln(Ans)
END (♦ of the THEN clause ♦)

ELSE
BEGIN

Write(*Wrong! . Try again? Enter Y,N’);
Readln(Ans)

END (♦ of the ELSE clause ♦)
END (* of the WHILE statement *)

END. (* of the program *)

1UTORIAL IV - 50

BOOLEAN VARIABLES

THE LOGIC OF THE PROGRAM

1. Name the program and declare the 3 types of variables - Integer,
Char, and Boolean.

2. Initialize the "Answer" to "Yes."

3. Begin the WHILE loop which continues to execute as long as the
"Answer" is the letter Y.

4. Write die requests for data and read die information from the
keyboard.

5. Define the conditions of a Correct answer, i.e., the first number can
be divided by the second with no remainder.

6. Begin die IF loop. If the answer is correct, print the results. If it was
not correct, print "wrong".

7. Ask if the user wishes to continue. Stop when the user enters N.

8. Close the BEGIN statements with corresponding END statements.

GENERAL COMMENTS

This program introduces the new data type, Boolean. It also uses two new
functions, DIV and MOD. These items will be explained in the "Topics for
Programmers" section of the lesson.

For now, you only need to understand that when you define "Correct" to be a
Boolean data type, you mean that "Correct" can only equal TRUE or FALSE.

In the program, you define the conditions that will make "Correct" TRUE.
"Correct" will be true if there is no remainder after the numbers are divided
(i.e., X MOD W= 0) and the 2 numbers the user enters are really factors of the
first number (i.e., X DIV W=Z).

Also note the punctuation of the nested loops. A BEGIN statement requires
no punctuation. Semicolons separate elements within the BEGIN statement

TUTORIAL IV - 51

BOOLEAN VARIABLES

but none is required before the END statement. The END statement does not
require punctuation until the end of the program.

TOPICS FOR PROGRAMMERS

DATA TYPES: BOOLEAN

A Boolean data type always equals either TRUE or FALSE. To use a
Boolean variable you must fust declare the variable identifier as Boolean; then,
in the program body, define the conditions that make it true. The sample
program defines "Correct” as a Boolean variable. In the program body it states
that a division without remainder and a division yielding a specific number are
both required to make a TRUE condition. Once the condition has been defined,
the sample program uses an IF test which executes one set of instructions if
the Boolean variable is True and another set if it is False.

Boolean Operators

Boolean expressions use three operators to define conditions:

NOT
OR
AND

These Operators follow the rules of formal logic.

NOT indicates that the opposite of the condition is true.

NOT True =* False
NOT False = True

For example, a Boolean variable that is NOT the True condition
is False. One that is NOT the False condition is True.

OR indicates that if either element in a pair of conditions is True, the
result is True. Otherwise, it is false. Consequently,

True OR False = True
False OR True = True
True OR True *= True
False OR False = False

TUTORIAL IV - 52

BOOLEAN VARIABLES

For example, two cars are racing. The race is over (True) when car A
OR car B crosses the finish line. Only one of the conditions needs to
be True for the result to be True.

AND indicates that both conditions must be True for the result to be True.

True AND True = True
True AND False = False
False AND True = False
False AND False = False

For example, the environment is clean (True) only when the air AND
the water are clean. If both conditions are not met, the environment
is NOT clean.

Use Boolean variables to define logical conditions. Set the condition to TRUE
or FALSE. Then use one of the loop statements to continuously execute
statements until the condition is in the logical state you set. Be sure to
include a test of conditions within the loop that will change the state of the
logical condition when the loop should end.

DIV and MOD Operators

DIV and MOD are two predefined functions that can be used in Pascal
programs. DIV returns the quotient of one number divided by another. Its
syntax is

A DIV B

MOD returns the remainder of a division. Its syntax is:

A MOD B

For example, if A =14 and B = 4, then A DIV B = 3 and A MOD B = 2.

TUTORIAL IV - 53

BOOLEAN VARIABLES

ADVANCED TOPICS

PRECEDENCE OF OPERATORS

You can const!uct complex equations or logical conditions using the
Arithmetic and Boolean operators.

Remember, however, that the computer follows strict rules that govern how it
evaluates expressions. Operations of greater precedence are executed before
operations of lesser precedence.

The five levels of precedence are:

lst-Highest Precedence
2nd level
3rd level
4 th level
5th-Lowest Precedence

()
NOT
*, /, AND, DIV, MOD
+, % OR
=, <=, >=, >, <, <>

Because parentheses have the highest level of precedence, you can use them to
direct the order of operations within an expression. Any part of the expression
in parentheses will be evaluated first For example, 4*(5+l) =* 24; but
(4*5)+l *21. If parentheses are nested, the innermost pair will be evaluated
first, e.g., 3*(2+(6/2)) = 15.

When you nest parentheses, always count to make sure that there are an equal
number of left "(" and right ")" symbols. If they are not equal, the expression
will not be evaluated correctly.

CONCLUSION

This lesson has introduced you to the concept of Boolean data types. Since
this is only an introduction, you may want to consult other books for a
complete explanation of Boolean logic and how to use it in programs.

The next, and last, lesson in Part 1 of the Tutorial explains a number of
important principles. When you finish it, you should be ready for the more
complicated (and more powerful) uses of Pascal.

TUTORIAL IV - 54

7. SCALAR VARIABLES

This lesson introduces a number of new data types, statements, and functions.
It explains:

* The data type: Scalar
* The data type: Subrange
* The REPEAT..UNTIL statement
* The CASE..OF statement
* The functions: Ord, Succ, and Pred

OVERVIEW

Sometimes you may want a variable to represent a short list of items. The
variable "Days", for example, may represent the items: Sunday, Monday,
Tuesday, etc. You can do this by defining the variable as a Scalar variable.
Unlike the other variable declarations, Scalar variables are not named Scalar;
the variable identifier is simply followed by a list of items, enclosed in
parentheses, that it can represent It is defined under a TYPE heading to
indicate that it is a user-defined TYPE of data. When the program runs, the
variable can contain any of the elements that were assigned to it in the
declaration.

The sample program declares a Scalar type that contains the words "Yes" and
"No," i.e., the variable can represent either of those two values. It will
continue to run only as long as the Scalar variable equals "Yes".

The program asks the user to enter a hexadecimal number and then converts it
to a decimal equivalent. To do this, it uses a REPEAT..UNTIL statement
that continues to execute until a condition is met. Within the REPEAT are
two IF conditional tests that determine if the user has finished entering the
hexadecimal number.

TUTORIAL IV- 55

SCALAR VARIABLES

THE SAMPLE PROGRAM

This hexadecimal to decimal conversion program introduces the CASE..OF
statement which is used to assign values from a list to the designated variable.
In this program, the list is the list of decimal equivalents for the hexadecimal
digit entered by the user. The program contains a formula that keeps track of
the value of the position of each digit. It also uses a Boolean variable to
decide whether it should continue to request input.

PROGRAM HexToDec(Input,Output);

TYPE
YcsNo * (Yes, No);

VAR
Digit, Signal : Char;
Number, OldNumber: Integer;
Answer : YesNo; (* a scalar variable *)
Continue : Boolean;

BEGIN
OldNumber := 0;
WritelnfEnter the most significant digit*);
Write(’i.e. the one that begins on the far left');
Rcadln(Digit);

REPEAT (♦ Start the REPEAT loop *)
CASE Digit OF (♦ start the CASE list which takes the Digit

and finds its decimal equivalent *)
'O’ : Number := 0;
T : Number := 1;
’2* : Number :=* 2;
’3’ : Number :« 3;
•4’ : Number > 4;
5' : Number := 5;
6’ : Number := 6;
T : Number := 7;
•8* : Number := 8;
*9’ : Number := 9;
'A' : Number := 10:
’B’ : Number := li;

TUTORIAL IV - 56

SCALAR VARIABLES

'C : Number := 12;
D' : Number := 13;
TT : Number := 14;
'F : Number := 15
END; (♦ of the CASE list ♦)

OldNumber := Number + OldNumber * 16;
Writeln;
Writeln(’Is there another digit');
Writelnf'after this one? (Yes or NO) ');
Readln(Signal);
IF (Signal = ’Y*) OR (Signal = V) THEN

ANSWER := YES
ELSE
Answer := NO;

IF Answer = Yes THEN
BEGIN

Continue := True;
WriteCEnter the next digit');
Readln(Digit)

END
ELSE
BEGIN

Continue := False
END;

UNTIL NOT(Continue);

Writeln;
Writeln;

Writeln(The decimal equivalent is OldNumben6)
END.

TUTORIAL IV- 57

SCALAR VARIABLES

THE LOGIC OF THE PROGRAM

1. Name the program.

2. Define the scalar TYPE "YesNo."

3. Declare the variables:

* Digit and Signal are Char
* Number is Integer
* Answer is YesNo
* Continue is Boolean

4. Initialize the OldNumber to zero and clear the screen.

5. Print the message requesting information:

* the Writeln writes the text and advances the cursor
to the next line

* the Write statement positions the cursor at the end
of the text and awaits input.

6. Read the input and compare the item to die CASE..OF list.

* the number read by the Readln statement is converted
to its equivalent in decimal notation. If the user enters an
"A", the value is converted to 10.

7. Calculate the current value of the digit and add it to any pre-existing
values.

8. Ask if there is anodier digit to be entered.

9. Enter die IF loop:

* If anodier digit is to be entered, indicate this by making the
Scalar variable "Yes.” Otherwise, make die variable "No.”

TUTORIAL iv - 58

SCALAR VARIABLES

10. Enter the second IF loop.

* If the Scalar variable is "Yes", then make "Continue" True
and request the next digit to be entered.

* If the Scaler variable is "No", then make "Continue" FALSE
and exit the IF conditional test.

11. When the entry is complete, write the results to the screen.

GENERAL COMMENTS

One of the advantages of Pascal is that you can define variable types to fit your
program. In the next part of this manual, "Programming Techniques," you
will learn how to define complex types of data. This program, however,
introduces the idea of defining your own variables by using a simple Scalar
variable. After defining the TYPE YesNo as a Scalar list of Yes and No,
the program declares the variable Answer as a YesNO TYPE. The body of
the program assigns one or the other value to the Answer variable to indicate if
the user wants to enter more digits in the hexadecimal number.

The REPEAT..UNTIL statement controls the execution of the program
which continues to request hexadecimal digits UNTIL the Boolean expression
”NOT(Continue)" is False. If this logic seems convoluted, remember that you
want to keep executing the REPEAT loop until a condition is NOT met.

TOPICS FOR PROGRAMMERS

DATA TYPE: SCALAR

A Scalar variable is actually a list of items. It may represent any one of
those items while the program executes. It must be defined under the heading
TYPE.

The sample program defines the Scalar type YesNo as the list (Yes, NO). It
then declares the variable Answer as a YesNo type. Two sample Scalar
types are illustrated below. Note that the TYPE must be defined before a
variable can be declared as that TYPE.

TUTORIAL IV- 59

SCALAR VARIABLES

TYPE
DaysWeek - (Mon,Tues,Wed,Thur,Fri,Sat,Sun);
PayRate = (Regular, Overtime);

VAR
Day : DaysWeek;
Rate : PayRate;

The values or items in the user-defined Scalar TYPE may not be defined in
terms of any other type. In addition, they may not be characters, strings,
integers, or real numbers. They can only be a list of items. For example, an
item in single quotes like ’A’ or an item like 'Sun' is unacceptable since the
single quotes indicate a character string.

The principle is simple; the elements of a Scalar variable can only be a list of
items which are separated by commas.

The only exception to this rule is explained in the next section on the
Subrange TYPE.

DATA TYPE: SUBRANGE

The Subrange TYPE is a form of the Scalar TYPE because it is a list of
items. It is different, however, because you need to specify only the first and
last items in the range. Obviously, if the subrange is a list of names, the full
list must be defined in a Scalar TYPE. Subranges may contain integers since
the computer understands the list of numbers as a Subrange of the entire set of
Integers it uses. The syntax of the TYPE Subrange is:

TYPE
Name = first item .. last item;

The following sample declaration illustrates the use of Scalar and Subrange
TYPES. First a Scalar TYPE is declared. Then a Subrange of the full Scalar
list is identified. Finally, a Subrange of integers is defined. After the TYPE
declarations have been made, Variables are identified as their respective
TYPES.

TYPE
Week = (Sun,Mon,Tues,Wed,Thurs,Fri,Sat);
WorkWeek = Mon..Fri;
Days - 1..7;

TUTORIAL IV - 60

SCALAR VARIABLES

VAR
Date : Week;
WorkDay : WorkWeek;
DayNum : Days;

When the program containing the above declarations executes, the Variable
"Date" may be assigned any one of the items in the Scalar list. "WorkDay"
can only represent Monday through Friday. "DayNum" can equal any number
from 1 to 7. Remember that "Week" is a full Scalar TYPE, "WorkWeek" is a
Subrange TYPE, and "Days" is a Subrange of Integers.

The elements of the Subrange do not have to be included in parentheses.

Note: Use a Subrange TYPE to make a list of integers. A Scalar TYPE
cannot contain numbers or integers. This restriction prevents you from
inadvertently redefining a predefined type.

REPEAT..UNTIL

The REPEAT..UNTIL loop is similar to the WHILE loop that you learned
in Lesson 5. The statements inside the loop will continue to execute until a
specific condition is met The syntax of the statement is:

REPEAT
command 1;
command 2;
command 3;

UNTIL condition;

Notice how the REPEAT UNTIL statement differs from the WHILE
statement. The WHILE statement declares the condition before it begins to
execute commands and continues until the condition is no longer true. The
REPEAT UNTIL statement places the test condition at the end of the loop. It
continues to loop until the test condition does become true. Since it ends
execution when the UNTIL condition is met, the loop does not requires its
own END statement.

TUTORIAL IV- 61

SCALAR VARIABLES

CASE..OF

In the sample program, you asked the user to enter a number and then
determined its decimal equivalent. You might have handled that situation with
an entire series of IF tests such as:

Readlnpigit);
IF Digit = 1 THEN

Number :=* 1;
IF Digit = 2 THEN

Number := 2;

IF Digit - A THEN
Number := 10

Using a series of IF statements takes a lot of time and effort just to determine
which value you wanL Pascal uses the CASE..OF statement when you
want to select an item from a list of possible values. Simply identify the
name of the variable between CASE and OF; then list the possible entries, a
colon, and the action to be taken. Remember to END the list and include a
semicolon.

With these principles in mind, look again at the sample program. The user
enters a value that is name "Digit.” The program then sets up a CASE..OF
list. Each possible entry is listed in single quotes and the value of the variable
"Number" is assigned to it. Depending upon the value of "Digit," a
corresponding value is assigned to "Number." "Number" is then used to
compute the decimal equivalent.

ADVANCED TECHNIQUES

Functions: ORD, SUCC, and PRED

In Lesson 5, you learned how to use the function Chr. Pascal has other
functions which you can use in your programs. Three of them are especially
useful in dealing with Scalar Data Types. Since the items in a Scalar data type
are declared in a particular order, you can use that order in designing your
program. The following three commands allow you to manipulate the items
in :i Sc:il;\r list.

TUTORIAL IV - 62

SCALAR VARIABLES

Each position in the Scalar list implies a number. In the Scalar TYPE , we
defined as "Week", the first position is occupied by "Sun”, the second by
"Mon”, and so on. The Ord function will return the value of the position of
the item in parentheses. Remember, however, that a computer begins
counting with zero. So:

Ord (Sun) will return 0
Ord(Mon) will return 1
Ord(Sat) will return 6

Also, you can use the statement ORD('A’), where A is a character, to
determine the ASCII value of that character.

Succ and Pred

Succ (succeeding) and Pred (preceding) also operate on Scalar lists.
Succ(item) will return the element in the list that follow "item." Pred(item)
will return the element that precedes it Using the Scalar Type we defined as
"Week":

Succ(Mon) will return Tues
Pred(Mon) will return Sun

Never, however, try to find an item which precedes or follow the beginning or
ending of the list. It will produce errors. "Pred(Sun)” won't make sense to
the computer since nothing comes before Sun in the list.

If several Scalar types are declared, items in the different lists will have die
same order values. For example, if the days of the week and the months of the
year are declared as two Scalar variables, Sunday and January will have the
same ordinal values.

TUTORIAL IV- 63

SCALAR VARIABLES

CONCLUSION

This is the last section of the tutorial which uses sample programs to
introduce you to the basic concepts of the Pascal language.

You have been introduced to the elementary Pascal data types and most of the
command statements.

In this lesson alone, you have learned about

♦ Scalar data types
♦ Subrange data types
♦ The REPEAT..UNT1L statement
♦ The CASE..OF statement
♦ The functions: Ord, Succ, and Pred

We have also tried to include some suggestions about what makes a good
program. Unfortunately, some of the sample programs don't illustrate those
techniques. That is because Pascal allows you to define more than data types.
It also lets you define your own procedures and functions. Good programming
technique defines subroutines that the main body of the program can call
whenever it needs them. The next section of the tutorial will explain how to
write your own procedures and functions, and how to manipulate blocks of
information in the form of records and files.

TUTORIAL IV - 64

IV TUTORIAL: PART 2

This part of the tutorial demonstrates the real power of Pascal. It explains
how to define routines that permit you to create subprograms called
Procedures and Functions which your program can call with a simple
command. This section also explains how to define complex data types. The
ability to define routines and declare data types greatly increases the power and
complexity of the programs you can write. Finally, a discussion of pointers
shows you how to access memory locations directly.

In this section you will learn how to declare and use:

♦ Procedures
♦ Functions
♦ Arrays
♦ Sets
♦ Files
♦ Pointers

Procedures and Functions are Pascal's equivalent of subprograms. They
enable the main body of the program to call routines that you have defined.
Arrays, Records, Sets, and Files are data structures which your program
can define, manipulate, and store. Pointers enable you to control dynamic
variables.

* Procedures are a group of instructions that execute a
specific task or execute a group of instructions that perform a
specific task.

* Functions accept values that are passed to them, perform
calculations with those values, and return a value to the main
body of the program.

* Arrays let you store elements of a single type of data.

TUTORIAL IV - 65

TUTORIAL: PART 2

* Records let you define complex arrangements of data types.

* Sets are used to manipulate data.

* Files store data sequentially.

* Pointers allow you to access dynamic variables and/or
memory locations and control the values stored in those
locations.

TUTORIAL IV - 66

8. PROCEDURES

A Procedure is a subprogram or subroutine consisting of one command or a
set of commands that perform a single task. For example, you might define a
procedure that performs a task by executing a series of commands. The main
program then executes this task, whenever it is needed, by calling the
procedure. This saves you the trouble of repeatedly defining the operation
every time you want the program to do the same task.

This gives the programmer a very powerful tool. You can write any number
of separate procedures which are executed by the body of the program - which
itself is relatively small. This enables the programmer to demonstrate the
logic of the main program without confusing it with the details of the
subroutines. Have you ever read a BASIC program and wondered just where
you were in it and what it was doing? A good Pascal program never lets that
happen. Because the program is modular, it is also easier to isolate and fix
any "bugs" that it has.

DECLARING A PROCEDURE

The form of a procedure is almost identical to that of a program. It is
identified by the word PROCEDURE and given a name.

Important:

1. Do not use a name that is already defined by Pascal (i.e., a
predefined word).

2. Do not choose a name with more than 256 characters.

3. Choose a name that clearly indicates the task it performs. This
makes it easier to understand the program.

4. Any constants, variables, or user-defined data types, not declared
in the main program must be declared in the procedure.

5. The sequence of instructions must be encased with a BEGIN/END
pair.

TUTORIAL IV - 67

PROCEDURES

There are, however, a few important differences between Programs and
Procedures:

1. The END statement of a Procedure is followed by a
semicolon (;) and not by a period.

7. A list of Parameters may follow the Name of the procedure.
This list is enclosed in parentheses, and it is similar to the
(Input,Output) declaration in a Program. This list tells
Procedure what kind of information it will receive from the main
program. Parameters are discussed in detail below.

Here is a sample Procedure that the main program might call to print a menu
that the program frequently uses. Remember that it is not an entire program
by itself.

(♦-♦)

PROCEDURE Menu;

BEGIN
Writeln;
Writeln;
WritelnfMENU’: 15);
Writeln;
Writeln;
Writeln(Press the number of your choice.');
Writeln;
Writeln('l. Item A': 10, '2. Item B':20);
Writeln;
Writeln(’3. Item C: 10, '4. Item D':20);
Writeln;

END;
r-*)

Notice that there is no Parameter list in this Procedure. The main program
simply calls Menu whenever it wants to print the choices. Also notice that
the Writeln statements use the colon to indicate how much space to save for
the text. It produces a cleaner output to the screen. Finally, after printing the
menu, control automatically returns to the place in the main program where
the procedure was called from. The next statements in the program would read
the choice and take the appropriate action.

TUTORIAL TV - 68

PROCEDURES

USING PROCEDURES

Pascal requires that any information used by the main program be defined
before it is called. In general, the order of definitions following the Program
or Procedure declaration is:

1. Labels (They are discussed in the next lesson)
2. Constants
3. User-defined data types
4. Variables
5. Procedures and Functions (Functions are the topic of the next lesson)
6. Main Program Body

This partial program below illustrates how to call the Procedure defined above.
Notice that the Procedure receives no information from the main program,
which simply calls it to print the menu. This is the simplest form of a
Procedure. Once the Procedure runs, the main program reads the input and
performs a specific task, which would be written in another Procedure.

PROGRAM CallMenu(Input,Output);

VAR
Choice : Integer;

PROCEDURE Menu; (* Begin Procedure *)

BEGIN
Writeln;
Writeln;
Writeln('MENU':15);
Writeln;
Writeln;
WritelnfEnter the number of your choice.');
Writeln;
Writelnfl. Item A': 10, '2. Item B':20);
Writeln;
Writeln('3. Item C': 10, '4. Item D':20);
Writeln

END; (* End Procedure; note the semi-colon *)

TUTORIAL IV - 69

PROCEDURES

BEGIN (* Main Program *)
Menu;
Readln(Choice);
(*statements which call a Procedure or Function indicated

by the Choice selection..*)
END.

COMMENTS

1 The sample program first declares the Variable item, "Choice,”
which holds the value of the item selected from the menu.

2. After the Variable is declared as an integer for the main program,
the Procedure is defined. Since all it does is print the menu, it
contains no constants or variables of its own. But it could!

3. Notice the use of the Reserved positions after each item in the
menu. This lets you control output to the screen and makes the
menu more readable.

71iis simple Procedure can be very useful. Whenever you want to print the
menu, have the main program simply list the command "Menu." But what if
you want the main program to communicate some information to the
Procedure or if you want the Procedure to return the results of some actions it
has taken back to the main program? That involves Parameters, which is
the topic of the next section.

PARAMETERS

When a Procedure is to receive information from or return information to the
main program, a Parameter List follows the name of the Procedure. It is
similar to the (Input,Output) segment in a program because it tells the
Procedure what Idnd of information it will expect. This list is enclosed in
parentheses. When the main program calls the Procedure, it must indicate
what values it wishes to pass to the Procedure. It does this by stating the
name of the Procedure and enclosing the information to be passed to it in
parentheses.

TUTORIAL I'V -70

PROCEDURES

An example should clarify the issues involved. You are writing a long
program that prints text to the screen and you're tired of writing all those
Writeln statements to make the output clear. Wouldn’t it be easier to write a
Procedure — lets call it Skip — that the program can execute, and in addition,
indicate how many lines to leave blank? The Procedure must be told to expect
an Integer from the program which, in turn, it will use to produce the desired
number of blank lines on the screen.

