
L 

I TERCO 

OPERATING REFERENCE MANUAL 

<~ISOGON ~ CORPORATION 
330 Seventh Avenue, New York, New York 10001 



 

LICENSE:  INTERCOMM TELEPROCESSING MONITOR 
 
Copyright (c) 2005, 2022, Tetragon LLC 
 
Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.  
 

2.  Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer. 
 

3. Redistributions in binary form must reproduce the above copyright notice, this list 
of conditions and the following disclaimer in the documentation and/or other 
materials provided with the distribution. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 



Publication 

First Edition 

Operating Reference Manual 

Publishing History 

Date Remarks 

February 1974 This manual corresponds to Intercomm 
Release 6.0. It incorporates and 
supercedes documentation formerly in 
the Intercomm Users Guide, now 
obsolete. 

Second Edition March 1983 General updates and additions 
corresponding to Intercomm Release 
9.0. 

The material in 
and confidential. 
material without 
Isogon Corporation 

this document is proprietary 
Any reproduction of this 

the written permission of 
is prohibited. 

ii 



It. 

PREFACE 

Intercomm is a state-of-the-art teleprocessing monitor system 
executing on the IBM System 360/370 family of computers and 

operating under the control of IBM Operating Systems (MFT, MVT, VS1, 
MVS). Intercomm monitors the transmission of messages to and from 
terminals, concurrent message processing, centralized access to I/O 
files, and the routine utility operations of editing input messages 
and formatting output messages, as required. 

Installing and maintaining an on-line system is a complex task 
with many variables ranging from coordination of equipment delivery 
and associated environmental planning to scheduling the implementation 
of application programs which service users at remote locations. One 
phase of this installation is implementing Intercomm, the on-line 
system monitor which schedules and controls the operation of the 
communications network, as well as the application programs that 
process the traffic input from, and produce the output to, the network. 

This document provides guidelines for the installation, 
maintenance and tuning of Intercomm, including an orderly breakdown of 
responsibility for system definition, testing and production 
operation. It serves as a reference manual for systems personnel 
responsible for the operation of the on-line system. 

The following Intercomm publications are prerequisite and/or 
relevant to this document: 

• Concepts and Facilities 

• Installation Guide 

• Basic System Macros 

• Messages and Codes 

• System Control Commands 

A Users Review Form is included at the back of this manual. We 
welcome recommendations, suggestions and reactions to this or any 
Intercomm publication. 

iii 



INTERCOMM PUBLICATIONS 

GENERAL INFORMATION MANUALS 

Concepts and Facilities 

Planning Guide 

APPLICATION PROGRAMMERS MANUALS 

Assembler Language Programmers Guide 

COBOL Programmers Guide 

PLII Programmers Guide 

SYSTEM PROGRAMMERS MANUALS 

Basic System Macros 

BTAM Terminal Support Guide 

Installation Guide 

Messages and Codes 

Operating Reference Manual 

System Control Commands 

CUSTOMER INFORMATION MANUALS 

Customer Education Course Catalog 

Technical Information Bulletins 

User Contributed Program Description 

iv 

FEATURE IMPLEMENTATION MANUALS 

Amigos Users Guide 

Autogen Facility 

ASMF Users Guide 

DBMS Users Guide 

Data Entry Installation Guide 

Data Entry Terminal Operators Guide 

Dynamic Data Queuing Facility 

Dynamic File Allocation 

Extended Security System 

File Recovery Users Guide 

Generalized Front End Facility 

Message Mapping Utilities 

Model System Generator 

Multiregion Support Facility 

Page Facility 

Remote Job Entry (OS) 

Store/Fetch Facility 

SNA Terminal Support Guide 

TCAM Support Users Guide 

utilities Users Guide 



Chapter 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
1.9.1 
1.9.2 
1.9.3 
1.10 
1 .11 

Chapter 2 
2.1 
2.2 
2.2.1 
2.3 
2.3.1 
2.3.2 

2.3.3 
2.4 

2.5.1 
2.5.2 
2.5.3 
2.6 
2.7 
2.7.1 
2.7.2 

Chapter 3 
3.1 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.3.1 
3.2.3.2 
3.2.3.3 
3.3 
3.3.1 

L 

TABLE OF CONTENTS 

THE INTERCOMM ENVIRONMENT •••••••••••••••••••••••••• 
Introduction .................................... . 
Front End •••••••••••••••••••••.••••••• e .•••••••••• 

Subsystem Controller ••••••••••••••••••••••••••••• 
Queue Management Routines •••••••••••••••••••••••• 
File Handler .......•............................. 
Dis pa tcher ........•.•........•...••.....•.•..••.. 
Resource Management ••••••••••••••••.•••.••••••••• 
Utility Programs ••••••••••••••••••••••••••••••••• 
Region Organization ............................. . 

Dynamic Program Loading •••••••••••••••••••••••• 
Overlay Program Loading •••••••••••••••••••••••• 
Asynchronous Overlay Loader •••••••••••••••••••• 

Modes of Execution ••••••••••••••••••••••••••••••• 
Intercomm Tables ..........••...........•......... 

THE INTERCOMM OPERATIONAL SYSTEM ••••••••••••••••••• 
Installation Overview •••••••••••••••••••••••••••• 
Libraries ....................................... . 

Source Library Concatenation Sequence .......... 
J CL Procedures ••••••••••••••••••••••••••••••••••• 

Step Names •••.•.••••••••••••••••••••••••.•••••• 
JCL Procedures for Source Updates, Compiles, 

Assemblies, Linkedits ••••••••••••••••••••.••• 
JCL Procedures for Utility Executions •••••••••. 

System Installation and Maintenance 
Responsibilities .............................. . 
The Intercomm System Manager(s) •••••••••••••••• 
The Application Group(s) ••••••••••••••••••••••• 
Central Location Operations •••••••••••••••••.•• 

Standards ••...•••.•.••••••••.••.••••••••••••••••• 
System Control Functions and Tables •••••••••••••• 

System Global Tables (INTGLOBE, SETGLOBE) •••••• 
System Control Tables •••••••••••••••••••••••••• 

MESSAGE MANAGEMENT ................................. 
Introduction •••••••••••••••••.••..••••••••..••••• 
General Message FlOVl .•.•••••••••••••••••••••...•• 

Input Messages ••••••••••••••••••••••••••••••••• 
Output Messages •••••••••••••••••••••••••••••••• 
Message/Subsystem Cancellation Processing ••••••• 

Message Cancellation User Exit--USRCANC •••••• 
Message Cancelled Condition •••••••••••••••••• 
Subsystem Stopped Condition •••••••••••••••••• 

The Front End Verb Table ••••••••••••••••••••••••• 
Entries in The Verb Table •••••••••••••••••••••• 

v 

1-1 
1-1 
1-2 
1-3 
1-3 
1-3 
1-4 
1-4 
1-5 
1-6 
1-7 
1-8 
1-8 
1-9 

1-10 

2-1 
2-1 
2-1 
2-4 
2-5 

2-11 

2-11 
2-16 

2-19 
2-20 
2-21 
2-21 
2-21 
2-23 
2-24 
2-28 

3-1 
3-1 
3-2 
3-2 
3-3 
3-5 
3-5 
3-6 
3-6 
3-7 
3-7 



3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.3.6 
3.4 
3.4.1 
3.4.2 
3.4.3 
3.4.4 
3.4.5 
3.4.6 
3.4.6.1 
3.4.6.2 
3.4.6.3 
3.4.6.4 
3.4.7 
3.5 
3.5.1 
3.5.2 

3.5.3 
3.5.4 
3.5.5 
3.6 
3.6.1 
3.6.2 

3.6.3 

3.6.4 

3.7 
3.7.1 
3.7.2 

3.7.3 

3.7.4 
3.7.5 
3.8 
3.8.1 
3.8.2 
3.9 
3.9.1 
3.9.2 
3.9.3 
3.9.4 
3.9.5 

Short Verbs ......................•............. 
Priority Verbs ................................ . 
Locked Verb Facility ••••••••••••••••••••••••••• 
Conversational Verbs ••••••••••••••••••••••••••• 
Separate Assemblies of Verb and Network Tables • 

Back End Table Specifications for the Utilities ••• 
Station Table •••••••••••••••••••••••••••••••••• 
Device Table •.•.•....•......................... 
Broadcast Table ••••.•••••••••.....••••.•••••••• 
Message Mapping Utilities Requirements ••••••••• 
Edit Utility Requirements •••••••••••••••••••••• 
Output Utility Requirements •••••••••••••••••••• 

Adding Output Format Table Entries ••••••••••• 
Error Messages from the Output Utility ••••••• 
Output User Exit--USROTEDT ••••••••••••••••••• 
Output User Exit--USROUTCK ••••••••••••••••••• 

Change/Display Utility Requirements •••••••••••• 
Message Processing Facilities •••••••••••••••••••••• 

Message Switching 1 •••••••••••••••••••••••••••••• 

Multi-Message Queuing via the Dynamic 
Data Queuing Facility •••••••••••••••••••••••• 

Front End Control Message Facility ••••••••••••• 
Page Facility ................................. . 
Intermediate Message Data Storage •••••••••••••• 

The System Parameter Area (SPA) •••••••••••••••••••• 
System Parameter List (SPA Csect) •••••••••••••• 
User Extension to the System Parameter 

List (USERSPA) ••••••••••••••...•.•..••••.•••• 
Intercomm Extension to the System 

Parameter List (SPAEXT Csect) •••••••••••••••• 
Separate Assembly of the SPA and 

the SPAEXT Csects •.•••••••••••••••••••••••••• 
The Subsystem Control Table (SCT) •••••••••••••••••• 

Coding Subsystem Control Table (SCT) Entries •.• 
Coding Subsystem Control·Table Indices 

(GENINDEX) ••..•••••••••..•••••••••••••••••••. 
Coding Overflow Disk Queue Allocations 

(PCENSCT) ••••••••••••••••••••••••• • , .......... . 
Adding a Subsystem ••••••••••••••••••••••••••••• 
Subsystem Control Table Verification (CKOVLYNO). 

Subsystem Processing Specifications •••••••••••••••• 
Subsystem Queue Specifications ••••••••••••••••• 
Scheduling and Concurrent Accessing Limits ••••• 

Subsystem Residency Considerations ••••••••••••••••• 
Subsystem Reentrancy ••••••••••••••••••••••••••• 
Resident Subsystem~ •••••••••••••••••••••••••••• 
Overlay A and Execution Group Subsystems ••••••• 
Dynamically Loaded Subsystems •••••••••••••••••• 
Dynamic Linkedit Facility •••••••••••••••••••••• 

vi 

Page 

3-10 
3-10 
3-10 
3-11 
3-12 
3-12 
3-12 
3-13 
3-14 
3-15 
3-15 
3-17 
3-18 
3-19 
3-20 
3-20 
3-21 
3-22 
3-22 

3-22 
3-23 
3-24 
3-24 
3-24 
3-25 ,.) 
3-25 

3-25 

3-25 
3-26 
3-29 

3-33 

3-33 
3-33 
3-34 
3-34 
3-34 
3-35 
3-36 
3-36 
3-36 
3-37 
3-39 
3-40 



L 

L 

3.9.6 

3.10 
3.10.1 
3.10.2 
3.10.3 
3.10.4 
3.10.5 
3.11 
3.11.1 
3.11.2 

3.11.3 
3.11.3.1 
3.11.3.2 
3.11.4 
3.11.5 
3.12 
3.12.1 
3.12.2 
3.13 

Chapter 4 
4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.2.6 
4.2.7 

Chapter 5 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.6.1 
5.7 

5.7.1 
5.7.2 
5.7.3 
5.7.3.1 
5.7.4 
5.7.5 
5.7.6 
5.7.7 

Subsystems Assigned to Overlay Region B, 
C or D ••••••••••••••••••••••••••••••••••••••• 

Subsystem Interfaces and Linkedit Considerations '" 
COBOL Subsystem Interfaces ••••••••••••••••••••• 
COBOL Subsystem Linkedit Considerations •••••••• 
PL/1 Subsystem Interfaces ••••••••••••••••••.••• 
PL/1 Subsystem Linkedit Considerations .•••••••• 
FORTRAN Subsystems ••••••••••••••••••••••••••••• 

Subroutine Interfaces and Linkedit Considerations. 
Resident Subroutines ••••••••••••••••••••••••••• 
Subroutines Linked with Dynamically 

Loaded Sub systems •••••••••••.•••••.••.•••••• 
Dynamically Loaded Subroutines •••.••••••••••••• 

Application Programming Conventions •••••••••• 
Implementation .••••••.•••••...•.••••.•.•.•..• 

Transient Subroutine Overlay Region (TRAN) ••••• 
Subroutine Overlay Region (SUB) •••••••••••••••• 

Generalized Subtasking ••••••••••••••••••••••••••• 
Special Subtasks .............................. . 
Implementation .•.•••••..•••••...•••••••..•••••• 

Time Controlled Message Processing ••••••••••••••• 
---

TASK MANAGEMENT ••••••••••••••••••••• ! •••••••••••••• 
Dispatcher and Related Service Routines •••••••••• 
Dispatcher Queues ............................... . 

Defining the Number of Task Queue Elements ••••• 
IJKPRINT-Output to SYSPRINT •••••••••••••••••••• 
IJKTRACE-List Dispatcher Queues .••••••••••••••• 
IJKCESD--Initialize Csect/Entry Tables •.••••••. 
IJKWHOIT--Find Csect/Entry and Subsystem Names • 
IJKDELAY--Request Time Delay ••••••••••••••••••• 
IJKTLOOP--Trace Program Loop ••••••••••••••••••• 

RESOURCE MANAGEMENT 
Introduction .................................... . 
Resource Auditing and Purging •••••••••••••••••••• 
User-Defined Storage Pools ••••••••••••••••••••••• 
Core-Use Statistics •••••••••••••••••••••••••••••• 
Storage Cushion ................................. . 
Resource Management Modules and Globals •••••••••• 

Obtaining a Save Area with Resource Management • 
Installing Resource Management with Core-Use 

Monitoring and Pools ••••••••••••••••••••••••••• 
SET GLOBE Settings •••••••••••••••••••••••••••••• 
SPALIST Parameters ••••••••••••••••••••••••••••• 
Defining the Intercomm Pools (ICOMPOOL) •••••••• 

Dynamically Loaded Core Pools •••••••••••••••• 
Specifying Core Block Detail Statistics •••••••• 
Linked it ...................................... . 
Execution ..................................... . 
Sample Output .................................. 

vii 

3-42 
3-45 
3-45 
3-46 
3-49 
3-52 
3-53 
3-53 
3-53 

3-54 
3-54 
3-55 
3-56 
3-56 
3-58 
3-59 
3-59 
3-60 
3-61 

4-1 
4-1 
4-1 
4-1 
4-2 
4-2 

4-10 
4-10 
4-11 
4-12 

5-1 
5-1 
5-1 
5-2 
5-2 
5-3 
5-3 
5-4 

5-6 
5-6 
5-6 
5-7 
5-9 

5-10 
5-11 
5-12 
5-12 



5.8 

5.8.1 
5.8.2 
5.8.3 
5.8.4 
5.8.5 
5.8.6 
5.9 
5.9.1 
5.9.2 

Chapter 6 
6.1 
6.2 
6.2.1 
6.2.2 
6.2.3 
6.2.4 
6.2.5 
6.2.6 
6.2.7 
6.2.8 
6.2.9 
6.2.10 
6.2.11 
6.2.12 
6.2.13 
6.2.14 
6.2.15 
6.2.16 

6.2.16.1 
6.2.16.2 
6.2.16.3 
6.3 
6.3.1 
6.3.1.1 
6.3.2 
6.3.2.1 

6.3.3 
6.4 
6.4.1 
6.4.1.1 
6.4.2 
6.4.3 
6.4.4 
6.4.5 

Installing Resource Management with Resource 
Audi t and Purge ............................... . 
SETGLOBE Settings •••••••••••••••••••••••••••••• 
SPALIST Parameters ••••••••••••••••••••••••••••• 
Macro Specifications ••.•••••••••••••••••••••••• 
Linkedit ...................................... . 
Enqueue-Dequeue Facility ••••••••••••••••••••••• 
Thread Hung User Exit--IOEXIT •••••••••••••••••• 

Debugging Aids--Thread Resource and Pool Dumps ••• 
The Thread Resource Dump ••••••••••••••••••••••• 
Status of Intercomm Administered Storage 

(Pool Dump) •••••••••••••••••••••••••••.•••••• 
Finding the Dynamically Loaded Pools ••••••••••• 

FILE HANDLER SPECIFICATIONS •••••••••••••••••••••.•• 
Introduction .................................... . 
Access Methods •••••.•••••••••••••••••••••••••••.. 

