
created 23.3.19, updated 04.03.23 11:16 1

 Document Version 5.2

Authors: Peter Jacob (pej), Mike Großmann (mig)

I. BREXX/370 User's Guide

This user's guide documents only changes and amendments to the official BREXX User's manual. For the BREXX

standard functions and commands refer to Vassilis N. Vlachoudis BREXX documentation at

https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html

A. Some Notes on BREXX Arithmetic Operations

BREXX stores numeric values in the appropriate type format. The benefit compared to saving it as strings is a

significant performance improvement during calculations. As the expensive string to numeric conversion

before and vice versa after arithmetic operations is omitted; this allows speedy calculations without the

required conversion overhead.

BREXX supports two numeric types:

Integer

Integers are stored in 4 bytes a full word (LONG), this means their range is from -2,147,483,648 to

+2,147,483,647

Decimal Numbers

Decimal Numbers (decimal numbers with a fractional part) are represented in the double-precision floating-

point format (doubleword), the length is 8 bytes consisting of an exponent and the significand (fraction). It

consists of 56 bits for the fraction part, a 7-bit exponent and one-bit for the sign. This representation is IBM-

specific and differs slightly from the IIEE 754 floating-point standard.

 The precision of floating-point numbers is not as good as decimal packed numbers which are not supported in

BREXX (nor in REXX). This means, for example, 2.0 might be stored as 19999999999999999e-17, or for 5.0 you

will is stored as 50000000000000003e-17; this is not an error, but the usual behaviour for floating-point

numbers. It is caused by the conversion between the numbers of base 10 to base two a bit-exact reversibility is

not always given. This effect may build up during arithmetic calculations.

http://home.cern.ch/~bnv
https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html

created 23.3.19, updated 04.03.23 11:16 2

II. Calling external REXX Scripts or Functions

Due to the extended calling functionality in the new version, importing required REXX scripts is no longer

necessary. You can now call any external REXX script directly.

A. Primary REXX Script location via fully qualified DSN

If you call a REXX script using a fully qualified partitioned dataset (PDS) member name, it must be present in the

specified PDS. You can also use a fully qualified sequential dataset name that holds your script. If it is not

available, an error message terminates the call. In TSO you can invoke your script using the REXX or RX

commands.

Example:

RX 'MY.EXEC(MYREX)' if the script resides in a PDS, alternatively:

RX 'MY.SAMPLE. REXX' if it is a sequential dataset

B. Location of the Main REXX script via PDS search (TSO environments)

In TSO environments the main script can be called with the RX or REXX command. The search path for finding

your script is SYSUEXEC, SYSUPROC, SYSEXEC, SYSPROC. At least one of these needs to be pre-allocated during

the TSO logon. It is not mandatory to have all of them allocated. It depends on your planned REXX development

environment. The allocations may consist of concatenated datasets.

C. Running scripts in batch

In batch, you can use the delivered RXTSO or RXBATCH JCL procedure and specify the REXX script and its location

to execute it. There is no additional search path used to locate it.

D. Calling external REXX scripts

It is now possible to call external REXX scripts, either by:

CALL your-script parm1,parm2… or by function call:

value=your-script(parm1,parm2,…)

The call might take place from within your main REXX, or from a called subroutine. The search of the called script

is performed in the following sequence:

• Internal sub-procedure or label (contained in the running REXX script)

• current PDS (where the calling REXX originated)1

• from the delivered BREXX.RXLIB library, which then needs to be allocated with the DD-name RXLIB

1 only from the 1st library within a concatenation (this limitation may be lifted in a forthcoming release)

created 23.3.19, updated 04.03.23 11:16 3

E. Variable Scope of external REXX scripts

If the called external REXX does not contain a procedure definition, all variables of the calling REXX are

accessible (read and update). If the called REXX creates new variables, they are available in the calling REXX

after the control is returned. Vice versa the called Rexx knows all the procedures and labels used so far, this

means you can define “call-back” procedures usable by the called REXX.

created 23.3.19, updated 04.03.23 11:16 4

III. BREXX MVS Functions

A. Host Environment Commands

ADDRESS MVS

Interface to certain REXX environments such as VSAM and EXECIO

ADDRESS TSO

Interface to the TSO commands, e.g. LISTCAT, ALLOC, FREE, etc.

Using the ADDRESS TSO command requires a TSO command processor module of the specified name. It will be

called using the normal MVS conventions. If the module can’t be loaded an error message will be displayed:

Error: Command TIME not found

1 - ADDRESS TSO TIME

+++ RC(-3) +++

Any parameter for the module is supplied to the module in the CPPL format.

TSO does some internal routing e.g. TIME, which is not a command processor module but will output the

current time if performed in plain TSO. The BREXX command ADDRESS TSO TIME will lead to an error.

ADDRESS COMMAND ‘CP host-command’

Interface to the host system in which your MVS3.8 is running. Typically it is Hercules or VM370. For

communication, a Hypervisor call is performed. The request must be enabled on the host system, or else you

don’t receive a result.

The result of the command is displayed on the screen, but can be trapped in a stem by the OUTTRAP

command:

call outtrap('myresult.')

ADDRESS COMMAND 'CP help'

call outtrap('off')

/* result is stored in stem myresult. */

do i=1 to myresult.0

 Say myresult.i

end

Some Hercules commands:

ADDRESS COMMAND 'CP HELP' to get a list of Hercules commands

HHC01603I

HHC01602I Command Description

HHC01602I ---------------- ----------------------------------

HHC01602I !message *SCP priority message

HHC01602I # Silent comment

created 23.3.19, updated 04.03.23 11:16 5

HHC01602I * Loud comment

HHC01602I .reply *SCP command

HHC01602I ? alias for help

HHC01602I abs *Display or alter absolute storage

HHC01602I aea Display AEA tables

HHC01602I aia Display AIA fields

...

ADDRESS COMMAND 'CP DEVLIST' shows a list of all active devices

HHC02279I 0:010C 3505 jcl/dummy ascii trunc eof IOÝ2¨ open

HHC02279I 0:010D 3525 pch/pch10d.txt ascii IOÝ2¨ open

HHC02279I 0:0131 2314 dasd/sort01.131 Ý203 cyls¨ Ý0 sfs¨ IOÝ1570¨ open

HHC02279I 0:0132 2314 dasd/sort02.132 Ý203 cyls¨ Ý0 sfs¨ IOÝ1278¨ open

HHC02279I 0:0133 2314 dasd/sort03.133 Ý203 cyls¨ Ý0 sfs¨ IOÝ1262¨ open

...

And many others:

ADDRESS COMMAND 'CP clocks'

HHC02274I tod = DA19F16BF4009020 2021.214 07:49:10.743049

HHC02274I h/w = DA19E402B9C09020 2021.214 06:49:10.743049

HHC02274I off = 00000D693A400000 0.000 01:00:00.000000

HHC02274I ckc = DA19F16BF9400000 2021.214 07:49:10.764544

HHC02274I cpt = 7FFFFFE45026B700

HHC02274I itm = EAB2A163 14:14:30.510471

If you run under the control of VM370 you can run VM commands

ADDRESS COMMAND ‘CP vm-command’

ADDRESS FSS

Interface to the Formatted Screen Services. Please refer to BREXX370_Formatted_Screens_V2R5M2.pdf

contained in the installation zip file.

The following host environments enable you to call external programs. The difference is the linkage

conventions, and how input parameters are treated.

ADDRESS LINK/LINKMVS/LINKPGM

Call external an external program. The linkage convention of the called program can be found here:

The LINK and ATTACH host command environments (ibm.com)

ADDRESS LINKMVS

Call external an external program. The linkage convention of the called program can be found here:

The LINKMVS and ATTCHMVS host command environments (ibm.com)

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30030.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30031.htm

created 23.3.19, updated 04.03.23 11:16 6

Example:

/* REXX - INVOKE IEBGENER WITH ALTERNATE DDNAMES. */

PROG = 'IEBGENER'

PARM = '' /* STANDARD PARM, AS FROM JCL */

DDLIST = COPIES('00'X,8) ||, /* DDNAME 1 OVERRIDE: SYSLIN */

 COPIES('00'X,8) ||, /* DDNAME 2 OVERRIDE: N/A */

 COPIES('00'X,8) ||, /* DDNAME 3 OVERRIDE: SYSLMOD */

 COPIES('00'X,8) ||, /* DDNAME 4 OVERRIDE: SYSLIB */

 LEFT('CTL', 8) ||, /* DDNAME 5 OVERRIDE: SYSIN */

 LEFT('REP', 8) ||, /* DDNAME 6 OVERRIDE: SYSPRINT */

 COPIES('00'X,8) ||, /* DDNAME 7 OVERRIDE: SYSPUNCH */

 LEFT('INP', 8) ||, /* DDNAME 8 OVERRIDE: SYSUT1 */

 LEFT('OUT', 8) ||, /* DDNAME 9 OVERRIDE: SYSUT2 */

 COPIES('00'X,8) ||, /* DDNAME 10 OVERRIDE: SYSUT3 */

 COPIES('00'X,8) ||, /* DDNAME 11 OVERRIDE: SYSUT4 */

 COPIES('00'X,8) ||, /* DDNAME 12 OVERRIDE: SYSTERM */

 COPIES('00'X,8) ||, /* DDNAME 13 OVERRIDE: N/A */

 COPIES('00'X,8) /* DDNAME 14 OVERRIDE: SYSCIN */

ADDRESS 'LINKMVS' PROG 'PARM DDLIST'

ADDRESS LINKPGM

Call external an external program. The linkage convention of the called program can be found here:

The LINKPGM and ATTCHPGM host command environments (ibm.com)

ADDRESS ISPEXEC

support calls functions to Wally Mclaughlin ISPF for MVS on Hercules (e.g. TK4-). The functions supported

depend on the functionality implemented in his API.

Example:

ADDRESS ISPEXEC

"CONTROL ERRORS RETURN"

"DISPLAY PANEL(PANEL1)"

OUTTRAP

If the commands write output to the terminal you can trap the output using the OUTTRAP command. This will

re-direct it to a stem variable of your choice. Output produced by TSO full-screen macros cannot be trapped.

OUTTRAP is not able to catch all output written to the terminal, it is depending on the style which is used to

perform the write. It may also happen that functions using TSO services will stop the recording without an

OUTTRAP(‘OFF’).

call outtrap('lcat.')