Such a Procedure is listed below:

PROCEDURE Skip(Number:Integer);

VAR
Count : Integer;

BEGIN
FOR Count := 1 to Number DO

Writeln
END;

<*•-♦)

In the program you could issue a statement like

Skip(5)

This statement calls the Skip Procedure and tells it that "Number" equals five.
When the Procedure executes, it uses 5 as the Number which determines the
end of the FOR loop. Simple, right? Well almost This Procedure doesn't
have to return any information to the main program. What if you want the
Procedure to receive informadon, do something with the data, and return the
new informadon to the main program. Then, you must declare another type of
data in the parameter list -- a Variable Parameter.

VALUE AND VARIABLE PARAMETERS

The Skip Procedure received one item of data from the main program, i.e., the
number of blank lines to print. It did not alter that value, and it did nothing to
affect the main program. In the parameter list, you simply indicated that the
Procedure should expect an integer that it calls "Number." This is a Value
Parameter.

TUTORIAL IV 71

PROCEDURES

If you want the main program to feed data to the Procedure, have that data
processed in some way, and then return it to the main program, you must
declare a Variable Parameter. It's easy to do. Simply precede the name and
type of data item the Procedure should expect with the variable indicator, Var.

The following Procedure will expect a value that die main program passes to
it, and will associate that value with the name ’’Number" which it has been
told is an Integer. The Procedure then doubles "Number." From now on,
when the main program uses the item, "Number," it uses a value twice the
original value.

(*-*)

PROCEDURE Double(VAR Number : Integer);

BEGIN
Number := Number * 2

END;

<*■-*)

If Number has been assigned the value 3 and the main program states:

Double(Number)

the identifier "Number" will be equated to 6.

TUTORIAL IV - 72

PROCEDURES

MULTIPLE PARAMETERS

A Procedure can receive any number of data items from the main program — as
long as it has been told in the Parameter List the name and type of items it
should expect.

The only caution in using multiple parameters is that the values listed in the
parentheses with the calling statement must correspond to the parameters
declared in the Procedure's Parameter List. The following statement (procedure
declaration) identifies a Procedure which expects four values from the statement
that calls it.

PROCEDURE Mult (VAR X, Y: Real; Z: Real; VAR Number: Integer);

The statement in the program’s body might be something like this:

Mult(iteml, item2, item3, item4);

In this case, the Parameter List in the Procedure tells it that the first three
pieces of data are real numbers and that the fourth is an integer. Since items 1,
2, and 4 are Variables, if their values are changed during the execution of the
Pioccdure, the main program will now use those new values as it continues to
run. The third value, however, is merely passed to the Procedure and is not
altered after the Procedure is executed.

Note: When the main program passes a value to a Procedure, it is
important that the program has initialized that value before it determines
the actual value to be passed. For example, if the main program passes a
variable named Item2, it should be assigned a value before it is passed to
the Procedure. This insures that the variable does not contain any garbage
left over from other parts of the program.

If the program has declared and initialized variables named "Iteml," "Iten^,"
and "Item 4," then the following call to a Procedure is just as valid as the
previous Procedure call:

Mult(Iteml, Item2, 30, Item4);

This statement passes the values currently represented by "Iteml," "Item2,"
and "Item4," to the Procedure. Since the Procedure does not demand a variable
in the third position, the call from the main program indicates a value (i.e., a
number, a mathematical expression, or a variable name). After the Procedure

TUTORIAL IV 73

PROCEDURES

runs, Items 1, 2, and 4 may be changed. The value in the third
unchanged.

position is

Finally, the third position may contain any expression that consists entirely of
values that the program already understands. The statement

Mult(Iteml, Item2, ltem2/10, Item3);

is just as acceptable to the Procedure as the previous example. Any arithmetic
operator may be used in defining a Value Parameter.

FORMAL AND ACTUAL PARAMETERS

The procedure and the main program should identify the same variables by
different names. The procedure identifies formal parameters. The calling
statement from the main body of the program identifies the actual parameters.

Formal Parameters

The Procedure associates the values passed to it by the main program with the
names identified in the parameter list. If a Procedure expects the three values:

(VAR Itcinl, Itciu2 : Real; Item3 : Char);

it will accept values from the main program that correspond to those data types
and in the order in which they were declared. It associates those values with
the names "Iteml," "ltem2," and "Item3." (Obviously, the data names will
not be "Item," but something more significant.) The "names" listed in the
Procedure's Parameter list are called the Formal Parameter List.

Actual Parameters

The main program might have identified certain values as variables with their
own unique names. When a program calls a Procedure, the variables it passes
to the Procedure are known as the Actual Parameter List. The values that
result from any calculations the Procedure performs will be known to the mair^^
program by their actual names.

TUTORIAL IV - 74

PROCEDURES

When using parameters, the following rules apply:

1. The number of actual parameters passed by the main program
must exactly correspond to formal parameters declared in the
procedure.

2. The types of data in the actual and the formal parameter list
must be identical. Trying to pass a Real number to a procedure
that expects an Integer will cause the program to crash.

CONCLUSION

This chapter has explained how to declare and manipulate Procedures. In
general, a Procedure is like a Program. It may contain its own list of
constants, variables, and, on occasion, other Procedures. Procedures may use a
Parameter List to transmit information between the main program and the

individual Procedure.

The next section explains another type of routine, the Function.

TUTORiAL IV - 75

PROCEDURES

(This page left blank for your notes.)

TUTORIAL IV - 76

9. FUNCTIONS

A Function is a subprogram, or subroutine, that receives values from the
main program or procedure and returns a single value that is identified by
the function’s name.

When the program or procedure calls a function, it passes values, called
Arguments, to that function. Arguments can be sent directly to the function
or through variable or constant identifiers. The function performs its
operations and assigns the result to a variable identified by the function's
name. This variable can only be altered by the function itself and may not be
changed outside the function.

For example, a Function named Area receives 2 values from the main
program and calculates the area of a rectangle. If the main program called the
function Area(a,b), and the values of a and b had previously been determined to
be 3 and 4, the function Area would return the value 12 to the main program.

DECLARING A FUNCTION

A Function declaration resembles a Procedure declaration. Examine the
following declaration of the Function Area.

<*’-■*)

FUNCTION Area(Length, Width : Real): Real;

BEGIN
Area := Length * Width

END;

<*■-*>

TUTORIAL IV - 77

FUNCTIONS

Although a Function declaration may resemble a Procedure, make certain that
you understand the differences.

1. The label is FUNCTION.

2. The function's name is followed by the equivalent of a Parameter
List These items are called the Arguments of the function, and
they are enclosed in parentheses. After the Arguments are named
and their data types defined, the computer must be told what type
of data the result of the calculations will yield. To do this, place a
colon (:) after the parentheses enclosing the Arguments, and
define the type of data that the function will yield.

The declaration FUNCTION AreafLength, Width : Real): Real;
means that the Function named Area will expect two Arguments.
The first is known as "Length" and the second as "Width." Both of
these values are Real numbers. After the function performs the
calculations indicated in the Function body, the Function Area
returns a Real number to the main program. This number is
identified in the program by the Function name. Area.

3. While Piocedures transmit many pieces of data between the main
program and itself, Functions can only transmit one value hack to
the main program. That value is whatever the result of its
calculations happens to be.

4. Functions, like Procedures, should be declared before the body of
the main program, but after the definitions of Labels, Constants,
and Variables that will be used in the main program.

5. The Arguments given to the Function in the main program are not
altered by the Function-after all, it just uses them in the calculation.
A Procedure, on the other hand, usually does change the
parameters that were passed to it.

USING FUNCTIONS

Use Functions to define any set of operations that a program requires. This
gives you a great deal of flexibility in the design of your program.

TUTORIAL IV - 78

FUNCTIONS

The sample program below asks the user to input the 3 dimensions of a solid
object. It then uses the Area Function to calculate both the Area and the
Volume.

PROGRAM Math (Input,Output);

VAR
Length, Width, Height, Volume : Real;

FUNCTION Area(L, W : Real): Real;
BEGIN

Area := L * W
END;

BEGIN (* Body of the main program *)
Writeln;
Writeln;
Writeln;
Writeln('This program calculates the Area');
Writeln;
Writeln('and Volume using values you enter.');
Writeln;
Writeln;
Writeln('The length in inches is:');
Readln(Length);
Writeln;
Writeln(The width in inches is:’);
Readln(Width);
Writeln;
Writeln(The height in inches is: ’);
Readln(Height);
Writeln;
WritelnfThe Area is ’, Area(Length, Width): 4:2,

'square inches.');
Volume := Height * Area(Length,Width);
Writeln;
Writeln('The Volume is ', Volume: 5:2,

' cubic inches.')
END.

TUTORIAL IV - 79

FUNCTIONS

Comments

1. The program first declares the Variables that it will use. It then
declares the function Area. In parentheses, it indicates the two
Arguments which Area expects to receive. It then declares the
data type of the result. The body of the Funcdon is obvious. Note,
however, that the END statement of the Function is followed by a
semicolon (;) not a period.

2. The body of the program prints the messages and requests the
input Notice the way the Program uses the Function. In the first
instance, Area is part of a Writeln statement. In the second, it is
part of the Volume calculation.

3. A function can be called as part of an arithmetic or relational
statement. A Procedure, on the other hand, always requires a
separate statement This is because a Procedure often returns
several values through its parameter list.

RELATED TOPICS

Predefined Functions

Kyan Pascal includes a number of frequently used mathematical functions.
You don’t have to define them to use them in a program. That has been done
for you. If X is a Real number or an Integer, then the following values are
defined:

Abs(X) the Absolute value of X
Sqr(X) the Square of X
Sqrt(X) the Square Root of X
Sin(X) the Sine of X (when X is in radians)
Cos(X) the Cosine of X (when X is in radians)
Arctan(X) the Arctangent of X (the result is in radians)
Ln(X) the natural logarithm of X
Exp(X) the result of e, the natural base, raised to

the power of X

TUTORIAL IV -80

FUNCTIONS

The Function Odd

The Odd function can be used to convert Integer data information into Boolean
data. 1 lie Argument of the Odd function, however, must always be an Integer.

If the Argument of the Odd function is an odd number, the Function returns
the Boolean value True. Otherwise, it returns False.

For example, if the Variable, "Number," currently represents the Integer 3, the
statement Odd(Number) returns the Boolean value True. You can use this
Function to make decisions based on the type of number the program is
manipulating.

CONCLUSION

Tliis section has introduced the concept of Functions and explained how to use
them in your programs. It has explained the differences between a Function
and a Procedure. The next section explains how to "Nest" Functions and
lYucedurcs and introduces the concept of "Scope."

TUTORIAL IV -81

FUNCTIONS

(This page left blank for your notes.)

TUTORIAL IV - 82

10. SCOPE AND NESTS

Procedures and Functions may be declared within other Procedures and
Functions. This is called Nesting. In the tutorial lessons, for example, you
learned how to nest IF conditions. If you nest Procedures or Functions in a
program, it is important that you keep track of all the Variables being sent
back and forth between the subprograms. These Variables possess an attribute
known as Scope. A Variable's Scope indicates the range of the program lor
which die Variable contains a valid value.

* A Variable that has Global scope holds its value
throughout the entire program.

* A Variable (lie has Local scope holds its value only
during the part of the program that uses it.

Nesting and Scope are concepts used in a Pascal program. They are not
statements or predefined words.

SCOPE

Scope refers to the extent of the program for which a Variable retains its
value. There are two types of Scope:

Globa I Global Variables are those variables that the main
program declares. They continue to represent values
throughout the program. The actual value may change
as a result of calls to Procedures or Functions. But
whatever actual value they represent, the name that
represents them remains the same.

Local Local Variables are those variables that are declared
within a Procedure or Function and are meaningful only
within that subprogram. The main program, for
example, does not have access to a Local Variable.
You can, however, assign the value of a global variable
to a local variable (e.g., Local := Global).

TUTORIAL IV HI

SCOPE AND NESTS

EXAMPLES OF SCOPE

The following program illustrates the concept of Scope. It asks the user to
enter two numbers and then calls a Procedure to reverse their order. The
Global Variables "A" and "B" are used by the main program. The Local
Variable HY" has meaning only within the Procedure.

PROGRAM Exchange(Input,Output);

VAR (* Global Variables ♦)
A, B : Real;

PROCEDURE ExcVal (VAR X1,X2: Real);

VAR (* Local Variable ♦)
Y: Real;

BEGIN
YXI;
XI:- X2;
X2> Y

END;

BEGIN (* Main Program *)
Writeln;
WriteCEnter the first number ’);

Readln(A);
Writeln;
WriteCEnter the second number');

Readln(B);
ExcVal(A,B);
Writeln;
Writeln;
Writeln('Now A: 7: 2, 1 is first1);
Writeln('and B: 7: 2, ’ is second.')

END.

TUTORIAL IV - 84

SCOPE AND NESTS

COMMENTS

1. The concept of Scope and the technique of communicating data
between the main program and subprograms are the most difficult
topics you will encounter when using Pascal. If necessary, reread
these comments until you are certain you understand them.

2. The main program declares the Global Variables "A" and "B." When
Pascal declares any Variable, it sets aside a location in memory and
gives it the Variable's name. Since "A" and "B" were declared by
the main program and are, therefore. Global Variables, any part of
the Program has access to the values stored in those locations.

3. The Procedure, which is a subprogram, can identify its own memory
locations to store the data that it needs. It establishes locations for
"XI" and "X2" where it temporarily stores the values passed to it by
the main program as "A" and "B." It also reserves a memory
location named "Y" where it stores the value it knows as "XI."

* " Y" is known as a dummy variable because it is set aside
simply to hold the first value, XI, while the transfer of X2 to
X1 takes place. If you didn't store XI in Y, the first value, XI,
would be lost when you loaded X2 into XI.

4. Since "X1," "X2," and ” Y" are Local to the Procedure, they are
meaningful only within that Procedure. If the main program tried to
write "Y" or "XI," the program simply would not know what those
values were.

5. The main program knows the values of "XI" and "X2" only by its
identifiers of "A" and ”B." When it writes those Global Variables
after calling ExcVal, the values are reversed.

Bad Programming — an example to avoid

You may have noticed an interesting fact about the declaration of the
Procedure. Since "A” and "B" are Global Variables, why not use them in the
Procedure's parameter list? That would avoid all the confusion about the "XI"
"X2", "A”, and "B" variables. In fact, this program would run just as well if
you did substitute "A" for "XI" and "B" for "X2.” Try it, the programs would
be identical except that the Procedure would look like this.

TUTORIAL IV-85

SCOPE AND NESTS

PROCEDURE EncVal(VAR A,B: Real);

VAR
Y : Real;

BEGIN
Y := A;
A := B;
B := Y

END;

It works. But it can also make a real mess of things in a long program. If
you have ever programmed in BASIC, used a variable, run the program, and
found that it crashed or produced nonsense, you can appreciate why Pascal is
very strict about Global and Local Variables. In BASIC all variables are
Global. If you use a variable frequently, it may have been altered by another
part of the program. Consequently, what you see when you read a line of
BASIC code is not always what you will get. Pascal tries to avoid this.

NOTE: As a general rule, do not use Global Variables to transfer
information between the main program and subprograms. Use either
Functions or procedures with Parameter Lists to convey data between the main
program and the subprograms.

NESTING

As you have seen, a program can contain either a Procedure or a Function.
Similarly, Procedures and Functions can contain any combination of other
Procedures and Functions. This is called Nesting. The concept is simple,
but its results can be very complex. The main program can call a Procedure
which itself contains several functions. Or vice versa. The combinations are
staggering.

Good programming doesn't require convoluted nestings. In fact, if you find
you are writing bizarre, nested Procedures and Functions, you probably haven't
thought out the problem you are trying to solve.

TUTORIAL IV - 86

SCOPE AND NESTS

Nevertheless, it is important to realize that Procedures and Functions can be
nested and that the nesting affects the Scope of the variables declared within

' those Procedures and Functions.

* Nesting affects the Global and Local quality
of Variables.

Relative Global and Local Variables

The Variables declared in the main program are Global throughout it That is,
all parts of the program have access to the values represented by the Variables.
All parts of the program can also change those values.

The Variables declared in a subprogram are local to the subprogram.

If a subprogram contains nested subprograms, the Variables declared in the
main subprogram are Global to all the nested subprograms. Variables within
nested subprograms, however, are not available to each other. They are Local
to each nested subprogram.

ifeefore discussing an example of nested programs and the relative Global or
Local values of the variables, an old-fashioned oudine should make the
distinctions and limitations clear.

I. Main Program
A. Procedure 1

1. Function 1
2. Function 2

B. Procedure 2
1. Function 3
2. Function 4

C. Function A
1. Procedure a
2. Function 5

Now for some complicated logic:

• A variable declared in the Main Program is available to every Procedure
and Function in the program.

A variable declared in Procedure 1 is available to Functions 1 and 2. It is
not available to any other Procedure or Function.

TUTORIAL IV -87

SCOPE AND NESTS

A variable declared in Procedure 2 is available to Functions 3 and 4, but
not to Procedure 1 or Functions 1, 2, A, or 5.

A variable declared in Function A is available to Procedure a and Function
5. It is not available to any other Procedure or Function.

A variable declared in Function 1 is not available to any other Function.

A variable declared in Procedure a is not available to any other Procedure
or Function.

By now you get the picture. Pascal programmers use the concepts of Global
and Local Identifiers to refer to these conditions.

A Variable or Constant in the main program is Global to the entire
program.

A Variable or Constant in Procedure 1 is Global to Function 1 and
Function 2, but Local in terms of the main program and the other
subprograms.

A Variable or Constant in Procedure 2 is Global to Function 3 and
Function 4, but Local in terms of the main program or any other
subprograms.

A Variable or Constant in Function A is Global to Procedure A and
Function 5, but Local with respect to all other Procedures and Functions.

That should settle the issue; and an example program should make everything
clear.

An example of NESTING

The following program illustrates the use of nesting. It asks the user to decide
whether to Add, Average, or Subtract two numbers. Next, it requests the two
values. It then calls the Procedure "Choice," which determines the chosen
function. Based upon the selection, the Procedure picks the right function
from a group of nested functions to perform the appropriate calculations.
Finally, the main program prints the results to the screen.

TUTORIAL IV - 88

SCOPE AND NESTS

PROGRAM Calc(Input,Output);

VAR
Pick : Char;
X, Y, Answer : Real;

PROCEDURE Choice (Select: Char; Nl, N2: Real);

FUNCTION Sum(Vall, Val2: Real): Real;
BEGIN

Sum := Vail + Val2
END;

FUNCTION Average(Vall, Val2 : Real): Real;
CONST

D = 2;
BEGIN

AVERAGE := (VAL1 + VAL2)/D
END;

FUNCTION Difference(Vall, Val2 : Real): Real;
BEGIN
Difference := Vail - Val2

END;

BEGIN (* of Procedure containing nested Functions *)
CASE Select OF

'S': Answer := Sum(Nl,N2);
'A': Answer := Average(Nl,N2):
D' : Answer := Difference(Nl,N2)

END (* of CASE ♦)
END; (* of PROCEDURE *)

BEGIN (* of Program *)
Writeln;
Writeln;
WritclnfTliis program computes the Sum,');
Writeln(’Avcrage, or Difference of two numbers.');
Writeln;
Writeln;
Writeln('Enter S, A, or D : .');

TUTOR IAI. IV SO

SCOPE AND NESTS

Readln(Pick);
Writeln;
WriteCEnter the first number:');

Readln(X);
Writeln;
Write(rEnter the second number:');

Readln(Y);
Writeln;
Choice(Pick, X, Y); (* Call Choice Procedure *)
Writeln;
IF Pick = ’S’ THEN

Writeln('The sum is Answer:5 :2);
IF Pick = ’A' THEN
Writeln(The Average is Answer:5 :2);

IF Pick = T)’ THEN
Writeln(The Difference is ', Ansvver:5 :2)

END.

The Procedure Choice contains three nested Functions. The calling statemen
from the main program passes the Choice selection through the variable,
Pick. Choice, in turn, selects the appropriate Function and transmits the two
values to the function, which performs the necessary calculations.

Rather than explain the obvious, a chart should indicate all the relationships
between the Variables and Constants used in the program.

TUTORIAL IV -90

SCOPE AND NESTS

Table of Relative Scope

IDENTIFIER CONTEXT SCOPE in terms of SUBPROGRAM

X MAIN G Entire
Y MAIN G Entire
Answer MAIN G Entire

N1,N2 Procedure G All Functions
L Main

D Average L Average

COMMENTS

1. This program uses a global variable, "Answer,” to transmit the
results of the Procedure and the Function it executes to the main
program.

2. If the Functions called by the Procedure were not nested within the
Procedure "Choice," they could not use the "Char" value which
indicates the Function to be executed.

RELATED TOPICS

Types

Any type of data may be considered to be Global or Local. This includes
scalar data types and Arrays.

Forward References

Kyan Pascal allows you to write programs that call and execute a Procedure or
Function before it has been declared. This is called a Forward reference.
Whenever a forward reference is used in a Pascal program, you just indicate it
as such by including a semicolon and the term "FORWARD" after the
Parameter or Argument list).

TUTORIAL IV 01

SCOPE AND NESTS

The sample program illustrates how to use this technique
enter 2 numbers.

PROGRAM COMPUTE (Input,Output);

VAR
X,Y : Integer;

FUNCTION Factor (J: Integer): Integer; FORWARD;

PROCEDURE Bisect (Alpha: Integer; Beta: Integer);
BEGIN

Beta :- Beta + Alpha * Factor(Alpha)
END; (* of PROCEDURE ♦)

FUNCTION Factor;

CONST
SmallNum - 1;

BEGIN
Factor :- SmallNum MOD X + J;
Y := Factor

END; (♦ of FUNCTION ♦)

BEGIN (* MAIN PROGRAM ♦)
Write('Enter an Integer ■);

Readln(X);
Writeln;
Write('Enter another integer");

Readln(Y);
Bisect(X.Y);
Writeln;
Writeln(The Answer is Y: 2)

END. (♦ of PROGRAM *)

. It asks the user to

SCOPE AND NESTS

COMMENTS

1. Note how the program is careful to declare the type of information
that it expects: X and Y are integers. You must keep items like this
straight when designing your program. If you don't and if you try to pass
those values to Procedures or Functions, the program will crash.

2. The PROCEDURE "Bisect" is able to execute the FUNCTION
"Factor” because the function has been declared as a FORWARD
Reference before "Bisect" is declared. The FORWARD declaration
must include the formal parameter list. Later, when the FUNCTION
is defined, the parameters and FORWARD declaration are not
repeated.

GOTO: Unconditional Branches

Although it should not be done regularly, Pascal allows you to use GOTO
statements as long as you have labeled the line to GOTO. Many Pascal
programmers will not use a GOTO statement because it violates the principle
of modular, top-down programming. But the command is available if you
need it

Mis-using GOTO statements will not cause the Program to crash. You can
use such statements whenever you want. GOTO statements, however,
promote messy programming techniques and should be avoided. GOTO
enables you to use unconditional branching. The GOTO command precedes
the LABEL that identifies the line that will receive control.

The following rules govern the use of GOTO statements.

1. The LABEL is an Integer followed by a colon (:).

2. The maximum size of the LABEL is 4 digits.

3. The LABEL must be declared in the proper position immediately
after the Program, procedure, or function declaration.

4. The LABEL must begin in column 1 or 2 of the program.

TUTORIAL IV -93

SCOPE AND NESTS

Hie following program uses GOTO statements to control the sequence of
commands.

PROGRAM GoExample (Input, Output);

LABEL
22, 35;

VAR
A : INTEGER;

BEGIN
A := 0;

22: WRITELN('A = ’, A: 4);
A := A + 1;
IF A < 5 THEN

GOTO 22
ELSE

GOTO 35;
WritelnfThis line is always skipped.’);

35: Writeln(’The End.')
END.

Labels used in a Function or a Procedure must be declared locally. Do not try
to declare a label in the main body of the program and then try to use that label
in a subprogram. You can use a GOTO to jump forward or backwards within
a subprogram; you can also use GOTO to leave a subprogram and return to the
main program. Do not use the GOTO statement to jump from the main
program to a Procedure or Function.