QISAM via BISAM •..••.•••.•••••••••••••••••••... 
VSAM and VSAM/ISAM Compatibility ••••••••••••••• 
lAM ••••••••••••••••••••.••.•••••••••••••••••••• 
DISAM ••••••••••••••••••.•••••••••••••••••••.••• 
AMlGOS ............................................. . 
Exc 1 usi ve Con t ro 1 ....... -:--: .••..............••.•• 
Dynamic Buffering •••••. ~ ••••.............•..•.• 
Overlapped GET and READ/WRITE Processing ••••••• 
Creating and Defining ISAM Files ••••••••••••••• 
Undefined Record Support ••••••••••••••••••••••• 
Variable Length Sequential File Support •••••••• 
Sequential Output Disk File Flip-Flop Facility • 
File Recovery ................................. . 
Dynamic File Allocation Facility ••••••••••••••• 
On-line File Control Commands •••••••••••••••••• 
Dynamic Deallocation and Reallocation via 

File Command .......••....••.••.•.•...•.•..... 
Retry of ALLOC or DEALL After Error •••••••.•• 
Subtasking of DYNALLOC Macro •••••••••••••.••• 
Status of Files While Deallocated •••••••••••• 

VSAM File Support •••••••••••••••••••••••••••••• 
Using a VSAM Local Shared Resources Pool ••••••• 

Connecting Data Sets to the LSR Pool ••••••••• 
Sharing VSAM Files Under Intercomm ••••••••••••• 

Implementation for Sharing VSAM Files 
Across Regions ...•...•.••••••••••••••••.•.. 

ISAM/VSAM Compatibility Under Intercomm •••••••• 
File Handler Components •••••••••••••••••••••••••• 

Data Set Control Table (IXFDSCTA) •••••••••••••• 
Defining the Data Set Control Table •••••••••• 

File Handler Initialization (IXFMONOO) •.••••••• 
File Attribute Record Processing (IXFFAR) •••••• 
File Handler Processing (IXFMON01) ••••••••••••• 
QISAM Scan Mode via BISAM (IXFQISAM) ••••••••••• 

viii 

5-16 
5-16 
5-16 
5-17 
5-19 
5-19 
5-20 
5-21 
5-21 

5-27 
5-27 

6-1 
6-1 
6-2 
6-2 
6-3 
6-3 
6-3 
6-3 
6-3 
6-4 
6-5 
6-6 
6-7 
6-7 
6-7 
6-8 
6-8 
6-9 

6-9 
6-11 
6-12 
6-12 
6-13 
6-14 
6-15 
6-15 

6-16 
6-17 
6-18 
6-18 
6-20 
6-20 
6-21 
6-21 
6-21 



6.4.6 
6.4.7 
6.4.8 
6.5 
6.5.1 
6.5.2 
6.5.3 
6.5.4 

6.5.5 
6.5.6 
6.5.7 
6.6 
6.6.1 
6.7 
6.8 
6.9 
6.9.1 
6.9.2 
6.9.3 
6.9.4 
6.9.5 
6.10 
6.10.1 
6.10.2 

6.11 
6.11.1 

6.12 
6.12.1 
6.12.2 
6.12.3 
6.12.4 
6.12.5 
6.12.6 
6.12.7 
6.12.8 
6.13 

Chapter 7 
7.1 
7.2 
7.3 
7.3.1 
7.3.2 
7.4 
7.4.1 
7.4.2 
7.4.3 

File Handler Termination (IXFMON09) •••••••••••• 
Sequential Output File Abend Control (IXFB37) •• 
VSAM Cross-region Shared Control (IXFVSCRS) •••• 

Data Set Specifications •••••••••••••••••••••••••• 
Required DD Parameters ••••••••••••••••••••••••• 
Required DCB Parameters ••••.••••••••••••••••••• 
Read-Only Data Sets •••••••••••••••••••••••••••• 
Shareability of Sequential Data Sets 

(QSAM/BSAM) •••••••••••••••••••••••••••••••••• 
Data Set Disposition ••••••••••••••••••••••••••• 
SYSIN/SYSOUT Data Sets ••••••••••••••••••••••••• 
Reserved ddnames """"""""""""".".""""" •• ,, ~ • " " • " " 

File At tri bute Records (FAR) ••••••••••••••••••••••• 
Coding the FAR s """" •• """".""".,,"""""",, ••.•• ,,.,," 

File Handler Service Routine Summary ••••••••••••••• 
Locate Facility """""".""""."".""" ... ",,.,,""""""""",,. 
File Handler Options ••••••••••••••••••••••••••••••• 

Exclusive Control Time-Out ••••••••••••••••••••• 
Conditional Assembly of the File Handler ••••••• 
Sub tas ked GETs ""."."""""""."."".""",,.,,"",, •• ,,""" 
IXFDSCTA Options ••••••••••••••••••••••••.•••••• 
User-Specified DCBs ••..•••••••••••••••••••••••• 

File Handler Statistics Report ••••••••••••••••••••• 
File Handler LSR Statistics •••••••••••••••••••• 
Creating the File Handler Statistics 

File (STATFILE) •••••••••••••••••••••••.•••••• 
Using the File Handler Separately from Intercomm ••• 

Using the File Handler in LINKPACK for 
Batch Programs ".""""."."" ... ""."" .. ,,"",,.,,"""" 

DISAM--A File Handler Access Technique •.••••••••••• 
DISAM File Handler ••••••••••••••••••••••••••••• 
DISAM File Record Formats •••••••••••••••••••••• 
BDAM Records """"."""."""".".".""".",,.,,.,,"",,.,,"" 
Size of Record Area for Variable Length Records. 
ISAM Offset Value """""."".".""" •• ".""""""".",,.,, 
DISAM Operations """"""."""""" .. ,,""""""""""""",,. 
ISAM Conversion Utility--DISCONV ••••••••••••••• 
Index File Reorganization Utility--DISREORG •••• 

Intercomm CFMS Support •••••••••••••.••••••••..••••• 

EXECUTION OF INTERCOMM 
Introduction ".""""".""."".,,""""""""""""""""""""",,",, 
Generating a Linkedit Deck ••••••••••••••••••••••••• 
The Intercomm Linked it ••••••••••••••••••••••••••••• 

Linkage Editor External Symbol Table Overflow •• 
Linkage Editor Parameters •••••.•••••••••••••••• 

Execution JCL """""""""""""" ••••.•••••••••••.••••••• 
Global WTO and MCS Routing .•••••••••••••••••••• 
STEPLIB or JOBLIB Requirements ••••••••••••••••• 
DD Statement Requirements •••••••••••••••••••••• 

ix 

Page 

6-22 
6-22 
6-22 
6-23 
6-23 
6-24 
6-25 

6-25 
6-26 
6-26 
6-26 
6-28 
6-30 
6-35 
6-38 
6-40 
6-40 
6-40 
6-41 
6-42 
6:"42 
6-45 
6-47 

6-48 
6-50 

6-51 
6-52 
6-53 
6-56 
6-56 
6-57 
6-57 
6-57 
6-63 
6-63 
6-64 

7-1 
7-1 
7-2 
7-2 
7-3 
7-3 
7-4 
7-5 
7-6 
7-6 



7.5 
7.5.1 
7.6 
7.6.1 
7.6.2 
7.7 
7.7.1 
7.7.2 
7.7.3 
7.7.4 
7.8 
7.9 
7.9.1 
7.9.2 
7.9.3 
7.9.4 
7.9.5 
7.9.6 
7.9.7 
7.9.8 
7.9.9 
7.10 
7.11 
7.12 
7.12.1 
7.12.2 
7.12.3 
7.12.4 
7.12.5 
7.12.6 

7.12.7 

Chapter 8 
8.1 
8.2 
8.2.1 
8.2.2 
8.2.3 
8.2.4 
8.2.5 
8.2.6 
8.3 
8.3.1 
8.3.2 
8.3.3 
8.4 
8.4.1 
8.5 
8.6 

System Startup ...•................................. 
Startup User Exits--USRSTART/USRSTRT1 .......... 

System Closedown ••••••••.••••••••••••.••...•••••••• 
Closedown Time Limit ••••••••••••••••••••••••••• 
Closedown User Exits--USRCLOSE/USRCLSE1 •••••••• 

Li ve Opera ti on ..........•••.•••..........•......... 
HASP Modification to Run Intercomm Under HASP •• 
In tel"'comm and ASP •••••••••••••••••••••••••••••• 
Execution JCL •••••••••.••.•••••••.••.•••••••••• 
Low-Core Condition--SSPOLL ••••••••••••••••••••• 

Intercomm Quiesce •••••••••••••••••• ~ •••....•••••••• 
OS/VS Operation •.•••••.•...••..••••••.••••.•••...•. 

Page Pre loading ••••••••••••••••••••••••••••.••• 
Page Fixing ................................... . 
VS Installation Procedures ••••.••••••••••••.••• 
Page Fixing Guidelines ••••••••••••••••••••••••• 
VS System Tuning Considerations •••••••••••••••• 
Subsystem Considerations ••••••••••••••••••••••• 
VS SYSGEN Considerations ••••••••••••••••••••••• 
VS1: WTP User Message Limit ••••••••••••.•••••• 
VS2: SP IE Macro ••.••.••••...•.....•••...•.....• 

MVS Operation •.•..........•..........•.....•....... 
Intercomm Interregion SVC--&MRSVC •••••••••••••••••• 
Intercomm Link Pack Feature •••••••••••••••••••••••• 

Preparation of the Operating System •••••••••••• 
Preparation of the Link Pack Module (LPM) ••.•.• 
Preparation of Intercomm Region (IR) ••••••••••• 
User Routines in the Link Pack Area ••••••.••••• 
Coding Conventions for User LPM Routines 
Entry Point Specifications for User 

LPM ROll tines .............•................... 
Accessing LPM Modules in Batch Mode •••••••••••• 

INTERCOMM FACILITIES ••••••••••••••••••••••••••••••• 
Introduction ......................................• 
Terminal Simulator Facility •••••••••••••••••••••••• 

Terminal Input Data Set(s) ••••••••••••••••••••• 
Input Parameter Data Set ••••••••••••••••••••••• 
Input Operations •...•.......•...•.......•••.... 
Output Operations ....................•......... 
Local 3270 Message Preparation and Processing •• 
Simulator Closedown ......••.................... 

Abend Intercept Routines--SPIEEXIT, STAEEXIT ••••••• 
SP lEEXIT •.•..•••••••.•.••••.••••......••••••••• 
User SPIESNAP Exit--SPSNEXIT ••••••••••••••••••• 
ST AEEXIT •••••••••..•.••••••••....•••••••.•••..• 

Indicative Dump Option •••••••••••.••••••••••••••••• 
User Snap Exit--SNAPEXIT •••••••••••••••••••.••• 

System DeBs ..........................•............. 
Spinoff Snaps .........•............••.....•..•..... 

x 

7-8 
7-11 
7-12 
7-13 
7-13 
7-14 
7-14 
7-14 
7-14 
7-16 
7-18 
7-19 
7-20 
7-20 
7-21 
7-23 
7-24 
7-25 
7-25 
7-26 
7-26 
7-27 
7-29 
7-30 
7-33 
7-33 
7-34 
7-35 
7-36 

7-37 
7-38 

8-1 
8-1 
8-1 
8-2 
8-3 
8-3 
8-4 
8-4 
8-5 
8-5 
8-6 
8-6 
8-6 
8-7 
8-9 

8-10 
8-10 



L 
8.6.1 
8.6.2 
8.7 
8.7.1 
8.7.2 
8.7.3 
8.7.4 
8.8 
8.8.1 
8.8.2 
8.8.3 
8.8.4 
8.8.5 
8.9 
8.9.1 
8.9.2 
8.10 
8.11 

Chapter 
9.1 
9.2 
9.3 
9.3.1 
9.3.2 
9.4 
9.4.1 
9.5 
9.5.1 
9.6 
9.6.1 
9.6.2 
9.6.3 
9.6.4 
9.7 
9.7.1 
9.8 
9.8.1 

Chapter 
10.1 
10.2 
10.2.1 
10.3 
10.3.1 
10.3.2 
10.3.3 
10.3.4 
10.3.5 
10.4 

9 

10 

Implemen ta tion ........•...................•.... 
User SPINOFF Snap Exit--SPINEXIT ••••••••••••••• 

Fast SNAP Facility ••••••••••••••••••••••••••••••••• 
Restrictions ••••••••••••••••••••••••••••••••••• 
Prerequisi tes ................................. . 
Operation ..................................... . 
Printing the Fast Snap--IMDPRDMP ••••••••••••••• 

System Accounting and Measurement (SAM) Facility ••• 
Specifying System Resource Usage Categories •••• 
Specifying User Accumulators ••••••••••••••••••• 
SAM User Exit Routines--USRSAMnn ••••••••••••••• 
Implementa tion .................•............... 
Reports from System Accounting and Measurement • 

System Tuning Statistics ••••••••••••••••••••••••••• 
Reports from System Tuning Statistics •••••••••• 
Implementation ................................ . 