ADDRESS TSO 'LISTCAT LEVEL(PEJ)’

call outtrap('off')

/* listcat result is stored in stem lcat. */

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30034.htm

created 23.3.19, updated 04.03.23 11:16 7

do i=1 to lcat.0

 Say lcat.i

End

Result

NONVSAM ------- PEJ.BLOX

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.BREXX.INST

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.BREXX.INST2

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.BREXX.NJE.INST2

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.CMDPROC

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.CNTL

 IN-CAT --- SYS1.UCAT.TSO

NONVSAM ------- PEJ.DSSLOAD.JCL

 IN-CAT --- SYS1.UCAT.TSO

…

ARRAYGEN

Similar to OUTTRAP, ARRAYGEN records output and places it in a source array (SARRAY). The recording is

stopped with an ARRAGEN(‘OFF’), returning, the source array number. Where array-number receives the

created array number which can be processed with the SARRAY functions. ARRAYGEN the same limitations

apply as for OUTTRAP.

call arraygen('ON')

ADDRESS TSO 'LISTCAT LEVEL(BREXX)'

s1=arraygen('OFF')

call slist(s1)

Result

 Entries of Source Array: 0

Entry Data

00001 NONVSAM ------- BREXX.$FIX.LINKAPF.NJE38.XMIT

00002 IN-CAT --- SYS1.VMASTCAT

00003 NONVSAM ------- BREXX.$FIX.LINKAPF.XMIT

00004 IN-CAT --- SYS1.VMASTCAT

00005 NONVSAM ------- BREXX.$FIX.LINKLIB.NJE38.XMIT

00006 IN-CAT --- SYS1.VMASTCAT

00007 NONVSAM ------- BREXX.$FIX.LINKLIB.XMIT

00008 IN-CAT --- SYS1.VMASTCAT

00009 NONVSAM ------- BREXX.$INSTALL.MASTER.CNTL

00010 IN-CAT --- SYS1.VMASTCAT

…

created 23.3.19, updated 04.03.23 11:16 8

B. Added BREXX Kernel functions and Commands

These are MVS-specific BREXX functions implemented and integrated into the BREXX kernel code. For the

standard BREXX functions take a look at the BREXX User's Guide.

1. General

ABEND(user-abend-code)

ABEND Terminates the program with specified User-Abend-Code. Valid values for the user evening abend-code

are values between 0 and 4095.

AFTER(search-string,string)

The remaining portion of the string follows the first occurrence of the search-string within the string.
If search-string is not part of the string an empty string is returned.

A2E(ascii-string) / E2A(ebcdic-string)

Translates an ASCII string into EBCDIC and vice versa. Caveat: not all character translations are biunique!

BEFORE(search-string,string)

The portion of the string that precedes the first occurrence of search-string within the string. If
search-string is not part of the string an empty string is returned.

Example:

string='The quick brown fox jumps over the lazy dog'

say 'String 'string

say 'Before Fox 'before('fox',string)

say 'After Fox 'after('fox',string)

result:
String The quick brown fox jumps over the lazy dog

Before Fox The quick brown

After Fox jumps over the lazy dog

BLDL(program-name)

Reports 1 if the program is callable via the active program library assignments (STEPLIB, JOBLIB, etc. DD

statements). If it is not found, 0 is returned.

BASE64ENC(string)

Encodes a string or a binary string into a Base 64 encoded string. It is not an encryption process; it is, therefore,

not usable for storing passwords.

BASE64DEC(base64-string)

created 23.3.19, updated 04.03.23 11:16 9

Decodes a base64 string into a string or binary string

Example:

str='The quick brown fox jumps over the lazy dog'

stre=base64Enc(str)

say 'Encoded 'stre

strd=base64Dec(stre)

say 'Original "'strd'"'

say 'Decoded "'strd'"'

Result:

Encoded 44iFQJikiYOSQIKZlqaVQIaWp0CRpJSXokCWpYWZQKOIhUCTgamoQISWhw==

Original "The quick brown fox jumps over the lazy dog"

Decoded "The quick brown fox jumps over the lazy dog"

B2C(bit-string)

Converts bit string into a Character string

Examples:

say B2C('1111000111110000') -> 10
say B2c('1100000111000010') -> AB

C2B(character-string)

Converts a character string into a bit string

Example:
say c2x('64'x)c2B('64'x) -> 64 01100100

say c2x(10) c2B(10) -> F1F0 1111000111110000

say c2x('AB') c2B('AB') -> C1C2 1100000111000010

C2U(character-string)

Converts a character string into an unsigned Integer string

Example:
say c2d(' B5918B39'x) -1248752839

say c2u(' B5918B39'x) 3046214457

D2P(number,length[,fraction-digit])

D2P converts a number (integer or float) into a decimal-packed field. The created field is in binary format. The

fraction digit parameter is non-essential, as the created decimal does not contain any fraction information, for

symmetry reasons to the P2D function it has been added.

P2D(number,length,fraction-digit)

created 23.3.19, updated 04.03.23 11:16 10

P2D converts a decimal-packed field (binary format) into a number.

CEIL(decimal-number)

CEIL returns the smallest integer greater or equal to the the decimal number.

CONSOLE(operator-command)

Performs an operator command, but does not return any output. If you need the output for checking the result,

please use the RXCONSOL function.

ENCRYPT(string,password) and

DECRYPT(string,password)

Encrypts a string or decrypts an encrypted string via a password. The encryption/decryption method is merely

XOR-ing the string with the password in several rounds. This means the process is not foolproof and has not the

quality of RSA encryption.

a10=’The quick brown fox jumps over the lazy dog’

a11=encrypt(a10,"myPassword")

a12=decrypt(a11,"myPassword")

say "original "a10

say "encrypted "c2x(a11)

say "decrypted "a12

Result

original The quick brown fox jumps over the lazy dog

encrypted E361A8D7F001D537D0D6CDCAF9EFD83CCA00F984897FBD538AAF964CA80E2806D4310205CEFAC709C9EACB43

decrypted The quick brown fox jumps over the lazy dog

DEFINED(‘variable-name’)

Tests if a variable or STEM exists, to avoid variable substitution, the variable-name must be enclosed in quotes.

return values:
-1 not defined, but would be an invalid variable name
0 variable-name is not a defined variable
1 variable-name is defined it contains a string
2 variable-name is defined it contains a numeric value

To test whether a variable is defined, you can use:

If defined(‘myvar’)> 0 then …

DUMPIT(address,dump-length)

DUMPIT displays the content at a given address of a specified length in hex format. The address must be

provided in hex format; therefore, a conversion with the D2X function is required.

Example:

call mvscbs /* load MVS CB functions */

call dumpit d2x(tcb()),256

created 23.3.19, updated 04.03.23 11:16 11

Result:
0099C228 (+00000000) | 0098FA80 00000000 0099099C 0099D020 | .q.......r...r}.

0099C238 (+00000010) | 00000000 00000000 009A65F8 80000000 |8....

0099C248 (+00000020) | 0000FFFF 0099C020 00140908 00000000 |r{.........

0099C258 (+00000030) | 40D792B8 009BA1E0 002E03C0 002E0434 | Pk....\...{....

0099C268 (+00000040) | 002E0434 002E20A8 00000085 00990A3C |y...e.r..

0099C278 (+00000050) | 00000002 00158000 00285308 40280F50 |&

0099C288 (+00000060) | 00BDFC10 0029F060 402853EE 00000000 |0-

0099C298 (+00000070) | 001A20F8 00000000 00000000 009A6A18 | ...8..........¦.

0099C2A8 (+00000080) | 00000000 0099B3C8 00000000 00000000 |r.H........

0099C2B8 (+00000090) | 00215044 00000000 009BF548 00000000 | ..&.......5.....

0099C2C8 (+000000A0) | 009919C8 809A6010 00000000 00000000 | .r.H..-.........

0099C2D8 (+000000B0) | 00000000 0098EF54 00000000 00000000 |q..........

0099C2E8 (+000000C0) | 00000000 00000000 00000000 00000000 |

0099C2F8 (+000000D0) | 0099C350 00000000 00000000 0099B3C8 | .rC&.........r.H

0099C308 (+000000E0) | 00000000 00000000 00000000 00000000 |

0099C318 (+000000F0) | 80000040 00000000 0099BD10 00000000 |r......

DUMPVAR(‘variable-name’)

DUMPVAR displays the content of a variable or stem-variable in hex format; the displayed length is variable-

length +16 bytes. The variable name must be enclosed in quotes.

If no variable is specified, all so far allocated variables are printed.

Example:

v21.1='Stem Variable, item 1'

v21.2='Stem Variable, item 2'

v21.3='Stem Variable, item 3'

call DumpVAR(‘v21.1’)

Result:

002C2818 (+00000000) | E2A38594 40E58199 89818293 856B4089 | Stem Variable, i

002C2828 (+00000010) | A3859440 F1000000 00000000 00000000 | tem 1...........

DATE([date-target-format],[date],[date-input-format])

The integrated DATE function replaces the RXDATE version stored in RXLIB. RXDATE will be available to

guarantee the consistency of existing REXX scripts. It may be removed in a future release

Date defaults to today

Supported input formats
 Base days since 01.01.0001
 JDN days since Monday 24. November 4714 BC
 UNIX days since 1. January 1970

created 23.3.19, updated 04.03.23 11:16 12

 DEC 01-JAN-20 DEC format (Digital Equipment Corporation)
 XDEC 01-JAN-2020 extended DEC format (Digital Equipment Corporation)
 Julian yyyyddd e.g. 2018257
 European dd/mm/yyyy e.g. 11/11/18
 xEuropean dd/mm/yyyy e.g. 11/11/2018, extended European (4 digits year)
 German dd.mm.yyyy e.g. 20.09.2018
 USA mm/dd/yyyy e.g. 12.31.18
 xUSA mm/dd/yyyy e.g. 12.31.2018, extended USA (4 digits year)
 STANDARD yyyymmdd e.g. 20181219
 ORDERED yyyy/mm/dd e.g. 2018/12/19
 LONG dd month-name yyyy e.g. 12 March 2018, the month is translated into
 month number (first 3 letters)
 NORMAL dd 3-letter-month yyyy e.g. 12 Mar 2018, the month is translated into month number
 QUALIFIED Thursday, December 17, 2020
 INTERNATIONAL date format 2020-12-01
 TIME date since 1.1.1970 in seconds

Supported output formats
 Base days since 01.01.0001
 JDN days since 24. November 4714 BC
 UNIX days since 1. January 1970
 Julian yyyyddd e.g. 2018257
 Days ddd days in this year e.g. 257
 Weekday weekday of day e.g. Monday
 Century dddd days in this century
 European dd/mm/yy e.g. 11/11/18
 XEuropean dd/mm/yyyy e.g. 11/11/2018,extended European (4 digits year)
 DEC dd/mm/yy e.g. 11-NOV-18, DEC format (Digital Equipment Corporation)
 XDEC dd/mm/yyyy e.g. 11-NOV-2018, extended DEC format (Digital Equipment Corporation)
 German dd.mm.yyyy e.g. 20.09.2018
 USA mm/dd/yyyy e.g. 12/31/18
 xUSA mm/dd/yyyy e.g. 12/31/2018, extended USA (4 digits year)
 STANDARD yyyymmdd e.g. 20181219
 ORDERED yyyy/mm/dd e.g. 2018/12/19
 LONG dd. month-name yyyy e.g. 12 March 2018

 LS ……….. time of day in microseconds (string format):
 5 chars (digits) seconds, 6 chars, microseconds without delimiters
 NORMAL dd. month-name-short yyyy e.g. 12 Mar 2018
 QUALIFIED Thursday, December 17, 2020
 INTERNATIONAL date format 2020-12-01
 TIME date since 1.1.1970 in seconds

DATETIME([target-format],[timestamp],[input-format])

Formats a timestamp into various representations

Formats are:

T timestamp in seconds 1615310123 (seconds since 1. January 1970)

E timestamp European format 09/12/2020-11:41:13

created 23.3.19, updated 04.03.23 11:16 13

U timestamp US format 12.09.2020-11:41:13

O Ordered Time stamp 2020/12/09-11:41:13

B Base Time stamp Wed Dec 09 07:40:45 2020

target-format defaults to Ordered

input-format defaults to Timestamp

timestamp defaults to today’s current time

Time(option)

The TIME function supports the usual options of REXX, but some ones:

 MS Time of today in seconds.milliseconds

 HS Time of today in seconds.hundreds

US Time of today in seconds.microseconds

 CPU used CPU time in seconds. milliseconds

 LS time of day in microseconds, in string format, 5 chars (digits) seconds, 6 chars microseconds

without delimiters

FILTER(string,character-table <,drop/keep>)

The filter function removes all characters defined in the character table if 'drop' is used as the filter-type. If 'keep'

is specified, just those characters which are in the character table are kept.