CONCLUSION

This chapter has introduced a number of principles that determine the Scope of
a variable. It has also shown how nesting affects Scope. When you write
complex programs, always make certain that you are aware of the Scope of the
variables when you try to use them. Calling a variable that can not be
accessed only leads to problems when you try to run the program.

TUTORIAL IV - 94

11. ARRAYS

An ARRAY is a sequential collection of elements of the same data type.
You can declare an ARRAY of Integers, an ARRAY of Characters, or even an
ARRAY of an Array. Basically, you can declare an ARRAY of any data type.

This section explains the use of ARRAYS. It demonstrates:

* declaring multi-dimensional ARRAYS
* adding ARRAYS
* passing ARRAYS as parameters

Think of an ARRAY as a group of consecutive memory locations, each of
which holds one item in the ARRAY. The ARRAY below, for example,
holds 10 items. Notice that each item in the array has an identifying number
below it. "c," for example, is the 3rd item in the ARRAY named String.

1X-1 S..LC 1 hJ,JQ. j-LUlJjLLfiX&i STRING
1 23456789 10

DECLARING AN ARRAY

If an ARRAY is part of a User-Defined data type, it should be declared under
the TYPE heading and it must indicate the data type of the elements. The
form of the declaration is:

ArrayType = ARRAYfFirst.. Last] OF Element Type

A typical declaration of a String that will hold a number of characters is:

String - ARRAY[1..10] of Char;

TUTORIAL IV 95

ARRAYS

1. In this example, String is the user-defined ARRAY type. Any name
may be used as the ARRAY type identifier, but it should be relevant to
the use of the ARRAY.

2. The Subscripts, which are often referred to as the Index values,
indicate the number of elements in the Array. The first and last
numbers are separated by an ellipsis (..) and the expression is
enclosed in brackets. Each item in the ARRAY is identified by the
appropriate subscript value.

3. The element type declares the type of data that comprises the
ARRAY. Any predefined or user-defined data type may be used,
but only one data type may compose a single array.

After the ARRAY has been defined as a String, you can declare a variable as
the TYPE String which uses the ARRAY. This declaration appears under the
VAR heading. The following is a typical declaration of a Variable that is a
String.

VAR
Line : String;

After the declaration, the body of the program may use the Variable "Line" to
contain up to 10 characters.

USING AN ARRAY: Strings

As noted above, before you use an Array type, a variable must be identified as
of that type. The Variable name then represents the array, and that name is
used in the program. For an example of single dimension ARRAYS, refer
back to Lesson 5. One of the most common uses of Arrays is defining a
string. The two points to remember about Strings are:

* If you define the String as an ARRAY of Char, the String must
contain the exact number of items defined in the ARRAY declaration.

* If the String entered by the user does not fill the array , the rest
of the array will be filled with spaces. If the string is bigger than
the array, die last characters in the string will be lost. (Refer to
Lesson 5 if you don't understand what these items mean.)

TUTORIAL IV - 96

ARRAYS

The following program declares a TYPE identified as "String,” and a Variable
named "Line," as a String Type. It asks the user to enter a String of data. It
then asks for an index value and prints the corresponding letter from the
String.

PROGRAM Locate (Input, Output);

TYPE
String = ARRAY[1..15] OF Char;

VAR
Line : String;
X, Count : Integer;

BEGIN
WritelnfEnter a line of no more’);
Writelnfthan 15 characters.');

Readln(Line);
Writeln;
Writeln;
FOR Count := 1 TO 3 DO
BEGIN

Writeln;
Writeln('Enter an Index value from 1 to 15.');
Readln(X);
Writeln(Line[X], ' is the \ X, ' Character in the string.')

END
END.

TUTORIAL IV - 97

ARRAYS

Comments

1. First declare the data TYPE "String” as an ARRAY of 15 characters.

2. Declare Line as a String type, and "X" and "Count" as Integer variables.

♦ X will hold the Index value entered by the user.

* Count keeps track of the number of Index requests that aie made.

3. Line is used to determine the corresponding character in the String.
Single dimension arrays use one index value, enclosed in brackets, to
isolate an element in the string.

MULTI DIMENSIONAL ARRAYS

ARRAYS OF ARRAYS

Multi-dimensional ARRAYS are easier to illustrate than to explain. Perhaps
the best way to think of a multi-dimensional ARRAY is as a table that has a
number of rows, with each row consisting of a number of columns. The
figure below illustrates a two-dimensional array. Each row in the ARRAY
consists of three data items. One item is loaded in each of the three columns.
There are four rows in the ARRAY.

COLUMN#
A_B_Q

R 1 i 2 7 5 1
0 2 1 3 12 | 41 |
W 3 1 9 1 I 1 1 15 1
4 LIU 3 1 -.7.1-1

A Multi-dimensional Array

Declaring Multi-dimensional ARRAYS

There are several ways to declare multi-dimensional Arrays. The first is to
declare the ARRAY characteristics of the ROW itself, and then to declare the
numbers of ROWS in the table. The following declares a row of three Real
numbers. Then, it declares a matrix of four ROWS that will form the table.

TUTORIAL IV - 98

ARRAYS

Finally, it assigns the Variable ’’Table" to represent the entire matrix defined
by the TYPE "TableType."

TYPE
Row = ARRAY[1..3] OF Real;
TableType = ARRAYfl..4| of ROW;

VAR
Table : TableType;

The Variable "Table" now represents an empty table that is similar in outline
to the table described above. There are four ROWS of data, and each ROW can
contain three different Real numbers. Note that in the table each item or value
is uniquely identified by the Row and the Column number of its space. Also
note that, at this point, the table itself is empty. It only consists of an empty
four row by three column grid of spaces.

An alternative method of defining two-dimensional ARRAYS combines the
two TYPE declarations into one statement The values of the number of the
ROW Array are simply indicated before the number of items in each ROW. In
other words, you are declaring a table of X ROWS when each ROW consists
of Y columns or items of data.

Notes: 1. The data type of the items must be the same.

2. When using a matrix that consists of two values,
the first refers to the ROW, the second to the
COLUMN.

In other words, a declaration that consists of:

TYPE
TableType = ARRAY[1..10, 1..7] of Integer;

VAR
Table : TableType;

would set aside, in the computer's memory, an empty table that is ten ROWS
long with each Row consisting of seven columns. Each column, obviously,
can hold one item of data.

TUTORIAL IV -99

ARRAYS

Subscripts or Index Values

When using multi-dimensional ARRAYS, it is often necessary to access a
specific item in the ARRAY. If you have understood the discussion in the
previous paragraphs, you already realize that you identify any entry in the two
dimensional table by using the ARRAY'S identifier and its ROW and

COLUMN coordinates in brackets. In the sample two-dimensional array that
was illustrated previously, the statement:

WriteIn(Table [2,1]);

prints 3 on the screen. First, it determines the ROW and then the COLUMN
of the table. Then it gets the value stored in that location. Finally, it prints
the item on the screen.

The numbers used in the brackets to indicate the ROW and COLUMN matrix
locations can themselves be variables. This allows you to set up loops to
either clear the memory locations, enter new data into each location, or read
and write the information that is already there.

A typical example of using loops to control the entry of data into an Array is
the following program which creates a table of values. It uses the Variables
"Subrow" and "Subcol" to indicate the position in the Array that will hold
each number the user enters.

PROGRAM Matrix(Input,Output);

TYPE
MaxType - ARRAY[1..4,1..3] OF Real;

VAR
Matrix : MaxType;
Subrow, Subcol : Integer;

BEGIN
FOR Subrow := 1 TO 4 DO

FOR Subcol > 1 TO 3 DO
BEGIN

Write(’Matrix element \ Subrow: 3, Subcol: 3, ’ is: ');
Readln(Matrix[Subrow,Subcol])

END;

TUTORIAL IV - 100

ARRAYS

FOR Subrow := 1 TO 4 DO
BEGIN

Writeln;
FOR Subcol := 1 TO 3 DO

BEGIN
WriteCMatrix element in ', Subrow, '
Subcol, 'is ', Matrix[Subrow, Subcol] :7 :3)

END (* Subcol FOR loop *)
END (* Subrow FOR loop *)

END. (* Main Program *)

COMMENTS

1. Nested FOR loops determine the locations within the Table. The
outer FOR loop keeps track of the current row. The inner FOR loop
keeps track of the number of items in each row. The inner loop
gets three items before passing control to the outer loop which
increments the Row number and begins the process again.

2. The Variables "Subrow" and "Subcol" are used in both the loop
control statements and the current location in the ARRAY "Table."
The expression Matrix[Subrow,Subcol] indicates the element of
the Array that is represented by the current values of "Subrow" and
"Subcol."

3. The punctuation of the program body may seem confusing. Let's
review the rules:

* Every BEGIN statement must have a corresponding END
statement.

* The END statement that concludes a part of the Program is
followed by a semicolon (;).

* The line that precedes an END statement is NOT punctuated.

* END followed by a period indicates the conclusion of the
Program itself.

TUTORIAL IV - 101

ARRAYS

With these rules in mind, look at the punctuation in the sample
program. You should be able to see the logic of the three closing
END statements.

♦ The "END" statement closes the BEGIN statement in the "FOR
Subcol" loop.

* The next "END" closes the "FOR Subrow" loop. It requires no
punctuation because it precedes the final "END." statement

4. The output of the program should confirm the distinction between
rows and columns in your mind.

5. The ":7 :3" statement in the final Writeln assures that each value
will have the necessary space to make the output visually readable
in decimal form.

Adding Multi-dimensional ARRAYS

You can add the values located in Arrays by first determining the value in ear^fc
specific location in the Array, enter or determine the corresponding value in tM
second Array, and store the result in a third Array of like proportions.

The following program asks the user to enter the elements of the first Array.
It then requests the corresponding elements of the second Array and
immediately performs the calculations that produce the third. This program
could write the first array as well as the final array. Note, however, that it
could never print the second Array because it never exists as a complete entity.
When the program identifies the values in the first Array, it adds the value the
user enters and immediately constructs the third Array.

The program uses the same techniques that you learned in the previous
example to create and write an Array. It then returns to each value and requests
the number to be added to that value. Finally, it produces the resultant table.

TUTORIAL IV - 102

PROGRAM AddMatrix(Input,Output);

TYPE
MatxType = ARRAY[1..3,1..3] OF Real;

VAR
Matrix, BigMatrix : MatxType;
Subrow, Subcol : Integer;
AddEIe : Real;

BEGIN
FOR Subrow > 1 TO 3 DO

FOR Subcol := 1 TO 3 DO
BEGIN

Write('Matrixl element Subrow: 3, Subcol: 3, ' is: ’);
Readln(Matrix[Subrow,Subcol])

END; (* Subcol FOR loop *)
FOR Subrow >1 TO 3 DO

FOR Subcol := 1 TO 3 DO
BEGIN

WritelnfMatrix2 element ”, Subrow: 3, Subcol: 3, ' is: ');
Readln(AddEle);

BigMatrixfSubrow,Subcol] :* AddEIe+
MatrixfSubrow,Subcol]

END; (* Subcol FOR Loop *)
Writeln;
Writeln(The Sum of the two matrices is: ');
Writeln;

FOR Subrow := 1 TO 3 DO
BEGIN

Writeln;

FOR Subcol := 1 TO 3 DO
Write(BigMatrix[Subrow, Subcol]: 7: 3)

END (* Subrow FOR Loops *)
END. (* Main Program *)

TUTORIAL. IV 103

ARRAYS

COMMENTS

1. This program is essentially the same as the previous one. One
difference, however, is the use of the Variable " AddEle" which
holds the value to be added to the item in the first Array.

2. The Array "BigMatrix" is formed by reading the corresponding
value in the Array "Matrix" and adding the user-entered value
"Addllle" to it.

3. The use and punctuation of END statements may seem confusing.
Every BEGIN requires an END. If a calling statement contains only
one command, as in the last "FOR Subcol" command, no BEGIN
statement is needed. Consequently, only one END statement is
needed to end the loop.

4. Remember that no punctuation is necessary before an END
statement-even if the statement is itself an END statement

COPYING ARRAYS

If you define two ARRAYS that have the same subscript types and the same
element types, the values of one Array may be copied into the other with a
simple assignment statement.

If the following TYPE and Variables are declared:

TYPE
MatxType = ARRAY[1..3,1..3] OF Real;

VAR
Matrix 1, Matrix2: MatxType;

Matrix 1 may be copied into Matrix 2 by the statement:

Matrix2 := Matrix 1

Values may be added to a String Array by indicating the index of the String
where the element should be placed and the element to be added. The
following program copies one string into another, alters the second string, and
then pi inis bolli.

TUTORIAL IV - 104

ARRAYS

PROGRAM AddStrings(Input,Output);

TYPE
String = ARRAY[1..10] OF Char;

VAR
Word I, Word2 : String;

BEGIN
WoidI ’Ex|)ciiciice’;
Word2 Wordl;
Word2[7] := 'm*;
Word2[8] := 'e';
Word2[9] > ’n';
Word2[10] := ’t';
Writeln(Wordl);
Writeln;
Writeln(Word2)

END.

COMMENTS

The first word is copied into the second, and then the second is
altered by using index values to change specific letters. The letters
are enclosed in single quotes.

Using ARRAYS in Parameters

Often you want to pass information from an Array in the body of the program
to a Function or a Procedure. Simply include the Variable that indicates the
Array in the Parameter or Argument List. You can pass elements of the Array
or the entire Array itself.

* If you pass an element of an Array, the Argument List in the
Function or the Parameter List in the Procedure must indicate the
data type of the element being passed.

TUTORIAL IV - 105

ARRAYS

* If you pass an entire Array, you must indicate the name the
subprogram will know the Array by, declare it as a Variable, and
indicate its TYPE.

The sample program below illustrates how Array values may be exchanged
between the main program and subprograms. It creates a single-dimensioned
Array of numbers called "BigArray," and uses the variable "Subscript" to
identify items within the Array.

The Program also defines two Procedures. The first, called "Exchg," receives
two items from the Array and reverses their order. Note that the procedure’s
Parameter List contains the Variables A and B. which are declared to be Real
numbers. The declaration is similar to Parameter Lists that you have seen
before:

PROCEDURE Exchg(VAR A,B: Real);

The second Procedure, named SortOrder, communicates those values to the
first procedure by passing two elements of the Array at a time. It uses the
variable Numlndex to indicate which two elements of the Array to transmit
It does this with the statement:

Excg(SubArray|NumbIndex],SubAiray[NumbIndex+l]);

The second Procedure can transmit items from the Array in the main program
because it receives the entire Array in its Parameter List which is:

PROCEDURE SortOrder(First,Last Integer; VAR SubArray
:NumbArray);

The Procedure's Parameter List tells it to expect to receive the first and last
items in the sort, as well as the entire Array which it knows as "SubArray."
The calling statement in the main program calls the Array, "BigArray." It
passes all this information by the statement:

SortOrdcr(Eirst, I ;ist, BigArray);

The program allows the user to enter numbers. It then asks the user to
indicate the entry number where it should begin the sort and the entry number
which ends the sort.

TUTORIAL IV - 106

Ak k V S

Note: This program is purely for instructional purposes. If you indicate
more than 6 items in the list to be sorted, the program takes a long time
to run. In addition, when you indicate the first and last entries, use the
"Entry Number” as an index to the Array. The actual number may be
bigger than die number of items that the Array has indexed. If you enter
the actual number, you will confuse the program.

PROGRAM ParamArray(Input,Output);

CONST
MaxNumbs = 150;

TYPE
NumArray « ARRAYfl.MaxNumbs] OF Real;

VAR
First, Last, Subscript : Integer;
BigArray : NumArray;

PROCEDURE Exchg(VAR A,B: Real);

VAR
C : Real;

BEGIN
C > A;
A B;
B > C

END; (* of Exchange Procedure *)

PROCEDURE SortOrder(First, L^ist: Integer;
VAR SubArray: NumArray);

VAR
Numblndex : Integer;
Exchanged : Boolean;

TUTORIAL IV - 107

ARRAYS

BEGIN
REPEAT
Exchanged = FALSE;
FORNumblndex := First TO (Last-l)DO

IF SubArray[NumbIndex] > SubArray[NumbIndex+l]
THEN

BEGIN
Exchg(SubArray[NumbIndex],

SubArray[NumbIndex+l]);
Exchanged := TRUE

END; (♦ of IF..THEN loop ♦)
UNTIL Exchanged := FALSE

END; (* of SortOrder Procedure= *)

BEGIN (* MAIN PROGRAM *)
Writeln;
Writeln;
Writeln('Enter a list of numbers to be ordered.');
Writeln('After each number press RETURN.');
Writeln(’Press 0 and RETURN to end.’);
Subscript := 0;
REPEAT

Subscript := Subscript + 1;
WRITE('Entry Number ', Subscript: 3, ' is :');

Readln(BigArray[Subscript]);
UNTIL Big Array [Subscript] = 0.0;

Writeln('Order this list between which entries?');
WriteIn(TJse die Index number, not the value.');
Write(’First : ');

Readln(First);
Writeln;
Write('Second : ');

Readln(Last);
SortOrder(First, Last, BigArray);

Writeln;
FOR Subscript := First TO Last DO

Writeln(BigArray[Subscript]:7 :3, ' Entry Number ', Subscript^)
END.

TUI OR IAL IV - 108

ARRAYS

Comments

1. The main program creates an Array of up to 150 elements. It then
asks the user to determine the boundaries of the values it will sort.
It calls the Procedure "SortOrder" to conduct the sort, passing the
entire Array as a parameter.

2. "SortOrder" compares each element in the part of the Array to be
sorted to the item that follows it in the "BigArray." If the first item is
greater than the second, it calls the Procedure "Exchg" which
reverses the items. It continues to do this until the Boolean
Variable, "Exchanged," is FALSE.

3. The Boolean Variable, "Exchanged," is originally set to FALSE. If
the Procedure "SortOrder" determines that the first item is greater
than the second, it calls the Procedure, "Exchg," and sets
"Exchanged" to TRUE. This forces the Procedure to continue
switching elements of the subarray until all of its elements are less
than the succeeding element When no further reversals are
necessary, "Exchanged" is allowed to remain TRUE and the
Procedure "SortOrder" ends.

4. Pay special attention to the use of the Subscript variable in the main
Program. It enables the program to access individual items in the
Array. The Numblndex variable is used in the Procedure "SortOrder" for
the same purpose.

RELATED TOPICS

End of Line

When the user presses the <RETURN> key, the computer reads a value that
signals the end of the line. Pascal labels this value, EOLN. EOLN is a
Boolean Variable and it remains FALSE until the RETURN key is pressed.
It then remains TRUE until additional data is entered with a Read or Readln
Statement. Consequently, you can use the EOLN value to control input from
the keyboard.

The following program illustrates how to use the EOLN value to control the
input of data. The program will accept four words of up to 15 characters in
length. It stores each word in a matrix of Arrays, getting each word one

TUTORIAL IV - 109

ARRAYS

element at a time until the RETURN key is pressed. The EOLN value tells
the program that the end of a word has been reached. When the RETURN
key is pressed, the program prints the number of characters entered.

PROGRAM GetWord(Input,Output);

TYPE
WordType = ARRAY[1..15] OF Char;
TableType = ARRAY[1..4] OF WordType;

VAR
Wordlndex, Letterlndex : Integer;
WordMatrix : TableType;

BEGIN
Writeln;
Writeln(,Enter 4 words. End each word*);
Writcln('by pressing the <RETURN> key;.');
FOR Wordlndex := 1 TO 4 DO

BEGIN
Letterlndex := 0;
WHILE NOT EOLN DO

BEGIN
Letterlndex := Letter Index + 1;
Read(WordMatrix [WordIndex,LetterIndex])

END (♦ Of WHILE *)
END (♦ of FOR loop ♦)

Writeln(The preceding word had Letterlndex: 3, * letters.’);
Readln

END. (* of Main Program *)

COMMENTS

The program counts each character as it is entered until an End Of
Line (EOLN). Words of less than 15 characters are filled with
spaces. Any characters over 15 are ignored.

TUTORIAL IV- 110

ARRAYS

Recursion

Pascal allows you to define a Function or Procedure which calls itself. This is
known as Recursion. If you use a Recursive subprogram, make certain that
it contains a condition that will allow the subprogram to return to the main
program.

Recursion is used when:

1. logical decisions occur repetitively, or

2. computing a function requires repeating a series of identical
commands, such as

N! - N*(N-1)*(N-2)*...*(N-(N-1))

The following Procedure, "SortAlpha," is used to sort words in an Array. If
the first word is greater than the second, it calls another Procedure, "Exchg," to
reverse their order. It then continues to call itself until each element of the
ARRAY is less than the subsequent element

PROCEDURE SortAlpha(VAR WordMatrix : WordArray);

VAR
Wordlndex : Integer;

BEGIN
FOR Wordlndex := 1 to Max word-1 DO

IF (WordMatrix[WordIndex] >
WordMatrix [WordIndex+1]

THEN
BEGIN
Exchg(WordMatrix,Wordlndex);
SortAlphafWordMatrix)
END

END;

TUTORIAL IV - 111

ARRAYS

CONCLUSION

This very long section has introduced a data type, the ARRAY, that allows
you to manipulated complex forms of data. It has also shown you how to:

* declare an ARRAY
* declare a multi dimensional ARRAY
* add ARRAYS
* copy ARRAYS
* pass ARRAYS as parameters
* use the End Of Line value to control input
* use RECURSIVE calls within a subprogram

The next section introduces the concept of a RECORD and shows how to
construct ARRAYS of RECORDS.

TUTORIAL IV - 112

12. RECORDS

Some units of data are really mixtures of Pascal data types. A date, for
example, is a combination of two different data types and three different
elements. The dateMJanuary 1,1986" is one String of characters, followed by
an integer, followed by a character, and followed by a group of Integers.
Pascal allows the programmer to define mixed data types as RECORDS.

This section explains:

* Creating and using records
* Accessing records using the WITH statement
* Arrays of records
* Variant Records

DECLARING A RECORD

A RECORD is a user-defined data type. Consequently, it must be defined
under the TYPE heading in a Pascal program. First, declare an identifier as a
RECORD. Then, declare the names of the items in the record and indicate
their data types. Conclude the RECORD with the "END;" statement.

The following RECORD, named "DateType," contains three items that
comprise a date. After declaring the data type RECORD, a Variable,
"DateRec," is assigned to that type.

TYPE
DateType = RECORD

Month : ARRAY[1..10] OF Char;
Day : Integer;
Year : Integer

END;

VAR
DateRec : DateType;

Note that the Record Identifier is followed by an equal sign (=) and the
declaration of the data type RECORD. Semicolons indicate the end of each

TUTORIAL IV 1 n

RECORDS

item in the Record - with the usual exception of the last item that precedes the
END statement. The entire declaration ends with a semicolon.

The items in a Record are called "fields.” The "DateType" Record contains
three fields — Month, Day, and Year. 17ie general format of a RECORD is:

TYPE
Identifier = RECORD

Field! ™ DataTypc;
Field 2 = DataTypc;
etc.

END;

A RECORD may define one of its fields as another RECORD. If you do this,
however, the Record that is a field in the main Record must already be defined.
The following RECORD contains a field that is itself a Record as defined in
fhe previous example.

TYPE
EmployType « RECORD

LName : ARRAY[1..15] Of Char;
FName : ARRAY[1..10] Of Char;
Address: ARRAY[1..20] Of Char;
City : ARRAY[1..10] Of Char;
State : ARRAY[1..10] Of Char;
Birth : DateType

END;

VAR
EmployRec : EmployType;

The Variable "EmployRec" contains 6 fields. The first 5 are Arrays that hold
identifying the employee. The sixth field is a previously defined Record,
"DateType.” It holds the birthdate of the employee.