Log Input Fac ility ................................ . 
Test Mode Operation •...••.••••••••••••••••••••.•••• 

LOGGING, SYSTEM RESTART, MESSAGE RECOVERy •••••••••• 
In troduction ...................................... . 
System Failure and Recovery •••••••••••••••••••••••• 
Message Restart Concepts ••••••••••••••••••••••••••• 

Mandatory and Desirable Conditions ••••••••••••• 
User Responsibility in Restart ••••••••••••••••• 

System Logging .•..... e., •••••••••••••••••••••••••••• 

Logging User Exit--USERLOGE •••••••••••••••••••• 
Sys tem Checkpoints •...•••.•.•••••.••••.•.•....••.•• 

Checkpointing User Exit--USRCHKPT ••••••.••••••• 
Res tart /R ecovery ••••••••••••••••••••••••••••••••••• 

The Restart Process •••.•••••••••••••••••••••••• 
Message Accounting .•••••••••••••••••••••••••••• 
Message Restart Logic •••••••••••••••••••••••••• 
Message Restart User Exit--USRESTRT •••••••••••• 

Implementa tion .......•.................•........... 
Concatenation of Disk Log Files for Restart •••• 

Serial Restart ••••••••••••••••••••••••••••••••••••• 
Serial Restart User Exit--USRSEREX ••••••••••••• 

SYSTEM SECURITY IMPLEMENTATION ••••••••••••••••••••• 
Introduction .................................... . 
Basic Security Processing Options •••••••••••••••• 

Security Processing Logic •••••••••••••••••••••• 
Sign-on/Sign-off Security •••••••••••••••••••••••• 

Using a Sign-on/Sign-off Terminal •••••••••••••• 
Sign-on/Sign-off Processing •••••••••••••••••••• 
SPALIST Macro Parameter ••••••.••••••••••••••••• 
SYCTTBL Macro Parameter •••••••••••••••••••••••• 
User Exits for Sign-on/Sign-off Security ••••••• 

Transaction Security .................... ~ ......... . 

xi 

Page 

8-11 
8-12 
8-13 
8-13 
8-13 
8-14 
8-14 
8-15 
8-15 
8-18 
8-18 
8-19 
8-20 
8-23 
8-23 
8-23 
8-24 
8-26 

9-1 
9-1 
9-1 
9-2 
9-2 
9-2 
9-3 
9-7 
9-8 
9-9 

9-11 
9-11 
9-12 
9-12 
9-14 
9-15 
9-19 
9-20 
9-21 

10-1 
10-1 
10-2 
10-2 
10-5 
10-5 
10-6 
10-6 
10-7 
10-7 
10-8 



10.4.1 
10.4.2 
10.4.3 
10.5 
10.5.1 

10.5.2 
10.5.3 

10.5.4 
10.5.5 
10.5.6 

10.5.7 

10.6 
10.6.1 
10.6.2 
10.6.3 
10.6.4 
10.6.5 
10.'1 

Chapter 11 
11 • 1 
11.2 
11.2.1 
11.2.2 

11.2.3 
11.3 
11.4 
11.4.1 
11.4.2 
11.4.3 
11.4.4 
11.4.5 
11.4.6 
11.4.7 
11.4.8 
11.4.9 
11.5 
11.6 
11.6.1 
11.6.2 
11.6.3 
11.6.4 

11.6.5 

11.7 
11.8 

Using Transaction Security ••••••••••••••••••••• 
SPALIST Macro Parameter •••••••••••••••••••••••• 
SYCTTBL Macro Parameter •••••••••••••••••••••••• 

Coding the Station Table ••••••••••••••••••••••••• 
Structure of the Station Table with Security 

Processing .................................. . 
GENSEC Macro ••••••••••••••••••••••••••••••••••• 
SECVERBS Macro and STATION Macro/VERBS 

Parameter ................•................... 
STATION Macro/UNIVER and OPER Parameters ••••••• 
Other STATION Macro Parameters in PMISTATB ••••• 
Definition of Range of Verbs per Terminal for 

Transaction Security ••••••••••••••••••••••••• 
Loading Operator Codes on Disk for Station 

Secur it y Op tion •••.•.•.••.............. ~ ..... 
Implementation of User-Written Security Routines • 

Coding Security Subroutines •••••••••••••••••••• 
SPALIST Macro Parameter •••••••••••••••••••••..• 
SYCTTBL Macro Parameter •••••••••••••••••••••••• 
Security Table ................................ . 
Linkedit Requirements •••••••••••••••••••••••••• 

Multiregion Intercomm Considerations ••••••••••••• 

SYSTEM TUNING TECHNIQUES ••••••••••••••••••••••••••• 
Introduction .................................... . 
System Tuning and Performance Evaluation ••••••••• 

System Tuning Facilities ••••••••••••••••••••••• 
System Performance Evaluation and Statistics 

Reports ..................................... . 
System Statistics Displays ••••••••••.•..••••••• 

Tracing a Message on the Log ••••••••••••••••••••. 
Factors Affecting System Performance ••••••••••••• 

Subsystem Program Logic •••••••••••••••••••••••• 
Subsystem Residency and Scheduling Parameters •• 
Subpool Space and Scheduling Criteria •••••••.•• 
Subystem Queuing Parameters •••••••••••••••••••• 
Front End Parameters ••••••••••••••••••••••••••. 
Data Set Allocation •••••••••••••••••••••••••••• 
System Log Specifications •••••••••••••••••••••• 
Additional Execution Considerations •••••••••••• 
Fast Supervisor GETMAIN and FREEMAIN QUICKCELL • 

The Fine Tuner Commands •••••••••••••••••••••••••• 
Response Time Considerations ••••••••••••••••••••• 

Execution Considerations ••••••••••••••••••••••• 
Transmission Considerations •••••••••••••••••••• 
Queue and Log Processing ••••••••••••••••••••••• 
Dispatching Priority and Subsystem 

Considerations .•••••••••••..•.••....••..•.••• 
Main Storage Usage, Statistics, and Dump 

Processing Considerations •••••••••••••••••••• 
MVS Tuning Recommendations ••••••••••••••••••••••• 
Debugging and Tracing Facilities •••••••••••.••••• 

xii 

10-9 
10-9 

10-10 
10-10 

10-10 
10-11 

10-11 
10-14 
10-14 

10-15 

10-17 
10-18 
10-18 
10-19 
10-19 
10-19 
10-20 
10-20 

11-1 
11-1 
11-1 
11-2 

11-2 
11-3 
11-3 
11-6 
11-7 
11-7 
11-9 

11-12 
11-13 
11-13 
11-14 
11-14 
11-15 
11-15 
11-16 
11-17 
11-18 
11-18 

11-18 

11-19 
11-19 
11-23 



L 
Chapter 
12.1 
12.2 
12.3 
12.3.1 

12 OFF -LINE UTILITIES ••••.••••••••••••••••••••••..•••• 

12.4 
12.4.1 
12.4.2 
12.4.3 
12.4.3.1 
12.4.3.2 
12.4.3.3 
12.4.3.4 
12.4.4 
12.5 
12.5.1 
12.6 
12.7 
12.8 
12.9 
12.10 
12.10.1 
12.10.2 
12.11 
12.12 
12.13 

Appendix A 

Appendix B 

In troduction .................................... . 
Log Processing Programs •••••••••••••••••••••••••• 
Intercomm Log Display (LOGPRINT) ••••••••••••••••• 

Description and Function of Control Records 
(SYSIN) ...••.•..••.••••..•••••.....•••.....•• 

Log Analysis Program (LOGANAL) ••••••••••••••••••• 
Traffic Histograms ••••••••••••••••••••••••••••• 
Response Time Reports ••••••••••••••.••••••••••• 
Installation of LOGANAL •••••••••••••••••••••••• 

LOG ANAL Generation Parameters •••••••••••••••• 
Changing LOGANAL Generation Parameters ••••••• 
Generating the LOGVRBTB •••••••••••••••••••••• 
Creating the LOGANAL Load Module •.•••••.••••• 

Execution of LOGANAL ••••••••••••••••••••••••••• 
The File Load Program (PMIEXLD) ••.••••••••••••••• 

Partial File Load •••••••••••••••••••••••••••••• 
BDAM File Creation (CREATEGF) •••••••••••••••••••• 
OPSCAN -- Scan for Program Operation Codes ••••••• 
PRT1403 -- Print Output Utility Batch Reports •••• 
LIBCOMPR -- Symbolic Library Compare ••••••••••••• 
Utility Prog"rams to Create Input Test Data ••••••• 

CREATSIM Program ••••••••••••••••••••••••••••••• 
SIMeRTA Utility Program •••••••••••••••••••••••• 

Create Keyed BDAM File (KEYCREAT) •••••••••••••••• 
ICOMFEOF - Recover from Missing End of File •••••• 
CHANGER--Produce Change Deck from Two PDS Members. 

INTERCOMM TABLE SUMMARY •••••••••••••••••••••.•••••• 

INTERCOMM MESSAGE HEADER ••••••••••••••.•••••••••••• 

Page 

12-1 
12-1 
12-1 
12-1 

12-3 
12-8 
12-8 

12-11 
12-16 
12-16 
12-18 
12-18 
12-19 
12-19 
12-24 
12-28 
12-30 
12-32 
12-33 
12-34 
12-35 
12-35 
12-38 
12-39 
12-40 
12-42 

A-1 

B-1 

Appendix C USER CODING OF THE SCT OVERLAY INDEX ••••••••••••••• C-1 

Appendix D 
D.1 
D.2 
D.3 

INTERCOMM USER EXITS ••••••••••••••••••••••••••••••• 
Introduction ••••••••••••••••••••••••••••••••••••• 
Coding Conventions ............................... 
List of User Exits ••••.••••••••.•.•.•••.•.••.••.• 

INDEX .......................................................... 

xiii 

D-1 
D-1 
D-1 
D-2 

1-1 





Figure 

2-1 

2-2 

2-3 

2-4 

2-5 

2-6 

3-1 

3-2 

3-3 

3-4 

3-5 

3-6 

3-7 

LIST OF ILLUSTRATIONS 

Intercomm JCL Procedures ••••••••••••••••••••••••••••• 

JCL Procedure Parameter SUIDIIlary •••••••••••••••••••••• 

Intercomm Global Tables .............................. 
INTGLOBE ............................................. 
SETGLOBE ............................................. 
Intercomm Tables with User COPY Members •••••••••.•••• 

Front End/Back End Communication via Message Queues •• 

Re leased BTVRBTB ••••••••••••••••••••••••••••••••••••• 

The System Control Components •••••••••••••••••••••••• 

Creating the System Parameter Area and SCT ••••••••••• 

INTSCT Coding of Intercomm Subsystems •••••••••••••••• 

Sample Coding of INTSCT with an Overlay Structure •.•• 

Intercomm-Supplied Subsytems ......................... 

2-6 

2-8 

2-23 

2-24 

2-26 

2-28 

3-4 

3-8 

3-26 

3-27 

3-28 

3-30 

3-32 

3-8 Sample Linkedit Control Cards for Overlay Region A 

3-9 

3-10 

3-11 

3-12 

3-13 

Subsystems •••••••••••••••••••••••.••••••••••••••••• 3-38 

REENTSBS Release Versions •••••••••.•••••••••••••••••• 

PL/1 Subsystem Interface Options ••••••••••••••••••••• 

Dynamically Loaded PL/1 Subsystems ••••••••••••••••••• 

Illustration of Nested CALLOVLY Coding Conventions ... 
Using CALLOVLY in an Assembler Language Interface 

for a High-Level Language Program •••••••••.•••••••• 

xv 

3-48 

3-50 

3-50 

3-57 

3-57 



Figure Page 

4-1 IJKTRACE - Csect/Module Name Correspondence Table ••.• 4-6 

4-2 Sample IJKTRACE Listing .............................. 4-7 

5-1 Obtaining a Save Area via the STORAGE Macro •.••••.•.. 5-5 

5-2 Example of Core-Use Statistics •••••••••••••••.••••••• 5-14 

5-3 Sample Thread Resource Dump •••••••.•••••••••••••••••• 5-24 

5-4 Sample Pool Dump ...•••..••••••••.•...............•... 5-28 

6 -1 File Handler Components •.•.••.•...••••••••••••••••.•• 6-19 

6-2 File Handler Service Routine Parameter Summary •.•..•• 6-36 

6 - 3 IXFDSCTA Options •.••........•...•.•.••••.••••••.••... 6-42 

6-4 Sample User-Supplied DCB ••..••••••••••••••••••••••••. 6-44 

6-5 File Handler Statistics Report •••••••••.••••••••••••• 6-45 

6-6 DISAM Data Base Structure •••••••••••••••••••••••••••• 6-53 J 
7-1 Using LKDEP Procedure to Generate Intercomm Load 

Modul e •••••••.••••....•••••••..•••.••••••••••••..•• 7-3 

7-2 Typical Live Execution JCL •••..••••••••••••••.•••.... 7-15 

7-3 LINEGRP, BLlNE Sequence and JCL for Remote Terminals • 7-17 

7-4 BLINE, BTERM Sequence and JCL for Local Terminals •..• 7-17 

7-5 Link Pack Module Working in Conjunction with Several 
Intercomm. Regions .......•..•.••................••.. 7-30 

7-6 Applicable Intercomm Components for LPSPA/LPINTFC 
Macr 0 •••••••••••••••••••••••••••••••••••.•••••••••• 7-32 

7-7 Relinkediting Intercomm Region for Link Pack Feature • 7-35 

7-8 Frequent Uses of System Parameter Area and SPA 
Extension in User LPM Routines •••••••••••••••.••••• 7-37 

xvi 



L-
Figure 

8-1 

8-2 

8-3 

8-4 

8-5 

8-6 

8-7 

8-8 

8-9 

9-1 

9-2 

10-1 

10-2 

11-1 

12-1 

12-2 

12-3 

12-4 

12-5 

12-6 

12-7 

Page 

Areas Displayed by Indicative Dump ••••••••••••••••••• 8-8 

Listing of PMIDCB (as released) •••••••••••••••••••••• 8-10 

Sample JCL for Spinoff Snaps ••••••••••••••••••••••••• 8-12 

Resource Usage Categories 

SAM Report Execution PARM Values .................... . 

8-16 

8-21 

System Accounting and Measurement Report Sample •••••• 8-22 

Sample Report from System Tuning Statistics •••.•••••• 8-24 

Test Mode Input Card Formats ••••••••••••••••••••••••• 8-27 

Sample Test Mode JCL ••••••••••••••••••••••••••••••••• 8-29 

INTERLOG Entries ••••••••••••••••••••••••••••••.•••••• 9-5 

Checkpoint Data ...................................... 9-10 

Security Processing Logic •••••••••••••••••••••••••••• 10-4 

Summary and Use of SECVERBS and BTVERB Macros •••••••• 10-13 

Tracing Messages on INTERLOG ••••••••••••••••••••••••• 11-5 

Sample Output Page from LOGPRINT Utility............. 12-2 

JCL for LOGPRINT Execution ••••••••••••••••••••••••••• 12-3 

Sample Histogram for a Terminal...................... 12-9 

Sample Response Time Analysis •••••••••••••••••••••••• 12-13 

Sample JCL for Execution of LOGANAL •••••••••••••••••• 12-23 

JCL to Create PMIEXLD •••••••••••••••••••••••••••••••• 12-24 

Sample File TAble (PMIFILET) ••••••••••••••••••••••••• 12-25 

xvii 



Figure 

12-8 JCL for File Load Program Execution ••••••••••••••••• 

12-9 Conventions for Disk-Resident Tables for the 

12-10 

12-11 

12-12 

12-13 

12-14 

12-15 

12-16 

Utilities ••••••••••••••••••••••••••••••••••••••••• 

Example of CREATEGF JCL and Control Cards •••.••••••• 

JCL to Create Load Module for PRT1403 Utility ••••••• 

JCL to Execute PRT1403 Utility Load Module •••••••••• 

Sample JCL to Execute LIBCOMPR •••••••••••••••••••••• 

SIMCRTA Linkedit and JCL •••••••••••••.••••••••••...• 

KEYCREAT Execution JCL .............................. 
lCOMFEOF Execution JCL .............................. 

C-1 User-Coded Subsystem Control Table Index Structure •• 

xviii 

Page 

12-26 J 
12-27 

12-32 

12-33 

12-33 

12-34 

12-38 

12-39 

12-41 

C-3 



Chapter 1 

THE INTERCOMM ENVIRONMENT 

1.1 INTRODUCTION 

The Intercomm on-line teleprocessing monitor may be utilized on 
the System 360/370 (and compatible) family of computers (including 
303x, 43xx, 308x, etc.) and executes under the control of the Operating 
System (MFT or MVT) or System/370 Virtual Storage system (VS1 or MVS). 
With anyone of the operating systems, any number of concurrent 
independent jobs may be submitted and executed while the Intercomm 
system is operating. 

Intercomm operates as a job in a multiprogramming, multitasking, 
time-dependent environment. Any number of applications may be 
concurrently executed under the control of the Intercomm monitor j any 
number of terminals, types of input, application programs, and file 
access methods may be used. 

Application programs executing under Intercomm may be written in 
any of the System 360/370 compiler languages: Assembler Language, 
COBOL, PL/1, or FORTRAN. The user can also convert from a batch 
processing to an on-line environment without having to totally rewrite 
application programs. 