Filter-type defaults to drop.

For example, remove 'o' and 'blank':

say FILTER('The quick brown fox jumps over the lazy dog',' o')

result:
Thequickbrwnfxjumpsverthelazydg

FLOOR(decimal-number)

FLOOR returns the smallest integer less or equal to the decimal number.

INT(decimal-number)

INT returns the integer value of a decimal number. Fraction digits are stripped off. There is no rounding in place.

It’s faster than saying intValue=number%1

JOBINFO()

returns jobname and additional information about the currently running job or TSO session in REXX variables,

like JOB.NAME, JOB.NUMBER, STEP.NAME, PROGRAM.NAME

Example:

say jobinfo()

created 23.3.19, updated 04.03.23 11:16 14

say job.name

say job.number

say job.step

say job.program

Result

PEJ

PEJ

TSU02077

ISPFTSO.ISPLOGON

IKJEFT01

JOIN(string,target-string[,join-table])

Join merges a string into a target-string. The merge occurs byte by byte; if the byte in target-string is defined in

the join-table. The join-table consists of one or more characters, which may be overwritten. If it is in the target-

string, it is replaced by the equivalent byte of the string. If it is not part of the join-table, it remains as it is. If the

length of the string is greater than the target-string size is appending the target-string.

The join-table is an optional parameter and defaults to blank.

say JOIN(' Peter Munich','Name= City=')

result:
Name=Peter City=Munich

LEVEL()

Level returns the current procedure level. The level of information is increased by +1 for every CALL statement

or function call.

Example:

say 'Entering MAIN 'Level()

call proc1

say 'Returning from proc1 'Level()

return

proc1:

 say 'Entering proc1 'Level()

 call proc2

 say 'Returning from proc2 'Level()

return 0

proc2: procedure

 if level()>5 then return 4

say 'Entering proc2 'Level()

 prc=proc1()

 say 'Returning from proc1 'Level()

created 23.3.19, updated 04.03.23 11:16 15

return 0

Result:

Entering MAIN 0

Entering proc1 1

Entering proc2 2

Entering proc1 3

Entering proc2 4

Entering proc1 5

Returning from proc2 5

Returning from proc1 4

Returning from proc2 3

Returning from proc1 2

Returning from proc2 1

Returning from proc1 0

ARGV(argument-number,calling-level)

Returns the argument specified by argument-number and the calling-level. With this function, you can

determine the arguments of calling procedures in several stages.

calling-level 0 is the current procedure

 -1 is the procedure calling the current procedure

 -2 the caller of the caller …

…

1 is the very first procedure in the calling sequence

2 is the second procedure

3 …

Example:

RX MAIN “EUROPE”

call Sub1 "Germany", "Italy","UK"

return

sub1:

call sub2 'Munich','Rome','London'

return

sub2:

say 'argument 1 of SUB2: 'argv(1,0)

say 'argument 2 of SUB2: 'argv(2,0)

say 'argument 3 of SUB2: 'argv(3,0)

say 'argument 1 of SUB1: 'argv(1,-1)

say 'argument 2 of SUB1: 'argv(2,-1)

say 'argument 3 of SUB1: 'argv(3,-1)

created 23.3.19, updated 04.03.23 11:16 16

say 'Calling argument 1 of main: 'argv(1,-2)

return

Result

argument 1 of SUB2: Munich

argument 2 of SUB2: Rome

argument 3 of SUB2: London

argument 1 of SUB1: Germany

argument 2 of SUB1: Italy

argument 3 of SUB1: UK

Calling argument 1 of main: EUROPE

LINKMVS(load-module, parms)

LINKPGM(load-module, parms)

Starts a load module. Parameters work according to standard conventions.

LISTIT(‘variable-prefix’)

Returns the content of all variables and stem-variables starting with a specific prefix. The prefix must be enclosed

in quotes. If no prefix is defined all variables are printed

Example:

v2='simple Variable'

v21.0=3

v21.1='Stem Variable, item 1'

v21.2='Stem Variable, item 2'

v21.3='Stem Variable, item 3'

call ListIt 'V2'

Output:

List Variables with Prefix 'V2'

[0001] "V2" => "simple Variable"

[0002] "V21." =>

>[0001] "|.0" => "3"

>[0002] "|.1" => "Stem Variable, item 1"

>[0003] "|.2" => "Stem Variable, item 2"

>[0004] "|.3" => "Stem Variable, item 3" .

LOCK(‘lock-string’,<TEST/SHARED/EXCLUSIVE><,timeout>)

Lock-string

Locks a resource (could be any string, e.g. dataset-name>) for usage by a concurrent program (which must

request the same resource). Typically it is used to keep the integrity of several datasets.

created 23.3.19, updated 04.03.23 11:16 17

Lock modes are:

• TEST tests whether the resource is available

• SHARED shared access is wanted, other programs/tasks are also shared access granted, but

no exclusive lock can be granted, while a shared lock is active

• EXCLUSIVE no other program/task can use the resource at this point.

timeout defines a maximum wait time in milliseconds to acquire the resource. If no timeout

 is defined the LOCK ends immediately if it couldn’t be acquired.

returns 0 if the resource was locked

4 resource could not be acquired in the requested time interval

UNLOCK(‘lock-string’)

Unlocks a previously locked resource.

 0 unlock was successful

(else) unlock was not successful

MEMORY()

Determines and print the available storage junks

MVS Free Storage Map

AT ADDR 7909376 1176 KB

AT ADDR 3108864 1166 KB

Total 2342 KB

MTT(<’REFRESH’>)

Returns the content of the Master Trace Table in the stem variable _LINE., _LINE.0 contains the number of

returned trace table entries. The return code contains the number of trace table entries fetched.If -1is returned

the Master Trace Table has not been changed since the last call, _LINE. remains unchanged. If the REFRESH option

is used, the Trace Table will be recreated even if it has not changed.

Call mtt()

Do i=1 to _line.0

 Say _line.i

End

Ergebnis:

4000 08.48.56 JOB 891 $HASP395 BRXLINK ENDED"

4000 08.48.56 JOB 891 IEF404I BRXLINK - ENDED - TIME=08.48.56"

0004 08.48.56 JOB 891 BRXLINK ALIASES IKJEFT01 RC= 0000"

created 23.3.19, updated 04.03.23 11:16 18

0004 08.48.55 JOB 891 BRXLINK LINKAUTH IEWL RC= 0000"

0004 08.48.53 JOB 891 BRXLINK BRXLNK IEWL RC= 0004"

0004 08.48.53 JOB 891 IEFACTRT - Stepname Procstep Program Retcode"

4000 08.48.51 JOB 891 IEF403I BRXLINK - STARTED - TIME=08.48.51"

4000 08.48.51 JOB 891 $HASP373 BRXLINK STARTED - INIT 1 - CLASS A - SYS TK4-"

0200 08.48.50 JOB 891 $HASP100 BRXLINK ON READER2"

…

MTTSCAN

MTTSCAN is an application that constantly analyses the Master Trace Table and passes control to the user’s

procedures for a registered function to perform user actions.

Example in BREXX. V2R5M2.SAMPLE(MTTSCANT)

In this example, the trace entries $HASP373 (LOGON)and $HASP395 (LOGOFF) are registered, and the associated

call-back procedures will be called to initiate further actions.

/* --*/

/* + --- REGISTER requested action */

/* | + --- action keyword in trace table */

/* | | + --- associated call back proc */

/* Y Y Y */

call mttscan 'REGISTER','$HASP373','hasp373'

call mttscan 'REGISTER','$HASP395','hasp395'

/* + --- Start scanning Trace Table */

/* | + --- scan frequency in milliseconds */

/* Y Y default is 5000 */

call mttscan 'SCAN',2000

return

/* --

 * Call Back to handle $HASP373 Entries of the Trace Table: user LOGON

 * arg(1) contains the selected line of the Trace Table

 * --

 */

hasp373:

 user=word(arg(1),6)

 call console 'c u='user You can for example cancel the user */

 say user ' has logged on'

 say 'Trace Table entry: 'arg(1)

 say copies('-',72)

return

/* --

 * Call Back to handle $HASP395 Entries of the Trace Table: user LOGOFF

 * arg(1) contains the selected line of the Trace Table

 * --

 */

hasp395:

 user=word(arg(1),6)

 say user ' has logged off'

 say 'Trace Table entry: 'arg(1)

created 23.3.19, updated 04.03.23 11:16 19

 say copies('-',72)

return

RXCONSOL

RXCONSOL is an application that returns the output of a requested Console command in the stem variable

CONSOLE.n

A return-code>0 means the command output could not be identified in the Master Trace Table

Example in BREXX. V2R5M2.SAMPLE(CONSOLE)

/* ---

 * RXCONSOL Sample: Show output of a Console command

 * ---

 */

call rxconsol('D A,L')

say copies('-',72)

say center('Console Output of D A,L',72)

say copies('-',72)

do i=1 to console.0

 say console.i

end

Result

--

 Console Output of D A,L

--

0000 08.17.13 TSU 3983 D A,L

0000 08.17.13 IEE102I 08.17.13 21.181 ACTIVITY 788

 788 00010 JOBS 00006 INITIATORS

 788 CMD1 CMD1 CMD1 V=V

 788 BSPPILOT BSPPILOT C3PO V=V S

 788 JES2 JES2 IEFPROC V=V

 788 NET NET IEFPROC V=V

 788 TP TP TCAM V=V

 788 MF1 MF1 IEFPROC V=V S

 788 TSO TSO STEP1 V=V S

 788 SNASOL SNASOL SOLICIT V=V

 788 JRP JRP JRP V=V S

 788 NJE38 NJE38 NJEINIT V=V

 788 00001 TIME SHARING USERS

 788 00001 ACTIVE 00040 MAX VTAM TSO USERS

 788 PEJ

Please note: The result of an operator command is not synchronously returned, but asynchronously assigned via

the activity number (788 in the example above). In certain situations, this may fail, and then an exact match of

the operator command and its output is impossible. You will then see more output than expected.

created 23.3.19, updated 04.03.23 11:16 20

RXLIST()

Prints the currently loaded BREXX modules including their originating DSN.