TUTORIAL IV - ll4

RECORDS

Using Records

When a program reads or writes records or fields in record, it must be told the
name of the record and the specific field to be addressed. If the program uses a
record type like the one defined above as an employee record, the following
commands would write the employee's last name and birthday.

Wriieln(EmployRec.LName);
Writeln(EmployRec.Birth);

As you can imagine, addressing multiple fields in a Record requires a great deal
of repetitive programming. Pascal uses a special command, WITH, which
simplifies addressing fields in a Record.

The WITH..DO Statement

The WITII..DO statement allows you to indicate a record identifier. Once
the record has been identified, the program can locate specific fields in the
Record by the field name.

The WITH statement can be used with Records or ARRAYS of Records.
Fields within a Record that are themselves ARRAYS, can also be addressed
using the WITH statement.

The following statements illustrate the use of WITH to access fields in the
record EmployRec and write information contained in that record.

WITH EmployRec DO
BEGIN
Writeln(LName);
Writeln(FName);
Writeln(Birth)

END;

The WITH statement saves a great deal of programming time when you want
to access fields within a Record.

TUTORIAL IV - 115

RECORDS

Copying Records

If two records are defined as the same type, it is possible to use a simple
assignment statement to copy one record into another. For example, after
defining the TYPE of RECORD as "DateType," the following lines copy the
first record into the second.

VAR
DatcRecI, DateRec2, : DateType;

BEGIN
DateRec2 := DateRecl;

A Sample Program

The following program illustrates the use of Records. It calculates the
approximate number of days that have elapsed since January 1, 1980.

The program defines a RECORD that consists of the day, the month, and the
year. The day and month are defined as subranges. (See Section IV, Part I,
Lesson 7 if you forgot what a subrange is.) The Variable "Day” can equal any
number from 1 to 31. "Month" can equal any number between zero and
twelve.

The program asks the user to enter a date and calculates the elapsed time since
January 1, 1980.

PROGRAM Elapsed (Input,Output);

CONST
StartDay = 1;
StartMonth = 1;
Start Year - 1980;

1YPE
DateType = RECORD

Day : 1..31;
Month : 0..12;
Year : Integer

END;

TUTORIAL IV - 116

=3
ta

ta
t5

:3
=

n:
n
t3

c
at

T
3t

a

RECORDS

VAR
B : Integer;
DateRec : DateType;
InMonth : ARRAY[1..3] OF Char;

BEGIN
Writeln(Enter MONTH - upper case, first 3 letters. ');
Readln(InMonth);
WITH DateRec DO

BEGIN
Write(T)AY - ’);

Readln(Day);
Writeln;
Write(Tear = ');

Readln(Year)
END;

DateRec .Month > 0;
InMonth^'JAN' THEN DateRecMonth > 1;
InMonth^TEB’ THEN DateRecMonth > 2;
InMonth=rMAR' THEN DateRec.Month > 3;
InMonth^'APR' THEN DateRec.Month > 4;
InMonth^MAY' THEN DateRec.Month > 5;
InMonth='JUN* THEN DateRecMonth > 6;
InMonth-'JUL' THEN DateRec.Month >7;
InMonth^'AUG* THEN DateRecMonth >8;
InMonth^'SEP* THEN DateRecMonth > 9;
InMonth='OCT THEN DateRec.Month := 10;
InMonth^NOV' THEN DateRecMonth >11;

IF InMonth=DEC THEN DateRec.Month > 12;

B := (DateRecX>ay-StartDay)+30* (DateRec.Month-StartMonth) +
365 * (DateRec.Year-StartYear);

IF DateRec.Month = 0 THEN
Writeln(Eormat error in Month’)

ELSE
Write1n('Days since Starting Time - B: 8)

END.

TUTORIAL IV - 117

RECORDS

COMMENTS

1. The record consists of three groups of integers. "Day" and
"Month" are subrange types, i.e., the numbers indicate the
subrange of Integers that the value can equal. Year is a regular
integer.

?. The WITH statement identifies the record that will be used to save
the data. Once the record has been identified, the program can
address the individual fields simply by using their names, i.e., "Day,"
"Month," and "Year."

3 Note that the subrange for the "Month" field contains the value of
zero. The program uses this value to check the user's entry in the
"Month" field. It originally sets the value of "Month" to zero; it then
determines the name of the month entered and assigns the
appropriate number to the "Month" field. If the name does not
equal one of the valid month abbreviations, the value in the
"Month" field remains 0.

4. The final IF test examines the "Month" field. If it determines a 0, it
prints the error message. Otherwise, it calculates and prints the
elapsed time since the entered date.

5. Note that the Month field is declared to be a subrange of Integers;
yet, the user enters it as a String. The IF statements then convert
the user-entry to an Integer value. The program could have
declared Month as a scalar collection of the names of the months,
but then you could not directly compare the user’s entry and its
Integer value. This is because the String, "JAN" is not equivalent to
JAN, the element in a scalar list.

Arrays of Records

A Pascal program can declare Arrays of any type of data, including RECORD
data types. To create an ARRAY of RECORDS, define the RECORD TYPE,
then define the array Variable as:

Identifier = ARRAY[subscript range] OF RECORD TYPE.

TUTORIAL IV - 118

RECORDS

The format of the declaration is:

TYPE
Recldentifier = RECORD

Fieldl : type;
Field2 : type;

END;

VAR

Arrldentifier : ARRAY[subscripts] OF Recldentifier;

Once die array of records has been formed, you may access individual recor ds
by indicating the appropriate index after the ARRAY identifier. You may
identify fields by adding the field name extension. If the program has declared
a Record Type known as DateRec, the following lines create an ARRAY of
DateRec and accesses fields within the first and second records.

VAR
List : ARRAY[1..10] OF DateRec;

BEGIN
Writeln(List[l].Year);
Writeln(List[2].Year);

Since the Array, "List," contains an Index or Subscript value, it cannot be
identified by using the CASE..OF statement

A Sample Program

The following program might be used to automate your address book. It
allows you to write and read records which contain name and address
information. The program consists of two procedures — WritePages and
ViewPages.

In WritePages the user enters the number of pages which will be written to.
Data is then entered with a FOR..DO loop keeping track of the array of
records.

TUTORIAL IV IP)

RECORDS

In ViewPages the user enters the number of pages which he or she wishes to
see. The procedure writes the specified pages using a FOR..DO loop for the
array of records.

PROGRAM AddressBook(Input, Output);
TYPE

String = ARRAY[1..60] OF Char;
PageType = RECORD (* Declare Page Record Type *)

Name,
Address,
ZIP,
Phone: String

END;
VAR

Page: ARRAY[1..10] OF PageType;
Start, Ending: Integer;

PROCEDURE WritePages;
VAR Loop: Integer;
BEGIN
Writeln('Enter the names/addresses to be written to the pages of the book’);
Write('Enter starting page, space, ending page [i.e., 1 10]? ');

Readln(Start, Ending);
FOR Loop : * Stait T(> Ending DO

BEGIN
Writeln;
Writeln(Page #', Loop);
Write(’Name: ');
Readln(Page[Loop].Name);

Write('Address: ');
Readln(PagelLoopJ.Addiess);

WritefZIP: ’);
Readln(Page[Loop].ZlP);

Write(Phone: ’);
Readln(Page[Loop]. Phone)

END
END;

TUTORIAL IV - 120

RECORDS

PROCEDURE ViewPages;
VAR Loop: Integer;
BEGIN
WritelnCLook at the names/addresses on pages of the book’);
WritefEnter starting page, space, ending page [i.e., 1 10]? ’);
Readln(Start, Ending);

Writeln;
FOR Loop:= Start TO Ending DO
BEGIN

WritdnfPagc Number \ Ixxip);
Writeln(Page[Loop].Name);
Writeln(Page[Loop]. Address);
Writeln(Page[Loop].ZIP);
Writeln(Page[Loop].Phone)

END
END;

BEGIN
WritePages;
Writeln;
ViewPages

END.

Variant Records

When you design a program using records, you often find yourself defining
several different record types that have most, but not all, fields in common.
You could define separate records to handle each situation.

For example, an auto repair shop owner wishes to keep a record of each repair
in order to bill his customers. Unfortunately for the bookkeeper, clients may
be either individuals or companies. In either case, he needs to know the labor
and parts used as well as the invoice number, the customer’s name and address.
If the client is a company, he needs to know their requisition number. If the
client is an individual, he needs to know the clients Social Security numbers.
The two records below could handle those conditions.

TUTORIAL IV - 121

RI-CORDS

TYPE

String = ARRAY[1..15] OF Char;

Jnvoicel *= RECORD
InvoiceNum,
Labor,
Parts : Integer;
CusName,
CusAddr : String;
ReqNumb : Integer

END;

Invoice2 = RECORD
InvoiceNum,
Labor,
Parts : Integer;
CusName,
CusAddr : String;
SocSec : String

END;

NOTE: Similar data types within the RECORD may be listed if they
are separated by commas. You don’t need to place each item on a single
line, but it makes the Record Declaration easier to read.

While there is nothing wrong with declaring as many records as you want, it
does become time consuming. Pascal, however, allows you to use the
CASE..OF statement to include fields that are defined one way in one case
and a different way in another.

The following RECORD declaration illustrates how to combine alternative
data types within a field. It allow the bookkeeper to combine the two different
records into a single data item.

TYPE
Invoice * RECORD

InvoiceNum,
Labor,
Parts : Integer;

TUTORIAL IV - 122

RECORDS

CusName,
CusAddr : String;
CASE Custmr : Integer OF

1 .(ReqNum : Integer);
2 :(SocSec : String)

END;

The value after the CASE statement is called a tag Field. It can be any
simple data type, either a character or an integer. The tag field allows you to
indicate the different record fields that can be included in the RECORD. Use
CASE..OF statements to access the variant fields when either writing to or
reading from those fields.

The following program stores a record that is similar to our sample record. It
records the customer's name and address. It then determines if the customer is
a company or an individual by asking the user to indicate the tag identifier. If
the customer is a company, it requests the requisition number of the order. If
the customer is an individual, it requests the customer's social security
number. To access the variant fields, it uses the CASE..OF statement.

PROGRAM VariantRec(Input,Output);

TYPE
InvType = RECORD

CustNamc,
CustAddr : ARRAY[1..20] of Char;
CASE Custmr : Integer OF

1: (ReqNum : Integer);

2: (SocSec : ARRAY[l..l 1] OF Char)
END;

VAR
Invoice : InvType;

BEGIN
WITH Invoice DO
BEGIN

WritefEnter Name :’);
Readln(CustName);

Writeln;
Write('Enter Address : ');

TUTORIAL IV 123

RECORDS

Readln(CustAddr);
Writeln;
Writeln(’Enter Customer Type');
Writeln(' 1. Company');
Write(' 2. Individual : ’);
Readln(Custmr);

CASE Custmr OF
1 : BEGIN

WriteCEnter Requisition Number: ');
Readln(ReqNum)

END;
2 : BEGIN

Write('Enter Social Security Number ’);
Readln(SocSec)

END
END

END;
Writeln('RECORD': 20);
WritelnC_20);
Writeln;
Writeln;
Writeln;
Writeln;

WITH Invoice DO
BEGIN

Writeln('Name : CustName);
Writeln('Address: CustAddr);
CASE Custmr OF

1: Writeln('Req. No : \ ReqNum);
2: Writeln(’Soc. Sec. No. : \ SocSec)

END
END;

Writeln;
Writeln;
Writeln;
WritelnfEnd Of Program.')

END.

TUTORIAL IV - 124

RECORDS

COMMENTS

1. The declaration of the RECORD illustrates another way of
formatting the declaration. Since Pascal ignores spaces, you can
separate each item in a list by a space or a line. The data type must
be indicated at the end of the list which is indicated by a colon (:).
The items "CustName" and "CustAddr" could follow each other on a
single line; but printing the items on separate lines makes the
declaration more readable.

2. "Invoice” is declared to be the user-defined type, "InvType.”

3. The program uses a WITH Invoice DO statement to identify the
Record. After the BEGIN statement, you need to refer to fields
within the Record only by the field name. Close the WITH
statement with an END statement.

4. The user enters the variable, "Custmr" which is the tag field. A "1"
indicates that the customer is a company and the program requests
the requisition number. A "2" indicates that the customer is an
individual, so the program requests a Social Security number.

5. CASE..OF statements control the input of information for the
variant field. Note that the CASE statement must be terminated by
its own END statement. This END statement encloses the END
statement that marks the conclusion of the nested BEGIN/END
statements which are associated with each variable field. You must
use BEGIN/END statements when more than one command line
follows the CASE condition.

6. Writeln statements control the format of the output.

7. Another CASE..OF statement controls the information printed to
the screen. Again note that the CASE statement requires its own
END statement. Since there is only one command line associated
with each CASE condition, a BEGIN/END statement is not required
for the individual CASE conditions.

8. The program prints output that depends upon the type of record
input during the program requests.

TUTORIAL IV - 125

R I-CORDS

Conclusion

You should now be fairly comfortable with declaring and using RECORD data
types. Variant Records allow you to perform extremely sophisticated
operations on complex data elements. The next section demonstrates how to
use another Pascal data type, SET, to access and manipulate data.

TUTORIAL IV - 126

13. SETS

A SET is a collection of items, called Members. These Members can be
integers or groups of characters. The set can contain up to 256 members. The
general format for a Set declaration is:

TYPE
Identifier = SET OF base type;

The base type can be any scalar type: a list of names, a subrange, etc.

Some typical sets are illustrated below.

TYPE
NumSet = SET OF 1..50;

Months = (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

YearSet = SET OF Months;

VAR
Number : NumSet;
Calendar : YearSet;

The Variable "Number” can contain any numbers from 1 to 50. The Variable
"Calendar" can contain any of the designations for the months of the year. The
actual contents of the two sets are declared in the body of the program. The
original declarations indicate what the set can contain. The program defines
what they do contain.

The following sample program illustrates the declaration and use of a set of
numbers ranging from 10 - 25. It uses a new statement, IN to determine if a
value is included within the Set. (A further discussion of IN follows below.)

TUTORIAL IV 127

sets

PROGRAM SetDemo(Input,Output);

TYPE
NumSet = SET OF 10..25;

VAR

Prime, NotPrime : NumSet;
N : Integer;

BEGIN

Prime := [11,13,17,19,23];
NotPrime [10,12,14,15,16,18,20,21,22,24,25];
Write(rEnter a number between 10 and 25. ’);

Readln(N);
IF N IN Prime THEN
Writeln(That is a Prime Number.')
ELSE

IF N IN NotPrime THEN
Writeln(That is not a Prime Number.')

ELSE

Writeln('That is not between 10 and 25.')
END.

COMMENTS

1. The TYPE declaration defines the set type as "NumSet."

2. Hie Variable declarations define "Prime" and "NotPrime" as
"NumSet" types. Each of these variables can contain integers from
10 to 25.

3. The program then defines the 2 sets, "Prime" and "NotPrime."
Prime contains the prime numbers between 10 and 25. NotPrime
contains the others.

4. Values assigned to the set within the program are contained within
brackets [] and separated by commas (,).

5. The IN statement determines if the value entered by the user is "in"
eitlier of the defined sets.

TUTORIAL IV - 128

SETS

6. Nested IF loops determine which type of number is entered by the
user. The second Else statement declares an invalid entry if the
user enters a number that is not between 10 and 25.

Sets, Arrays, and Scalar Variables

A Set is actually a collection of data, much like an Array. The difference is
that the items in an Array are identified by their position in the Array.
Remember that you can indicate the elements of an Array by using an Index
value to identify the item. You can’t do that with Sets.

A Set is also similar to a Scalar Type in that it is not a list of elements. The
difference, however, is that you cannot use subrange declarations to indicate
parts of the set as you can for a Scalar variable.

A Set, unlike Arrays and Scalar Variables, can hold, at any point in the
program, several values.

A Set can be manipulated by using the IN statement and set operators. (See
below.)

The IN Statement

The IN statement allows the programmer to determine whether a value is
included in the defined set. You used it in the first sample program. The
general format for an IN statement is

BEGIN
IF variable IN setname THEN
BEGIN sequence of commands

Command 1;
Command2;

END;

IN determines whether the variable is actually included in the set name
indicated. You can use a TOUE condition to define one set of actions or a
FALSE condition to determine another.

TUTORIAL IV 129

SETS

Operations Using Sets

lliere are three operations that can be performed on Sets. They are indicated
by the > (or Union), * (or Intersection), and - (or Difference) symbols.

Union returns the total list of elements contained in the sets.

Intersection returns the values that the two sets have in common.

Difference returns the elements that are not shared by the sets.

In addition to the three set operators which manipulate sets, there are seven
relational operators that allow you to compare sets. These operators produce
either TRUE or FALSE Boolean Values that are exactly parallel to the
arithmetic operators that have already been discussed.

Equality Sell = Set2
Inequality Setl <> Set2
Subset Setl <« Set2
Superset Setl «> Set2
Member IN Setl IN Set2

Note that the "Set IN" operator returns the Boolean Value of TRUE only if
Setl is a member of Set2.

Using Sets

It is not necessary to declare a Set before you use it in a program. You can
simply declare the Set within the program by including the elements within
brackets. The following program declares the Set of elements [F,NPJ. The
contents of the Set, however, must be identified in a Scalar list before the body
of the program. The Set has no identifier; it is simply defined in the program.

The program requests grades for each student in a class. If the grade is F or
NP, the screen displays an admonition; otherwise, it displays congratulations.

TUTORIAL IV - 130

SETS

PROGRAM Finals (Input,Output);

CONST
ClassSize = 30;

TYPE
GradeType - (A,B,C,D,F,P,NP,I);

StuGrade = RECORD
StudentID: Integer;
Grade : GradeType
END; (* of Record declaration *)

VAR
ClassGrade : ARRAYll..ClassSize] OF StuGrade;
N: Integer;
LcMerGrade : ARRAY[1..2] OF Char;

BEGIN
FOR N := 1 TO ClassSize DO
BEGIN
Write('Input student ID :*);

Readln(ClassGrade[N] .S tuden tID);
Writeln;
Write('Input grade:');

Readln(LetterGrade);
IF LetterGrade *» T ’ THEN
ClassGrade[N].Grade :=* F;

IF LetterGrade - 'NF THEN
ClassGrade[N].Grade :=« NP;

IF ClassGrade[N].Grade IN IF, NP] THEN
Writeln(Too Bad. Try Again!')
ELSE
WritelnfWay to Go!')

END (♦ of N FOR loop1")
END. (♦ of main program *•*)

TUTORIAL IV - 131

SETS

COMMENTS

1. The GradeType is a Scalar list of elements.

2. The Student Record contains two fields: the Student ID and the
actual grade.

3. ClassGrades is an Array of Student Records.

4. The variable N identifies each element in the Array of records.

5. The IF statements assign a value to the Grade field. The value
depends upon the letter grade entered by the user.

6. The grade entered is compared to the SET of characters [F, NP]. If
the grade is in that SET, the message "Too Bad" is printed on the
screen. Otherwise, the message "Good" is displayed.

SETS AND ARRAYS

Sets are often used to examine the members in an ARRAY. If a specific item
in the ARRAY is included in the set, one action can be taken. If the item in
the ARRAY is not in the set, another action can be indicated.

This program uses the IN statement to compare each grade to the set of Failed
(F), Not Passed (NP), or Incomplete (I) grade types. Finally, it totals and
prints the number of items that fall into any of these categories.

TUTORIAL IV - 132

SETS

PROGRAM TestGrades(Input,Output);
CONST ClassSize = 30;
TYPE

GradeType «■(A,B,C,D,F,I,P,NP);
GradeSet - SET OF GradeType;
StuGrades » RECORD

StudentID: Integer;
Grades: ARRAY[1..25] OF GradeType

END; (* RECORD *)
VAR

ClassGrades: ARRAY[l..ClassSize] of StuGrades;
N,M,I: Integer;
Gr: GradeSet;

BEGIN
I := 0;
Gr := [F,NP,I];
FOR N > 1 TO ClassSize DO FOR M > 1 TO 25 DO
IF ClassGrade[N].Grades[M] IN Gr THEN
I >1 + 1;
Writeln(Tn this class 1:3, 'tests were');
Writeln('either failed, not passed or incomplete')

END.

COMMENTS

1. The program sets up an array of 25 test scores for each student
in a class of 30.

2. The complete list will contain 30 sets of grades containing 25 scores.

3. Subscripts identify the current record. They are also used to
determine the position within each array of grades. "N" indicates
the number of the Record; "M” indicates the individual grade.

4. "I" keeps track of the number of test grades that fall within the SET
of unacceptable scores. If a grade is "F," "NP," or "I,” the count of
unacceptable grades is increased by 1. The total is then printed to
the screen.

TUTORIAL IV - 133

SETS

CONCLUSION

Hi is section lms covered most of the important information that you need to
know in order to use SETS. Obviously, this topic is very large in scope; if
you want to learn more, consult a book that contains an extensive description
of all the commands available in the Pascal programming language.

'Hie next section introduces the concept of PILES. A file enables your
program to save and retrieve information on a storage device. This greatly
increases the amount of data that your Pascal program can process.

TUTORIAL IV - 134

14. FILES

Files allow you to redirect input and output to a storage device - usually a
disk. This section demonstrates how to:

* WRITE files to a disk
* READ files from a disk
* Create files of records
* Manipulate Random Access Files
* Create TEXT files

GENERAL COMMENTS ON FILES

As you have probably already realized, all this power to manipulate data isn't
worth much if you can't store the information in a disk file. Pascal uses files
to control the input and output of data. The statement after the Program Name
contains the declarations "Input" and "Output" to indicate the device that reads
the information and the device that prints it. Ordinarily, the input device is the
keyboard and the output device is the monitor screen. A Read or Readln
statement calls for input from the keyboard. A Write or Writeln statement
prints information to the screen.

You can use file designations to redirect input and output to a disk file. You
simply have to declare a file and its data type. You can then write to or read
from the file. The only disadvantage of using disk files is that it slows the
program down. It takes a great deal of time to access, read, and write
information from a disk file.

If you use disk files, remember that they save data in a strictly sequential
format The first piece of data entered is the first saved. Consequently, the
first piece of data read by a program is the first piece of data that was entered.

TUTORIAL IV - 135

FILES

Declaring a File

When you want to use a disk file for input or output, you must declare it in
the PROGRAM statement after the "Input" and "Output" declarations. You
can use any name at this point since you will equate the actual file with its
disk identifier in the body of the program. The following PROGRAM
declaration identifies a program that will get input from the keyboard, print it
to the screen, and record it on a disk.

PROGRAM Store(lnput,Output, F);

You can use any file identifier to replace the term "F.” Just remember that it
must be defined in the body of the program as indicated below.

The program declaration tells the computer that another file is available for
input and output other than the usual Input and Output files.

To enable the program to use the data stored in the disk file, you must indicate
that there is a Variable that contains the information. The following
PROGRAM and VARIABLE declarations enable the program to access a file,
F.

PROGRAM Store(Input,Output, F);

VAR
F : FILE OF Integer;

In this case, all the elements of the file F are integers. A FILE may also
contain Characters, Real numbers, Arrays, Sets, and Records.

Writing to a File

To store data in a disk file, you must first open the file. You do this by using
the Rewrite statement. Rewrite tells the computer to redirect the output to
another file. The Rewrite command takes two parameters. The first names
die identifier of the file it will write to. Hie second defines the device and the
filename it will be saved under.

Note: Rewrite also clears the disk file of any existing data.

TUTORIAL IV - 136

fills

A typical Rewrite statement requires that you enter the identifier name of
the file as well as the device and filename it is stored on. They are often not
the same and, to avoid confusion, it is a good idea not to make them the same.
The following declaration indicates the program’s identifying name for the file
variable and then the disk device and filename.