Intercomm is a table-driven system; that is, operating 
specifications are described to the system in the form of tables. 
Thus, Intercomm components are individual routines coded in generalized 
form where applicable, utilizing table entries for execution 
requirements. The application programmer is generally not concerned 
with these table entries, but is responsible only for the problem 
solving logic. All message routing, time-sharing, message mix, and 
cOlllD.unication functions within Intercomm are, in general, transparent 
to the application programmer. 

The prerequisite publication to this document, Intercomm Concepts 
and Facilities, describes the general system logic of an Intercomm 
environment. In this section a brief review is provided of the major 
system components, region organization, modes of execution, and 
user-specified tables. 

An Intercomm system consists of user-coded application subsystems 
(message processing programs) and the following Intercomm components: 

• Front End Teleprocessing Interface 
System programs responsible for all operation of the 
telecommunications network. 

• Subsystem Controller 
System programs responsible for all scheduling, loading and 
activating of message processing SUbsystems. 

1-1 



Chapter 1 The Intercomm Environment 

• Queue Management 
System programs controlling queuing and retrieval of messages 
waiting for processing or transmission. 

G File Handler 
System programs exercising centralized control over all 
Operating System data management functions. 

• Dispatcher 
The multi threading control routine that schedules use of the 
CPU among concurrently executing tasks. 

• Resource Management 
Optional system programs provided to ensure efficient main 
storage management and control over system resources in the 
event of program failure. 

• Utility Programs 
System programs provided to simplify design and implementation 
of application programs and message processing logic. 

• System Control Routines 
Optional system programs providing logging (journaling) , 
restart/recovery, system control transactions, a comprehensive 
dynamically controlled security environment, debugging and 
tuning aids, program error interception, system reliability, 
etc. 

1.2 FRONT END 

This component of Intercomm controls all teleprocessing functions 
of the system. An on-line installation may optionally utilize one or 
more of the following Teleprocessing Interface components: 

• The Intercomm BTAM Front End, a conditionally assembled, 
table-dri ven series of programs providing efficient interface 
to a wide variety of terminals through IBM's Basic 
Telecommunicatons Access Method and Graphics Access Method. 

• The Intercomm TCAM Interface to a Message Control Program 
operating in a separate region where all line control 
functions are performed according to macro-generated 
specifications for IBM's Telecommunications Access Method. 
The Extended TCAM support provides interface to TCAM process 
and destination queues via the BTAM Front End. 

• The Intercomm VTAM 
control region and 
devices. 

Front End, 
interfacing 

1-2 

communicating with a VTAM 
with both SNA and non-SNA 



Chapter 1 The Intercomm Environment 

• A user-supplied interface to nonsupported devices implemented 
by the Generalized Front End Interface of the BTAM Front End. 

1.3 SUBSYSTEM CONTROLLER 

The Subsystem Controller interacts with the Teleprocessing 
Interface via the queue management routines to control all message 
processing within the on-line system. It directs incoming messages to 
the proper application programs, schedules and' loads nonresident 
subsystems as required. 

The Subsystem Controller optimizes dynamic loading of subsystems 
and/or program swapping (overlay management) to increase throughput, and 
diagnoses application program errors to provide an uninterrupted on-line 
operation. 

Subsystem Controller processing is governed by user-varied tables 
specifying the message routing structure and variable processing factors 
which can be adjusted to maximize throughput. 

1.4 QUEUE MANAGEMENT ROUTINES 

Message queues are the prime interface between the Front End (TP 
Device Control) and Back End (Message Processing Control) components of 
Intercomm. Input messages are queued for processing by subsystem; 
output messages are queued for transmission by logical unit, terminal, 
line, or user-specified discipline. Messages may be queued in main 
storage and/or on disk at the user's option. Disk queues are 
wraparound, reuseable BDAM data sets. A queue is a logical entity; one 
physical data set may be shared for several queues. The queue 
management routines are service routines utilized by both system 
programs and application SUbsystems. 

1.5 FILE HANDLER 

By processing all on-line files through a single module, Intercomm 
eliminates duplication of I/O routines, control blocks and buffers in 
application programs. It also eliminates the highly wasteful opening 
and closing of data sets for each message processed--files are opened 
only once per day (or shift). In concert with the Dispatcher, tasks 
that access files are maximally overlapped with other tasks (processing 
threads) requiring CPU time. 

1-3 



Chapter I The Intercomm Environment 

All data set organizations (sequential, direct, indexed) and 
processing techniques (by logical record, by physical block, keyed 
access, random access) are available to programs written in any language. 
Comprehensi ve diagnostics for on-line security and I/O error analysis 
are provided, as well as write-protection of master files. 

Exclusive control of individual records or blocks within files, 
recommended where simultaneous updating could occur, is also provided as 
one of the File Handler's functions, and, via an exclusive control 
time-out, those records held beyond a specified time limit may be 
released from exclusive control. 

1.6 DISPATCHER 

The Intercomm Front End Teleprocessing Interface, the Subsystem 
Controller and the File Handler create multiple independent threads 
(parallel program paths for parallel message processing) using the 
Dispatcher, which allocates and overlaps CPU time among any number of 
concurrent work requests, and establishes any number of concurrent 
real-time clocks. This is achieved within a single Operating System 
task, thus obviating the need for a multitasking operating system and 
formal dynamic program linkage through the Supervisor. The Dispatcher 
also assists in overlay management and dynamic program management under 
direction of the Subsystem Controller. 

1.7 RESOURCE MANAGEMENT 

The Resource Management facilities of Intercomm provide efficient 
storage management techniques, unless specifically bypassed by the 
user. Additionally, a storage cushion feature is available to serve as 
a protection against a temporary shortage of main storage. The cushion 
(of user-selected size) is an area gotten from subpool zero at startup 
and held, but not used, until a request for dynamic storage cannot be 
satisfied. At that point, the cushion is returned to subpool zero and 
used to satisfy storage requests for messages currently in progress. No 
new message processing is started until reduced storage demands, as 
messages are completed and transmitted, allow the cushion to be 
reacquired by the monitor. The impact of a noncritical shortage of 
dynamic storage is therefore avoided. Resource Management options are 
described below and may be used singly or in combination with each other. 

1-4 



Chapter 1 The Intercomm Environment 

The resource auditing and purging option provides a chain of 
control blocks built for every active program thread. These blocks 
correspond on a one-to-one basis with resources acquired by the program. 
Resources may be areas of storage, files, or any facility subject to 
ownership. Purging is accomplished by freeing unreleased resources, 
represented by the control block chain, for a program thread when the 
thread normally or abnormally completes. A thread resource dump (TDUMP) 
is provided as an audit utility to print out control block chains, 
showing which thread is in control of what unreleased resources, through 
which module the resources were obtained and in what order acquisition 
occurred. 

As an adjunct to audit/purge or as an independent option, the 
creation of main storage pools, which section a contiguous area of 
storage into specified block sizes, is offered with Resource Management. 
Storage pools are generated by a macro which defines the size and number 
of pools, and the number of blocks within each pool to be generated to 
fit user requirements. The pool option not only manages storage 
allocation to eliminate fragmentation problems but furthermore, through 
indexed access to the pools, provides a significant increase in the speed 
with which storage may be obtained and freed, owing to the elimination 
of GETMAIN and FREEMAIN SVCs. 

The third option consists of two distinct sets of core-use 
statistics: global and detail. Inclusion of either set may be made 
without reference to the other. The global statistics present such 
information as the number of requests for storage and requests to free 
storage, the average storage request length, and the number of requests 
filled from the pools. Detail statistics consist of the breakdown of 
storage requests into size ranges. The primary purpose of the detail 
statistics report is to provide sufficient statistics from actual system 
usage so that an effective selection of the number and sizes of pool 
blocks may be made at an installation. 

1.8 UTILITY PROGRAMS 

In addition to the File Handler, a number of on-line utility 
functions are provided to ease programming of application subsystems and 
to centralize control of such functions. The interface is via standard 
call logic in the subsystem. These facilities include: 

• Message Mapping Utilities--device-independent message editing, 
formatting, and output routing 

• Store/Fetch--temporary data string storage and retrieval 

• Dynamic Data Queuing--transient queues of data strings, file 
records, or message~ 

• Page Browsing--collections of output messages for paging 
access from a CRT device 

1-5 



Chapter 1 

• 

The Intercomm Environment 

Dynamic File Allocation--allocate and/or access data sets not 
defined explicitly via JCL. 

Additionally, the EDIT, OUTPUT, DISPLAY and CHANGE Utilities 
provide alternate means of message and file record processing. EDIT 
strips the incoming message of TP control characters and provides for 
complete field-by-field editing of the input message. It also performs 
keyword parameter analysis. OUTPUT supplies device-independent output 
capabilities to application programmers. DISPLAY allows a remote 
operator to display an individual file record (for BDAM or ISAM files) 
in a fixed character format on his terminal. CHANGE allows the 
operator to modify selected fields in a file record obtained by DISPLAY. 

1.9 REGION ORGANIZATION 

At execution time, the Intercomm region (or partition) consists 
of system programs, tables, and message-processing sUbsystems. 

• Resident Intercomm routines 
These routines are required constantly for Intercomm 
functions and must be resident. Residing in this required 
area is the Intercomm nucleus, that is, such routines as the 
Subsystem Controller and Dispatcher. 

• Resident tables 
Certain tables are necessarily resident in that they specify 
actual control functions of Intercomm. For example, the 
System Parameter Area (SPA) describes systemwide 
characteristics. Resident tables share the Intercomm nucleus 
with resident routines. 

• Resident subsystems 
Frequently used subsystems and subroutines should remain in 
main storage. Whether a program is resident is a factor in 
good planning and can provide for both maximizing system 
throughput and minimizing individual transaction response 
time. 

• Nonresident subsystems; dynamically loadable 
Nonresident subsystems and subroutines can be defined as 
dynamically loadable into main storage. These programs are 
loaded on an as-required basis. Reuseable subsystems remain 
resident until prescribed message processing limits are 
reached or message traffic ceases, and nonreuseable 
subsystems are reloaded for every message processed. 

1-6 



Chapter I The Intercomm Environment 

1.9.1 

• Nonresident subsystems; planned overlay structure 
The Intercomm region may contain one or more overlay regions: 
Overlay A,B,C,D. The first region therein, Overlay A, has 
special characteristics in that groups of subsystems are 
loaded to process messages concurrently. Overlays B, C, Dare 
utilized for single-thread, noncritical message-processing 
subsystems. The sequence of overlay load is based on message 
traffic and scheduling criteria. 

• Nonresident service routines 
Service routines that may be nonresident are those not called 
frequently. When required, they are loaded into the 
transient overlay area of the Intercomm region. If an overlay 
structure is not defined, all Intercomm service routines must 
be resident in the Intercomm region, or in the Intercomm 
portion of the Link Pack Area. 

a Nonresident table entries 
Infrequently used table specifications, for example, message 
formats for the Message Mapping and Output Utilities, can be 
contained on disk and loaded when needed. 

• Dynamic Subpool Area 
This is the areas of main storage that are obtained 
dynamically (as needed) for loading Intercomm or user 
routines or tables. The subpool area is dynamic in that the 
composition varies and areas are assigned, or released and 
made available for reuse, as soon as the monitor determines 
that the area is no longer needed. 

Dynamic Program Loading 

Nonresident subsystems and subroutines are loaded into the 
dynamic subpool area during ongoing execution of the Intercomm 
partition/region via the dynamic load facility which interfaces with an 
asynchronous loader task. Programs are expeditiously loaded on demand, 
according to arrival sequence of incoming message traffic. A loaded 
subsystem remains resident until a maximum of messages is processed 
(limit specified by the Subsystem Control Table), or until message 
traffic ceases. 

Once loaded, any subsystem defined as reuseable or reentrant is 
left resident in the dynamic area and rescheduled as needed, as long as 
the storage it occupies is not required for a subsequent subsystem load 
during an unscheduled interval. A nonreuseable subsystem will be 
reloaded for every message. Within this framework any 
reuseable/reentrant subsystem processes more than one message, if 
queued. 

1-7 



Chapter 1 The Intercomm Environment 

A BLDL, or load list, ar-ea may optionally be requested for each 
dynamically loaded program. Although load list specification increases 
the size of the resident Intercomm tables, it provides for faster 
loading and is recommended for frequently used programs. 

The predefined maximum amount of storage useable for concurrently 
loadable subsystems can be varied while Intercomm is operational via a 
system control command. The load module used for a dynamically loaded 
program may be reloaded via a system control command to allow 
replacement of that program during Intercomm execution. Dynamic 
Linkedit, an optional feature, resolves external references between 
loaded and resident programs at startup and when a replacement program 
copy is loaded by command. 

1.9.2 Overlay Program Loading 

Loading of subsystems may be controlled by the Intercomm Overlay 
Management scheduling facility, in Which case subsystems are linkedited 
as overlay region segments and loaded according to a preplanned 
structure and sequence. As with dynamically loadable subsystems, the 
sequence of subsystem load is dictated by message traffic. 

1.9.3 Asynchronous Overlay Loader 

The Intercomm Overlay Loader is an asynchronous multiprogramming 
interface between Intercomm and the OS Overlay Supervisor that allows 
Intercomm to coordinate the loading of programs asynchronously with the 
execution of other Intercomm threads. This prevents Intercomm from 
being placed in a wait state by the Overlay Supervisor, while still
allowing full use of overlay facilities. 

When multiple messages for subsystems in more than one overlay 
area require concurrent loading of multiple regions, they are 
automatically queued by being dispatched on one of the communications 
Event Control Blocks (ECB) between the two tasks. This technique 
permits resident subsystems and those active (already loaded) overlay 
areas to continue processing. 

The Intercomm Overlay Loader allows greater versatility than an 
independent loader--due to the power of the OS Overlay Supervisor, and 
at the same time provides full processing overlap. 

The Operating System (MVT ,MFT) must have the ATTACH and IDENTIFY 
options (standard features in VS1 and MVS) to utilize this Intercomm 
facility. 

1-8 

J 



L 
Chapter I The Intercomm Environment 

1.10 MODES OF EXECUTION 

Mode of execution in the Intercomm environment pertains to 
operation with or without on-line terminals and to operation with or 
wi thout consideration for previous execution ("cold" vs. "warm" 
start) • Further, reference may be made in this document to operation 
in the production environment or testing environment. The Intercomm 
mode of execution is determined by parameters specified via JCL to 
indicate whether or not terminals are operational or whether or not 
restart functions are to be performed. The actual application 
subsystems executed to process messages are unaffected by the 
production or testing status of the system. 

Intercomm operates in Test Mode in three ways: via message 
processing in a batch mode; or via time-oriented simulation of 
terminals whereby disk data sets of input messages exist for each 
terminal simulated; or with a combination of live and simulated 
terminals. These three types of test facilities are provided without 
any changes to the user application program(s) being tested. 

Batch Test Mode allows for input of transaction data at system 
startup time through SYSIN. Those transactions are then queued and 
passed into the system at the rate of an extremely high volume 
environment, with multithreading taking place in the application 
programs almost immediately, just as if the messages had come from 
on-line terminals. The Batch Mode testing facility allows for pseudo 
high volume testing, but in no way represents a projected processing 
capability based on random message arrival rates from a simulated 
network. 

A second type of testing facility is provided with the BTAM 
"terminal simulator". Separate message queues are established on 
direct access sequential data sets for each simulated terminal. 
Intercomm retrieves messages from "terminal queues" based on a unique 
time value for each pseudo terminal. The terminal simulator allows the 
user to simulate a "live" Intercomm environment by defining a network 
of these pseudo terminals. This network could represent the eventual 
network a user expects to install, or already has in use. Note that 
although definition of a BTAM terminal network is required for the 
simulator, input and output processing of messages is essentially the 
same no matter which type of Front End (BTAM, TCAM or VTAM) is used for 
the live Intercomm system. In addition, the user may request a printed 
display of how 3270 terminal messages (formatted and unformatted) will 
appear in live mode. 