The first entry is the starting REXX.

Loaded Rexx Modules

 REXX Member DDNAME DSN

 1 #RXL RXL SYSUEXEC PEJ.EXEC

 2 RXSORT RXSORT RXLIB BREXX.RXLIB

 3 FMTLIST FMTLIST RXLIB BREXX.RXLIB

 4 FSSAPI FSSAPI RXLIB BREXX.RXLIB

NJE38CMD

NJE38CMD is an application that returns the output of a requested NJE38 command in the stem variable NJE38.n

A return-code>0 means the NJE38 command output could not be identified in the Master Trace Table

Example in BREXX. V2R5M2.SAMPLE(NJECMD)

/* ---

 * NJE38CMD Sample: Show available files in NJE38 inbox

 * pass command to NJE38CMD and retrieve output

 * ---

 */

rc=nje38CMD('NJE38 D FILES')

if rc>0 then do

 say 'Unable to pickup NJE38 results'

 return 8

end

say copies('-',72)

say center('NJE38 Spool Queue',72)

say copies('-',72)

do i=1 to nje38.0

 say nje38.i

end

Result

--

 NJE38 Spool Queue

--

NJE014I File status for node DRNBRX3A

File Origin Origin Dest Dest

 ID Node Userid Node Userid CL Records

0006 DRNBRX3A PEJ1 DRNBRX3A PEJ A 50

0010 CZHETH3C FIX0MIG DRNBRX3A MIG A 119

Spool 00% full

created 23.3.19, updated 04.03.23 11:16 21

VLIST(pattern[,”VALUES”/”NOVALUES”)

VLIST scans all defined REXX-variable names for a specific pattern. This is mainly for stem-variables useful, which

can have various compound components.

The pattern must be coded in the form “p1.p2.p3.p4.p5”, p1, p2, p3, p4, and p5 are subpatterns that must match

the stem variable name. There are up to 5 subpatterns allowed. You may use “*” as a subpattern for any variable

in this position.

Example

ADDRESS.PEJ.CITY='Munich'

ADDRESS.MIG.CITY='Berlin'

ADDRESS.pej.pub='Hofbrauhaus'

ADDRESS.mig.pub='Steakhaus'

ADDRESS='set'

call xlist('*.*.CITY')

call xlist('ADDRESS')

call xlist('ADDRESS.*.CITY')

call xlist('ADDRESS.PEJ')

call xlist('ADDRESS.MIG')

call xlist()

exit

xlist:

say '>>> 'arg(1)

say vlist(arg(1))

return

Result

>>> *.*.CITY

ADDRESS.MIG.CITY='Berlin'

ADDRESS.PEJ.CITY='Munich'

>>> ADDRESS

ADDRESS='set'

ADDRESS.MIG.CITY='Berlin'

ADDRESS.MIG.PUB='Steakhaus'

ADDRESS.PEJ.CITY='Munich'

ADDRESS.PEJ.PUB='Hofbrauhaus'

>>> ADDRESS.*.CITY

ADDRESS.MIG.CITY='Berlin'

ADDRESS.PEJ.CITY='Munich'

>>> ADDRESS.PEJ

ADDRESS.PEJ.CITY='Munich'

ADDRESS.PEJ.PUB='Hofbrauhaus'

created 23.3.19, updated 04.03.23 11:16 22

>>> ADDRESS.MIG

ADDRESS.MIG.CITY='Berlin'

ADDRESS.MIG.PUB='Steakhaus'

>>>

ADDRESS='set'

ADDRESS.MIG.CITY='Berlin'

ADDRESS.MIG.PUB='Steakhaus'

ADDRESS.PEJ.CITY='Munich'

ADDRESS.PEJ.PUB='Hofbrauhaus'

LASTWORD(string)

Returns the last word of the provided string.

PEEKS(decimal-address,length)

PEEKS returns the content (typically a string) of a main-storage address in a given length. The address must be

in decimal format.

PEEKS is a shortcut of STORAGE(d2x(decimal-address),length).

PEEKA(decimal-address)

PEEKA returns an address (4 bytes) stored at a given address. The address must be in decimal format.

PEEKA is a shortcut of STORAGE(d2x(decimal-address),4).

PEEKU(decimal-address)

PEEKU returns an unsigned integer stored at the given decimal address (4 bytes). The address must be in

decimal format.

RACAUTH(userid,password)

The RACFAUTH function validates the userid and password against the RAKF definitions. If both pieces of

information are valid, one is returned.

RHASH(string,<slots>)

The function returns a numeric hash value of the provided string. The optional slots parameter defines the

highest hash number before it restarts with 0. Slots default to 2,147,483,647

Even before reaching the maximum slot, the returned number is not necessarily unique; it may repeat (collide)

for various strings. The calculation is based on a polynomial rolling hash function

ROUND(decimal-number,fraction-digits)

The function rounds a decimal number to the precision defined by fraction-digits. If the decimal number does

not contain the number of fraction digits requested, it is padded with 0s.

created 23.3.19, updated 04.03.23 11:16 23

ROTATE(string,position<,length>]

The function is a rotating substring if the requested length for the substring is not available, it takes the remaining

characters from the beginning of the string. If the optional length parameter is not coded, the length of the string

is used.

Rotate("1234567890ABCDEF",10,10) -> '0ABCDEF123'

Rotate("1234567890ABCDEF",1) -> '1234567890ABCDEF'

Rotate("1234567890ABCDEF",5) -> '567890ABCDEF1234'

PUTSMF(smf-record-type,smf-message)

Writes an SMF message of type smf-record-type. If you use a defined type with a certain structure, it must be

reflected in smf-message. If necessary you can use den BREXX conversion functions (D2C, D2P, etc.) to create

binary data.

SUBMIT(options[,mode])

Submits a job via the internal reader to your MVS system

Options are:

- fully qualified dataset name containing the JCL

- stem variable containing the JCL

- “*” for stack containing the JCL

- SARRAY string array, the mode must be the String Array number

- LLIST Linked List, the mode must be the Linked List number

submit("'pds-name(member-name)'") submit a DSN or a member in a PDS

submit('stem-variable.') submit JCL stored in stem-variable

submit('*') submit JCL stored in a stack (queue)

submit('SARRAY',s1) submit JCL stored in SARRAY s1

submit('LLIST',l1) submit JCL stored in Linked-List l1

Note: The internal reader does not know your userid, therefore the &SYSUID variable will not be resolved with

your userid. It also does not return any “SUBMIT” message, this can easily be achieved by a small REXX script

analysing the master trace table.

SPLIT(string,stem-variable[,delimiter])

SPLIT splits a string into its words and stores them in a stem variable. The optional delimiter table defines the

split character(s), which shall be used to separate the words. SPLIT returns the number of found words. Also,

stem-variable.0 contains the number of words. The words are stored in the stem-variable.1, stem-variable.2, etc.

It is recommended to enclose the receiving stem-variable-name in quotes.

Example:

Say Split(’The quick brown fox jumps over the lazy dog’,’myStem.’)

Call LISTIT

Result:

created 23.3.19, updated 04.03.23 11:16 24

9

List all Variables

[0001] "MYSTEM." =>

>[0001] "|.0" => "9"

>[0002] "|.1" => "The"

>[0003] "|.2" => "quick"

>[0004] "|.3" => "brown"

>[0005] "|.4" => "fox"

>[0006] "|.5" => "jumps"

>[0007] "|.6" => "over"

>[0008] "|.7" => "the"

>[0009] "|.8" => "lazy"

>[0010] "|.9" => "dog"

Example with a list of word delimiters:

say split('City=London,Address=Picadelly Circus 24(7th floor)','mystem.','()=,')

call listit

Result:

5

 List all Variables

 [0001] "MYSTEM." =>

 >[0001] "|.0" => "5"

 >[0002] "|.1" => "City"

 >[0003] "|.2" => "London"

 >[0004] "|.3" => "Address"

 >[0005] "|.4" => "Picadelly Circus 24"

 >[0006] "|.5" => "7th floor"

 9

SPLITBS(string,stem-variable[,split-string])

SPLIT splits a string into its words and stores them in a stem variable. The split-string defines the string which

shall be used to separate the words. SPLIT returns the number of found words. Also, stem-variable.0 contains the

number of words. The words are stored in the stem-variable.1, stem-variable.2, etc. It is recommended to

enclose the receiving stem-variable-name in quotes.

Example:

say splitbs('today</N>tomorrow</N>yesterday','mystem.','</N>')

call listit 'mystem.'

Result:

3

List Variables with Prefix 'MYSTEM.'

created 23.3.19, updated 04.03.23 11:16 25

[0001] "MYSTEM." =>

>[0001] "|.0" => "3"

>[0002] "|.1" => "today"

>[0003] "|.2" => "tomorrow"

>[0004] "|.3" => "yesterday"

EPOCHTIME([day,month,year])

EPOCHTIME returns the Unix (epoch) time of a given date. It’s the seconds since 1. January 1970. You can easily

extend the date by adding the seconds of the day.

 For example
time= EPOCHTIME(1,1,2000)+3600*hours+60*minutes+seconds

As calculation internally is done on integer fields, the maximum date which is supported is 19. Januar 2038

04:14:07. If no parameters are specified, the current date/time will be returned.

EPOCH2DATE(unix-epochtime)

EPOCH2DATE translates a Unix (epoch) time-stamp into a readable date/time format. Internally the date

conversion is done by the RXDATE module of RXLIB

tstamp=EPOCHTIME()

say tstamp

SAY EPOCH2DATE(tstamp)

Result:

1600630022

20/09/2020 19:27:02

STIME()

Time since midnight in hundreds of a second

USERID()

USERID returns the identifier of the currently logged-on user. (available in Batch and Online)

UPPER(string)

UPPER returns the provided string in upper cases.

LOWER(string)

LOWER returns the provided string in lower cases.

MOD(number,divisor)

MOD divides and returns the remainder, equivalent to the // operation.

created 23.3.19, updated 04.03.23 11:16 26

LOADRX(”STEM”,”stemname.”,”procname”)

LOADRX(”SARRAY”,array-number,”procname”)

Sometimes it is useful to create a rexx procedure on the fly. For example, if you read field names from an

external dataset and have to build an extraction routine. There are 2 ways to do so:

1. Create a stem containing the code line by line

xset.1="c=0"

xset.2="c=c+1"

xset.3="d=c+5"

xset.4="e=c+15"

xset.5="say c d e"

xset.0=5

call loadRX("STEM","XSET.","myrexx")

2. Create a sarray adding the lines to it.

s1=screate(32)
call sset(s1,,"A=0")

call sset(s1,,"A=A+1")

call sset(s1,,"A=A+1")

call sset(s1,,"A=A+1")

call sset(s1,,"A=A+1")

call sset(s1,,"say a")

call slist(s1)

xset.1="c=0"

xset.2="c=c+1"

xset.3="d=c+5"

xset.4="e=c+15"

xset.5="say c d e"

xset.0=5

s2=stem2str("xset.")

say "STEMSTR "s2

call loadRX("ARRAY",s1,"rexx2")

Once the LOADRX is executed, the REXX-name is usable is anc can be called. A REXX procedure can be used just

once, a reloading has no effect, as it does not overwrite an existing version.