Rewrite(F, ’D1:LST’);

This statement tells the computer to prepare a user’s data file, F, which it will
write to a file named LST on the disk device Dl:. To put the data into the
disk file, the program must contain two more statements. The first stores the
data in a file buffer area; the second writes the buffer contents to the disk file.

FA := Dataltem;
Put(F);

The caret or A symbol is executed by pressing <SHIFT> and the * key.

The variable FA is actually a file buffer variable. The variable Dataltem
refers to the data element that will be placed in this buffer. The Dataltem
can be any type of information you want to use: an integer, a string, or even
an entire record. Before the value of an element can be put into a file, the
program must assign a temporary file buffer variable which holds the data until
it is written to the disk.

The Put(F) statement writes the contents of the buffer to the device:filename
indicated in the Rewrite statement. NOTE: Make certain that the
device:filename exists in the system. If the program runs and cannot locate the
it, the system will crash.

Remember that when writing to the disk, the first element is stored in the first
position, the second element in the second position, and so forth.

The only memory space reserved for file variables is for the file buffer variable.
This is because the file itself exists outside the memory space of the computer
which is merely transferring the data to the disk file. (If the file is a FILE OF
Integer, the file buffer is assigned two bytes of memory to accommodate large
integer values. Integers use more memory than real numbers or other types of
data. The size of the buffer, however, has no direct bearing on the program or
how the programmer writes it.)

TUTORIAL IV - 137

FILES

In summary, the steps for writing a file are:

1. Declare that the program uses an external (disk) File as well as the
standard Input and Output files.

2. Define the filetype in the Variable list as a FILE OF some data type.

3. Declare an Identifier as the filetype defined in the Variable list

4. Open the file with the Rewrite statement which equates the file
identifier with a filename.

5. Load the data into the file buffer, which is indicated by the A symbol
af ter the file identifier.

6. Write the data to the disk file with the Put(Fileldentifier) statement.

Reading a File

Reading a file is similar to writing one.
reading. The command is:

First, the file must be opened for

Reset(F,D 1 :Filename’)

This equates the filename with a variable that the program uses to identify the
file.

Before the file can be read from the disk, the computer must be told to reserve
memory space for the read buffer. Like the write buffer, the read buffer holds
the data until the program is ready to use it. As you might have assumed, a
read buffer has exactly the opposite format of the write buffer. The statement
is.

Datahem := FA;

After you declare the buffer, use the Get command to retrieve tlie data on the
disk file. The full statement is:

Get(F);

TUTORIAL IV - 138

I ILL*S

The complete sequence of commands is:

Dataltem := FA;
Get(F);

The following diagram illustrates the commands used to write and read files.
The related commands are placed side by side.

Comparison of Write and Read

WRITE READ

Rewrite(FileIdentifier,
Device:Filename)

Reset(FileIdentifier,
Device:Filename)

FileldentifierA := Dataltem Dataltem := FileIdentifierA

Put(Fileldentifier) Get(FileIdentifier)

Once you know how to retrieve information from a disk file, you have to be
able to tell the program when to stop reading the disk. Pascal uses an End Of
File marker to tell the computer when the file ends.

The END OF FILE Marker

The disk uses a specific value to indicate the end of a file. Pascal recognizes
that value as EOF. EOF is a standard Boolean function that becomes true
when the end of a file is reached.

When you are reading from a file, you often don't know how many items the
program should Get. Consequently, you should use the EOF value as a test
to determine whether the program should continue reading data from the file.
The full sequence of instructions for reading to the end of file is:

Reset(IVDliFilename')
WHILE NOT EOF (F) DO

BEGIN
Dataltem := FA;

TUTORIAL IV - 139

files

Writeln(Dataltem);
Get(F)

END;

Ilie following program illustrates how to write to a disk file and then read that
information back into the program. It asks the user to enter 10 numbers
which it stores in the file named, "LIST." The program then reads the file
back into its memory and prints the output on die screen.

PROGRAM StoreData(Input,Output,Listl);

VAR
Listl : FILE OF Integer;
Count: Integer;
J : Integer;

BEGIN
Rewrite(Listl, ’DELIST);
FOR Count > 1 to 10 DO
BEGIN

Write(’Enter a number:');
Readln(J);
ListlA := J;
Put(Listl)

END; (* FOR loop*)
Writeln;
WritelnCHere is the output from die disk.');
Reset(Listl, DELIST);
WHILE NOT EOF(Listl) DO
BEGIN

J := List 1A;
Write(J: 5);
Get(Listl)

END (♦ WHILE loop *)
END.

TUTORIAL IV - 140

FILL'S

COMMENTS

1. The program declaration contains a third file, List!. This tells the
program that information will be used from a source other than the
normal Input/Output Files.

2. The file identifier is declared as a variable, Listl. Since Integer is a
predefined data type, the program does not need to define the
type. Count regulates the number of FOR loops that control the
user's entries. J holds the value the user enters during each loop.

3. The program opens the disk file for writing with the Rewrite
statement. The first item in the parentheses is the file identifier,
i.e., the name the program uses to the identify the file. The second
item is the device.filename which actually stores the data.

4. A simple FOR loop allows the user to enter the 10 numbers.

5. Readln(J) assigns the number entered to the variable J. The value
of J is then assigned to the file buffer, ListlA. Once the data is in
the buffer, the number is written to the disk file with the Put
statement. Note that you use the file identifier to indicate what the
buffer should write to the file. You read and write files, the buffer
merely holds the data in the process.

6. Once the file is stored on the disk, the program reads it back and
prints it to the screen.

7. Reset opens the file for reading. In effect, it forces the position
indicator back to the beginning of the file. It also reidentifies the
disk with the program’s file identifier.

8. The WHILE loop tests for the End Of File marker. If it does not
register the EOF marker, it retrieves the value stored in the next
disk position and puts it in the file-identifier buffer. That value is
then transferred to the variable J. After writing J (allocating 5
spaces for the number on the monitor), it executes the Gel
statement to retrieve the next value. This process continues until
the program senses the EOF marker (i.e., the Boolean EOF
condition becomes true).

TUTORIAL IV - 141

FILLS

9. Note that the control loop regulates how much data the user can
enter; the EOF marker regulates how much data is read back into
the system.

FILES OF RECORDS

Most often, you use disk files to store files of records. The procedure for
creating such files is almost identical to the sample program described in the
previous section. The only difference is that you must define the record before
you declare the filename variable as a FILE OF the record type you have
defined. A beginning Pascal programmer can find all this naming confusing,
but it is strictly logical.

If you keep the following definition in mind, the discussion of files of records
should be easier to comprehend.

An IDENTIFIER is the name the program uses to label the data
element-whatever that type of element is. Furthermore, the
Variable identifier of a user-defined data type must be defined
as the type indicated by the Identifier of that type.

With this principle in mind, the following procedure for declaring a file of
records should not be too confusing. When you want to write a file of records:

1. Declare die file identifier in the Program declaration.

PROGRAM RecDemo (Input,Output,ClassFile);

2. Define the structure of the record under the TYPE heading.

TYPE
RecType * RECORD

Name : ARRAY[1..15] OF Char;
Grade : Integer

END;

3. Declare another identifier under the TYPE heading to represent a FILE
OF the record-type identifier.

IT PE
StudentFile = FILE OF RecType;

TUTORIAL IV - 142

FILES

4. In the list of variables, declare the file’s identifier as a type indicated by
the type-identifier.

VAR
ClassFile : StudentFile

You can now refer to ClassFile in the body of your program. You can also
give the record an identifier. You could declare StudentRec as the identifier
of each record. This allows you to access individual fields in the record by the
usual statements, "StudentRec.Name" and "StudentRec.Grade".

To write the records to the file, put the individual record into the file-
identifier’s buffer and then write the buffer to the disk file. To write an entire
record to the disk, use the following statements.

ClassFileA := StudentRec;
Put(ClassFile);

To read stored records, simply indicate the file-identifier’s buffer. For example,
to write the student’s name in each record, you could use the following
statement:

Writeln(ClassFileA.Name);

Note that the read statement allows you to include the buffer as part of the
variable. This saves one step. You could, however, also read the value into a
variable and then write the variable. But you don’t have to.

The following program uses these principles to write a file of student names
and their grades. It continues to request names and grades until you tell it to
"END." A WHILE loop controls the input A nested IF loop stops the input
as soon as it senses an "END" indicator. Without the IF loop exit from the
sequence, you would still have to enter a grade before the controlling WHILE
loop realized that "END" had been entered. This would add an extra record that
assigned END a grade.

TUTORIAL IV - 143

FILES

PROGRAM RecDemo(Input,Output,ClassFile);

TYPE
RecType = RECORD

Name : ARRAY[1..15] OF Char;
Grade: Integer

END;

StudentFile = FILE OF RecType;

VAR
ClassFile : StudentFile;
StudentRec: RecType;

BEGIN
Rewrite(CIassFile, ’DLClass');
Wrileln('Building A File');
Writeln('_');
Writeln;
Writeln('Enter "END" to stop the list.');
Writeln;
WHILE StudentRec.Name <> END ' DO

BEGIN
WITH StudentRec DO

BEGIN
Writeln(’Enter Name:');

Readtn(Name);
IF Name <> END ’ THEN
BEGIN

WritelnCEnter Grade:');
Readln(Grade);

ClassFileA:= StudentRec;
Put(ClassFile)

END (* of IF ♦)
END (* of WITH *)

END; (* of WHILE*)
Writeln;
Writeln('Record Entry Complete.’);

Reset(ClassFile, 'DLClass');
WHILE NOT EOF (ClassFile) DO

BEGIN

TUTORIAL IV - 144

FILES

Writeln;
Writeln;
Writeln('Name : ', ClassFileA.Name);
Writeln;
Writeln(’Grade : ', ClassFileA.Grade: 3);
Get(ClassFile)

END (♦of WHILE*)
END.

COMMENTS

1. The program opens the File, "ClassFile" and identifies the file that the file
identifier refers to.

2. The WHILE loop continues to execute until "END" is entered at the Name
request Note that the "END" constant must contain exactly 15 spaces.
Since this is the declared length of the Name field in the Record definition,
any other number of spaces will prevent the program from compiling.

3. The WITH statement identifies the record name, StudentRec,
that the rest of the loop uses.

4. The variable. Name, contains the student name entered by the user.

5. The IF loop determines the proper action to take. If the Name field
equals anything but "END," the program requests the grade. If the
name field does equal "END," the program exits the IF loop and
terminates the entry sequence.

6. After reading the grade, the program loads the file buffer,
ClassFileA, with the entire student record. It then writes the
record to the disk with the Put statement.

7. Once all the names and grades have been entered, the program
Resets the disk file, again equating the file identifier, ClassFile,
with the deviceifilename.

8. Finally, using the Writeln statements to format the output, the
program enters the WHILE loop which continues to execute until it
reads the End Of File marker.

TUTORIAL IV - 145

FILES

9. For each record in ClassFile, the program loads the fields into the
ClassFile buffer and prints the information. Note that the data is
loaded into the buffer and printed directly to the screen. The
format of the statement is:

Writcln(F'ilenaincA.Ficldiiame);

10. The Get(Filename) statement forces the program to continue
checking records until it senses the EOF marker.

READING AND MANIPULATING DATA
FILES

As you may have realized if you tried writing your own File storage programs,
writing to a file is destructive. In other words, the Rewrite statement that
opens the disk File clears the File of any pre-existing data. Actually, it just
resets the position that the program writes to at the beginning of the File.
Consequently, when you begin writing, you over-write the existing data.

Because of the destructive nature of writing to a File, it is usual to write a
separate program that reads the file you have written. This program can also
manipulate any of the information without destroying the original File.

The following program illustrates how to read data from an existing data File
and then manipulate the data. With only a few differences, it is identical to the
second part of the RecDemo program. It reads the File, ClassFile, and prints
the data on the screen. In addition, it flags any grade less than 65 and prints
the message "Failure." Finally, after keeping a running total of the grades and
the number of grades entered, it computes and displays the class average.

TUTORIAL IV - 146

FILES

PROGRAM RecRead(Input,Output,ClassFile);

TYPE
RecType = RECORD

Name : ARRAY [1..15J OF Char;
Grade: Integer

END;
StudentFile = FILE OF RecType;

VAR
CiassFile : StudentFile;
StudentRec: RecType;
Count: Integer;
Average: Real;

BEGIN
Count := 0;
Average := 0.0;
Writeln;
WritelnfReading the File’: 25);
WritelnC_25);
Reset(ClassFile, ’D1:CLASS');
WHILE NOT EOF (CiassFile) DO
BEGIN

Writeln;
Writeln;
WritelnCName :ClassFileA.Name);
Writeln;
Writeln('Grade : \ ClassFileA.Grade: 3);
IF ClassFileA.Grade < 65 THEN
WritelnCFAILURE);

Count > Countrl;
Average := Average + CiassFileA.Grade;
GET (CiassFile)

END; (* of WHILE loop *)
Writeln;
Writeln;
Average: - Average/Count;
Writeln(The class average is: Average: 3: 2)

END.

TUTORIAL IV - 147

FI LIiS

COMMENTS

1. The record and file declarations must be identical to those that
declared the disk file.

2. Count keeps track of the how many records are read.

Average holds the total value of the individual grades. It is divided
by Count to calculate die class average.

4. Note that the grade is declared to be an Integer. The Average,
however, must be a Real number since the sum of die integers is
divided by a number that may result in a fraction.

5. The program reads each record in the file and prints the contents of
the ClassFile buffer, ClassFileA, as determined by the field name.

RANDOM ACCESS FILES

The files discussed so far are known as Sequential Files. Each piece of data is
recorded and read in the order it was entered. As you saw, this means that
every time you run a program that writes records, it erases any information
that already exists in the file. It also means that if you want to read the sixth
record in a file, the program must first read records 1 through 5.

Kyan Pascal includes a non standard statement that allows you to access any
record in the file directly. Such files are called Random Access Files.
The Seek statement allows you to create and read Random Access Files.

SEEK

When records are saved to a disk, the disk keeps track of where each record
begins and ends. It identifies the records by RecordO, Record 1, and so forth,
until the End Of File. The SEEK command allows the progam to read those
record delimiters without having to read the entire record. This allows the
program to scan the record numbers and identify die exact record you want to

TUTORIAL IV - 148

FILES

read. The format of the SEEK command is:

Seek(F,N);

where F is the file identifier and N is the number of the element in the file

The Seek statement should be followed by a command that writes data to or
reads data from the file. After Seeking the element N in the file-identifier F,
Put or Get the file identifier.

Put(F) writes the contents of the file buffer, which has already
been loaded with the data by the Seek Command, to the
disk file at the position indicated by the Seek command.

Get(F) reads the contents of the record located at the position
indicated by the Seek statement into the file buffer.

The following program, SeekDemo, illustrates how to use the Seek
command to either write or read a specific record in a file. It declares a FILE
OF Strings, requests the record number of the string to be entered, and then
asks the user to input the string. Note that this program allows you to change
existing records or append records to an already existing file. You access the
desired record by indicating its record number. Obviously, you can not read a
record that has not yet been written.

The body of the program uses the Reset command to open the file. If you
Reset a file, you reset the record counter to zero. You can then either read or
write additional records. If the program had used a Rewrite statement to open
the file, the contents of the file would have been over-written and lost
Consequently, use Rewrite only when you enter data for the first time. This
use of Rewrite insures that no unwanted data remains in the file if it has been
used by previous programs.

PROGRAM SeekDemo(InpufOutput,StrFile);

TYPE
StringType - ARRAY[1..30] OF Char;

VAR
StrFile : FILE OF StringType;

TUTORIAL IV - 119

PILES

C : Char;

PROCEDURE RdRec; (* Read a Record *)
VAR
i: Integer;

BEGIN
Write('Enter Record Number : ’);

Readln(i);
Seek(StrFile,i);
Get(StrPile);
IE NOT EOF(StrFile) THEN (*EOF true if element empty*)
Writeln(StrFileA)

END; (♦ of RdRec PROCEDURE *)

PROCEDURE WrRec; (♦ Write a Record*)
VAR

i : Integer;
BEGIN
Write('Enter Record Number: ’);

ReadJn(i);
Writeln;
WritelnfEnter the string of data :');

Readln(StrFiIeA); (*Assign data to file buffer*)
Seek(StrFile, i);
Put(StrFile)

END; (* of WrRec procedure *)

BEGIN
Reset(StrFile, 'DliCIass');
REPEAT

Writeln;
Writeln;
Writeln(Enter your selection 25);
Writeln('R-Read W-Write Q-Quit’: 24);

Readln(C);
IF C - ‘R’ THEN
RdRec;

IF C = W THEN
WrRec;

UNTIL C = ’Q’
END.

TUTORIAL IV - 150

FILES

COMMENTS

1. The program declares a disk file which it knows as StrFile. The
disk file is identified later in the program.

2. The program includes two procedures. The first handles reading
the file; the second, writing to the file.

3. After declaring the String TYPE, the file identifier is declared in the
Variable list

4. The variable C holds the selection of reading, writing, or quitting.

5. The main body of the program asks the user to select the desired
procedure. Two IF conditions, nested inside the REPEAT..UNTIL
loop, enable the user to continue writing and reading records until
the Quit command is entered. Remember that a REPEAT..UNTTL
loop continues to execute until a final condition exists. In this
program, the condition is that C equals Q.

6. If C equals R, the program executes the read record procedure.
RdRec requests the record number and stores it in the variable i. It
then locates the position i in the file StrFile. Next, it Gets the
record indicated. If the position does not indicate the End Of File
marker, the program puts the data into the file buffer and then
writes the buffer to the screen. After writing the record, it returns
control to the REPEAT..UNTIL loop in the main program.

7. If C equals W, the program executes the write record procedure.
WrRec requests the number of the record to be written. (Remember that
the first record is always 0.) After reading the record number to be
written, it requests the string input The string the user enters is
immediately stored in the file buffer by the Readln(StrFileA) statement.
The program then Seeks position i on the disk file and Puts the string
on the disk.

8. One final note: Remember that the file buffer is always indicated by
the carat (A) symbol. When reading a file, you write the file buffer to
(he screen with a WriteIn(FileNameA) command. When writing a
tile, you read the data from the keyboard into the bulfer and then
Put the file on the disk with a Readln(FileNameA) command
followed by a Seek and then a Put(FileName) statement.

TUTORIAL IV - 151

FILES

TEXT FILES

Because files often consist entirely of text, Pascal has a standard type of file
called Text. It is predefined as Text = FILE OF Char

To use a Text FILE, include the filename in the program declaration and then
declare its dala type in ihe Variable list as Text. The following statements
create a text file named Word.

PROGRAM (lnput,Output,Word);

VAR
Word : Text;

The advantage of using Text files is that the input and output commands are
simpler than those used for other types of files. After declaring the file's
identifier and associating it with a devicertilename with the statement

Rewrite(Fileldentifrer, D1 :FileName');

you can write to die disk file with die command

Write(FileIdendfier, Texddentifier);

For example, to write a string of text that has been identified as Comments
to a file named Word, use the statement

Write (Word, Comments);

This simple command replaces the two statements which ordinarily put the
contents of the string into the buffer and then write the buffer to die disk file:

WordA = Comments;
Pul(Word);

Just as it is easier to write text files to a disk file, it is also easier to read
them. The read command is

ReadfFileldenufier, Texddentifier);

To read a file named Word into a text variable named Comments, use the
statement

TUTORIAL IV - 152

FILES

Read(Word, Comments);

This single command replaces the two commands that put the file contents
into the buffer and then print the buffer to the screen:

Comment = WordA;
Get(Word);

The following program lets the user enter a string of 100 characters and saves
the data in a disk file. The structure of the program is obvious; it declares the
text file and the string that holds the user's input. It then opens the file for
writing, requests and reads the input, and then writes it to the disk file. To
show what it has written, it reopens the disk file for reading, reads the file, and
then displays it on the screen.

PROGRAM WordProc(Input,Output,Word);

TYPE
StringType - ARRAY! 1..100] OF Char;

VAR
Word : Text;
Comments : StringType;

BEGIN
Writeln;
Writeln;
Rewrite(Word, DLWordl');
Writeln(’Enter text:');
Writeln;

Readln(Comments);
Writeln('Saving the file');
Write(Word,Comments);
Writeln;
Writeln('Now reading die file');
Reset(Word, 'DliWordl');
Read(Word, Comments);
Writeln(Comments)

END.

TUTORIAL IV - 153

PILES

COMMENTS

1. Note that the Writeln statement still writes to the screen and that
Readln gets data from the keyboard.

2. The Write(Word, Comments) statement writes the text,
identified by Comments to the disk file, identified in the program
as Word.

3. The Read(Word, Comments) statement gets the data from the
disk file identified as Word and loads it into the string Comments.

4. A simple Writeln(Comments) statement prints the text on the
screen.

CONCLUSION

This section provides only an introduction to the use of files in a Pascal
program. It has illustrated how to write and read a few types of files. For
more detailed explanations and illustrations of the use of files, consult a Pascal
textbook. It should explain different techniques for updating existing files.
Just keep in mind the unique capabilities of Kyan Pascal when you read the
text.

The next chapter explains how to use Pointers to access locations in memory.
Pointers let you Peek and Poke information into the computer's memory
locations; they also allow you to create lists that can keep track of the location
of each element in the list

TUTORIAL IV -154

15. POINTERS

A Pointer is a variable that points to a location in memory. Because of this
special property, pointers can be used to create larger and more flexible data
representations (data-structures) than have previously been discussed.

This chapter will explain the concept of pointers and how they are used in the
memory of the computer. This chapter will also show how to use pointers to:

* Read values directly from memory locations
* Write values directly to memory locations
* Create new pointers using the NEW command
* Create a linked lists to form a data base
* Clear Pointers using the Dispose command

POINTERS AND MEMORY
- AN EXPLANATION

Normally, the computer keeps track of where it stores information, so that you
don’t have to. For example, if you write the lines of code

VAR
Count: Integer;

BEGIN
Count := 54;

the computer sets aside a place in memory named. Count, and stores the
number 54 in that location. With these lines, we told the computer: "Find an
unused portion of memory that will hold an integer, then give that portion of
memory the name Count, then put the value 54 in the area named Count."

In this example, we could say that the variable name Count is a pointer, since
it points to an area of memory. The reason we dont’t call a variable name a
pointer is two fold; it points to only one location in memory, and the
variable's contents are a value rather than an address of a location in memory.

TUTORIAL IV - 155

POINTERS

So what's an address of memory location? Good question. Think of the
memory locations of the computer as a long line of boxes. Each box is
identified by a number, and the boxes are numbered so that die next box has a
number that is one higher than the last box. Then die address is the number of
the box. For example, if one box was labeled 10001, then the next box would
be labeled 10002, and one after that would be 10003. In this example, the
addresses are 10001,10002 and 10003. In summary, an address is thq
identifying number of a memQj^locaUQn (box).

So, instead of holding a value, pointers hold the address of a memory locadon.
Because pointers hold addresses, we have some control over the area of
memory which pointers will point to.

To illustrate the concept of pointers, let's create one. We know that we can
define a pointer which points the computer to a locadon in memory. But, to
be useful, we must tell the computer what our pointer is pointing at. We can
have our pointer point to an integer, a character, a record field, or any other
defined data type. For this example, lets have our pointer point to an integer.
To declare our pointer to the computer, we would say

VAR
Ourpointer: integer;

By doing this, we are assured that no matter what address we give Ourpointer,
the contents of the memory locations at that address are interpreted as an
integer.

Please note that Ourpointer actually looks at two memory locations. This is
because we told the computer that we are pointing to an integer, and all
integers are two memory locadons (bytes) long. Therefore, if the computer is
to make sense of what it sees in the memory locadon pointed to by
Ourpointer, it must consider both bytes. Expanding on diis, any time a
pointer points to a data-type which is more than one byte in length, the
computer must look at the pointer locadon plus all the following memory
locadons which are required to store an item of that particular data type.
(Note: Please refer to Chapter V, Page 11, for more information on the
storage requirements for different data types).