The third type of testing facility allows the user to operate 
with all the terminals of his present on-line system and to simulate 
those terminals which are not presently operating or which represent 
the eventual projected network. This facility allows the testing of 
application programs with a combination of both live terminals and 
pseudo terminals. This combined network can then be operated under 
control of Intercomm. This feature merely expands the capabilities of 
the Intercomm Front End. 

1-9 



Chapter I The Intercomm Environment 

Additionally, Intercomm provides a Multiregion mode of execution, 
wherein there is one "control" region (partition) containing the Front 
End te leprocessing interface and system control routines, and one or 
more "satellite" regions containing only Back End facilities and user 
application processing programs. Optionally, high-volume application 
subsystems may execute in the control region. One of the satellite 
regions may be used only for live testing of application programs. 
Thus, the separation of application subsystems into several regions 
provides file or data base access centralization, additional security 
control, and system integrity and storage protection, without impacting 
the terminal user or response time. 

1.11 INTERCOMM TABLES 

Intercomm is a generalized on-line system and, as such, requires 
operating specifications for each particular installation. This 
information is provided to the system in the form of tables which are 
coded using Intercomm macros. An application programmer is usually not 
involved in defining the Intercomm tables, except for the application 
program requirements. Tables are coded for each of the following 
Intercomm functions, by which the user specifies his unique 
requirements: 

• Line Control 
network configuration 
transaction validation 
terminal queues 

• Message Processing Control 
application subsystem specifications 
subsystem queues 

• System Control 
storage pool speCifications 
logging requirements 
checkpoint/restart/recovery specifications 
debugging options 
statistics and tuning facilities 

• Application Program Services and Utilities 

Thus, Intercomm is a table-driven system. Line control 
information, that is, the number of logical units or terminals and 
their exact hardware characteristics, is provided to the system, 
facilitating such operations as LOGON control, polling and addressing, 
process and destination queuing, and rerouting of messages. 

1-10 



Chapter 1 The Intercomm Environment 

Specifications for message processing control functions are 
tabular: the type of applications the user has, their scheduling, 
whether an application program is capable of processing several 
messages concurrently and, if so, the maximum number of messages to be 
handled concurrently. 

System control functions are table-driven; tables provide 
specifications for which logging entries are required, the frequency of 
checkpoint and information to be checkpointed, the parti cular files to 
be updated, and specifications relating to restart requirements and 
file integrity. In addition, the application program services, such as 
Message Mapping, operate according to user-specified table entries and 
definitions. 

Major functions in Intercomm are controlled by the following 
tables: 

~ System Global Tables (SETENV, SETGLOBE) 
Global tables used to control conditional assembly of many 
Intercomm system routines, thus tailoring code requirements 
to the individual installation. 

• Front End Verb Table (BTVRBTB) 
A table listing all valid four-character transaction 
identifiers (verbs) and relating them to the subsystem used 
for message processing. There is one entry per transaction 
or message type. 

• Front End Network Configuration Tables 
Tables describing the terminal network hardware operating 
characteristics, queuing speCifications, logging/restart 
reqUirements, and relating individual devices to 
five-character station identifications. 

• Station Table and Device Table 
Tables describing terminal device-dependent characteristics 
to the Back End utilities. 

• System Parameter Area (SPA) 
A table describing systemwide operating characteristics. 
This table may be extended to include a user area with 
installation-defined parameters or tables, accessible to all 
subsystems. 

• Subsystem Control Table (SCT) 
A table listing the characteristics (reentrancy, language, 
entry point, etc.), queue specifications (main storage and/or 
disk queues), scheduling (resident or loadable, concurrent 
message processing limits, etc.) and logging/restart 
speCifications for application SUbsystems. There is one 
entry per subsystem. 

1-11 



Chapter 1 The Intercomm Environment 

• Data Set Control Table (DSCT) 
A table automatically generated by the File Handler 
describing on-line data sets. Information in the table is 
deri ved from JCL and File Attribute Record (FAR) statements 
at execution time. 

• Intercomm Storage Pools 
A table of Intercomm-managed storage resource pool blocks, in 
ascending order by block size. The pools may be resident in 
the Intercomm linkedit, or dynamically loaded at system 
startup. 

• Message Mapping Definitions 
Sets of external and symbolic (Dsect) maps, along with tables 
of logical terminal definitions, referenced by application 
subsystems when invoking the Message Mapping Utilities to 
edit and format messages and data strings. The definitions 
are made via MMU macros and stored in prescribed files. 

o Edit Control Table (ECT) 
A table describing input message editing specifications for 
transactions edited by the Edit Utility. There is one entry 
per transaction. Entries are optionally disk-resident. 

• Output Format Table (OFT) 
A table describing output message formatting specifications 
for messages formatted by the Output Utility. There is one 
entry per output format. Entries are optionally 
disk-resident. 

Thus, the Intercomm system components are individual routines, 
coded in a generalized form, where appli cable. Each system component 
recei ves detailed specification for its program functions via table 
entries defined via global SET symbols, coding of Intercomm system 
macros, or DC or parameter statements. Table entries may describe a 
hardware configuration (for example, the communications network) or 
software speCification (for example, EDIT control functions). By 
adjusting variable table entries, the user effectively tailors 
Intercomm routines to his installation without modifying any program 
logic. Appendix A summarizes all table entries. 

This document provides processing features and table entries for 
many of the system components. Others are described in manuals 
defining installation for the Front End, System Control Commands, and 
various Intercomm system and application program facilities. 

1-12 



Chapter 2 

THE INTERCOMM OPERATIONAL SYSTEM 

2.1 INSTALLATION OVERVIEW 

This chapter describes the major requirements 
installation, standardization and maintenance of 
teleprocessing system, as follows: 

for 
the 

successful 
Intercomm 

• Intercomm Libraries and Naming Conventions 
• Intercomm JCL Procedures 
• System Installation and Maintenance Responsibilities 
• System Standards 
• System Control Functions and Tables 

The installation of a basic Intercomm system consists of 
allocation and cataloging of standard Intercomm libraries, loading the 
Intercomm release tape to disk via standard OS/VS utilities, copying 
selected Intercomm JCL procedures to an installation's procedure 
library, customizing system global tables, and then executing various 
preparatory steps prior to performing a linkedit and execution of the 
system. This first installation phase ensures the proper functioning 
of the system with respect to message processing control functions. 
Thus, once installation is complete, testing of new application 
subsystems may begin immediately, independent of the hardware deli very 
schedule or utilization schedule for existing terminals. 

Front End installation consists of table specifications and 
assembly of the appropriate line and terminal control programs to 
satisfy the specific requirements of a particular hardware 
configuration and the teleprocessing access methodes) used. 

Instructions for installing the system accompany 
tape, as the system generation procedures may vary from 
with changes in the system programs, quantity of data to be 
and customer equipment to be used (see Installation Guide). 

2.2 LIBRARIES 

the release 
time to time 
distributed, 

At installation time, the Intercomm system is copied from tape to 
disk into libraries allocated and cataloged for this specific use. 

A library is an Operating System partitioned data set (PDS) 
consisting of a directory and individual members. Each library is 
identified by a 4- to a-character name. A source library is named 
SYMxxxxx where xxx xx is 1 to 5 characters to complete a unique name. 
An object library is named OBJxxxxx. A load library is named MODxxxxx. 

A systemwide high-level qualifier for the library data sets may 
be defined at installation time. Intercomm JCL procedures provide for 
override of the system default (INT) via a P parameter. 

2-1 



Chapter 2 The Intercomm Operational System 

The Intercomm system is released on three libraries: 

• SYMREL--system macros, COPY members and Dsects, source 
programs, tables and Job Control Procedures. 

• MODREL--system load modules 

., SYMUCL-Intercomm User Group contributed programs (see User 
Contributed Program Description). 

These libraries are not to be used for user programs or user 
modifications to Intercomm modules, as new Intercomm releases are 
effected by complete replacement of these libraries. 

The following libraries must be created at installation time by 
the user: 

LIB-- to hold user-modified versions of Intercomm global tables defined 
via SET statements: 

• SYMLIB--updated system source members 

• MODLIB--load modules 

NOTE: these libraries are used by the ASMF Facility 
Intercomm members updated by SMs (periodic 
modifications) ; therefore, they should not 
user-modified Intercomm modules. 

to hold 
system 

contain 

MDF-- to hold map group definitions for the Intercomm Message Mapping 
Utilities: 

~ SYMMDF--source map definitions 

• MODMDF--load module versions of maps 

USR-- to contain linkedit control decks, installation JCL, user 
programs, user-modified versions of, or additions to, Intercomm 
system tables, or user modifications to Intercomm modules: 

• SYMUSR--modified source modules 

o MODUSR--load modules 

NOTE: SYMUSR is intended as the common link across Intercomm 
system releases in that it should contain user versions 
of system tables (or COpy members to be inserted in 
system tables; see Section 2.7), change decks for user 
modification of Intercomm system modules (in addition to 
the changed modules), Intercomm linked it modifications 
(to order Csects under VS1/MVS, and to add user modules), 
etc. All changes to Intercomm system modules and tables 
must be reexamined for applicability and sequence 
numbering whenever SMs are applied or a new release is 
installed. 

2-2 



L 

Chapter 2 The Intercomm Operational System 

REF-- a dumny data set (one track) to set the largest block size for a 
SYSLIB concatenation stream (see Section 2.2.1): 

• SYMREF--for block size determination 

This is the minimal configuration of the Intercomm libraries. 

If desired, all user programs may be placed into the common USR 
libraries, or "private" libraries may be created for individual 
programmers or groups: 

o SYMxxx--private source programs 

• MODxxx--private load modules 

For testing purposes, a set of "scratch" libraries may be created, 
to be scratched and recreated periodically to eliminate unneeded modules 
and recover space used during updating: 

• SYMSCR--Test source programs 

• MODSCR--Test load modules 

NOTE : Several Job Control Procedures producing executable load 
modules specify data set MODSCR (see LKEDE, LKEDT). 

The Intercomm JCL procedures are so arranged that, whenever a 
search must be made in a library for a member (such as a macro name, 
source code to be copied or updated, or modules to be included in a 
linked it ), a concatenation is used to cause a progressive search to be 
made for the member in 

• The specified private library 

• The system modification USR library 

• The system update LIB library 

• The system release REL library 

• Operating System libraries, such as MACLIB, COBLIB, TELCMLIB, 
etc. (where appropriate) 

The search for a member ends with the first library (in the above 
sequence) containing the member name in its directory, even if another 
li brary also contains the named member. Thus, the user of a private 
library can modify any system component for his own use without 
affecting the user of any different private library. An installation 
may choose to modify or add a component to the system USR library, and 
it will automatically become available to all users. Components 
modified by SMs will be taken from the systemupdate library, while 
those not modified/updated by the user will be taken from the library 
supplied by Intercomm, and components of the Operating System will be 
taken from the appropriate operating system libraries. 

2-3 



Chapter 2 The Intercomm Operational System 

2.2.1 

NOTE: If executing under MVS, it may be necessary to modify 
Intercomm procedures which execute an assembly so that 
SYS1.AMODGEN is concatenated after SYS1.MACLIB in the ASM 
step, in order to make system macros and Dsects available 
for assembly of Intercomm modules. 

Source Library Concatenation Sequence 

Due to the existence of macros on SYS1.MACLIB that have the same 
name as Intercomm macros, the Intercomm SYMxxx libraries must be placed 
before SYS1.MACLIB. When the block size of SYS1.MACLIB is larger than 
the Intercomm SYMxxx libraries, placing it after the SYMxxxs can cause 
I/O errors in read ing macros, COPY code, etc. There are three ways 
around the problem: 

1. Reblock SYS1.MACLIB to Intercomm Source Libraries block size. 

2. Reblock Intercomm source libraries to SYS1.MACLIB block size. 

3. Tell the Assembler what the largest block size on SYSLIB is. 

Method 1 can propagate the problem to other assemblies. Method 2 
is workable but still requires a reblock, and all libraries must have 
the same block size. Method 3 is the one that is provided by Intercomm 
installation for all Intercomm JCL procedures using the Assembler 
(ASMPC, ASMPCL, LIBEASM, LIBELINK, etc.): 

IISYSLIB 
II 
II 
II 
II 
II 

where: 

DD DSN=SYMREF,DISP=SHR 
DD DSN=SYM&Q,DISP=SHR 
DD DSN=SYM&U,DISP=SHR 
DD DSN=SYMLIB,DISP=SHR 
DD DSN=SYMREL,DISP=SHR 
DD DSN=SYS1.MACLIB,DISP=SHR 

SYMREF is a dummy PDS with the correct largest block size, 
SYM&Q is the private library (specified via Q parameter), 
SYM&U defaults to SYMUSR. 

NOTE: SYS1.MACLIB must be concatenated after all SYMxxx 
libraries. 

2-4 

J 

J 



L 

Chapter 2 The Intercomm Operational System 

JCL PROCEOORES 

To simplify the execution of assemblies, linkage editing, and 
utilities in an Intercomm environment, a number of Job Control 
Procedures are supplied with the Intercomm system as members on SYMREL. 
These procedures provide a straightforward, uniform means to: 

• Add and update source programs on source program libraries. 

• Assemble or compile programs from source program libraries, 
producing either object modules (assembler or compiler 
output) or load modules (linkage editor output) on 
appropriate libraries. 

• Print and punch source programs and object decks. 

~ Patch load modules on load module libraries. 

• Linked it any combination of object and load modules to 
produce executable programs. 

Note: for MVS systems, programs must 
RENT (reentrant) unless they really 
Intercomm load modules on MODREL are 
reentrant or reusable. 

• Execute general utility programs. 

not be linkedited as 
are reentrant. The 

not linked as either 

Figure 2-1 is a list of procedure names and the general function 
performed by each procedure. The Intercomm System Manager should 
evaluate this list carefully to determine which Intercomm procedures 
should be utilized as a standard for the installation. Many of these 
procedures are used in the Intercomm installation JCL and for specific 
feature installation as described in this and other Intercomm manuals. 

2-5 



Chapter 2 The Intercomm Operational System 

============ ============================================================ 
Name Function 

------------ ------------------------------------------------------------------------ ------------------------------------------------------------
ASMOC 

ASMPC 

ASMPCL 

ASMPCM 

COBPC 

COBPCL 

COBUPC 

COBUPCL 

COBUPCLD 

COMPRESS 

COpy 

DEFSYM 

FORTLINK 

INTASMF 

LIBCOBDL 

LIBE 

LIBEASM 

LI BE COB 

LIBE COBL 

LIBELINK 

LKEDE 

LKEDO 

LKEDP 

LKEDPL 1 

LKEDT 

Assembler source--produce object module 

Assembler source--(produce object module or no output) 

Assembler source--produce load module 

Assemble a macro--(produce object module or no output) 

COBOL-F source--(produce object module or no output) 

COBOL-F source--produce load module 

ANS COBOL source--(produce object module or no output) 

ANS COBOL source--produce load module (with NCAL option) 

ANS COBOL source--produce dynamic load module (link INTLOAD) 

compress a PDS 

copy PDS or member 

see Message Mapping Utilities 

compile and link FORTRAN module 

see ASMF Users Guide 

update ANS COBOL--produce dynamic load module (link INTLOAD) 

update a source member 

update Assembler source--produce object module 

update ANS COBOL source--produce object module 

update ANS COBOL source--produce load module (NCAL option) 

update Assembler source--produce load module 

object & load module(s)--produce executable load module 

object & load module (s)--produce executable load module 

load module(s)--produce executable load module 

PL/1 object or load modules--produce executable load module 

load module(s)--produce executable Test Mode module 

Figure 2-1. Intercomm JCL Procedures (Page 1 of 2) 
2-6 



L 

Chapter 2 The Intercomm Operational System 

-------------------- =========================================================== 
Name Function 

-------------------- =========================================================== 
MODLIB create load library 

OBJUB create object library 

OPSCN Assembler source program scan (OPSCAN utility) 

PATCH patch load module(s) 

PLIXPC PL/1-optimizer--produce object module 

PLIXPCL PL/1-optimizer--produce load module 

PL1LOC PL/1-F source--produce object module 

PL1LPC PL/1-F source--(produce object or no output) 

PL1LPCL PL/1-F source--produce load module 

PMIPCH punch source or object deck 

PMIPRT print source. member listing 

SYMGEN see Message Mapping Utilities 

SYMUB create source library 

Figure 2-1. Intercomm JCL Procedures (Page 2 of 2) 

Unit name SYSDA is used wherever direct access space allocation 
is re qu ired. 