VERSION([‘FULL’])

Returns BREXX/370 version information, if FULL is specified the Build Date of BREXX is added and returned.

SAY VERSION() -> V2R5M2

SAY VERSION(‘FULL’) -> Version V2R5M2 Build Date 15. Jan 2021

created 23.3.19, updated 04.03.23 11:16 27

WAIT(wait-time)

Stops REXX script for some time, wait-time is in thousands of a second

WORDDEL(string,word-to-delete)

WORDDEL removes a specific word from the string. If the specified word does not exist, the full string is returned.

Example

say worddel('I really love Brexx',1)

say worddel('I really love Brexx',2)

say worddel('I really love Brexx',3)

say worddel('I really love Brexx',4)

say worddel('I really love Brexx',5)

Result

really love Brexx

I love Brexx

I really Brexx

I really love

I really love Brexx

WORDINS(new-word,string,after-word-number)

WORDINS inserts a new word after the specified word number. If 0 is used as wobaserd number it is inserted at

the beginning of the string.

Example

say wordins('really','I love BREXX',1)

say wordins('really','I love BREXX',2)

say wordins('really','I love BREXX',3)

say wordins('really','I love BREXX',0)

Result

I really love BREXX

I love really BREXX

I love BREXX really

really I love BREXX

WORDREP(new-word,string,word-to-replace)

WORDREP replace a word value by a new value.

Example

created 23.3.19, updated 04.03.23 11:16 28

say wordrep('!!!','I love Brexx',1)

say wordrep('!!!','I love Brexx',2)

say wordrep('!!!','I love Brexx',3)

Result

!!! love Brexx

I !!! Brexx

I love !!!

WTO(console-message)

Write a message to the operator's console. It also appears in the JES Output of the Job.

XPULL()

PULL function which returns the stack content case sensitive.

GETDATA([rexx-module])

The GETDATA function fetches all Data-Sections of the currently running REXX and creates either a stem, a sarray,

an integer array (IARRAY) a or float array (FARRAY). The format of Data-Sections is embedded in a comment block

and has the following format:

The comment which contains the data have the format:

/* DATA STEM stemname …

Content 1

Content 2

…

*/

The first line defines the target which receives the content, it can be

/* DATA STEM stemname.

/* DATA SARRAY array-variable

/* DATA IARRAY array-variable

/* DATA FARRAY array-variable

Neither of the arrays needs to be created prior to the call, they are created during the execution of the GETDATA

function. It works on the current running rexx. If you have a complex and/or nested structure it is recommended

to define the rexx-module as the parameter.

/* DATA STEM stemname

/* DATA STEM BANDS.

 LED ZEPPELIN STAIRWAY TO HEAVEN

created 23.3.19, updated 04.03.23 11:16 29

 EAGLES HOTEL CALIFORNIA

 AC/DC BACK IN BLACK

 JOURNEY DON'T STOP BELIEVIN'

 PINK FLOYD ANOTHER BRICK IN THE WALL

 QUEEN BOHEMIAN RHAPSODY

 TOTO HOLD THE LINE

 DEEP PURPLE SMOKE ON THE WATER

*/

The first comment line starts with /* DATA STEM BANDS. DATA defines the beginning of a data section,

STEM stem-name associates a stem that will receive the data.

If you prefer a SARRAY to receive them, you can use alternatively: /* DATA SARRAY BANDS, in this case, a SARRAY

is created and will receive the data, and the array number is stored in the specified variable (BANDS in the

example). The SARRAY can be processed with the array functions.

The end of the data section is defined by a closing comment string in a separate line.

To eventually receive the data you must call GETDATA. GETDATA pushes all data sections of the REXX script in

the requested stem or sarray.

call GetData

do i=1 to bands.0

 say i bands.i

end

Result

1 LED ZEPPELIN STAIRWAY TO HEAVEN

2 EAGLES HOTEL CALIFORNIA

3 AC/DC BACK IN BLACK

4 JOURNEY DON'T STOP BELIEVIN'

5 PINK FLOYD ANOTHER BRICK IN THE WALL

6 QUEEN BOHEMIAN RHAPSODY

7 TOTO HOLD THE LINE

8 DEEP PURPLE SMOKE ON THE WATER

LCS(‘string1’,’string2”) Longest Common Subsequence

Find the Longest Common Subsequence of two strings.

Say LCS("thisisatest", "testing123testing")

Result

tsitest

created 23.3.19, updated 04.03.23 11:16 30

2. GLOBAL Variables

You can define global variables which can be accessed from within the rexx whatever the current procedure

variable scope is. STEMS are not supported.

SETG(‘variable-name’,’content’)

SETG sets or updates a variable with the given content.

GETG(‘variable-name’)

GETG returns the current content of the global variable.

Example:

call setg('ctime',time('l'))

call setg('city','Munich')

call testproc

exit 0

testproc: procedure

/* normal variable scope can't access variables from the calling rexx */

 say 'Global Variables from the calling REXX'

 say getg('ctime')

 say getg('city')

return 0

Result

Global Variables from the calling REXX

19:19:24.15

Munich

created 23.3.19, updated 04.03.23 11:16 31

3. Dataset Functions

CREATE(dataset-name,allocation-information)

The CREATE function creates and catalogues a new dataset (if the user has the required authorisation level). If

the dataset-name is not fully qualified, it will be prefixed by the user name.

Fully qualified DSN is: “’BREXX.TEST.SEQ’”

Not fully qualified: “TEST.SEQ” will be prefixed by user name (e.g. HERC01) “HERC01.TEST.SQ”

allocation-information can be:

DSORG, RECFM, BLKSIZE, LRECL, PRI, SEC, DIRBLKS, UNIT (not all are mandatory):.

The space allocations for PRI (primary space) and SEC (secondary space) are the number of

tracks.

Example:

CREATE('TEST','recfm=fb,lrecl=80,blksize=3120,unit=sysda,pri=5,DIRBLKS=5')

If the create is successful, the return code will be zero; else a negative value will be returned. The CREATE

function does not open the dataset.

Return codes:

 0 Create was successful

 -1 Dataset cannot be created (various reasons such as, space limitations, authorisation, etc.)

 -2 Dataset is already catalogued

DIR(partitioned-dataset-name)

The DIR command returns the directory of a partitioned dataset. If the partitioned-dataset is not fully qualified,

it will be prefixed by the user name.

The directory is provided in the stem variable DIRENTRY.

DIRENTRY.0 contains the number of directory members

DIRENTRY.n.CDATE creation date of the member, e.g. => "19-04-18"

DIRENTRY.n .INIT" initial size of member

DIRENTRY.n.MOD" mod level

DIRENTRY.n NAME member name

DIRENTRY.n.SIZE" current size of member

DIRENTRY.n.TTR TTR of member

DIRENTRY.n.UDATE last update date, e.g. “ 20-06-09"

DIRENTRY.n.UID last updated by user- id

DIRENTRY.n.UTIME" last updated time

DIRENTRY.n.CDATE creation date

created 23.3.19, updated 04.03.23 11:16 32

n is the number of the member entry

EXISTS(dataset-name)

EXISTS(partitioned-dataset(member))

The EXISTS function checks the existence of a dataset or the presence of a member in a partitioned dataset.

EXISTS returns 1 if the dataset or the member in a partitioned dataset is available. It returns 0 if it does not

exist. If the dataset-name is not fully qualified, it will be prefixed by the user name.

REMOVE(dataset-name)

The REMOVE function un-catalogues and removes the specified dataset (if the user has the required

authorisation level). If dataset-name is not fully qualified, it will be prefixed by the user name.

If the removal is successful, the return code will be zero; else a negative value will be returned.

Return codes:

 0 dsn successfully removed

 <>0 DSN was not removed

REMOVE(partitioned-dataset(member))

The REMOVE function on members of a partitioned dataset removes the specified member (if the user has the

required authorisation level). If the dataset-name is not fully qualified, it will be prefixed by the user name.

If the removal is successful, the return code will be zero; else a negative value will be returned.

RENAME(old-dataset-name,new-dataset-name)

The RENAME function renames the specified dataset. The user requires the authorisation for the dataset to

rename as well as the new dataset. If the dataset-name is not fully qualified, it will be prefixed by the user

name.

If the rename is successful, the return code will be zero; else a negative value will be returned.

RENAME(partitioned-dataset(old-member),partitioned-name(new-member))

The RENAME function on members renames the specified member into a new one. The user requires

authorisation for the dataset. The RENAME must be performed in the same partitioned dataset.

If the rename is successful, the return code will be zero; else a negative value will be returned.

ALLOCATE(ddname,dataset-name)

ALLOCATE(ddname,partitioned-dataset(member-name))

created 23.3.19, updated 04.03.23 11:16 33

The ALLOCATE function links an existing dataset or a member of a partitioned dataset to a dd-name, which

then can be used in services requiring a dd-name. If dataset-name is not fully qualified, it will be prefixed by the

user name.

If the allocation is successful, the return code will be zero; else a negative value will be returned.

FREE(ddname)

The FREE function de-allocates an existing allocation of a dd-name.

If the de-allocation is successful, the return code will be zero; else a negative value will be returned.

OPEN(dataset-name,open-option,allocation-information)

The OPEN function has now a third parameter, which allows the creation of new datasets with appropriate DCB

and system definitions. If the dataset already exists, the existing definition is used, and the DCB is not updated.

If the dataset-name is not fully qualified, it will be prefixed by the user name.

The dataset-name may contain a member name, which must be enclosed within parentheses.

OPEN(“’”myPDS(mymember)”’”)

If the open is performed with the read-option, the member name must be present, else the open fails. If the

write-option is used, you can refer to a member-name that does not yet exist and will be created by following

write commands. If the member name exists, the current content will be overwritten.

The open-options have not changed, please refer to the official BREXX documentation.

allocation-information can be:

DSORG, RECFM, BLKSIZE, LRECL, PRI, SEC, DIRBLKS, UNIT (not all are mandatory):.

The space allocations for PRI (primary space) and SEC (secondary space) is the number of tracks.

If the open is successful, a file handle (greater zero) will be returned; it will be less or equal zero if the open is

not successful.

Important notice: opening a member of a partitioned dataset in write mode requires full control of the entire

dataset (not just the member), if you edit or browse the member concurrently the open will fail.