In our example, Ourpointer points to an integer. If Ourpointer has the address
10001, then the computer will look at locadons 10001 and 10002 (two bytes).
If Ourpointer were pointing to a record which was ten bytes long at location
10001, then the computer would look at locadons 10001 through 10010. If

TUTORIAL IV - 156

POINTERS

Ourpointer were pointing to a character at location 10001, then the computer
would look at only location 10001 (i.e., character data types are only one byte
long). You may wish to look at the figures below.

Var Ourpointer : integer (Two bvteslongl ▼ mw * ij j*.

Ourpointer ===> 10001: The computer looks at two
memory locations

10002:

Var Ourr>ointer2 * ARecord (Four bvtes lone)

Ourpointer ===> 10001:

10002: The computer looks at four
memory locations.

10003:

10004:

Var Oumointerl * ACharacter (One bvte lon2)

Ourpointer ===> 10001: The computer looks at only
one location.

POINTER

Now you know what pointers do and how they work. In this section we will
explain how to use pointers, and why they are particularly useful in reading
from or writing to specific memory locations.

Standard Pascal contains no provisions for allowing a programmer to create a
pointer which points to a specific memory location. However, Kyan Pascal
contains an extension to the standard Pascal syntax which allows you to do
this. This extension is called POINTER and it is used in the following
syntax.

Pointerldentifier := POINTER(MemoryLocation);

TUTORIAL IV - 157

POINTERS

All memory locations must be given in their decimal representations. Once a
pointer is given the address of a memory location, that location can be read
from or written to.

Using Ourpointer from last section, here is what Ourpointer looks like after it
is first declared:

Ourpointer ===> TtU

Ourpointer points nowhere in particular because it has not yet been given any
value. But, after we say:

Ourpointer := POINTER(300);

Ourpointer looks like this:

Ourpointer «===> 300

Now that Ourpointer points to a specific location in the computer's memory,
we can read or write to that location.

Reading from Memory Locations

In the example below, we declare the pointer to be pointing to an integer.
Next, using the POINTER command, we point the pointer at location 10001.
Then, using the WRITE command, we display the contents of the memory
locations 10001 and 10002 in integer form (don't foiget integers are two bytes
long).

Program OurExamplel (output);

VAR
Locate: AInteger;

BEGIN
LOCATE := POINTER(10001);
WRITE (LocateA)

END.

TUTORIAL IV - 158

POINTERS

If you are familar with the PEEK command used in BASIC, then you will
recognize the similarity between this program and the PEEK command. Both
read the contents of specific memory locations.

Writing to Memory Locations

The following program declares Locate to be a pointer to an integer. Using
the POINTER command. Locate is once again given the address 10001. But,
unlike the last example, the statement

LocateA := 65;

changes the contents of locations 10001 and 10002 instead of reading them.

Program OurExample2;

VAR
Locate: AInteger;

BEGIN
Locate > POINTER(10001);

LocateA := 65
END.

This program performs the same function.

Compare this program with OurExample! and the way the LocateA variable is
used (notice the caret at the end of the pointer name). LocateA is the way the
computer represents the contents of the memory locations pointed to by
Locate. Ihus if in the WRITE statement in the first example was replaced by

Count := LocateA;
WRITE (Count);

not only would the contents of locations 10001 and 10002 have been
displayed, a copy of those contents would have been assigned to the variable
Count (assuming of course, we also declared Count as a variable).

TUTORIAL IV - 159

POINTERS

Using Special Memory Locations

In the Atari location 710 holds the number that corresponds to a particular
color of the screen background. Using the predefined Pointer function, you can
change the color of the background to suit your needs. The following program
cycles through 255 background colors and then restores the background to the
original color.

PROGRAM ChangeColor;
(♦Cycle through screen background colors ♦)

VAR
Color,Orig: AInteger;

PROCEDURE Cycle;
VAR

Loop: Integer;
BEGIN

FOR Loop := 0 TO 255 DO
ColorA := Loop

END;

BEGIN
Color := Pointer(710);
OrigA := ColorA;

Cycle;
ColorA := Orig

END.

Comments

1. After declaring the global variables, the cycle procedure and its local
variable are declared.

2. The program stores the original color of the background, then cycles
through the other 254 colors with a FOR loop, and finally returns the
background to its original color.

Memory Locations Beyond tlie Size of Maxlnt

Depending upon the size of your computer, you may want to address memory
locations that arc greater than the actual Integer value that Pascal can use.

TUTORIAL IV - 160

POINTERS

This value, a predefined constant known as Maxlnt, is 32767 with Kyan
Pascal. If you want to address locations greater than that number, the
equivalent of that address is a negative number calculated by subtracting 65536
from the desired memory location. The formula is

Equivalent address = Memory Location - 65536

For example, if you want to Assign the Pointer Variable Locate with memory
address, 40000, you need to first find the negative equivalent of 40000 with the
formual. The resulting value is -25536. This number would then be used in
place of 40000. The following statement assigns this value to the Pointer
Variable Locate:

Locate := POINTER(-25536);

NEW

Imagine how difficult it could be trying to keep track of each pointer, and
making sure that none of the variables those pointers pointed at overlapped in
memory. Well, relax, you don’t have to! We don't have to be concerned with
exactly wher in memory a pointer points, as long as it points to the data type
we are concerned with. In situations like these, we use the NEW command.
Here is the syntax:

NEW (Pointerldentifier): ;

The NEW command works by finding an unused area of memory that is large
enough to hold the data type the pointer points to. It then gives the address of
that area to the pointer. Finally, it sets aside this memory so that it is not
overlapped by any variables or pointers. The memory set aside by the
computer for storage of pointer variables is commonly called the "HEAP".
Consider the following lines of code:

VAR
Locate : integer;
Letter : *Char;

BEGIN
NEW (Locate) ;
NEW (Letter) ;

TUTORIAL IV - 161

POINTERS

After the pointers are declared, they look like this:

Locate ===> ????
Letter ===> ????

This is because they are uninitialized and could point to any location.
However, after the NEW commands, the pointers look like this:

Locate ===>

Letter ===>

Notice that we don’t know where in memory these pointers are. But we do
know that Locate points to an integer (two Bytes, remember) and that Letter
points to a character.

Because of the way the NEW command works, we cannot use the Letter
pointer to look at the locations Locate is pointing to. Note also that these
fields are uninitialized; they most likely contain garbage until they are given a
value. In the next section, we will show you how a linked list can be made
using the NEW command and a record field.

TUTORIAL IV - 162

POINTERS

POINTERS AND LINKED LISTS

In addition to using Pointers to access memory locations, you can also use
them to identify the position of items in a data base list This allows you to
create lists of different types of data, and have each item in the list contain a
pointer to the next or previous item. You can then access each item and decide
what the program should do with it The example used in this section is a
very elementary list, using a simple record data-type; but you can imagine how
complex the data base can become.

When using linked lists, remember a few important points:

1. Since a Pointer is used to indicate the location of each item in the
list, you must use the New statement to load the Pointer with an
unused location.

2. Linked lists are entered into memory as they occur in the program.
This means that the first item entered will be the last item read when
the program retrieves the list.

3. To indicate the first item entered on the list as the last item that will
be found when reading the list, you must use a statement called
NIL. It is like a reverse End Of Line or End Of File indicator. You
can tell the program to read back through the list until it finds a NIL
statement

AN EXAMPLE OF A LINKED LIST

This sample program creates a linked list of Names and appointment dates.
Each entry in the list is linked by a Pointer to the next item. The record itself
is also located by a Pointer.

The Pointers are identified as Pointer-Types, and two variables are declared as
Pointers. The first Appointm, points to the memory location that stores
the record; the second. Ft, stores the memory location of the linking Pointer.
NIL is used to identify the first item in the list since it is the last item read
when the program returns to examine the list.

When the program reads the list of appointments, it reads the last entry first.
The pointer in that entry indicates the location of the previous entry, and so
forth, until the pointer contains the NIL value.

TUTORIAL IV - 163

POINTERS

PROGRAM Points(Input,Output);

TYPE
String = ARRAY[1..15] OF Char;
Appointer = AAppointRec; (* Pointer Type *)

AppointRec = RECORD
Person : String;
Date : String;
Link : Appointer

END;

VAR
Appointm, Pt: Appointer; (♦ Pointer Variable *)

BEGIN
Writeln;
Writeln;
Pt := NIL;
New(Appointm);
Write('Enter Name: ");

Readln(Appointm APerson);
Writeln;
WriteCEnter Date ’);

Readln(AppointmA.Date);
AppointmA.Link := Pt;
Pt := Appointm;
New(Appointm);
AppointmA.Person := 'Bob '; (* Note: There must be exactly
AppointmA.Date := '02 - 05 - 86’; 15 characters between quotes or
AppointmA.Link := Pt; a "Wrong Type" error will result *)
Pt := Appointm;
New(Appointm);
AppointmAPerson := David Brandes ';
AppointmA.Date := '02 - 06 - 86';
AppointmA.Link := Pt;
Writeln;
Writeln;
Writeln(The Appointments are: ');
Writeln; (* program completed on page 166 *)

TUTORIAL IV - 164

POINTERS

COMMENTS

1. The program declares a String data type which holds the name of
the person in the Record.

2. The Pointer data type is identified as Appointed It is declared
to be an AAppointRec data-type. Remember that Pointers do not
have to be declared as Variables; they can also be declared as data-
types, with variables defined by that data type.

3. A Record is declared which contains the fields: Person, Date, and
Link.

4. The Variables, Appointm and PI, identify variables of the Pointer
type.

5. The program uses the Node identifier, AppointmA, to indicate the
memory location where the actual record is stored. It appends the
field identifier to that name to specify the actual record item.
Because it uses the Node identifier, the program does not need to
indicate the Record Identifier.

6. The format of each record first sets the variable, PT to the previous
Pt value. It then defines the Person and Date fields. Each of these
must contain a specific number of places because of the length of
the Strings defined in the TYPE declarations.

7. Each record first identifies the value of the Pointer, Pt, which
points to the previously saved record. Since the first record can not
point to a previous record, the variable Pt in that record equals NIL.
Successive Pointers are equated to the previous Link field.

8. After defining the Pointer value of each record as the location
indicated by the previous Pointer in the variable, Appointm, the
record assigns a new memory location for the next record. It then
defines the elements of that record and equates the Link field with
the existing value of Appointm.

To read the list defined in this program, use the following statements which
read the list until the program finds a NIL Link-indicator. When reading the
list, the Pointer, Appointm, will always indicate the location of the
previous record until it reads the NIL indicator. To read the previous record,

TUTORIAL IV - 165

TOINTERS

equate the variable. Ft, with the AppointA.Link field; then equate that field
with the previous Ft value. The result is that each equation identifies the next
field to be read.

The following lines read each record in the list back into memory. Once the
record is read, it is printed to the screen. The read sequence continues until the
NIL value is read in the Pt field.

WHILE Appointm <> NIL DO
BEGIN

Write(AppointmA.Person);
Writeln(AppointmA.Date);
Pt > AppointmA.Link;
Appointm := Pt

END
END.

Once you can read and write information to specific locations in memory, you
need to be able to tell the computer to forget that information. The Dispose
command performs that task.

DISPOSE

When you reserve space in memory to store Pointers and Nodes, those
locations continue to hold the values stored in them even after the items they
refer to are no longer used by the program. Consequently, when you are
finished with Pointers, you should clear the memory locations that holds their
values. The Dispose command performs this task.

Tlie syntax of tlie Dispose statement is:

Dispose(Pointerldcntifier);

If you forget to Dispose of saved Pointer values, you occupy memory spaces
that can be allocated to other variables. The Dispose statement thus frees
space for the user program.

TUTORIAL IV - 166

POINTERS

CONCLUSION

This section has explained the use of Pointer Variables access memory
locations. Pointers are used to read and write values directly into memory.
They are also used to locate elements in a data-base list of items. For more
information on using Pointers, refer to a standard Pascal manual.

The discussion of linked lists has barely scratched the surface of this important
topic. We recommend that you refer to a textbook on structured data types for
a thorough investigation of this powerful programming tool.

If you have mastered all the concepts and techniques illustrated in the Tutorial,
you should be fairly comfortable with programming in the Pascal language.
From now on, use your intuition to solve problems. Experiment. If you need

to refresh your memory about the structure of specific commands or
statements, consult the reference section of this manual.

TUTORIAL IV - 167

V ASSEMBLY
LANGUAGE

PROGRAMMING

This section describes how to:

* Use the Kyan Pascal assembler ("AS”)
* Include assembly code routines in a Pascal program
* Access parameters in Procedures
* Access values returned by Functions

This section does not explain how to write assembly language programs. It is
intended primarily for programmers who already know how to write assembly
code and wish to use it in their Pascal programs. (NOTE: If you have
previously written assembly language routines with Version 1.- of Kyan
Pascal, please refer to the end of this section for instructions on how to
convert your routines to this version).

USE OF THE KYAN PASCAL
ASSEMBLER

Kyan Pascal features a special purpose macro assembler called "AS". This
assembler is optimized for maximum speed of assembly by limiting features.
Symbol table listings, cross reference listings, nested macros, identifiers of
greater than 6 characters, and linkable object code modules are not supported by

"AS".

The Kyan Pascal compiler normally pipes its assembly language output to the
assembler, which in turn produces an executable object File. If the -S option is
used on the compiler, the output of the compiler will not be assembled.
Instead, the compiler will generate a text file of assembler macros to disk with
the filename P.OUT. The expansion of these macros can be found in the file
STDLIB.S which is located on the Kyan Pascal disk. To obtain an
assembly language listing with the macros expanded, add the" MEX ON"
directive to line 1 of the macro file and assemble the File using the "-1” option.

KYAN PASCAL V-l

V. ASSEMBLY LANGUAGE PROGRAMMING

The output will be an assembly language text file. This assembly language
file can then be modified as required for special applications. When
modifications are complete, the assembler can then be used as described below
to generate an executable file.

For advanced programmers, Kyan Software offers a Code Optimizer Toolkit
which includes the source code of the Kyan Pascal Runtime Library. When
used with this source library, the assembler will conditionally assemble only
the library routines required in the compiled application program. This feature
saves memory and permits large applications to run in one program segment.
It also allows the programmer to modify standard Pascal procedures and
functions to meet special programming requirements.

RUNNING THE ASSEMBLER

The assembler "AS" can be run in two ways.

Option 1: Type "AS" at the prompt(%) and type <RETURN>.
Then, enter the filename of the file to be assembled along
with any of the options listed on the Help Screen.

Option 2: Type "AS" at the prompt(%), the filename, and the desired
options on the same line. Then press <RETURN>.

llie assembler has two options which are listed below:

- L Produces a listing.

- O device:filename Renames the output file.

The assembler listing and error messages can be redirected in two ways as
shown below:

> Device:filename Redirects output to a file

> P: Redirects output to a printer

An example of assembler options and output redirection would be:

% AS XYZ -I -() MNO >D 1:ABC

KYAN PASCAL V-2

V. ASSEMBLY LANGUAGE PROGRAMMING

With this command, the assembler would: (1) assemble the file named "XYZ"
(2) produce an executable file named "MNO"; and, (3) produce a listing of the
program with the filename "ABC" on device 1.

You can stop the assembler at any time during assembly by pressing the
<ESC> key. You will be returned to the system prompt (%).

NAMING AN EXECUTABLE FILE

The assembler has several features which control the name generated for an
executable file.

Option 1: Anytime the "O" option is used, the
executable file is given the name assigned
in the option statement.

Option 2: Any source filename that ends in ".s" will

result in an executable file with the same
filename with the ".s" stripped off.

Option 3: If neither of the above options apply, then
the executable file will be named "A.OUT".

RELOCATING PROGRAM ORIGINS

Under default conditions the compiler generates a binary file which starts at
location $2000 in memory. If it is necessary to change starting locations, the
following instructions should be inserted before the first line of the Pascal
program.

#A
Origin EQU $XXXX

where $XXXX is the new location (e.g., for graphics, $XXXX = $4000).

KYAN PASCAL V-3

V. ASSEMBLY LANGUAGE PROGRAMMING

ASSEMBLY LANGUAGE
ROUTINES
Kyan Pascal accepts assembly language routines as part of the Pascal program.
This enables the programmer to include routines that are not restricted by the
structure of standard Pascal. Five rules govern the use of assembly language
in a Pascal program.

1. Assembly language routines must appear within the body of a
Program, Procedure, or Function. That is, they must appear
between a BEGIN/END block.

2. To indicate the difference between the Pascal program and the
assembly code, assembler routines must begin with a #a label and
end with a # label. The # sign must be placed in the first column,
and the a must appear in the second column. Lines contained
between these labels are left untouched by the Pascal compiler
and are integrated into the final assembly language output file
exactly as they are written.

3. All labels used in assembly language must begin in column 1.

4. Labels used as part of the assembler routine must not begin with an
underscore character (_). The compiler uses labels with the format
"xxxxx”. Consequently, if you use labels beginning with an
underscore, the program may fail.

5. If the X register is used by an assembly language routine, it must
first be saved and then later restored. The X register is used by the
compiler as the system stack pointer. If it is used and not restored,
the compiler will lose track of all variable references (i.e., your
program will crash).

KYAN PASCAL V-4

V. ASSEMBLY LANGUAGE PROGRAMMING

In summary, to use assembly language statements:

L Place all code between BEGIN/END statements
2. Include all code between #a and # labels
3. Begin all labels in column 1
4. Do not use labels that begin with an underscore (_).
5. Save and restore the X register

ASSEMBLER DIRECTIVES

Kyan Pascal supports 25 assembler directives. Directives are also known as
pseudo-code since they appear in the assembly language listing but are not part
of the language of the microprocessor. Instead they are terms understood by
the assembler itself. The 25 directives are:

Kyan Pascal Assembler Directives

Symbol Description

ORG Origin - indicates that the assembled code should start at the
specified location in memory (ORG $4000; start at $4000)

EQU Equate a label with a value which will be assigned to the
label whenever it appears in the program. In effect, EQU
defines a constant (e.g., A EQU $FF; define A to be $FF)

Dll
DW

Define Byte and Define Word ate used to build tables and
strings that reside in other parts of the assembly program.
When the program executes, it sets the index register to the
values identified by these directives. These values indicate
where the table or string resides in memory, (e.g., DW
$FF00; put $00 in next byte and $FF in following byte).

KYAN PASCAL V-5

V. ASSEMBLY LANGUAGE PROGRAMMING

DS

STR

IFDEF

IFNDEF

IFEQ

1FNE

ELSE

Least Significant Byte (LSB) is used with a
label or specific value to indicate the least
significant byte of a 2-byte hexadecimal
number (e.g., >$FF01 = $0001 or, if WLABEL
= $11EE, then >WLABEL = 00EE).

Most Significant Byte (MSB) is used with a label
or specific value to indicate the most significant
byte of a 2-byte hexadecimal number (e.g.,
<FF01 - $00FF, or, if WLABEL = $11EE, then
<WLABEL = $0011).

Define Storage saves space for the number of bytes
in the expression field (e.g., ds 5reserves 5 bytes).

String counts the number of characters in the expression
fields and puts that number in the first byte followed by the
ASCII values of each character in the string (e.g., str ’abc’;
first byte is 3 followed by ascii values of a, b, and c).

If Defined assembles the code following the directive if
the identifier in the expression field is defined (e.g.,
ifdef abc; assemble what follows if abc is defined).

If Not Defined assembles the code following the directive
if the identifier in the expression is not defined (e.g., ifndef
abc; assemble what follows if abc is not defined).

If Equal assembles the code following the directive if the
expression is equal to zero (e.g., ifeq x-1; assemble what
follows if x was previously defined to be 1).

If Not Equal assembles the code following the directive
if the expression is not equal to zero (e.g., ifne x;
assemble what follows if x was previously defined and
not equal to zero).

Else optionally follows one of the IF- directive and
reverses the conditional assembly (e.g., ifeq y else
.... endif; assemble what follows "else1' if y is defined as
not equal to 0, otherwise don't assemble what follows).

KYAN PASCAL V-6

V. ASSEMBLY LANGUAGE PROGRAMMING

ENDIF

INCLUDE

LST ON

LST OFF

DSECT

DEND

MACRO

ENDM

MEX ON

MEX OFF

End If directive ends the conditional assembly
associated with IF- or IF- ELSE directives (e.g.,
ifdef abc endif; end the conditional assembly
associated with the IFDEF).

Include file in expression field (e.g., include
xyz ; include the file xyz).

Listing On turns on the listing at that point.

Listing Off turns off the listing at that point.

Data Section defines an area of memory for data
only. For example, define a data area in high
memory: dsect

ram equ $b000
abc ds 2000
dfgds 1000
dend

Data End ends the definition of the area in memory
reserved for data only.

Macro definition follows. For example, define the
macro chrout: macro chrout

ora $80
jsr cout
endm

Macro definition ends.

Macro Expansion ON for listing.

Macro Expansion OFF for listing.

KYAN PASCAL V-7

V. ASSEMBLY LANGUAGE PROGRAMMING

A SC ASCii is used to put the ASCII values to the string in the
expression field in the bytes following the ASC directive
(e.g.,asc 'ok'; put ASCII value of 'O' and V in next 2 bytes).

DFL AG Define FLAG is used to define or redefine the variable in the
expression field. The value of the definition has no
meaning. The DFLAG directive is used with the IFDEF and
IFNDEF directives to assemble code required by one or more
already assembled macros or code segments.

Do not use parentheses in assembler directives. Expressions are evaluated
from left to right, and no one operator takes precedence over anotlier.

ASSEMBLY CODE AND
PROCEDURES
Data is normally transmitted to a Procedure in the form of parameters. The
formal parameter list that is part of the Procedure declaration defines the data
the Procedure expects to receive from the main program or the calling routine.
The main program transmits the actual data in the Actual Parameter List that
accompanies the call to the Procedure.

For example, the Procedure declaration AddXY(X,Y: Real); expects to receive
two real numbers from the calling routine. The main program might call this
procedure with the statement AcklXY(3.5,4);.

KYAN PASCAL V-8

V. ASSEMBLYLANGUAGEPROGRAMMING

If the Procedure is an assembly code routine, it must read the parameters from
the stack which contains the list of parameters passed to the Procedure.

Every time a Procedure is called by another routine, Pascal creates a call frame
on the stack to hold the parameters being passed to the Procedure. The zero
page location Stack Pointer (_SP) and the local variable pointer (_Local) are
used to reference the stack.

The Assembler can identify parameters only by their position in the Stack;
but, since the Assembler cannot locate those values by itself, the programmer
must identify each parameter by telling the Assembler its location in the
Stack. This means that the position of each parameter must be calculated
manually before it is used in an assembly language routine.

To calculate the position of each parameter in the Stack you need to understand
the structure of the stack and the number of bytes used to store different types
of parameters.

THE STACK

When parameters are passed to a Procedure, they are placed in a stack. Each
value entered on the Stack pushes a preceding value down the Stack. It's like
putting pennies in a coin-change holder with a counter. The first penny you
put in is pushed down by the next one, and the counter records how many
pennies you have saved.

If you have saved S pennies, the first one is at the bottom of the coin-holder
and the counter indicates that you have saved S cents. Note that penny number
one is at the bottom of your stack .

The following diagram illustrates this structure.

_ Stack Top
I penny 5_|
I penny 4_1

penny 3_l

Stack Bottom

KYAN PASCAL V-9

V. ASSEMBLY LANGUAGE PROGRAMMING

Ilie Slack passed to the Procedure is identical in structure to the coin holder.
The first parameter passed to the Procedure is located at the bottom of the
stack. The others are pushed on top of it as they are passed to the Procedure.