Listings of individual members may be obtained by using the 
following JCL: 

IIPROCUB 
II 

DD 
EXEC 

DSN=INT.SYMREL,DISP=SHR 
PMIPRT,Q=REL,NAME=procname 

A Job Control Procedure is invoked by coding the procedure name 
in an EXEC statement, along with appropriate keyword symbolic parameters 
to supply the library and member names. 

Figure 2-2 summarizes the parameters specified for each Intercomm 
procedure. 

2-7 



Chapter 2 The Intercomm Operational System 

-======================================================================= 
Except for some of the 
symbolic parameters Q, 
values Q=XYZ, U=USR, 
optional. 

utilities, all procedures below also have 
U and P, with Intercomm-supplied default 
P=INT. Bracketed parameters below are 

----------------------------------------------------------------------------------- -------------------------------- ---------------------------
Procedure Parameters Comments/Other Parms 

----------- -------------------------------- -------------------------------------- -------------------------------- ---------------------------
ASMOC 
ASMPC 
ASMPCL 
ASMPCM 
COBPC 
COBPCL 
COBUPC 
COBUPCL 
COBUPCLD 
COMPRESS 
COpy 
FORTLINK 
LIBCOBDL 
LIBE 
LIBEASM 
LIBECOB 
LIBEOOBL 
LIBELINK 
LKEDE 
LKEDO 
LKEDP 
LKEDPL1 
LKEDT 
MODLIB 
OBJLIB 
OPSCN 
PATCH 
PLIXPC 
PLIXPCL 
PL1LOC 
PL1LPC 
PL1LPCL 
PMIPCH 
PMIPRT 
SYMLIB 

N~'1E= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 

NAME= 
NAME= 

NAME= 
NAME= 
NAME= 
NAME = 
lOMOD=) 
(OMOD=) 

NAME= 

N~'1E= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 
NAME= 

OMOD= 

LMOD= 

LIDD= 

LIDD= 
LIDD= 
DSN= 
INDSN= 
LMOD= 
LIDD= 

OMOD= 
OMOD= 
LIDD= 
LMOD= 
LIDD= 
LMOD= 
LMJD= 
LMOD= 
LMOD= 
VOLSER= 
VOLSER= 

LIDD= 
OMOD= 

LMOD= 

VOLSER= 

(D=) 
(SYSGO=) 

(SYSGO=) 

ls=J 
OUTDSN= 
(S=) 

(D= J 
(D=) 

lD=J 

lPARM2=J 
lPARM2=J 
lPARM2= ) 
lPARM2=J IPARM2=J 
S=) 
S=) 
D=) 

Dynamic Linkedit not used 

(S1=) 
Dynamic Linkedit not used 

OMOD optional if INCLUDE 
statement in input stream 

( OVL Y = J (PL 1 = ) 

(BLKSIZE=) 

(T=) 

(T=) 
IT=) 

Figure 2-2. JCL Procedure Parameter Summary 

Note: for the following procedures the default Q value is other than 
XYZ: 

LKEDPL1 - (null)j MODLIB,OBJLIB,SYMLIB - SCRj OPSCN - REL. 

2-8 



L 

Chapter 2 The Intercomm Operational System 

The keyword symbolic parameters used are as follows: 
Q 

u 

P 

NAME 

OMOD 

LMOD 

S 

T 

Common to all Intercomm procedures, this parameter defines the 
characters completing various library names used in the procedure. 
For example, if Q=TST is coded for a procedure which uses both 
symbolic and load module libraries, the names SYMTST and MODTST are 
generated by the procedure. One to five alphanumeric characters 
may be specified. The default is XYZ. 

Common to all Intercomm source update, compile, assembly, and 
linked it procedures, this parameter defines the characters 
completing the library name of the data set placed after the Q data 
set in a SYSLIB concatenation stream. One to five alphanumeric 
characters may be specified. The default is USR. 

Common to all Intercomm Procedures, this parameter specifies a 
library name common pre fix or high-level qualifier. For example, 
if P=INTERCOM, and Q=TESTS is coded for a procedure using a source 
library, the name INTERCOM.SYMTESTS is generated by the procedure. 
One to eight alphanumeric characters may be specified, the first of 
which must be alphabetic. If multiple qualifiers are used, then 

-the parameter value must be in quotes, that is, P='A.B', and more 
than eight characters may be coded. The default is INT. 

For those procedures which use a symbolic library, this parameter 
is coded to specify the name 'of a particular member (source 
program) to be assembled, printed, etc. It may be omitted if an 
override SYSIN DD statement is present in the JCL. The default is 
INVALIDNAME • 

For those procedures using an object module library, this parameter 
is coded to specify a particular name for the input or output 
object module. The default is GO. 

For those procedures using a load module library, this parameter 
specifies a particular name for the linkage editor output module. 
It may be omitted if a NAME statement is present in the linkedit 
input control stream. The default is GO. 

For uti lit y procedures (compressing, printing, punching) requiring 
control statement input, this parameter specifies the prefix of the 
PROCLIB containing the control statements. For example, S=SYS1 
specifies the system procedure library SYS1.PROCLIB. The default 
is INT. 

For certain procedures (printing, punching, patching) applicable to 
more than one type of library, T=SYM, OBJ, or MOD may be specified 
to indicate the type of library. The default is SYM. 

2-9 



Chapter 2 The Intercomm Operational System 

D 

SYSGO 

VOLSER 

PARM2 

PL1 

OVLY 

INPUT 

Indicates the disposition of the output library data set as follows: 
for procedures which can optionally create a temporary data set, 
D=MOD must be coded to specify this processing option; when library 
creation procedures are used to add or replace members, D=MOD, OLD, 
or SHR may be coded. The default is OLD. 

For assemblies only, to provide the name of a temporary partitioned 
data set which will receive an output object module from the 
assembly. The data set is deleted at end of job. If not 
specified, no object output is produced. If a qualified data set 
name, or a temporary name (starting with &&), is used, enclose the 
name in quotes. The default is NULLFILE. 

For library creation procedures requiring specification of the 
volume serial number on which the library is to reside. One to six 
alphanumeric characters may be specified. The default is INT001. 

For PL/I procedures, this allows specification of additional 
compiler parameter (PARM=' •••• ') information without changing the 
parameter default values specified in the procedure (which would 
cause a reversion to installation SYSGENed defaults). Specify as 
PARM2=',parm(, ••• )'. 

For the LKEDPL 1 procedure to linked it a dynamically loaded PL/I 
subsystem and/or subroutine, this provides the module name to be 
used in the linkedit step (LKED1) execution to resolve all external 
PL/I references (needed when Intercomm's dynamic linked it not used). 

For LKEDPL1, denotes whether the resulting load module is to be an 
overlay structure (default is ',OVLY'). If OVLY= (no value), then 
an overlay structure is not created. 

For LKEDPL 1, specifies the prefix of the lowest level name of the 
installation load library used to resolve external PL/I subroutine 
references via a LKED1.SYSIN statement such as INCLUDE PL1LIB(name). 
The default is MOD. Thus if the defaults are used for the P, INPUT 
and Q parameters, the PL/I subroutine library data set would be 
INT • MODXYZ • 

The following parameters are explained under examples of the 
applicable procedures: 

BLKSIZE, DSN, INDSN, OUTDSN. 

2-10 



Chapter 2 The Intercomm Operational System 

2.3.1 Step Names 

The following naming conventions apply to multistep procedures: 

-======================= ================================= 
Step Name Function 

----------------------- ------------------------------------------------------- --------------------------------
LIB 
ASM 
COB 
LKED 
PL1L 
PLI 

source update 
assembly 
COBOL compile 
linked it 
PL/I-F compile 
PL/I-optimizer compile 

2.3.2 JCL Procedures for Source Updates, Compiles, Assemblies, Linkedits 

II EXEC ASMOC,Q=xxx,NAME=source-member,OMOD=object-member(,D=disp) 

Assemble the source program on SYMxxx, placing the object module 
on OBJxxx using the OMOD name. If the OBJxxx data set is created 
and used in subsequent steps of the same .job, then it is deleted 
at the end of the job. D=MOD must also be coded to specify this 
option. 

II EXEC ASMOC,Q=xxx,OMOD=object-member 
(Source program deck) 

Assemble the input stream program (using library SYMxxx for 
macro, etc., definitions) and store the object module on OBJxxx 
using the OMOD name. 

II EXEC ASMPC,Q=xxx,NAME=source-member(,SYSGO='output-data-set') 

Assemble the named source program. No object output is produced 
unless SYSGO= 'output-data-set' is coded. If a cataloged 
sequential data set is named, the object module is added at the 
end of the data set. Otherwise a temporary sequential data set 
is created and used in subsequent steps of the same job, then is 
deleted at the end of the job. A "temporary" data set name may 
be speCified, but '&&LOADSET' should not be used. 

II EXEC ASMPC,Q=xxx 
IISYSGO DD SYSOUT=B 

(source program deck) 

In this example, an input stream source deck is being assembled, 
and the object output is to be punched instead of being written 
to a temporary data set. The Q=xxx parameter still defines a 
library to be used for macro definitions, COPY members, etc. 

2-11 



Chapter 2 The Intercomm Operational System 

II EXEC ASMPC,Q=xxx,NAME=source-member,SYSGO='library(member), 

In this example, the object program is added to or replaces an 
existing member of the cataloged partitioned data set (library), 
which must have aO-byte logical records. 

II EXEC ASMPCL,Q=xxx,NAME=source-member,LMOD=load-module-name 

Assemble and linked it the named source member from SYMxxx, 
creating or replacing the named load module on MODxxx. This 
statement may be followed by an input stream source deck, in 
which case the NAME parameter may be omitted. If linkage editor 
control input is required, it must follow a IILKED.SYSIN DD * 
statement. If the condition code from the assembly step is 
greater than 4, the linkedit step is bypassed. 

II EXEC COBPC,Q=xxx,NAME=COBOL-source-member 

Analogous to ASMPC, for COBOL-F compilation. 

II EXEC COBPCL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-name 

Analogous to ASMPCL, for COBOL-F compilation and linkedit. 

II EXEC COBUPC,Q=xxx,NAME=COBOL-source-member 

II 

Analogous to COBPC, for ANS COBOL compilation. 

EXEC COBUPCL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-name 

Analogous to COBPCL, for ANS COBOL compilation and linkedit of 
resident, overlay, or dynamically loaded (if Dynamic Linkedit 
used) programs. 

II EXEC COBUPCLD,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-narne 

Analogous to COBUPCL, for ANS COBOL compilation and linked it for 
a dynamically loaded program and including all needed COBOL load 
modules from SYS1.COBLIB. If Dynamic Linkedit is used (see 
Chapter 3), then use OOBUPCL. Linkage editor control cards 
should be added to LKED.SYSIN for the subsystem load module name, 
and for INTLOAD. For example: 

II EXEC COBUPCLD,Q=USR,NAME=COBPROG,LMOD=COBPROG 
IILKED.SYSIN DD * 

INCLUDE SYSLIB(COBPROG,INTLOAD) 
ENTRY COBPROG 
NAME COBPROG(R) 

II EXEC FORTLINK,Q=xxx,NAME=source-member,LMOD=load-module-name 
(,S=PDSprefix,S1=PDSname) 

where Sand S1 default to SYS1.FORTLIB (the library containing 
IEYFORT, the Fortran compiler and Fortran subroutines for the 
linkedit). This procedure executes a compile and linkedit of a 
Fortran module. 

2-12 



Chapter 2 The Intercomm Operational System 

II EXEC LIBCOBDL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module-name 

Analogous to 
compilation, 
including all 
used. 

LIBECOBL, for ANS COBOL source member update, 
and linkedit for a dynamically loaded program 
needed COBOL load modules, when Dynamic Linkedit not 

II EXEC LIBE,Q=xxx 
(control statements and data for program IEBUPDTE) 

Execute the IBM utility program IEBUPDTE to change symbolic 
library SYMxxx. This program is described in the IBM Utilities 
manual, and permits an individual source member to be changed, 
added, or replaced. The member named in the utility control 
statement is searched for in the named library and the system 
update (LIB) and release (REL) libraries, so that it is possible 
to update a source program onto a private library without first 
copying the program from one library to the other. 

Control statement and data examples: 

II EXEC LIBE,Q=USR 
.1 CHANGE NAME=PROG1 
* THIS IS A REPLACEMENT FOR THE STATEMENT NUMBERED 00459370 

II EXEC LIBE,Q=USR 
.1 REPL NAME=PROG2,LIST=ALL 
.1 NUMBER NEW1=10000,INCR=1000 

(replacement deck for PROG2) 

II EXEC LIBEASM,Q=xxx,NAME=source-member,OMOD=object-moduleL,D=disp) 
(control statements and data for program IEBUPDTE) 

Update and assemble the source program, producing an object module 
on the named library. The control input is normally an add, 
replace, or change for the member to be assembled. If the update 
is not successful (any IEBUPDTE diagnostic giving a nonzero return 
code), the assembly is not performed. 

If data set OBJxxx is not cataloged, a temporary data set is 
created and used in subsequent steps of the same job, then is 
deleted at the end of the job. D=MOD must also be coded to 
specify this option. 

II EXEC LIBECOB,Q=xxx,NAME=COBOL-source-member,OMOD=object-module 
(,D=disp) 

Analogous to LIBEASM, for ANS COBOL source member update and 
compilation. 

2-13 



Chapter 2 The Intercomm Operational System 

II EXEC LIBECOBL,Q=xxx,NAME=COBOL-source-member,LMOD=load-module 

Analogous to LIBELINK, for ANS COBOL source member update, 
compilation and linkedit of resident, overlay or dynamically 
loaded (if Dynamic Linkedit used, see Chapter 3) programs. 

II EXEC LIBELINK,Q=xxx,NAME=source-member,LMOD=load-module-name 
(control statements and data for program IEBUPDTE) 

Update, assemble, and linkedit the source program, creating or 
replacing the named load module. If the update is not 
successful, the assembly and linkedit are not performed. 'If the 
assembly is not successful (ret urn code greater than 4), the 
linkedit is not performed. Any linkage editor control input must 
be preceded by the statement IILKED.SYSIN DD *. 

II EXEC LKEDE,Q=xxx,LMOD=load-module-name(,OMOD=object-module-nameJ 

Linkedit a program for subsequent execution, storing the load 
module on library MODSCR. If this library is not cataloged, it 
may be created and used in subsequent steps of the same job, then 
will be deleted at the end of the job; specify D=MOD in this case 
(the default is SHR). Linkage ed itor control input may fo llow 
this statement; if no control input is provided, then OMOD=object
module must be coded to specify an object module on OBJxxx as 
input. 