EXECIO Command

The EXECIO is a host command; therefore, it is enclosed in apostrophes.
EXECIO performs data set I/O operations either on the stack or stem variables, it supports only dataset
containing text records. For records containing binary data you can use
There is just a subset of the known EXECIO functions implemented: Full read/write from a dd-name. The
ddname must be allocated either by TSO ALLOC command, or DD statement in the JCL. Specifying a Dataset-
Name (DSN) is not supported!
EXECIO <lines-to-read/*> <DISKR/DISKW/LIFOR/LIFOW/FIFOR/FIFOW>

created 23.3.19, updated 04.03.23 11:16 34

 (<STEM stem-variable-name/LIFO/FIFO> [SKIP skip-lines] [START first-stem-entry]

[KEEP keep-string] [DROP dropstring] [SUBSTR(offset,length)]

Lines-to read is the number of records which shall be read from the file, * means read all records

DISKR read from dataset

DISKW write into dataset

LIFOR/FIFOR read from stack, stack structure can’t be changed, it is fixed by the ways it was created

LIFOW/FIFOW write to stack inLIFO or FIFO way

STEM read into a stem/write from a stem variable

first-stem-entry start adding entries at given stem.number, only available on DISKR with STEM parameter

LIFO read from / write into a lifo stack

FIFO read from / write into a fifo stack

skip-lines skip number of lines before processing dataset/stack

keep-string process just records containing the string

drop-string process just records which do not contain the string

SUBSTR process a substring of the given record

/* Read entire File into Stem-Variable*/

"EXECIO * DISKR dd-name (STEM stem-name."

/* Write Stem-Variable into File */

"EXECIO * DISKW dd-name (STEM stem-name."

/* Append File by Stem-Variable */

"EXECIO * DISKA dd-name (STEM stem-name."

/* ---- Read into REXX FIFO Stack ------- */

"EXECIO * DISKR dd-name (FIFO "

do i=1 to queued()

 parse pull line

 say line

end

/* ---- Read into REXX LIFO Stack ------- */

"EXECIO * DISKR dd-name (LIFO "

do i=1 to queued()

 parse pull line

 say line

end

After completing the Read stem-name.0 contains the number of records read

The number of lines to become written to the file is defined in stem-variable.0

created 23.3.19, updated 04.03.23 11:16 35

3. TCP Functions

TCP Functions are only usable in TK4-, or an equivalent MVS3.8j installation running on SDL Hyperion with

activated TCP support.

For non TK4- installation it might be necessary to start the TCP functionality in the Hercules console before the

IPL of MVS is performed:

facility enable HERC_TCPIP_EXTENSION

facility enable HERC_TCPIP_PROB_STATE

for details you look up the following document:

https://github.com/SDL-Hercules-390/hyperion/blob/master/readme/README.TCPIP.md

Important Notice: If TCP support is not enabled, the TCP environment is in an undefined state, and all

subsequent TCP functions will end up with indeterminate results or even cause an ABEND.

In case of errors or ABENDs an automatic cleanup of open TCP sockets takes place. If in rare cases the BREXX

cleanup cannot resolve it, then a reconnect will be rejected. You can then reset all sockets by the TSO

command RESET.

TCPINIT()

TCPINIT initialises the TCP functionality. It is a mandatory call before using any other TCP function.

TCPSERVE(port-number)

TCPSERVE opens a TCP Server on the defined port-number for all its assigned IP-addresses.

The function returns zero if it is performed successfully, or else an error occurred.

TCPOPEN(host-ip,port-number[,time-out-secs])

Rc=TCPOPEN(host-ip,port-number[,time-out-secs]) is a Client function to open a connection to a server.

Host-ip can be an ip-address or a host-name, which translates into an ip-address. Port-number is the port in

which the server listens for incoming requests. The timeout parameter defines how long the function will wait

for a confirmation of the open request; the default is 5 seconds.

If rc= 0 the open was successful if less than zero an error occurred during the open process.

The BREXX variable _FD contains the unique token for the connection. It must be used in various subsequent

TCP function calls to address the appropriate socket.

TCPWAIT([time-out-secs])

TCPWAIT is a Server function; it waits for incoming requests from a client. The optional timeout parameter

defines an interval in seconds after the control is returned to the server, to perform for example some cleanup

https://github.com/SDL-Hercules-390/hyperion/blob/master/readme/README.TCPIP.md

created 23.3.19, updated 04.03.23 11:16 36

activities, before going again in a wait. TCPWAIT returns several return codes which allow checking which

action has ended the wait.

 #receive an incoming message from a client has been received

 #connect a new client requests a connect

 #timeout a time-out occurred

 #close a close request from a client occurred

 #stop a socket returned stop; typically the socket connection has been lost.

 #error an unknown error occurred in the socket processing

Example of a server TCPWAIT and how it is processed:

do forever

 event = tcpwait(20)

 if event <= 0 then call eventerror event

 select

 when event = #receive then do

 rc=receive()

 if rc=0 then iterate /* proceed */

 if rc=4 then leave /* close client socket */

 if rc=8 then leave /* shut down server */

 end

 when event = #connect then call connect

 when event = #timeout then call timeout

 when event = #close then call close

 when event = #stop then call close /* is /F console cmd */

 when event = #error then call eventError

 otherwise call eventError

 end

end

TCPSEND(clientToken,message[,timeout-secs])

SendLength=TCPSEND(clientToken, message[,time-out-secs]) sends a message to a client. ClientToken specifies

the unique socket of the client. The optional timeout parameter allows the maximum wait time in seconds to

wait for confirmation from the client, that it has received it. The default timeout is 5 seconds.

 If sendLength is less than zero, an error occurred during the sending process:

>0 message has been sent and received by the client, number of bytes transferred

-1 socket error

-2 client is not ready to receive a message

TCPReceive(clientToken,[time-out-secs])

created 23.3.19, updated 04.03.23 11:16 37

MessageLength=TCPReceive(clientToken,[time-out-secs]) the message length is returned by the TCPRECEIVE

Function,

The message itself is provided in the variable _Data.

If messageLength is less than zero, an error occurred during the receiving process:

>0 message has been received from, number of bytes received

-1 client is not ready to receive a message

-2 socket error

TCPTERM()

Closes all client sockets and removes the TCP functionality

TCPSF(port,[timeout],[svrname])

TCPSF is a generic TCP Server Facility. It opens a TCP server and controls all events. Call-back labels in the

calling rexx support the event handling. Therefore the calling REXX-script must contain the following labels:

TCPCONNECT: There was a client connect request. The connect will be performed by the TCPSF.

If you want, you can do some logging of the incoming requests.

 ARG(1)) client token

Return codes from user procedure control the continuation:

return 0 proceed

 4 immediately close client

 8 shut down server

TCPTIMEOUT There was a time-out, no user requests occurred. Typically it is used to allow some

maintenance. Doing nothing (plain return 0) is also possible. If the user procedure

wants to set a new time-out value, it must be set in the rexx variable NEWTIMEOUT. It

is set in seconds.

There are no arguments passed.

return 0 proceed

 8 shut down server

TCPDATA client has sent a message

 ARG(1)) client token

 ARG(2) contains the original message

 ARG(3) contains the message translated from ASCII to EBCDIC

 Return codes from user procedure control the continuation:

return 0 proceed

 4 immediately close client

 8 shut down server

TCPCLOSE client has closed the connection. TCPCLOSE can be used for housekeeping.

 ARG(1)) client token

created 23.3.19, updated 04.03.23 11:16 38

Return codes from user procedure control the continuation:

return 0 proceed

 8 shut down server

TCPSTOP client will be stopped.

 ARG(1)) client token

 There is no special return code treatment

The following commands sent from a client are processed from the TCP Server:

/CANCEL shut down the TCP server

/QUIT log off the client from the TCP Server

An example of a TCP Server is defined in BREXX. V2R5M2.SAMPLE($TCPSERV)

created 23.3.19, updated 04.03.23 11:16 39

4. TSO REXX Functions

TSO REXX functions are only available in TSO environments (online or batch) not in plain batch.

SYSDSN(dataset-name) or

SYSDSN(dataset-name(member-name))

Returns a message indicating whether a dataset exists or not.

A fully qualified dataset-name must be enclosed in apostrophes (single quotes) they must be delivered to the

MVS function, it is, therefore, necessary to put double quotes around the dataset-name. If the dataset-name

does not contain an apostrophe, it is completed by the user-name as the prefix.

Return message:

OK dataset or member is available

DATASET NOT FOUND dataset or member is not available

INVALID DATASET NAME, the dataset name is not valid

MISSING DATASET NAME no dataset name given

Example:

x=SYSDSN("'HERC01.TEST.DATA'")

IF x = 'OK' THEN

 do something

ELSE

 do something other

SYSVAR(request-type)

a TSO-only function to retrieve certain TSO runtime information.

Available request-types

SYSUID UserID

SYSPREF system prefix of current TSO session (typically hlq of userid)

SYSENV FORE/BACK/BATCH foreground/background TSO execution, or plain batch

SYSISPF ISPF active 1, not active 0

SYSTSO TSO active 1, not active 0

SYSAUTH script runs in authorised mode (1), 0 not authorised

SYSCP returns the „host“-system which runs MVS38j. It is i seither MVS or VM/370

SYSCPLVL shows the release of the „host“-system

SYSHEAP allocated heap storage

SYSSTACK allocated stack storage

RXINSTRC BREXX Instruction Counter

say sysvar('SYSISPF') -> ACTIVE

say sysvar('SYSUID') -> PEJ

say sysvar('SYSPREF') -> PEJ

created 23.3.19, updated 04.03.23 11:16 40

say sysvar('SYSENV') -> FORE

say sysvar('SYSAUTH') -> 1

say sysvar('SYSCP') -> Hercules

say sysvar('SYSCPLVL') -> Hercules version 4.3.9999.9976-SDL-gcb24398-

 modified (4.3.9999.9976)

say sysvar('RXINSTRC') -> 5

MVSVAR(request-type)

Return certain MVS information.

SYSNAME system name

SYSOPSYS MVS release

CPUS number of CPUs

CPU CPU type

NJE 1 = NJE38 is running, 0 = NJE38 is not running/installed

NJEDSN Dataset name of the NJE38 spool queue

SYSNETID Netid of MVS (if any)

SYSNJVER Version of NJE38

JOBNUMBER current job number

JOBNAME job name of the current execution

STEPNAME step name of the current execution

PROGRAM current main program running

REXX REXX main script name

REXXDSN REXX main script loaded from DSN

MVSUP Time MVS is up and running (since IPL) in seconds. You can use sec2TIME() to convert it

Say MVSVAR(‘SYSNAME‘) -> (TK4-)

SAY MVSVAR('SYSOPSYS') -> MVS 03.8

SAY MVSVAR('CPU') -> 3033

SAY MVSVAR('CPUS') -> 0001

SAY MVSVAR('NJE') -> 1

SAY MVSVAR('NJEDSN') -> NJE38.NETSPOOL

SAY MVSVAR(SYSNETID) -> DRNBRX3A

SAY MVSVAR(SYSNJVER) -> V2.2.0 01/14/21 07.11

SAY MVSVAR('MVSUP') -> 212885

SAY sec2time(MVSVAR('MVSUP'),'DAYS')-> 2 day(s) 11:08:05

LISTDSI("’”dataset-name”’”) or LISTDSI(‘dd-name FILE’)

Returns information of non-VSAM datasets in REXX variables:

SYSDSNAME Dataset name

SYSVOLUME Volume location

created 23.3.19, updated 04.03.23 11:16 41

SYSDIRBLK directory blocks of a PDS

SYSMEMBERS number of members in a PDS

SYSMEMBER member name if dataset-name addresses a member in a PDS (SYSDIRBLK, SYSMEMBERS will

not be set)

SYSDSORG PS for sequential, PO for partitioned datasets

SYSRECFM record format, F,FB,V,VB, …

SYSLRECL record length

SYSBLKSIZE block size

SYSRECORDS number of records (sequential files only)

SYSSIZE real sequential file size for record format F or FB, else its equal to SYSSIZE2

SYSSIZE2 file size, reflects the sum of all records with its “real” record length, without trailing spaces.