Examine the following Procedure declaration and the corresponding diagram of
the Stack that would hold the parameters passed to it from the calling routine.
Remember that the Stack is set aside in memory and that _SP is used to keep
track of the current value of the stack pointer.

PROCEDURE StackSample(X,Y,Z: Integer);

The parameter list passed to this Procedure would be stored in the Stack as

<—Stack Pointer (Low Memory)

<~Stack Bottom (High Memory)

The five empty locations at the top of the Stack are used by the computer to
store information about the Stack itself. When using the Stack, however,
these positions must always be included in calculating the position of the
parameters stored in the Stack.

For now, just make sure you understand that the first parameter, X, is stored in
positions #10 and #11, that Y is in positions #8 and #9, and Z in positions #6
and #7. The Least Significant Byte (LSB) is the lower number and the Most
Significant Byte (MSB) is the higher number.

To locate a specific item in the parameter list, calculate how many bytes of
memory separate the Stack pointer from the value you want to locate. Since
Pascal programs and subroutines always declare the parameters before tire body
of the program or subroutine, it is simple to calculate positions of parameters

KYAN PASCAL V-10

V. ASSEMBLY LANGUAGE PROGRAMMING

on (he stack. The only problem with calculating the position of the parameter
is that each type of parameter takes up a different amount of space.

The following list indicates how many bytes of memory are required to store a
type of data.

MEMORY STORAGE ALLOCATION

■IMTATYEE- ■Byies-allohed

I. Real
Integer
Char
Boolean
Pointer

8
2
1
1
2

n. ARRAYfL.n] OF Integer 2*n
ARRAY[l..n] OF Char n
ARRAYfL.n] OF Boolean n

III. Value Parameter (Real) 8
Value Parameter (Integer) 2
Value Parameter (Char, Boolean) 1
Value Parameter

(ARRAYf 1 ..n] OF Integer) 2*n
Value Parameter

(ARRAYfL.n] OF Char or Boolean) n

IV. Variable Parameter (Address of
parameter) (Ail types) 2

Make sure you understand the amount of memory required by each data type
before you try calculating positions of parameters in the Stack. There ate four
groups of data types. The first consists of the predefined data types. The
second group consists of ARRAYS of the predefined types. The third contains
the data types when they are passed as Values to a Procedure or Function. The
last indicates the size allotted for any Variable passed to a Procedure or
function.

If a Procedure or Function uses a Real number, that number takes up 8 bytes
of memory. If a Procedure or Function uses an ARRAY [1..10| OF Integer,

KYAN PASCAL V 11

V. ASSEMBLY LANGUAGE PROGRAMMING

the array uses 20 bytes of memory (2*n). If the Procedure or Function is
passed an Integer Value in the Parameter list, the Value requires 2 bytes of
memory. If a Procedure or Function is passed any type of Variable, each
Variable uses 2 bytes of memory.

Storage of Real Numbers

Kyan Pascal stores Real numbers as Binary Coded Decimals (BCD) and allots
them 8 bytes of storage. The 8 bits contained in each byte are divided into 2
parts which are called NIBBLES. The part with bits 0 through 3 is called the
Low Order Nibble. The part with bits 4 through 7 is called the High Order
Nibble. For example:

(1 Byte = 8 Bits)
|<--
7 6 5 4 3 2 1 0
|<-High Order Nibble--1-Low Order Nibble->|

When Real numbers are stored, they are organized as follows:

Bvte Low Order Nibble High Order Nibble

0 1st significant digit Bit 4: sign of exponent
0=+/1=-

Bit 5: sign of number
0-+/1--

Bits 6 & 7: always zero

1 3rd significant digit 2nd significant digit

2 5th •t u 4th
3 7th u it 6th
4 9th •1 m 8th

5 11th •t it 10th
6 13th •I •• 12th

7 2nd digit of exponent 1st digit of exponent

Hie decimal point for the Real number is automatically placed between 0 and
1.

KYAN PASCAL V-12

V. ASSEMBLY LANGUAGE PROGRAMMING

A Sample Stack Calculation

A sample stack calculation should clarify the concepts explained above. The
following Procedure receives an Integer from the calling routine. Imagine that
the Procedure is simply going to double that value.

PROCEDURE Double(Numben Integer);

The calling routine might contain a statement like Double(lO); If the
Procedure contains assembly code, you must read the value passed to Number
by calculating Number's position in the Stack. After pushing the Number on
the Stack, 5 more bytes are added which contain information for using the call
frame. Therefore, to calculate the location of Number, add 5 to the position of
the Stack Pointer.

If the Procedure Double used 2 Values, its declaration would be

PROCEDURE Double(Numberl, Number2: Integer);

The Stack containing the Parameter Values Numberl and Number2 would look
like

1.
2.
3.
4.
5.
6.
7.
8.
9.

__Nitmber2(msb
Numberl (lsb)_
Nmnbgrlfmsb)

Top of Stack

Bottom of Stack

Since you know that Numberl and Number2 are Integers and that Integers
takes 2 bytes of memory, you should be able to calculate that the least
significant byte (lsb) of Numberl is 8 bytes brom the top of the Stack. The
lsb of Number2 is 6 bytes from the top of the Stack.

RULE: Each parameter is entered in the Stack as it is encountered.
Successive parameters are put on top of previous parameters.

KYAN PASCAL V-13

V. ASSEMBLY LANGUAGE PROGRAMMING

The Stack Pointer and the Label "LOCAL"

You may have wondered about the 5 bytes pushed on the top of the Stack.
The first two are the subroutine return linkage. They contain the address that
points to the memory location with the next executable instruction. The next
2 bytes contain the address of the previous stack pointer. The last byte is the
lexical level of the current procedure or function.

The Kyan Assembler uses 2 predefined labels, _SP and Local, which always
contain the address of the current and previous Variables Stacks. A third
predefined label, T, contains the address of temporary zero page memory that
the assembly routine may use as workspace. There can be up to 15 temporary
bytes beginning at location _T and continuing to _T+14.

The absolute locations of these labels are

SP EQU 4
LOCAL EQU 2

~T EQU 16

These labels can be used by the assembly routine to access values placed on

the Stack.

ASSEMBLY LANGUAGE PROCEDURES AND
VALUE PARAMETERS

To access Value Parameters passed to an assembly code Procedure, determine
the offset from the Stack Pointer to the value parameter being passed. First,
load the accumulator with the least significant byte of the Value and store it in
workspace T. Then repeat the process to get and store the most significant
byte of the Value. Repeat the process for each Value you want to access. You
must access Values by loading their least and then most significant bytes
because the 6502 processor can only handle one 8-bit piece of data at a time.

The following Procedure is passed three integer parameters by a calling
routine. It also uses two integer variables that are local to the Procedure. I he
assembly routine accesses the third Value Parameter, C, and loads it into _T
and T+l.

KYAN PASCAL V-14

V. ASSEMBLY LANGUAGE PROGRAMME Hi

PROCEDURE Access(A, B, C: Integer);
VAR

m,n : Integer;
BEGIN
#a

LDY #9 (* the offset from SP to "C" *)
LDA (_SP),Y
STA T
1NY
LDA (_SP),Y
ST A T+l

END;
*++*****+*+***4^*4^,^************************+*+*♦+♦++

COMMENTS

1. Three Integer values, A, B, and C are passed to the Procedure by the calling
routine.

2. The Procedure contains two local integer values, in and n.

3. The Parameters Stack has the following structure.

n (lsb)
n (msb)
m (lsb)
m (msb)
C (lsb)
C (msb)
B (lsb)
B (msb)
A (lsb)
A (msb)

LOCAL ~>

Top Of Stack

<-- Contents of
<-- LOCAL

Bottom Of Stack

KYAN PASCAL V-15

V. ASSEMBLY LANGUAGE PROGRAMMING

4. Since all of the Values and Local variables are Integers, each element uses 2
bytes of memory. (Refer to the List in the previous section for memory size
used by the different data types.)

5. The top 5 stack positions contain the Stack Pointer and the address of the
Bottom of the Stack.

6. The offset from _SP to C is the total of the 5 bytes at the top of the Stack,
plus 2 bytes each for the integer variable, m and n; i.e., 9 bytes.

7. The statement LDY#9 loads the offset value to C in the Y register.

8. The statement LDA (_SP),Y uses the offset from the _SP to load the least
significant byte of the Integer Value being passed, i.e. C, into the
accumulator.

9. That value is then stored in the temporary workspace, _T, for use within the
Procedure.

10. Finally, the Y register is incremented and then used to provide the offset to
the most significant byte of the Value C.

The general rule for calculating the position of a Value
Parameter in the Stack is

Offset (from _SP) = 5 bytes + bytes of memory used by
values above the Value desired

The following example shows another example of passing parameters by value
and accounting for local variable definitions.

Procedure (x: integer);
Var b: boolean;
BEGIN

if A

END;

KYAN PASCAL V-16

V. ASSEMBLY LANGUAGE PROGRAMMING

_SP +5 Add 5 bytes for overhead
+ 1 Add 1 byte for local boolean, b
+6 LSBofX
+7 MSB of X

The number of bytes used for the local variables must be added to calculate the
offset from _SP for a passed parameter.

LOCAL

You can also use the Label LOCAL to calculate the position of a Value
Parameter in the Stack. Remember that the predefined, absolute value of
LOCAL is 2. LOCAL is the address of the bottom of the stack.

i

The formula for calculating the position of a Value Parameter using the Label
LOCAL is

Offset(froin JLOCAL) = Bytes used by the desired Value
+
Bytes below theValue on Stack

The offset must be subtracted from the value of _IjOCAL to reference the
parameter.

Passing Value Parameters: Summary

So far, we have discussed only Values passed in the Parameter list. Assembly
code, as we have noted, cannot identify the Pascal concept of SCOPE that is
usually involved with Parameters.

Consequently, when a Pascal routine calls a subroutine, it passes the values in
a Stack. Since all Pascal programs and subroutines list the declaration before
the body statements, the position of the passed values is easily calculated.

A word or caution: never try to calculate the stack location of values based
upon their relative positions in the program. That stack only contains the
values passed to the subroutine. It cannot be used to access other values or
variables used by the main program.

KYAN PASCAL V-17

V. ASSEMBLY LANGUAGE PROGRAMMING

PROCEDURES AND VARIABLE
PARAMETERS

An Assembly language Procedure reads Variable parameters from die stack in
much the same way that it reads Values. The only difference is that when
Variables are passed to a subroutine, the Stack contains only the address of the
Variables being passed. In effect, the position in the stack that contains the
Variable actually contains a pointer to that variable. Since all pointers require
2 bytes of memory, all Variable parameters in the Stack require 2 bytes.

Once the Variable s address is determined, use the temporary workspace to store
the actual variable. If data manipulations within the Procedure change the
value of the Variable, the new value can be stored back into memory by
referencing the address stored in the temporary workspace.

The following sample procedure expects to receive the identifiers, or names, of
3 integer Variables. It then reads the address of Variable C, which is the third
Variable in the Parameter List Once the address is identified, the actual value
of the Variable is read. The calling routine might execute a command such as

XYZ(Length, Width, Height);

Die 3 Variables will be read into the Parameter Stack as A, B, and C.
**************************♦*%♦***♦♦*♦**♦♦♦****+*+**++++*
PROCEDURE XYZ(Var A. B, C : Integer);

BEGIN
#A

LDY #5
LDA (SP),Y
STA T
INY
LDA (SP),Y
STA T+l
LDY #0
LDA (T),Y
STA

(♦ Load offset to C ♦)
(♦ Get LSB of ADDRESS of C *)
(♦ Save ADDRESS in _T ♦)

(♦ Get MSB of ADDRESS of C *)
(* Save ADDRESS in _T+1 *)

(♦Get LSB of C ♦)

END;

KYAN PASCAL V-18

V. ASSEMBLY LANGUAGE PROGRAMMING

COMMENTS

1. Since (is ilie last Variable passed to die Stack, it is 5 bytes from the top
of die stack.

2. LDY it5 sets the offset in the Y register.

3. The accumulator is then loaded with the least significant byte of the address
that refers to the Variable C.

4. The LSB of C's address is loaded into the temporary workspace, T.

5. The Y register is incremented, and the most significant byte of C’s address
is read.

6. The MSB of C's address is then read and stored in _T+1.

7. Once the address of C lias been determined, the value addressed by T is
loaded into the accumulator.

The offset to C is calculated in the usual manner:

+ 5 bytes offset from the Stack Pointer
±.Q local Variables

5 bytes total offset to LSB of C’s address

Hie offset to the MSB of C is 6.

ASSEMBLER ROUTINES AND FUNCTIONS

Like a Procedure, a Function also receives data in the parameter list. It
transmits the value calculated by the Function, however, in a slightly different
manner. The manner is determined by the structure of the Function
subroutine.

Remember that a Function receives data in the Parameter List, and then, after
performing calculations that may include local variables, stores the resultant
value in the location identified by the Function's name. The Parameter Stack
for a Function, therefore, contains the Function's identifier.

K YAN PASCAL V-19

V ASSEMBLY LANGUAGE PRtXJRAMMING

As a rule, the Function's identifier is placed on the Parameter Stack alter the
passed parameters and before the local variables.

To calculate the position of the Function's identifier, use the same memory
allotment guidelines that you used for Procedures.

The following sample Function receives an Integer Value from the calling
routine and returns an Integer which is identified by the Function's identifier.
It also uses a local variable which is also an Integer.

**

FUNCTION Test(A: Integer): Integer;

VAR
B: Integer;

BEGIN
Test := 0; (* Assignment required for ISO compatibility *)

♦♦******♦*******♦***+******♦******♦**♦******♦***

The Stack for this Function is diagrammed below. It is more detailed than
previous Stack illustrations because it illustrates the byte structure of each
Parameter item. Remember that the Function's identifier is passed to the Stack
after the parameters and before the local variables.

sp ~> L—.

d
i_
i_

<—

_l

_L

Top of Stack
<— Lexical Level
<- LSB of old SP
<~ MSB of old SP
<~ LSB of RETURN
<~ MSB of RETURN

i_ B ._ _J <~ LSB of B

i_ B _l MSB of B

L_ Test _i <~ LSB of Function Identifier

1_ Test <- MSB of Function Identifier

1_ A _l <~ LSB of A

1_
LOCAL -->

A
<—

<~ MSB of A
Bottom Of Stack

KYAN PASCAL V-20

V. ASSEMBLY LANGUAGE PROGRAMMING

A Sample Function in Assembly Language

The following Function, XYZ, is passed three Integer Values and returns a
Boolean value with the Function's name. Note that a Boolean requires only I
byte of memory, so locations on the Suck are calculated accordingly. It also
declares a local Variable, X.

The code in the sample Function reads the Value of B. After performing a
series of undetermined calculations, it theoretically determines a Boolean value.
That value is stored in the accumulator. The accumulator is then stored in the
Stack location associated with the Function's identifier.

NOTE: Conformance to the ISO standard dictates that the compiler return an
error whenever it encounters a FUNCTION written entirely in assembly
language. This occurs because ISO requires any function identifier to be
explicitly assigned a return value. For this reason, a dummy assignment using
the function identifier should be included as the first line of a function.

*******************♦*********♦******♦****♦*♦+♦♦♦**♦♦+*+♦♦****

FUNCTION XYZ(A, B, C: Integer): Boolean;

VAR
X: Integer;

BEGIN
XYZ := TRUE; (* Required for ISO compatibility *)

#a
LDY #10
LDA (SP),Y
STA _T
INY
LDA (SP),Y
STA _Tt-l

LDA
LDY #7
STA (_SP),Y

C

(♦

(*

(*
<*

The offset to B *)
(* Put LSB of B in Accumulator *)

Store LSB of B in workspace *)

(* Put MSB of B in Accumulator *)
Put MSB of B in workspace *)

Put Boolean value in Accumulator*)
The offset to Function Identifier*)

(* Put Boolean value in Identifier, XYZ*)

END;

KYAN PASCAL V-21

V. ASSEMBLY LANGUAGE PROGRAMMING

COMMENTS

1. The FUNCTION XYZ is assigned a dummy value to conform to ISO
lequirement.

2. The offset from the Stack Pointer to B is 10:

+5 bytes offset to first stack parameter
+2 local Integer Variable
+1 Boolean XYZ (the Function identifier)
±2 Integer Variable C
10 bytes total offset to B

3. The program then reads the least and most significant bytes of the Value B,
storing each in the temporary workspaces, _T and _T+1.

4. Finally, a Boolean value is loaded into the accumulator. That value is then
loaded into the Stack location reserved for the Function Identifier, XYZ, which
is offset from the Stack Pointer by 7 bytes.

+5 bytes offset to first stack parameter
L2 local Integer Variable X

7 bytes total offset to XYZ

Remember that the only difference between Functions and Procedures is that
the Function Identifier is placed on the Parameter Stack. It is located after the
passed parameters and before the local variables.

MISCELLANEOUS OPERATIONS

The following subprograms illustrate how to use assembly code to Peek and
Poke memory locations. A Poke statement is a Procedure since it enters a
value into a specific memory location. A Peek statement is a Function since
it returns the value determined by the addressed memory location.

TORE

The following Procedure Pokes the value, Val, into memory location, Loc.
The rules for locating parameters on the Stack indicate that Loc is offset from
the Stack Pointer by 7 bytes and that Val is offset by 5 bytes. The Procedure
first reads the Parameter List to determine the memory location to be poked. It

KYAN PASCAL V-22

V. ASSEMBLY LANGUAGE PROGRAMMING

then reads the value to be entered. Finally, after clearing the Y register, it
stores the value to be poked into the address contained in _T.

*********** + *+ + * + **** + + *******++* + ** + ** + + ****** + .*<* + * + * + + + * +

PROCEDURE Poke(Loc, Val: Integer);

BEGIN

LDY #7
LDA (_SP),Y
STA T
INY
LDA (_SP),Y
STA _T+1
LDY #5
LDA (_SP),Y
LDY #0
STA (_T),Y

; Offset from _SP to Loc;
;Get LSB of Loc;
; Save LSB of Loc;

; Get MSB of Loc;
; Save MSB of Loc;
; Offset from _SP to Val;

; Load Val into Accumulator;
; Clear Y register;
; Store the value in the Accumulator
; in memory location _T;

END;
*4^4‘************************************4‘********4‘*******4‘*

PEEK

The Peek statement is actually a Function since it returns a single value that is
based upon the Location parameter which indicates the memory address to be
read

That value is stored in the memory location reserved for the Function’s
identifier.

KYAN PASCAL V 21

V. ASSEMBLY LANGUAGE PROGRAMMING

The following assembly code subroutine returns the value contained in the
memory location, Loc.

***♦**♦**
FUNCTION Peek (Loc: Integer): Integer;

BEGIN
Peek := 0;

#a
LDY #7 ; Offset to Loc ;
LDA (SP),Y ; Get LSB of Loc;
STA T ; Save LSB of Loc in workspace;
INY
LDA (SP),Y ; Get MSB of Loc;
STA T+l ; Save MSB of Loc in workspace;
LDY #0 ; Clear Y register;
LDA (_T),Y ; Load Accumulator with the

; Address being Peeked;
LDY #5 ; Offset to Function Identifier
STA (SP),Y ; Store contents of Accumulator

; in LSB of Function Identifier
INY
LDA #0 ; Load Accumulator with 0 for MSB

of return integer
STA (_SP),Y ; Store contents of Accumulator;

; in MSB of Function Identifier;

END;
*****♦♦****♦**♦*♦*♦*+*♦♦**♦♦**♦*♦*♦***♦**♦+***♦♦♦♦****♦*♦♦*

COMMENTS

1. Peek is the reverse of Poke.

2. Read and store the memory location you want to examine in temporary
workspace.

3. Read the memory location of the Function Identifier and write the value
stored in the temporary workspace into the Function Identifier's location.

4. Note that Peek returns an integer and Poke writes to memory only a byte.

KYAN PASCAL V-24

V. ASSEMBLY LANGUAGE PROGRAMMING

Converting Assembly Language Routines from
Kyan Pascal (Version 1.-)

Assembly language routines written for Version 1.- of Kyan Pascal must be
converted to ran under the new compiler environment The following changes
are required to your old routines.

1. The local variable stack now begins allocating storage at SP+5 instead of
SP+3.

2. The predefined labels, T, SP, and LOCAL are now redefined as _T, SP,
and LOCAL. Note the underscore character preceding the label.

3. The new compiler uses the underscore convention to distinguish compiler-
assembler system labels from user labels. Do not use the underscore in
your own labels.

CONCLUSION
If you know Assembly Language programming, you should now be able to
include Assembler routines in your Pascal programs. You should also have
learned how to pass data items through parameter lists.

Since all data items are similar to Values or Variables, only those types of data
were covered in this section. Values may be passed by any of the data types
itemized in the list at the beginning of this section. Variables are always put
on the Parameter Stack in terms of their pointers -i.e. they always occupy 2
bytes of memory allocation.

KYAN PASCAL V-25

V. ASSEMBLY LANGUAGE PROGRAMMING

(Tl)is page left blank for your notes.)

KYAN PASCAL V-26

VI WORKING WITH KIX

OVERVIEW
This manual has explained Kyan Pascal in terms of the file procedures used by
the DOS 2.5 disk operating system. We assumed that most users were
familiar with it, and we felt that the fewer issues forced upon the beginning
user, the easier it would be to learn Pascal. Actually, Kyan Pascal uses the
KIX programming environment KIX gives you the functionality of DOS 2.5
from a command line prompt thereby eliminating the time required to use the
DOS 2.5 menu.

When you boot Kyan Pascal, the KIX prompt % appears and awaits your
commands. One of the powerful features of KIX is that you can issue KIX
commands whenever you have the KIX prompt. This eliminates the need to
access the DOS 2.5 menu whenever you want to use a file management
function.

This section presents an overview of the KIX system. It then explains the
different groups of KIX commands.

* Device Control
* Listing Disk Directories and File contents
* Manipulating Files, Devices, and Disks
* Searching Files and Devices

NOTE: You can enter a KIX command whenever you have the % prompt.

KYAN PASCAL VI - 1

KIX FILE MANAGEMENT SYSTEM

THE KIX ENVIRONMENT
When you boot your Kyan Pascal disk, KIX is automatically loaded into
memory. It stays there throughout the programming session. It assigns Dl:
as the default device so that you can specify filenames without device prefixes.
KIX allows you to change this default device using die CD KIX command.

When you are writing and running programs using the KIX system, it is not
always necessary to specify a device name before a Kyan system filename (i.e.,
ED, PC, AS, STDLIB.S, LIB). KIX automatically searches for the Kyan files
in the devices on line. First, it looks in the RAMdisk; if the file isn't there,
KIX looks in the current working directory (e.g., "D2:"). If not found there,
KIX looks in the system device (e.g., Dl:). If die file is not found in any of
these devices, KIX will return an error message. Thus you don't have to worry
about specifying correct device names each time you call a system file.

KIX Command Structure

Each KIX command lias die same command line format:

% comiuand_[-optioiis]_[Device: Fileuame]

At the KIX prompt (%), you can enter any KIX command. KIX also allows
you to use both upper and lower case letters.

Dcvicc:Filenamcs

To access a file, identify its device prefix and its filename. KIX does not mind
if you use lower case characters. It will convert these to upper case
automatically. As previously mentioned, you do not always need to use the
device name. KIX will automatically assume the default device if no other is
specified. Other than these exceptions (for prefixes and lower case characters),
KIX has the same filename rules that apply to DOS 2.5.

KYAN PASCAL VI - 2

KIX FILE MANAGEMENT SYSTEM

DEVICE CONTROL

There are two KIX commands that are used for device control.

PWD Print Working Device
CD Change Device

PWD: Print Working Device

PWD, the Print Working Device command, prints the name of the current
default device on the screen. It is extremely useful when you can’t remember

where you are in the system's structure.