Control statement examples: 

INCLUDE OBJLIB(omod1,omod2, ••• ) 
INCLUDE SYSLIB( lmod2, lmod3, ••• ) 
INCLUDE ddname( ••. ) 

include object modules 
include load modules 
data set defined on added 
DD statement 

Mul tiple load modules may be processed in one execution of the 
linkage editor by interspersing linkage editor NAME control 
statements with input control statements. The LMOD parameter is 
not required in this case. If object module library OBJxxx was 
created in the same job by an assembly or compilation procedure 
(see ASMOC, COBOC, LIBEASM), then, if OMOD parameter is not 
specified, precede any control input by: IISYSLIN DD * 

II EXEC LKEDO,Q=xxx,LMOD=load-module-name(,OMOD=object-module-nameJ 

Linkedit one or more object andlor load modules, placing the load 
module on library MODxxx. Refer to procedure LKEDE for the 
remainder of the description of this procedure. Override the 
SYSLMOD DD statement if MOD xxx does not exist. 

II EXEC LKEDP,Q=xxx,LMOD=load-module-name 

This procedure is analogous to procedure LKEDO, but no object 
module data sets are defined or made available for inclusion. 

2-14 

J 



Chapter 2 The Intercomm Operational System 

II EXEC LKEDT,Q=xxx,LMDD=load-module-name 

Analogous to procedure LKEDE, but with no object module data sets 
defined. The load module is placed in MODSCR. 

NOTE: Procedures LKEDT and LKEDP define concatenations of private 
library, USR, LIB, and REL for the call library SYSLIBj in 
addition, procedures LKEDE and LKEDT specify the system COBOL and 
telecommunications libraries (SYS1.COBLIB and SYS1.TELCMLIB), so 
that included or called Operating System modules will be available 
to the linkage editpr. For LKEDE and LKEDO, Q specifies only the 
object library suffixj the SYSLIB concatenation sequence starts 
with USR (U parameter). 

II EXEC LKEDPL1,Q=xxx,LMDD=10ad-module-name,INPUT=library-type, 
PL1=library-name,OVLY= 

This procedure will linkedit PL/I programs including all required 
PL/I library subroutines, and then perform a final linkedit to 
include all necessary Intercomm modules. This is necessary, as 
during the final linked it the automatic library mechanism must be 
disabled, while during the initial linkedit (when PL/I library 
routines are included) it must be enabled. 

There are two steps, LKED1 (the PL/I library step) and LKED2 (the 
Intercomm step). During LKED1, PL/I programs are included from 
either a load or object library (or both if additional user 
libraries are specified) via the INPUT (INPUT=OBJ for object, MOD 
is default) parameter and using the ddname PL1LIB. In the LKED2 
step, IntercollIn modules are included from SYSLIB and the PLII 
program(s) from the library defined by the ddname PL1. To include 
the modules from the first step simply code INCLUDE PL1(PL1). The 
OVLY parameter, if coded, will nullify the overlay option in the 
second linkedit. 

II EXEC LKEDPL1,Q=LIB,LMOD=INTERCOM,OVLY= 
11* OVERLAY NULLIFIED, INPUT=MOD DEFAULT USED 
IILKED1.SYSIN DD * 

INCLUDE PL1LIB(PROG1) 
INCLUDE PL1LIB(PROG2,PROG3) 

IILKED2.SYSIN DD * 

1* 

INCLUDE SYSLIB(Intercomm-modules, ••• ) 
INCLUDE PL 1(PL 1) 

II EXEC PLIXPC,Q=xxx,NAME=PL1-source-name(,PARM2=',options') 

Compile a PL/I-optimizer program, as in PL1LPC. If the source is 
in-line, NAME need not be specified. PARM2 is as in PL1LPC. 

2-15 



Chapter 2 The Intercomm Operational System 

II EXEC PLIXPCL,Q=xxx\NAME=PL1-source-name,LMOD=load-module-name 
(,PARM2=',options' J 

Compile a PL/I-optimizer program and store the load module 
(without the PL/I library subroutine modules referenced) under 
the name specified in LMOD (GO used if LMDD absent); for 
resident, overlay, or dynamically loaded (when Dynamic Linkedit 
used) programs. NAME need not be specified if source is 
in-line. PARM2 is as in PL1LPC. 

II EXEC PL1LOC,Q=xxx,NAME=PL1-source-name,OMOD=object-module 
(,PARM2=',options') 

Compile a PL/I-F program and generate an object module stored in 
OBJxxx under the name specified for OMOD (GO used if OMOD 
omitted). NAME need not be specified if the source is in-line. 
PARM2 is as in PL1LPC. 

II EXEC PL1LPC,Q=xxx,NAME=PL1-source-name(,PARM2=',options') 

II 

2.3.3 

Compile a PL/I-F program from SYMxxx. If the source is in-line, 
NAME need not be specified. If additional PARM options are 
required, code PARM2=',options' (for example, PARM2=',LIST'). 

EXEC PL1LPCL,Q=XXX jNAME=PL1-source-name,LMOD=load-module-name 
(, PARM2= ' , options' . 

Compile a PL/I-F program and store the load module (without the 
PL/I library subroutine modules referenced) under the name 
specified in LMOD (GO used if LMDD absent); for resident, 
overlay, or dynamically loaded (when Dynamic Linkedit used) 
programs. NAME need not be specified if source is in-line. 
PARM2 is as in PL1LPC. 

JCL Procedures for Utility Executions 

The following procedures can be used to perform common utility 
operations (data set copy, data set member printlpunchlpatchlscan, 
library creation). The IBM Utilities manual describes the functions of 
each program in detail. Some of the procedures must be modified by the 
user to specify appropriate volumes for a given installation. The P 
and Q override parameters may be used (except where noted), but the U 
override parameter does not apply. 

II EXEC COMPRESS,DSN='data-set-name'(,S=Proclib-prefixnamej 

Compress an individual library (using utility program 
IEBCOPY), and release any excess space available in the data 
set after compressing. Control statement input for this 
procedure is contained in the released member COMPSYS which 
must be put on the PROCLIB specified by the additional 
parameter S=prefix. If the system procedure library is used, 
specify S=SYS1 (the default is INT). 

2-16 



Chapter 2 The Intercomm Operational System 

II EXEC COPY,INDSN='INT.SYMCHG',OUTDSN='INT.SYMLIB' 
COPY INDD=SYSUT1,OUTDD=SYSUT2 
SELECT MEMBER=«PROGX"R» 

In this example, a member of a 
(SYMCHG) is copied into SYMLIB. By 
statements and control statements, 
may be done in a single step. 

pri va te source li brary 
supplying additional DD 

more than one operation 

Note: the COMPRESS and COPY procedures do not use the Q and P 
parameters. 

II EXEC PMIPCH,Q=xxx,NAME=source-member 

Punch the named member of library SYMxxx. 

II EXEC PMIPCH,Q=xxx,NAME=object-module,T=OBJ 

Punch the named member of library OBJxxx. 

II EXEC PMIPRT,Q=xxx,NAME=source-member 

Print the named member of library SYMxxx. 

NOTE: PMIPCH and PMIPRT use the IBM utility program IEBPTPCH; 
control statements for these procedures are contained in 
the released members PMIPCH1 and PMIPRT1 which must be 
put on the PROCLIB specified by the additional parameter 
S=prefix. If the system procedure library is used, 
specify S=SYS1 (the default is INT). 

II EXEC PATCH,Q=xxx(,T=library-typeJ 
(control statements for program IMASPZAP) 

Print andlor change selected data in load modules or object 
modules, using the IBM utility program IMASPZAP (described fully 
in the IBM Service Aids manual). 

Object modules may be ABSDUMPed and the desired data located 
before changes are made. If the IMASPZAP program was not 
included in the operating system link library, a JOBLIB or 
STEPLIB DD statement is required. A STEPLIB DD statement may be 
added to the procedure if necessary. T defaults to MOD. 

Control statement examples for IMASPZAP: 

DUMP (T) 
NAME 
VER 
REP 

member (csect) 
member (csect) 
hex-location hex-data,hex-data, •••••••• 
hex-location hex-data,hex-data, •••••••• 

2-17 



Chapter 2 The Intercomm Operational System 

II EXEC OPSCN,Q=xxx,NAME=source-member 

This procedure executes the Intercomm-supplied utility OPSCAN 
which scans an Assembler source library member (or sequential data 
set) and selects all statements having a recognizable operation 
code field other than standard instructions. The selected 
statements may be directed to a printer, and will include all 
macro instruc tions (Intercormn and Assembler) , CALLs, COpy 
references, conditional assembly statements, entry points, 
external references, and control sections, as well as other 
significant details. 

Standard instructions are comment statements, machine operation 
codes (including privileged operations, SPM, TS, and floating-point 
feature instructions), selected extended mnemonic operation codes 
(BNE, BH, B, etc.) and selected Assembler operation codes (DC, 
EQU, CNOP, USING, EJECT, etc.) 

The operation code scan accommodates free-form statements as 
specified for the OS/VS Assembler Language. Continuation lines of 
the selected statements are also printed. 

II EXEC SYMLIB,Q=xxx,VOLSER=serial 

Create and catalog a source library named SYMxxx, to be allocated 
on the specified volume. Space parameters supplied with the 
procedure allocate 10 directory blocks and one cylinder initially, 
with two additional cylinders obtained (up to fifteen times) each 
time the data set becomes filled. DCB information is copied from 
data set SYMLIB, which must be cataloged and mounted when this step 
is run. The D parameter defaults to NEW, the Q parameter to SCR. 

II EXEC MODLIB,Q=xxx,VOLSER=serial 

Analogous to procedure SYMLIB, for creating and cataloging load 
module library MODxxx. Q defaults to SCR and D to NEW. 

II EXEC OBJLIB,Q=xxx,VOLSER=serial(,BLKSIZE=block-sizeJ 

Analogous to procedure SYMLIB, for creating and cataloging object 
module library OBJxxx. An empty member named GO is created to 
ensure proper functioning of the linkage edit steps of Intercomm
supplied JCL procedures. DCB information is specified in the 
procedure. A block size of 400 is the default, as larger blocks 
cannot be read by all linkage editors. The D parameter defaults 
to NEW, and Q to SCR. 

Intercomm utilities for log (journal) printing and analysis, data 
set creation and loading, BTAM simulator input creation, source member 
compares, etc. are described elsewhere in this and other Intercomm 
manuals. Additionally, system cross-reference and maintenance utilities 
are described in the ASMF Users Guide. 

2-18 

J 



Chapter 2 The Intercomm Operational System 

2.4 SYSTEM INSTALLATION AND MAINTENANCE RESPONSIBILITIES 

In anyon-line system environment, it is necessary to develop a 
distribution of responsibility to installation personnel involved with 
the ongoing operation of the system. Three different user categories of 
Intercomm personnel are required: 

The System Manager(s) - System programmers 
coordination of all system specifications, 
maintenance, and operating procedures. 

responsible for 
system program 

• The Application Group(s) 
responsible for design 
sUbsystems. 

- Project leaders and 
and implementation of 

programmers 
application 

G Central Location Operations Staff - Responsible for the actual 
scheduling and operation of the central CPU. 

Many responsibilities overlap in these functional areas. An 
installation must be flexible and above all establish orderly 
communications methods between the user personnel. Each Intercomm 
installation must develop its own distribution of responsibilities for 
its personnel depending on the scope of· the on-line system. 
Requirements obviously vary from a staff of three to hundreds of 
associated programmers, analysts, system programmers, operators, 
management, etc. 

In general, the responsibility for maintaining the Intercomm 
System lies in the areas of: 

1. Intercomm System Program Maintenance via the ASMF Facility 
2. Table Maintenance 
3. Execution Load Module Maintenance 
4. Procedures for Testing and Live Execution 
5. System Tuning 
6. Problem Reporting 
7. Backup and Recovery Procedures 

The following list represents a suggested set of guidelines in 
assignment of responsibilities for each category of installation 
personnel. 

2-19 



Chapter 2 The Intercomm Operational System 

2.5.1 The Intercorom System Manager(s) 

• General liaison with SDA 

Documentation updates and new editions 
Microfiche listings and updates of Intercorom source modules 
Early Warnings monthly publication of outstanding 
problem reports and solutions 
Technical Information Bulletins non-product problem 
resolution suggestions 
SM (system modification) maintenance of Intercorom system 
New release distribution 
Problem reporting, tracking, and resolution 

• Initial system installation 

• Production system generation and maintenance 

Definition of network configuration to Intercomm 
Definition of subsystems (applications) to Intercorom 
Ongoing system tuning as production environment changes 
Application and testing of official and experimental SMs 
Dump analysis and problem solution 

e Maintenance of Intercomm libraries and tables (may include 
modifications to Intercomm and/or user exit routines for 
startup, restart, closedown, etc.) 

• Control and coordination of terminal test sessions 
Add new application modules to linkedit 
Add new table entries to system tables 
Relinkedit Intercorom test system 
Distribute test session output (snaps, dumps, log, etc.) 

o Coordination of live (production) system with application 
project leaders and operations personnel 

Installation standards maintenance 
Update live system with tested modules and tables 
Develop operational procedures as required 
Create and maintain a "run book" for operations personnel 
System expansion planning 

• Analysis of system messages, log and statistics reports from 
live system for system tuning and problem reporting 

• Development of procedures for system backup and restart 

• Intercorom edt !cation coordination for system and applications 
staff 

2-20 



L 

Chapter 2 The Intercomm Operational System 

2.5.2 The Application Group(s) 

• Maintenance of existing (live) application programs 

o Deve lopment, coding, and comprehensive testing of new 
applications 

• Assign specific identifiers following standards provided by 
the System Manager(s) for: verbs (transaction identifiers), 
subsystem codes and entry point names, mapping names, and 
other required table specifications 

• Communicate to System Manager(s) when table maintenance is 
required for testing: new verbs, new subsystems (program 
modules), new utility table entries, etc. 

• Conmunicate to System Manager(s) when a new module is to be 
added to the live system (requires a linked it of production 
module) 

2.5.3 Central Location Operations 

• Start system selection of options (for example, JCL 
considerations) under direction of System Manager(s) 

Notify System Manager(s) immediately in the event of hardware 
or software failure and prepare "trouble" report stating cause 
of failure and corrective action. 

• Close down system at direction of System Manager(s) 

o Start log printing and analysis procedures, or any related 
off-line jobs to be executed after closedown or failure 

• Restart system after failure at direction of System Manager(s) 

• Periodically back up disk packs containing system libraries 

2.6 STANDARDS 

In planning an orderly Intercomm installation, the System 
Manager(s) and Application Group(s) may wish to standardize certain 
conventions for Intercomm libraries, programs and identifiers for 
Intercomm transactions and associated table specifications. 

Intercomm library naming conventions are described in full in 
this chapter j program naming conventions must be controlled by the 
System Manager(s) to avoid duplications. Additionally, control must be 
exercised over file DD statement and data set names, terminal names, 
Store/Fetch and DDQ key names, etc. 

2-21 



Chapter 2 The Intercomm Operational System 

Several different applications may be operating under the control 
of Intercomm and each of these applications may consist of several 
different transactions. For example, an order entry application may 
have different transactions for shipment, receipts, back order 
processing, stock status, etc. 

A transaction under Intercomm has the following components: 

o Input message from terminal 

• Processing program(s) (subsystems and subroutines) 

• Output message to terminal 

• Data file(s) and/or data base access 

The following basic identifiers are required in the Intercomm 
system to control (direct) the processing of that transaction: 

1. Input message verb (transaction code) 

2. Subsystem code and associated program entry point name 

3. Message Mapping Utility map group definitions existing as 
members in this utility's related files and referenced by 
application SUbsystems. 