A fully qualified dataset-name must be enclosed in apostrophes (single quotes) they must be delivered to the

MVS function, it is, therefore, necessary to put double-quotes around the dataset-name. If the dataset-name

does not contain an apostrophe, it is prefixed by the user-name

LISTDSIX("’”dataset-name”’”) or LISTDSIX(‘dd-name FILE’)

LISTDSIX is an extended version LISTDSI, which contains some additional dataset attributes. Due to

performance reasons, it has not been integrated into the standard LISTDSI. All LISTDSI variables are contained

plus these additional ones, some are redundant nd are suffixed with an X:

SYSBLKSIZEX block size (returned from extra analysis)

SYSCREATE creation date in Julian date format

SYSDSORGX PS for sequential, PO for partitioned datasets

SYSEXTENTS number of extents

SYSLRECLX record length

SYSNTRACKS "116"

SYSRECFMX record format, F,FB,V,VB, …

SYSREFDATE last referenced date in Julian date format

SYSSEQALC secondary allocation in SYSUNITS

SYSTRACKS allocated tracks

SYSUNITS allocation unit: CYLINDERS, TRACKS or BLOCKS

A fully qualified dataset-name must be enclosed in apostrophes (single quotes) they must be delivered to the

MVS function, it is, therefore, necessary to put double quotes around the dataset-name. If the dataset-name

does not contain an apostrophe, it is prefixed by the user-name

LISTVOL(volume)

Returns detailed information about the volume:

VOLVOLUME Volume name

VOLTYPE Volume type 3350,3360, 3390, etc.

created 23.3.19, updated 04.03.23 11:16 42

VOLCYLS physical cylinders

VOLTRKSCYL tracks per Cylinders

VOLTRACKS volume total tracks

VOLTRKALC total tracks allocated

VOLTRKLEN track length

VOLDIRTRK maximum directory blocks of track

VOLDSNS number of datasets residing on Volume

VOLTRKUSED number of used tracks

VOLDEVICE device number of volume, e.g. 241

VOLDSCBS maximum number of DSCB

VOLDSCBTRK maximum number of DSCBs in a track

VOLALTTRK number of alternate tracks

LISTVOLS(option)

Returns a list of attached DISK Volumes. This function requests the information directly from the Hercules

system and requires system administrator rights. It works only if the host system is MVS3.8.

Options can be FMTLIST, LIST, or STEM. If FMTLIST is specified the output is presented in an FMTLIST screen. LIST

provides the result in the normal output device. STEM returns it in the stem VOLUMES.x.

call listvols ‘FMT’

created 23.3.19, updated 04.03.23 11:16 43

VTOC(volume[,LIST/FMT/])

Produces a list of entries residing on the volume. If LIST is specified it is printed, FMT produces an FMTLIST

screen displaying the content of the volume. If no option is defined the output is returned in the stem VTOC.

call vtoc 'PUB010','FMT'

PRINT(parameter)

 Manages printing into an SYSOUT class. The page size is 60 lines, line size is 132. If a new line exceeds the page

size a page break occurs and the title line is printed.

If a label $PRINT_header: is defined in your calling REXX script, it is called a call-back. Additional lines can be

output there (using the PRINT command) as heading lines (appearing after each page break)

PRINT $ONTO,sysout-class Define and open PRINT stream

PRINT <action,>line-to-print print line (according to print action)

PRINT $TITLE,title-line define title line, printed on a new page

PRINT $PAGE skip to the next page, print page headers

PRINT $BANNER,text PRINT a banner page

PRINT $CLOSE close print stream

action:

 $SKIP add an empty line and print

 $NOSKIP print on the same line (no line feed)

created 23.3.19, updated 04.03.23 11:16 44

 $BOLD print bold line (print it twice)

created 23.3.19, updated 04.03.23 11:16 45

C. VSAM IO Functions

The VSAM IO Functionality is documented in BREXX370_VSAM_Users_Guide_V2R5M2.pdf delivered within the

installation file BREXX370_V2R5M2-Final.zip

D. Formatted Screen Functions

The Formatted Screen Services is documented in BREXX370_Formatted_Screens_V2R5M2.pdf delivered within

the installation file BREXX370_V2R5M2-Final.zip

created 23.3.19, updated 04.03.23 11:16 46

E. Matrix and Integer Array functions

See new document BREXX370 String Array functions_V2R5M2

F. String Array functions and Linked List functions

See new document BREXX370 String Array functions_V2R5M2

G. RXLIB functions

BREXX can implement new functions or commands in REXX. They are transparent and are called in the same

way as basic BREXX functions. They are stored in the library BREXX.RXLIB and are automatically allocated (via

DD RXLIB) in RXBATCH and RXTSO (Batch). In this release, we deliver the following:

RXCOPY(source-dsn,target-dsn,[volume-name],[‘REPLACE’])

Copies a source dataset to a target dataset using the internal IEBCOPY or REPRO command. You can optionally

define a target volume and the REPLACE option. As IEBCOPY requires an authorised mode, it can only run in ISPF

environment, if it is also authorised. If not, you can run it in plain TSO command mode.

RXCOPY pej.tempfb, pej.tempfb.copy,PEJ001

DSN PEJ.TEMPFB is sequential, invoke REPRO

Create 'PEJ.TEMPFB.COPY' with

DSORG=PS,RECFM=FB,UNIT=SYSDA,LRECL=80,BLKSIZE=6400,PRI=1,SEC=1,VOLSER=PEJ001

'PEJ.TEMPFB.COPY' successfully created

NUMBER OF RECORDS PROCESSED WAS 318

RXMSG(msg-number,’msg-level’,’message’)

Standard message module to display a message in a formatted way
msg-number message number to be displayed
msg-level message level can be

I for an information message
W for a warning message
E for an error message
C for a critical message

Examples:

rc=rxmsg(10,'I','Program started')

rc=rxmsg(200,'W','Value missing')

rc=rxmsg(100,'E','Value not Numeric')

rc=rxmsg(999,'C','Divisor is zero')

Displayed output:

created 23.3.19, updated 04.03.23 11:16 47

RX0010I PROGRAM STARTED

RX0200W VALUE MISSING

RX0100E VALUE NOT NUMERIC

RX0999C DIVISOR IS ZERO

Additionally, the following REXX variables are maintained and can be used in the calling REXX script.

Return code from call RXMSG

0 an information message was written
4 a warning message was written
8 an error message was written
12 a critical message was written

MSLV contains the written message level

I an information message was written
W a warning message was written
E an error message was written
C a critical message was written

MSTX contains the written message text part

MSLN includes the complete message with the message number, message level and text

MAXRC contains the highest return code so far; this can be used to exit the top level
REXX. If you used nested procedures, it is required to expose MAXRC, to make it available in the calling
procedures.

DCL('$DEFINE','structure-name')

DCL(‘field-name’,[offset],length,[type])

Defines a structure of fields which maps typically to an I/O record. The function returns the next available

offset in the structure.

 $DEFINE initialises the structure definition

structure-name all following field definitions are associated with the structure-name.

field-name name of the rexx variable containing/receiving the field content of the record

offset offset of the field in the record. This definition is optional if left out the next offset

from the previous DCL(field…) definition is used, or 1 if there was none.

length length if the field in the record

type field-type

 CHAR no translation takes place, CHAR is default

PACKED decimal Packed field. Translation into/from Decimal packed into

Numeric REXX value takes place

call SPLITRECORD ‘structure_name,record-to-split

splits record-to-split in the defined field-names (aka REXX variables). The variable containing the record to split is

typically read from a dataset.

created 23.3.19, updated 04.03.23 11:16 48

Record=SETRECORD('student')

combines the content of all defined fields (aka REXX variables) at the defined position and the defined length to

a new record.

Example
n=DCL('$DEFINE','student')

n=DCL('Name',1,32,'CHAR')

n=DCL('FirstName',1,16,'CHAR')

n=DCL('LastName',,16,'CHAR')

n=DCL('Address',,32,'CHAR')

recin='Fred Flintstone Bedrock'

/* '12345678901234567890123456789012345678901234567890 */

call splitRecord 'student',recin

say Name

say FirstName

say LastName

say Address

firstName='Barney'

LastName='Rubble'

address='Bedrock'

say setRecord('student')

DAYSBETW(date1,date-2[,[format-date1],[format-date2]])

Return days between 2 dates of a given format.

format-date1 date format of date1 defaults to European
format-date2 date format of date2 defaults to European
the format-dates reflect the Input-Format of RXDATE and can be found in details there.

DUMP(string, [hdr])

Displays string as a Hex value, useful to check if a received a string contains unprintable characters. One can

specify hdr as an optional title.

Dump example:

CALL Dump 'This is the new version of BREXX/370 V2R1M0',’Dump Line’

Output:

Dump Line

0000(0000) This is the new vers ion of B REXX

0000(0000) E88A 48A4 A884 98A4 A89A 8994 984C DCEE

0000(0000) 3892 0920 3850 5560 5592 9650 6602 9577

0032(0020) /370 V2R 1M0

0032(0020) 6FFF 4EFD FDF

created 23.3.19, updated 04.03.23 11:16 49

0032(0020) 1370 0529 140

LISTALC()

lists all allocated Datasets in this session or region.

SYS00003 SYS1.UCAT.TSO

SYSUEXEC PEJ.EXEC

SYS00014 SYS1.UCAT.MVS

SYSEXEC SYS2.EXEC

ISPCLIB SYS2.ISP.CLIB

 ISP.V2R0M0.CLIB

ISPLLIB SYS2.ISP.LLIB

 ISP.V2R0M0.LLIB

ISPMLIB SYS2.ISP.MLIB

 ISP.V2R0M0.MLIB

ISPPLIB SYS2.ISP.PLIB

 ISP.V2R0M0.PLIB

 SYS2.REVIEW.PLIB

ISPSLIB SYS2.ISP.SLIB

 ISP.V2R0M0.SLIB

ISPTLIB SYS2.ISP.TLIB

 ISP.V2R0M0.TLIB

ISPTABL SYS2.ISP.TLIB

 ISP.V2R0M0.TLIB

…

LISTCAT(<list-cat-parameter>)

Returns listcat output in the stem LISTCAT.

MVSCBS()

allows addressing of some MVS control blocks. There are several dependent control blocks combined. To use

them, MVSCBS must be imported first. After that, they can be used.