KIX automatically assigns Dl: as the default device when Kyan Pascal is
booted. Thus, if you invoke the PWD command when you first boot the
system, it will print

Dl:

CD: Change Device

The Change Device command lets you change from one default device to
another.

For example,

% CD_D8: Sets the system default device to device D8:, the
RAMdisk. If you execute a PWD command now,
D8: will be shown as the default device.

KYAN PASCAL VI - 3

K1X FILE MANAGEMENT SYSTEM

LISTING DISK DIRECTORIES AND
FILE CONTENTS
Whenever you have the K1X prompt (%), you can execute two different
commands that return information about the device or file you are working
with. They are

LS List Directory
CAT Concatenate

LS: List Directory

The LS command lists all of the files that reside in a particular disk’s directory
and the number of free sectors on that disk. The following notes apply to the

LS command.

o Wildcard characters are sup|x)rted, so you can limit the list to
specific Hies.

o If you do not specify a device, KIX will assume the default device,
o Redirection to an output device other than the screen is

supported with the > symbol.

Some examples of LS are:

LSJD1: List all files on drive 1 to the screen.

LS List all files on the default device to the screen.

LS_D2:*.Pj>P Direct a listing of all files with a ”.P" extension
on drive 2 to the printer.

LS_D8:_>dir.lst Direct a listing of all files on drive 8 (RAMdisk)
to a file on the default device named D1R.LST.

KYAN PASCAL VI - 4

K1X FILE MANAGEMENT SYSTEM

CAT: Concatenate

The CAT command lets you print the contents of a file and/or copy many files
into a single file.

For example,

CAT_d2:myfile.p

displays the contents of MYFILE.P on the screen.

Normally, CAT prints to the screen but you can redirect output to other
devices using the > symbol. For example,

CAT_dl:myfile.p_>p:

will send the contents of MYFILE to the printer.

Another example,

CAT_myfile.p_>d2:myfile.p

will send MYFILE.P from the default device to drive 2, using the same
filename.

CAT can also be used to merge a number of small files into a larger file. Hie
following example merges three chapter files into one large file named Book.

CAT_Chaptl_Chapt2_Chapt3 >d2:Book

KYAN PASCAL VI - 5

KIX FILE MANAGEMENT SYSTEM

MANIPULATING FILES, DEVICES,
AND DISKS
These commands provide you with an alternative to the file management

functions found on the DOS 2.5 menu.

CP Copies files
MV Renames files
RM Removes files
CHMOD Changes file protection status
FORMAT Formats a disk
SD Screen Dump

The functions of these commands are obvious. The important point to
remember is that you must use valid filenames to identify the source and

destination files.

CP: Copy

The copy command produces a replica of the source file in the destination file.

The syntax is:

CP_Source_Destination

Here are some examples ofcopy commands.

CP myfile.p_d2:xyz.p Copy MYFILE.P from the default
device to drive 2; name the new file

XYZ.

CP dl:*.S d8:StdLib.S Copy the first file encountered that has a
”.S" extension to D8: (the RAMdisk) and

give it a new name of StdLib.S.

CP d8:MyProg.P dl:MyProg.P Copy MyProg.P (a Pascal source
code file) from drive 8 to drive 1.

KYAN PASCAL VI - 6

KIX FILE MANAGEMENT SYSTEM

MV: Move

The Move command allows you to rename a file. When a file is renamed, the
original file is deleted.

The syntax of the Move command is:

MV_old.nam_new.nam

Here are two examples of the Move command:

MV_d2:myfiIe_yourprog Changes the name MYFILE on drive 2
to YOURPROG.

M V_*.p *.txt Uses a wildcard to replace the H.P"
extension on all files on the default
device with a M.TXT' extension.

RM: Remove

The remove command deletes files.

The syntax of the Remove command is:

RM_De vice: Filename

Some examples of the Remove command are:

RM_d2:yourprog Removes the file YOURPROG from drive 2.

RMmyfile.* Uses a wildcard to remove all files named
MYFILE, regardless of their extensions, from the
default device.

KYAN PASCAL VI - 7

KIX FILE MANAGEMENT SYSTEM

CHMOD: Change Protection Mode

Files can be locked so that they cannot be written to. Conversely, locked filed
can be unlocked so that they can be written to. The CHMOD command is
used to lock and unlock files. It locks files when followed by a -W extension
and unlocks files when followed by a +W extension

The following examples demonstrate the use of CHMOD.

CIIMOD -W myfile Locks the file MYFILE on the default
device.

CIIMOD_+W_d8:*.p Unlocks all files with a ".P" extension on
drive 8.

FORMAT: Format A Blank Disk

The Format command lets you format a disk in either single or enhanced
density while still remaining in the system. It is a valuable tool when you
suddenly find yourself in need of a formatted disk. The syntax of the
FORMAT command is:

FORMAT_(device number)_(density)

where the density parameter is S for single and D for enhanced.

Some examples are:

FORMAT 2 S Format drive 2 disk in single density.

FORM AT_1_D Format drive l.in enhanced density

Always be sure to include a space between the device number and the density
parameter.

Note: It is not necessary to format the RAMdisk (D8:).

KYAN PASCAL VI - 8

KIX FILE MANAGEMENT SYSTEM

SD: Screen Dump

The screen dump command outputs the current screen display to the printer. If
no printer is present, the command is ignored.

Wildcards

KIX supports an Asterisk (*) wildcard that can be used to replace strings and
characters in filenames. It can represent any string of characters, including a
null or empty string.

This wildcard makes KIX commands even more powerful. For example, if
you can't remember the exact name of a file, you can use a wildcard in the
filename to help you find it.

Exclamation (!) Command

Typing an exclamation point ("!") and <RETURN> at the KIX prompt will
re-execute the last command or program entered. This command is useful for
running a program more than once without having to reload it.

Returning to KIX from DOS 2.5

When you are at the DOS 2.5 menu, you may want to return to the KIX
environment. You can do this by Using the DOS "L" option to Binary load
the ”AutoRun.SYS" from Side 1 of your Kyan Pascal disk.

KYAN PASCAL VI 9

APPENDIX A

GUIDE TO ISO
STANDARD PASCAL

DATA TYPES

POINTERS

STRUCTURED:

SIMPLE:

Array, File, Set, Record

Real
Ordinal
..Enumerated
..Predefined (Boolean, Integer, Char)
..Subrange

STANDARD IDENTIFIERS

CONSTANTS: False, Maxlnt, True

TYPES:

VARIABLES:

FUNCTIONS:

PROCEDURES:

Boolean, Char, Integer, Real, Text

Input, Output

Abs, ArcTan, Chr, Cos, Eof, Eoln, Exp,
Ln, Odd, Ord, Pred, Round, Sin, Sqr,
Sqrt, Succ, Trunc

Dispose, Get, New, Pack, Page, Put,
Read, Readln, Reset, Rewrite, Unpack,
Write, Writeln

Appendix A - 1

GUIDE TO ISO STANDARD PASCAL

TABLE OF SYMBOLS

SPECIAL SYMBOLS

+ - * / *

< > <= >=* <>
. > • 1 I=*

() [] 1
.. (* *) { }

WORD SYMBOLS (RESERVED WORDS)

and end nil set
array file not then
begin for of to
case function or type
const goto packed until
div if procedure var
do in program while
downto label record with
else mod repeat

DIRECTIVE forward

Appendix A - 2

APPENDIX B

TECHNICAL
SPECIFICATIONS

Runtime Memory Man

Programs are loaded at $2000 and relocated if a graphics mode is used.
See Chapter III for more information on program relocation for graphics.

0 $ 7FF

$ 800 $1FFF

$2000 $8BFF

$8C00 $BBFF

$BC00 $BFFF

scooo $FFFF

Technical Data

OPERATING SYSTEM:
INTEGER RANGE:
REAL RANGE:
CHARACTERS:

SET:
POINTER:
CUT BUFFER SIZE:
BCD MATH PRECISION:
MIN. RAM REQUIRED:
MAX IDENTIFIER LENGTH:

Atari system overhead

File Management System

User Program

Kyan Runtime Library (LIB)

Screen Area and display list

System ROM

nnc 9 c

-32768 to +32767
-1.00E+99 to +1.00E+99
ASCII character set with
corresponding ordinal values
Maximum 256 members
Represented by 16-bit integers
2K
13 digits
48 K
256 characters

Appendix B - 1

APPENDIX C

COMPILER ERROR
MESSAGES

NUMBER _DESCRIPTION

1 error in simple type
2 identifier expected
3 Program' expected
4 y expected

expected 5
6 illegal symbol
7 error in parameter list
8 'of expected
9 '(' expected
10 error in type
11 '[' expected

T expected 12
13 'end' expected
14 V expected
15 integer expected
16 expected
17 Tjegin' expected
18 error in declaration part
19 error in field-list
20 7 expected
21 '*' expected

47 Function cannot return a structure in ISO Pascal
50 error in constant
51 ':=' expected
52 'then' expected
53 'until' expected
54 'do' expected
55 'toV'downto' expected
56 'if expected
57 'file' expected

Appendix C - 1

COMPILER ERROR MESSAGES

58 error in factor
59 error in variable

101 identifier declared twice
102 low bound exceeds high bound
103 identifier is not of appropriate class
104 identifier not declared
105 sign not allowed
106 number expected
107 incompatible subrange types
108 file not allowed here
109 type must not be real
110 tagfield type must be scalar or subrange
111 incompatible with tagfield type
112 index type must not be real
113 index type must be scalar or subrange
114 base type must not be real
115 base type must be scalar or subrange
116 error in type of standard procedure parameter
117 unsatisfied forward reference
118 forward reference type identifier in

variable declaration
119 forward declared; repetition of parameter

list not allowed
120 function result type must be scalar,

subrange, or pointer
121 file value parameter not allowed
122 forward declared function; repetition of

result type not allowed
123 missing result type in function declaration
124 F-format for real only
125 error in type of standard function parameter
126 number of parameters does not agree with

declaration
127 illegal parameter substitution
128 result type of parameter function does not

agree with declaration
129 type conflict of operands
130 expression is not of set type
131 test on equality allowed only
132 strict inclusion not allowed
133 file comparison not allowed

Appendix C - 2

COMPILER ERROR MESSAGES

134 illegal type operands
135 type of operand must be Boolean
136 set element type must be scalar or subrange
137 set element types not compatible
138 type of variable is not array
139 index type is not compatible with declaration
140 type of variable is not record
141 type of variable must be file or pointer
142 illegal parameter substitution
143 illegal type of loop control variable
144 illegal type of expression
145 type conflict
146 assignment of files not allowed
147 label type incompatible with selecting expression
148 subrange bounds must be scalar
149 index type must not be integer
150 assignment to standard function is not allowed
151 assignment to formal function is not allowed
152 no such field in this record
153 type enor in read
154 actual parameter must be a variable
155 control variable must not be declared on

intermediate level
156 multidefined case label
157 too many cases in case statement
158 missing corresponding variant declaration
159 real or string tagfields not allowed
160 previous declaration was not forward
161 again forward declared
162 parameter size must be constant
163 missing variant in declaration
164 substitution of standard proc/func not allowed
165 mulddefined label
166 mulddeclared label
167 undelared label
168 undefined label
169 error in base set
170 value parameter expected
171 standard file was redeclared
172 undeclared external file
173 Fortan procedure or function expected
174 Pascal procedure or function expected

Appendix C - 3

COMPILER ERROR MESSAGES

175 missing file "input" in program heading
176 missing file "output" in program heading
177 assignment to function identifier not allowed here
178 mulddefined record variant
179 X-opt of actual proc/func does not match

formal declaration
180 control variable must not be formal
181 constant part of address out of range

201 error in real constant: digit expected
202 string constant must not exceed source line
203 integer constant exceeds range
204 8 or 9 in octal number
205 zero string not allowed
206 integer part of real constant exceeds range

250 too many nested scopes of identifiers
251 too many nested procedures and/or functions
252 too many forward references of procedure entries
253 procedure too long
254 too many long constants in this procedure
255 too many errors on this source line
256 too many external references
257 too many externals
258 too many local files
259 expression too complicated
260 too many exit labels

300 division by zero
301 no case provided for this value
302 index expression out of bounds
303 value to be assigned is out of bounds
304 element expression out of range

398 implementation restriction
399 variable dimension arrays not implemented

Appendix C - 4

APPENDIX D

DOS 2.5 ERROR
MESSAGES

Show below are the know CIO STATUS BYTE values.

NUMBER DESCRIPTION

01 (001) Operation complete (No errors)

80 (128) [BREAK] key abort
81 (129) IOCB already in use (OPEN)
82 (130) Non-existent device
83 (131) Opened for write only
84 (132) Invalid command
85 (133) Device or file not open
86 (134) Invalid IOCB number (Y reg only)
87 (135) Opened for read only
88 (136) End of file
89 (137) Truncated record
8A (138) Device timeout (doesn’t respond)
8B (139) Device NAK
8C (140) Serial bus input framing error
8D (141) Cursor out of range
8E (142) Serial bus data frame overrun error
8F (143) Serial bus data frame checksum error
90 (144) Device done error
91 (145) Bad screen mode
92 (146) Function not supported by handler
93 (147) Insufficient memory for screen mode

Appendix D - 1

DOS 2.5 ERROR MESSAGES

NUMBER _DESCRIPTION

AO (160) Disk drive # error
A1 (161) Too many open disk files
A2 (162) Disk full
A3 (163) Fatal disk I/O error
A4 (164) Internal file # mismatch
A5 (165) File name error
A6 (166) Point data length error
A7 (167) File locked
A8 (168) Command invalid for disk
A9 (169) Directory full (64 files)
AA (170) File not found
AB (171) Point invalid

Appendix D - 2

APPENDIX E

ASSEMBLER ERROR
MESSAGES

NUMBER _DESCRIPTION

S.mlax_ Errors
1 Address Error
2 Cannot Include File
3 Format Error
4 Forward Reference in Expression
5 Illegal Use of Conditional Assembly Directive before or
6 Misplaced Else Operator
7 Identifier Expected as Operand
8 Label Required
9 Multiply Defined Symbol
10 Nesting Error
11 Invalid Op-Code
12 Phase Error
13 Questionable Syntax
14 Undefined Symbol
15 Illegal Argument for Conditional Assembly
16 Symbol not in Macro Call Parameter List
17 Directive Requires "on” or "off"

liataL-AssciablcL. Errors
20 Unknown Error
21 Symbol Table Overflow
22 Lost Label
23 End of File During Macro Definition
24 End of File During Conditional Assembly

Appendix E - 1

APPENDIX F

RUNTIME ERROR
MESSAGES

number

1

2

3

4

5

6

7

PESCB1KT1QM_

Case Index Error

Array Index Error

Input Error

DOS Error

Range Error

Arithmetic Overflow

End of File

Appendix F - 1

INDEX

A

Actual Parameter IV-74
Addition 1V-27
Address III 24, IV-156
Argument IV-77
ARRAY IV-95
..Copy IV-104
..Multidimensional IV-98
..OF Records IV-118
Assembler V-l

Directives V-4
Options V-2
Routine V-4,20

Assignment operator IV-25
Asterisk VI-9
AutoRun DI-23

B

BEGIN/END IV-14
Block Commands n-6
Body IV-14
Boolean IV-49
Byte IV-12

Compiler Options 111-4
Concat III 14
Conditional 1V-26
Configuration 1-9
Constant IV-15
CONST IV-14
Copy 1-6, VI-6
Copy Protection vii
Copyright V

CP VI-15
Cursor control II-5
Cursor Position 111-17
Cut Buffer II-6

D

Data types, Predefined
..ARRAY IV-40
..BOOLEAN IV-49
..CHAR IV-40
..INTEGER IV-31
..REAL IV-31
..VAR IV-16
Data types. User-defined
..Record IV-113
..Scalar IV-59

C

CASE statement IV-62
CAT VI-5
CD VI-3
Chaiacter data type IV-40
..ARRAYS OF IV-41
..Strings IV42
Chain 111-19
Char IV-37
CHMOD VI-8
CHR IV-46
Color 1(1-16
Comment IV-9
Compiler III-l

..String IV-37
Declaration IV-8,67,77,95
Decrement IV-34
Delete 1-7, II-6
Difference IV-130
Directory Control VI-6
Disk Density 1-2
DISPOSE IV-166
Distortion IK-18
DIV IV-53
Division 1V-27
DO IV-34
DOS 2.5 1-1
DRAWTO 111-16
Duplicating 1-4

INDEX - 1

INDEX

E Global IV-83
GOTO IV-93

EDITOR hi GoTo Line No. II-11

Element
..OF ARRAY IV-96 H
..OF SET IV-127
EOF IV-139 Heap IV-162
EOLN IV-109 Hue HI-16
Error Messages III-6
..Compiler App - C I
..DOS 2.5 App - D
..Assembler App - E Identifier IV-14, 142
..Runtime App - F IF conditions IV-26
Executable File V-3 IN IV-129

INCLUDE IH-9
F Index 111 13, IV-100

INPUT IV-16
File IV-135 Insert File 11-10
creating II-3 INTEGER IV-32

..defined VII-29 Intersection IV-130
editing II-4 ISO PASCAL ix, App- A

..management IV-146

..names 1-2,. V-3 j

..of records IV-142

..random access IV-148

..reading IV-138,146 K saving II-13

..text 1V-152

..writing IV-136 KIX Commands VI-1

Find VI-21 ..Command Structure VI-2

FOR IV-29 ..Wildcards Vl-9

Format 1-6, VI-8 Kyan Pascal x, xiii, 1-9

Formulas IV-11
Forward reference 1V-91
Functions IV-77

G

Graphics III-14
Graphics Mode 111-15
GET IV-149

INDEX -2

INDEX

..Integer IV-32

L ..Real IV-32

Label V-14 o
LENGTH □ 1-12
LIBRARY (LIB) xii, 1-9, 111-24 Object Code Vl-2
License iv ODD IV-81
Linked Lists IV-162 Operating System 1-1
Linking Programs 111-18 Operator IV-27
List 1-8 ..Arithmetic IV-27
Literal IV-8 ..Precedence IV-54
Local V-17 ..Relational IV-27
..in Assembler V-14 ..Set I V-l 30
..Variables IV-83 Options, Compiler III-3
Locate ui-17 ORD IV-63
LS VI-4 OUTPUT III-7, IV-16
Luminance m-16 ..printer] III-7,1V-l 1,17

..screen IV-6

M redirection IH-8

Main Menu 1-3 P
Manual xvi
MAX1NT lV-29,162 POUT V-l
Memory Map App- B Page HI-25
Memory Usage IV-156, V-l 1 Parameter IV-70
MENU m-8 ..Multiple IV-73
MOD IV-53 ..Passing HI-22
MOVE VI-7 ..Used in Arrays IV-105
Move Text D-6 ..Used in Assembler V-14
Multidimension Arrays IV-98 ..Value IV-72, V-14
Multiple Parameters IV-73 ..Variable IV-72, V-l8
Multiplication IV-27 Pascal ix
MV VI-7 Passing Parameters III-22

Peek V-24

N Pitch III-18
Pointer 1 V-l 55

Nests IV-28, 86 Poke V-23

NEW IV-158 Position Cursor III-17

NIBBLE 1V-12 PLOT 111-16

Node IV-155 Precision xi

Numbers PRED IV-63

INDEX - 3

INDEX

Predefined Funcs. IV 34, 8U
Predefined Words 1V-7
PR.I III-8, IV-17
Printing sources m-7
Printer IV-11, 17
Procedure IV-67.V-18
Programs, Sample
..AddMatrix IV-103
..AddressBook IV-120
..AddStrings IV-105
..Appointments IV-163
..Average IV-30
..Calc IV-89
..CallMenu IV-69
Change Color IV161

..Compute IV-92

..Construction IV-12

..DivLesn IV-50

..Ego IV-4

..Elapsed IV-116

..Exchange IV-84

..Finals IV-131

..FirstWord IV-38

.. Forma IParameter IV-74

..Format IV-6

..GetWord 1V-110

..GoExample IV-94

..HexToDec IV-56
,.l>ocate IV-97
..Math IV-79
..Matrix IV-100
..ParamArray IV-107
..RecDemo IV-144
..RecRead IV-147
..SeckDemo IV-140
..SetDemo IV-128
..SocialSecurity IV-22
..StoreData IV-140
..TestGrades IV-132
..VariantRec 1V-123
..WordProc IV-153
Protection VI-8

PUT IV-149
PWD VI-3

Q
QuickGuide 1-4
Quit H-13

R

RAMdisk 1-10
Random Access Files IV-148
Random Numbers III-24
READ IV-16
READLN IV-16
Real IV-32, V-12
Record IV-113
..ARRAY OF IV-118
..Copy IV-116
..FILE OF IV-142
..Variant IV-121
Recursion IV-111
Redirection 11I-8.VI-12
References xiv
Register 111-16
Relational Operator IV-27
Relocation III-15, V-3
Remove VI-7
REPEAT IV-61
Reserved word IV-7
RESET VI-149
REWRITE IV-136
RM VI-16
RMDIR VI 8
ROUND IV-29
Run Program 111-24
..Compiler 111-2
..Editor 11-2
..Assembler V-2
RuntimeLibrary xii

INDEX -4

INDEX

s
Scalar IV-55,129
Scientific Notation IV-32
Scope IV-83
Screen

Color HI-16
Data Locate ni-17
Dump VI-9

SD VI-9
Seek IV-148
Sequential File IV-148
Set IV-127
Set Filename 11-10
Sound HI-18
Source Code IV-2
Stack V-9, V-13
Standalone Disks HI-23
STDLIB.S V-l
String III-ll, IV-96
Subrange IV-60
Subscript IV-96, IV-100
Substring m-13
Subtraction IV-27
SUCC IV-63
Suggestion Box viii
Syntax Errors III-5

T

Tab H-8
Tech Support viii
Text Editor H-l
Text files IV-152
TRUNC IV-29
TYPE IV-91

u
Unconditional Branch IV-93
Union IV-130

V

Value Parameters IV-21,72
VAR IV-14
Variable IV-16
..Assigning IV-24
..Boolean IV-49
..Declaring IV-26
..Global IV-83
..Local IV-83
..Parameters IV-72, V-18
..Relative IV-87
..Scalar IV-59, IV-129
Variant records IV-121
Voice in-is
Volume III-18

w

Warranty vi
WHILE IV-45
Wildcard VI-9
WITH IV-115
WRITE IV-16
WRITELN IV-16

X

X Register V-4

INDEX - 5

Suggestion Box

We do our best to provide you with complete, bug-free software and docu¬
mentation. With products as complex as compilers and programming utilities,
this is diff icult to do. If you find any bugs or areas where the documentation
is uncle;ir, please let us know. We will do our best to correct the problem in
the next revision of the software. We would also like to hear from you if have
any comments or suggestions regarding our product.

To help us better understand your comments please use the following form in
your correspondence and mail it to:

Kyan Software Inc., 1850 Union Street #183, San Francisco, CA 94123.

Name__
Address___
City _ _State_ZIP_
Telephone:
(day)_(evening)_

Kind of Problem Software Description
_ Software Bug Product Name_

Documentation Error Version No._
Suggestions Date Purchased_
Other _

Kyan Software Products You Use
Kyan Pascal _System Utilities Toolkit
Advanced Graphics Toolkit _Other_

Your Hardware Configuration
Type/Model of Computer_
How many and what kind of disk drives_
What is your screen capability: _40 Column _80 Column
What kind of 80-column adapter?_
How much RAM?_K (what kind of RAM Board?_)
What kind of printer and interface do you use?_

What kind of modem & interface?_
Other information about your computer system:

What do you use this software for?
_ Education (1 am a _ teacher _student)

_Hobby
_ Professional Software Development
Other_

Problem Description (if appropriate, please include a disk or program
listing).

Suggestions