Currently, integrated control blocks are:

CVT(), TCB(),ASCB(), TIOT(), JSCB(), RMCT(), ASXB(), ACEE(), ECT(), SMCA()

The definition and the content of the MVS control blocks can be found in the appropriate IBM manuals: MVS

Data Areas, Volume 1 to 5.

IMPORT command is described in Vassilis N. Vlachoudis BREXX documentation.

QUOTE(string,qtype)

Enclose the string in quotes, double quotes, or parenthesis,

http://home.cern.ch/~bnv

created 23.3.19, updated 04.03.23 11:16 50

Qtype can be :

 ‘ single quote (default)
 “ double quote
 (bracket, the closing character is ‘)’
 [square bracket, the closing character is ‘]’

Mystring=’string to be quoted’

Say QUOTE(mystring,’”’) -> “string to be quoted”

Say QUOTE(mystring,”’”) -> ’string to be quoted’

Say QUOTE(mystring,’(‘) -> ’(string to be quoted)’

Say QUOTE(mystring,’[‘) -> ’[string to be quoted]’

PDSDIR(pds-name)

Return all member names from the given PDS in a stem variable.

This function is deprecated and will be removed in a future release; please use the DIR function instead.

Example REXX

num=PDSDIR('BREXX.RXLIB')

do i=1 to num

 say PDSList.Membername.i

end

Result

A2E

BSTORAGE

B2C

C2B

DAYSBETW

DEFINED

DUMP

E2A

JOBINFO

LINKMVS

LISTALC

…

PDSRESET(pds-name)

Removes all members of a PDS and runs a compress. After execution, the PDS is empty.

READALL(file,variable[,‘DSN’/’DDN’])

reads the entire file into a stem variable. The file can be either a dd-name or a ds-name

created 23.3.19, updated 04.03.23 11:16 51

After successful completion, the stem variable.0 contains the number of lines read into the stem.

The file name can either represent an allocated dd name or a fully qualified DSN. The third parameter defines

the file type and is either DSN or DDN. If it is missing DDN is the default.

PERFORM(pds-name,process-member-rexx)

Reads member list of a PDS and runs the process-member-rexx against each member.

The REXX to be called receives the parameters:

 Pds-name

 Member-name

RXDATE(…)

RXDATE Transforms Dates from/to various formats

This function is deprecated and will be removed in a future release; please use the DATE function instead.

RXDATE(<output-format>,<date>,<input-format>)

the date is formatted as defined in input-format, it defaults to today's date

Input Format represents the input date format, it defaults to 'EUROPEAN'

Base days since 01.01.0001
JDN days since 24. November 4714 BC
UNIX days since 1. January 1970
Julian yyyyddd e.g. 2018257
European dd/mm/yyyy e.g. 11/11/2018
German dd.mm.yyyy e.g. 20.09.2018
USA mm/dd/yyyy e.g. 12.31.2018
STANDARD yyyymmdd e.g. 20181219
ORDERED is yyyy/mm/dd e.g. 2018/12/19

Output Format represents the output date format, it defaults to 'EUROPEAN'

Apart from the formatting options that can be specified for the input, for the output we can additionally specify

the following:

Days ddd days this year e.g. 257
Weekday weekday e.g. Monday
Century dddd days this century
SHORT dd mon yyyy e.g. 28. OCT 2018
LONG dd month yyyy e.g. 12. MARCH 2018

RXSORT(sort-type[,ASCENDING/DESCENDING])

created 23.3.19, updated 04.03.23 11:16 52

Sorts the stem variable SORTIN. SORTIN.0 must contain the number of entries of SORTIN. The sort algorithms

supported are:

QUICKSORT, SHELLSORT, HEAPSORT, BUBBLESORT

After Completion of RXSORT the stem variable SORTIN. is sorted. If you requested ASCENDING (also default) it is

in ascending order, for DESCENDING in descending order.

Sorting with REXX is only recommended for a small number of stem entries. Up to 1000 entries, RXSORT works

in a reasonable time.

If the stem you want to sort is not in SORTIN, you can use the SORTCOPY function to copy it over to SORTIN.

SEC2TIME(seconds[,’DAYS’])

Converts a number of seconds into the format hh:mm:ss, or days hh:mm:ss if the ‘DAYS’ parameter is specified.

say sec2Time(345000) -> 95:50:00

say sec2Time(345000,'DAYS') -> 3 day(s) 23:50:00

SORTCOPY(stem-variable)

Copies any stem variable into the stem SORTIN., which then can be used by RXSORT.
Stem-variable.0 must contain the number of entries of the stem.

STEMCOPY(source-stem-variable,target-stem-variable)

Copies any stem variable into another stem variable.
source-stem-variable.0 must contain the number of entries of the stem.

Stem-variables must end with a trailing ‘.’, e.g. ‘mystem.’

STEMCLEN(stem-variable)

Cleansing of a stem variable, it removes empty and unset stem items and adjusts the stem numbering. Stem-

variable.0 must contain the number of entries of the stem and will after the cleansing the modified number of

entries.

Stem-variables must end with a trailing ‘.’, e.g. ‘mystem.’

STEMGET(dataset-name)

Reads the saved content of one or more stem variables and re-apply the stem. Stem names are save in the

dataset.

STEMINS(stem-to-insert,insert-into-stem,position)

created 23.3.19, updated 04.03.23 11:16 53

Inserts stem-to-insert into insert-into-stem beginning at position. The content of the original stem at the

position is shifted down n positions, whereby n is the size of the stem to be inserted. Stem-variable(s).0 must

contain the number of entries of the stem. Stem-variables must end with a trailing ‘.’, e.g. ‘mystem.’

STEMPUT(dataset-name,stem1[,stem2{,stem3]…)

Saves the content of one or more stems in a fully qualified dataset-name

Stem-variable.0 must contain the number of entries of the stem. Stem-variables must end with a trailing ‘.’, e.g.

‘Mystem.’

STEMREOR(stem-variable)

reorders stem variable from top to bottom. 1. element becomes last, 2. next to last, etc.
Stem-variable.0 must contain the number of entries of the stem. Stem-variables must end with a trailing ‘.’, e.g.

‘mystem.’

STORDUMP(storage-address,storage-length, [hdr])

This function is deprecated and will be removed in a future release; please use the DUMPIT function instead.

Displays an MVS storage area as a Hex value. One can specify hdr as an optional title.

Example:

CALL StorDump 16,64,'CVT 64 Bytes'

CVT 64 Bytes

00000010 +0000(0000) ..: :..: %::* :..S î³:* :..S ëÓ..

00000010 +0000(0000) 0000 2000 6105 300E 5F05 300E 5E00 0000

00000010 +0000(0000) 007C 0001 CA7C 0002 6A7C 0002 3E00 0000

00000030 +0032(0020) : Çy: ÇÌ.: :ò: Ác..

00000030 +0032(0020) 0000 0000 0000 6A00 0000 6700 40C3 6800

00000030 +0032(0020) 0000 0000 0008 88C0 0008 8801 08D4 5300

TODAY([output_date_format]) or

TODAY([output_date_format[,date[,input_date_format]]) [date-format])

Returns today's date based on the requested format. You can also use a date which is in the past or the future.

Details of date-formats can be found in the RXDATE output-format description

UNQUOTE(string)

Remove from string leading and trailing quotes, double quotes, parenthesis and ‘<’ and ‘>’ signs.

Say UNQUOTE(“ ‘quoted-string’ “) -> quoted-string

Say UNQUOTE(“<entry 1>“) -> entry 1

Say UNQUOTE(“(entry 2)“) -> entry 2

Say UNQUOTE(“[entry 3]“) -> entry 3

created 23.3.19, updated 04.03.23 11:16 54

WRITEALL(file,variable[,’DSN’/’DDN’])

writes a stem variable into a file. The file can be either a dd-name or a ds-name

The stem variable.0 must contain the number of entries of the stem.

The file name can either represent an allocated dd name or a fully qualified DSN. The third parameter defines

the file type and is either DSN or DDN. If it is missing DDN is the default.

created 23.3.19, updated 04.03.23 11:16 55

H. Building TSO Commands

A BREXX function can be converted to work as a TSO command by creating a clist and calling the BREXX script.

The BREXX installation contains some sample CLISTs in BREXX.V2R5M2.CMDLIB.

To perform the provided CLISTs or your own CLISTs, they must be stored in one of the pre-allocated clists

libraries which are active in your TSO session; alternatively, you can use SYS2.CMDPROC. Once this is done, you

can call it from TSO directly.

1 LA List all allocated Libraries

The clist calls the BREXX LISTALC script with a BREXX CALL statement. A minus sign immediately following the

REXX command tells BREXX to interpret a BREXX statement. The statement(s) must be coded in one line. To

place more than one BREXX statement in a line, separate them by using a semicolon ‘;’.

REXX - +

CALL LISTALC('PRINT')

2 WHOAMI Display the current User Id

This one-liner outputs the userid() function by a say statement.

REXX -

SAY USERID()

3 TODAY Display today's Date

REXX -

SAY DATE(); SAY TIME()

4 USERS List active Users

The clist calls the BREXX WHO script directly, therefore no minus sign is necessary:

REXX WHO

5 REPL Interactive REXX Processor

The clist calls the BREXX REPL which open the interactive REXX processor. It allows you to enter and execute

rexx statements.

RX REPL NOSTAE

created 23.3.19, updated 04.03.23 11:16 56

Table of contents
I. BREXX/370 User's Guide ... 1

A. Some Notes on BREXX Arithmetic Operations.. 1
Integer .. 1
Decimal Numbers ... 1

II. Calling external REXX Scripts or Functions .. 2

A. Primary REXX Script location via fully qualified DSN .. 2

B. Location of the Main REXX script via PDS search (TSO environments) .. 2

C. Running scripts in batch ... 2

D. Calling external REXX scripts .. 2

E. Variable Scope of external REXX scripts ... 3

III. BREXX MVS Functions ... 4

A. Host Environment Commands .. 4
ADDRESS MVS .. 4
ADDRESS TSO.. 4
ADDRESS COMMAND ‘CP host-command’ .. 4
ADDRESS FSS .. 5
ADDRESS LINK/LINKMVS/LINKPGM.. 5
ADDRESS LINKMVS ... 5
ADDRESS LINKPGM ... 6
ADDRESS ISPEXEC ... 6
OUTTRAP .. 6
ARRAYGEN .. 7

B. Added BREXX Kernel functions and Commands ... 8
1. General .. 8
2. GLOBAL Variables .. 30
3. Dataset Functions .. 31
3. TCP Functions ... 35
4. TSO REXX Functions ... 39

C. VSAM IO Functions ... 45

D. Formatted Screen Functions .. 45

E. Matrix and Integer Array functions .. 46

F. String Array functions and Linked List functions .. 46

G. RXLIB functions ... 46

H. Building TSO Commands .. 55
1 LA List all allocated Libraries .. 55
2 WHOAMI Display the current User Id .. 55

created 23.3.19, updated 04.03.23 11:16 57

3 TODAY Display today's Date .. 55
4 USERS List active Users .. 55
5 REPL Interactive REXX Processor ... 55