4. File DD statement(s) and data set names. 

The System Manager(s) may define standards for coding verbs, 
subsystem codes, program names, MMU map group names, and file names (if 
applicable). Assume an installation has four application areas: A, B, 
C, D. The System Manager(s) might define the following standards for 
basic identifiers: 

================================== 
Application 
Identifier A 

================================== 
Verb 
(4 characters) AAxx 

Subsystem Code 
(2 1-byte values) 

Program Entry 
Point name 
(8 characters) 

Map Group Name 
(1 to 7 characters) 

A{x } 
{nnn} 

AAxxxxxx 

MGAAxxx 

----------------------

B 
----------------------

BBxx 

B{x } 
{nnn} 

BBxxxxxx 

MGBBxxx 

===========-============= 
C 

----------------------
CCxx 

C{x } 
{nnn} 

CCxxxxxx 

MGCCxxx 

D 

============= 
DDxx 

D{x } 
{nnn} 

DDxxxxxx 

MGDDxxx 

where x is any character and nnn is any number (from 0 to 255) selected 
by the application project leader. 

2-22 



Chapter 2 The Intercomm Operational System 

2.7 SYSTEM CONTROL FUNCTIONS AND TABLES 

System Control Functions comprise those areas of table 
specification and related program logic which control the general 
operation of the Intercomm environment. The System Parameter List 
(SPA), discussed in Chapter 3, "Message Management," includes 
specification of many control variables affecting Intercomm execution. 
In genera 1, these variabl es consist of time-de lay val ues ( indi ca ti ng 
such things as checkpoint intervals, statistics intervals, etc.), 
control values (such as subsystem dispatching, security, message 
logging and message volume thresholds, etc.) and indicators controlling 
program logic (mode of operation, subtasking, etc.). 

Intercomm Dispatcher routines are discussed in Chapter 4. Other 
system features connected with Intercomm installation, linked it and 
execution are described in Chapters 3, 7 and 8. Implementation of the 
Resource Management functions of Intercomm is discussed in Chapter 5. 
The File Handler is described in Chapter 6. Edit and Output 
specifications are described in Chapter 3 and the Utilities Users 
Guide. Logging and restart/recovery specifications are discussed in 
Chapters 9 and 12, security options in Chapter 10, and system tuning 
recommendations in Chapter 11. Specifications for Front End interfaces 
and for special features are described in the applicable manuals. 

Figure 2-3 lists the Intercomm global tables and corresponding 
SET symbol tables which may be modified by the user as the various 
Intercomm support features are utilized. Before a new installation, or 
a reinstallation, of Intercomm, the SET tables must be moved from 
SYMREL to SYMLIB and then modified according to expected user needs, or 
the existing installation. For a new installation, it is primarily 
necessary to modify SETGLOBE for the operating system in use, the type 
of Front End to be used, and the types of file access to be used. 
SETENV is described in the BTAM Terminal Support Guide and may 
optionally be modified to suppress support for teleprocessing devices 
which will not be installed. However, if a VTAM Front End is used 
exclusively, SETENV does not need to be modified as it applies 
primarily to BTAWTCAM Front Ends. The DDQ (see Dynamic Data Queuing 
Facility and Log Analysis (see Chapter 12) tables provide recommended 
default settings and need only be adjusted to conform to existing 
installation specifications, or as the facilities are used in a 
production environment. 

================================= ====================================== 
GLOBALS SETTINGS FUNCTION 

======================================================================= 
INTGLOBE SETGLOBE Systemwide Support Requirements 

ENVIRON SETENV Front End Support Requirements 

DDQENV 

LOGDCLGB 

DDQENV 

LOGSETGB 

Figure 2-3. 

DDQ Facility Requirements 

Log Analysis Utility Requirements 

Intercomm Global Tables 

2-23 



Chapter 2 The Intercomm Operational System 

2.7.1 System Global Tables (INTGLOBE, SETGLOBE) 

The set of global specifications which control assembly of the 
SPA and other system routines are the member INTGLOBE defining globals 
indicating requirements for specific Intercomm features, and the member 
SETGLOBE which provides user assigned values for the defined globals. 
In general, these specifications pertain to the operating system, 
interregion communication, resource management options, data base 
management system interface requirements, File Handler options, EDIT 
and OUTPUT options, Dispatcher specifications, etc. 

Figures 2-4 and 2-5 illustrate the members INTGLOBE and SET GLOBE 
as released. As these members vary from release to release, the user's 
Intercomm Support Manager should examine a listing of these control 
variables prior to effecting any change and subsequent reassembly of 
the System Parameter List, and other system programs conditionally 
assembled with these members. A global cross-reference program 
(IAIMGOCR) is available to Intercomm users with Product Maintenance 
agreements, to facilitate determination of which modules require 
reassembly when a SETGLOBE setting is changed (see ASMF Users Guide). 
A general list of affected system modules is provided in the 
Installation Guide. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• X 
INTGLOBE - GENERAL SYSTEM FEATURES: 

GBLB &VSSYSTM ON IF RUNNING UNDER VS1 OR VS2 
GBLB &SYS370 USE OF S/370 INSTRUCTION SET 
GBLB &MVS VS2 RELEASE 2 OR MORE. 
GBLB &VS2 SVS 
GBLC &MRSVC INTERCOMM INTERREGION SVC (MRS, ESS, VS, MVS) 
GBLA &FASTSVC FAST-SNAP SVC NUMBER 
GBLC &INTSVC DATA BASE INTERREGION SVC X 

FRONT-END CHARACTERISTICS: USED IN BTAM/VTAM MODULES 
GBLB &BTAM BTAM (INC. GFE) CONFIGURATION 
GBLB &VTAM VTAM CONFIGURATION 
GBLB &TIMSTMP TIME-STAMP ON RESPONSES TO F.E. CMD X 

RESOURCE MANAGEMENT: 
GBLB &RM RESOURCE AUDITING 
GBLB &RMSTATS RM STATISTICS GATHERING. 
GBLB &RMACCT BUCKET ACCOUNTING SWITCH. 
GBLB &RMPOOLS SUPPORT USER POOLS. 
GBLB &RMINTEG RESOURCE MGMNT CORE INTEGRITY CHCK. ~ 

DISPATCHER: 
GBLA &NUMWQES NUMBER OF WORK QUEUE ELEMENTS ~ 

Figure 2-4. INTGLOBE (Page 1 of 2) 

2-24 

J 



Chapter 2 The Intercomm Operational System 

FILE HANDLER: 
GBLB &IAM lAM FILES USED 
GBLA &RPTINTV FILE STATISTICS REPORT INTERVAL 
GBLA &FHSTATS NUMBER OF DSCT STATISTICS BUCKETS 
GBLB &ISAM ISAM FILES USED 
GBLB &AMlGOS AMlGOS FILES USED 

I GBLB &VSAM VSAM FILES USED 
GBLB &DYNALOC DYNAMIC-ALLOCATION ROUTINES DESIRED 

j GBLB &VSISAM ISAM/VSAM COMPATIBILITY REQUIRED 
EDIT UTILITY: 

GBLB &DELCHNG NO CORRECT/CHANGE FACILITY USED 
GBLB &EDERRS NO MAXIMUM FOR EDIT ERRORS SENT 
GBLA &EDERMAX MAXIMUM NUMBER OF EDIT ERRORS ~ (USED ONLY IF &EDERRS=O) ! 
GBLB &OPTRPT SEND ERRORS FOR OPTIONAL PARMS 

OUTPUT UTILITY: 
GBLB &TCAM FRONT END IS BASIC TCAM ONLY 
GBLB &DDQBACK DYNAMIC DATA Q'S - AUTO INPUT 
GBLB &BROAD NO BROADCAST GROUPS 
GBLB &RPTBLE NO REPORTS TO TAPE 
GBLB &ALTRPT NO ALTERNATE REPORTS 
GBLB &OUTEXIT NO USER OUTPUT EXIT 

1 
DL/I SUPPORT: 

GBLB &DLI DL/1 
TOTAL SUPPORT: 

GBLC &TOTDESC TOTAL DATA BASE DESCRIPTOR , 
GBLA &TOTMOD SETTING: 1 IF ATTACHED, 2 IF SEP TOT REG j 

GBLC &TOTSVC TOTAL INTERREGION SVC NUMBER ~ 
RJE FACILITY: 

GELB &RJEWTO INTR RJE TO INFORM OP OF EACH JOB 
GBLC &RJECLSA OUTPUT CLASS TRANSFORMATION FOR CL A 
GBLC &RJECLSB OUTPUT CLASS TRANSFORMATION FOR CL B 
GBLB &AUTORDR ON IF RJE IS TO AUTO START A RDR 
GBLC &RDRNAME READER NAME TO BE USED 
GBLC &RDRID RJE RDR ID-('.S','.P2',ETC.) 
GBLA &NUMJOBS JOB THRESHOLD FOR AUTO START 

MULTIREGION SUPPORT: 
GELB &MULTREG MULTI-REGION SUPPORT REQUESTED 

LOGINPUT FACILITY: 
GBLC &GENTERM DUMMY TERMINAL-ID 
GBLA &LOGINTM LOGINPUT DISPATCH INTERVAL 
GBLA &LGINRTD LOGINPUT REAL-TIME DIVISOR 

*********************************************************************** 

Figure 2-4. INTGLOBE (Page 2 of 2) 

2-25 



Chapter 2 The Intercomm Operational System 

*************************************** 

& VSSYSTM SETB 
&SYS370 SETB 
&VS2 SETB 
&MVS SETB 
&MRSVC SETC 
&FASTSVC SETA 
&INTSVC SETC 
&VS2 SETB 
& VSSYSTM SETB 
&SYS370 SETB 

SET GLOBE - GENERAL SYSTEM FEATURES: 
1 DEFAULT TO VS 
1 USE 370 INSTRUCTIONS 
o DEFAULT TO NOT VS2 (SVS) 
1 DEFAULT TO MVS 
'013' INTERCOMM INTERREGION SVC NOT USED 
13 FAST-SNAP SVC NOT USED 
'013' DATABASE INTERREGION SVC NOT USED 
(&VS2 OR &MVS) .VS AND S/370 
(&VSSYSTM OR &VS2) .GLOBAL INTER-
(&SYS370 OR &VSSYSTM) • DEPENDENCIES 
FRONT-END CHARACTERISTICS: 

&BTAM SETB 1 BTAM FRONT-END IS IN USE 
&VTAM SETB 1 VTAM FRONT-END IS IN USE 
&TIMSTMP SETB 0 NO TIMSTAMPS ON F.E. CMD RESP 

&RM SETB 
&RMSTATS SETB 
&RMACCT SETB 
&RMPOOLS SETB 
&RMINTEG SETB 
&RM SETB 

RESOURCE MANAGEMENT: 
1 RESOURCE MANAGEMENT 
1 STATISTICS 
1 ACCOUNTING 
1 CORE POOLS 
o CORE POOL INTEGRITY CHECK 
(&RM OR &RMINTEG) INTEG CHECK REQUIRES RCBS 
DISPATCHER: 

&NUMWQES SETA 120 NUMBER OF WORK QUEUE ELEMENTS 

&RPTINTV SETA 
&FHSTATS SETA 

I & ISAtvJ SETB 
i &AMI GOS SETB 

&IAM SETB 
&lSAMSETB 
&VSISAM SETB 
&VSAM SETB 
&VSAM SETB 

FILE HANDLER: 
600*300 600 SECS = 10 mins 
5 NUMBER OF DSCT STATISTICS BUCKETS 
1 ISAM FILES USED 
o AMIGOS FILES NOT USED 
o DEFAULT - NO lAM SUPPORT 
(&ISAM OR &AMIGOS OR &IAM) ISAM IF AMIGOS OR lAM 
1 ISAWVSAM COMPATIBILITY 
1 VSAM FILES USED 
(&VSAM OR &VSISAM) FORCE S/370 & VS 
(&VSSYSTM OR &VSAM) IF VSAM OR VSISAM 
(&SYS370 OR &VSSYSTM) 

xl 
I 

& VSSYSTM SETB 
&SYS370 SETB 
&DYNALOC SETB 1 GENERATE DYNAMIC-ALLOCATION ROUTINESX 

&DELCHNG SETB 
&EDERRS SETB 
&EDERMAX SETA 
&OPTRPT SETB 

EDIT UTILITY: 
1 
o 
5 
o 

NO CANCEL/CORRECT FACILITY 
SEND NO MORE THAN &EDERMAX ERROR MSGS 

MAXIMUM NUMBER OF ERRORS/MESSAGES 
SUPPRESS ERROR MSG IF PARM IS OPTIONAL 

Figure 2-5. SETGLOBE (Page 1 of 2) 

2-26 

X 



Chapter 2 The Intercomm Operational System 

&TCAM SETB 
&DDQBACK SETB 
&BROAD SETB 
&RPTBLE SETB 
&ALTRPT SETB 
&OUTEXIT SETB 

&DLI SETB 

OUTPUT UTILITY: 
o 
o 
o 
o 
o 
1 
DLII SUPPORT: 
o 
TOTAL SUPPORT: 

FRONT END IS NOT BASIC TCAM 
DEFAULT TO NO DDQ AUTO INPUT 
BROADCAST GROUPS IN USE 
REPORTS TO TAPE IN USE 
ALTERNATE REPORTS IN USE 
NO USER OUTPUT EXIT 

DLII NOT IN USE 

&TOTDESC SETC 'xxxxxx' TOTAL DATA BASE DESCRIPTOR 
&TOTMOD SETA 1 SETTING: 1 IF ATTACHED, 2 IF SEP TOT REG 

NO INTERREGION COMM NECESSARY &TOTSVC SETC 'NUL' 

&RJECLSA SETC 
&RJECLSB SETC 
&RJEWTO SETB 
&RDRNAME SETC 
&RDRID SETC 
&NUMJOBS SETA 

RJE FACILITY: 
'M' 
'N' 

DEFAULT TRANSFORMATION FOR CLASS A 
DEFAULT TRANSFORMATION FOR CLASS B 
DEFAULT 

'RJERDR' DEFAULT 
, .S' DEFAULT 
10 DEFAULT 
MULTIREGION SUPPORT: 

X 

X 

X. 

X 

&MULTREG SETB 1 MULTIREGION SUPPORT REQUESTED__ -X 
LOGINPUT FACILITY: 

&GENTERM SETC '$$$$$' M.S.G. OR LOGINPUT TID 
&LOGINTM SETA 3 .3 SEC TO DISP LOGINPUT 
&LGINRTD SETA 5 LOGINPUT REAL-TIME DIVISOR 
"""""""""""""""""""""""'*"""""""""'** 

Figure 2-5. SETGLOBE (Page 2 of 2) 

2-27 



Chapter 2 The Intercomm Operational System 

System Control Tables 

As described in Chapter 1, there are several tables which are 
required for the proper functioning of the Intercomm teleprocessing 
monitor. Some of these tables must contain entries for Intercomm 
system control and command processing routines. As listed in Figure 
2-6, such tables are released with the Intercomm recommended entries 
and contain a COPY statement to copy in a user-coded table of additional 
installation-dependent entries at assembly time. The user COPY member 
for the table should be stored on SYMUSR and may thus be carried to new 
releases without affecting system requirements. The load module may 
reside on MODUSR or MODLIB. 

TABLE USER COpy MEMBER FUNCTION 
---------------- ======================== ----------------------------------------------- -------------------------------

B'IVRBTB USRB'IVRB Front End Verb Table 
INTSPA USER SPA System Parameter Area 
INTSCT USRSCTS Application Subsystems 
REENTSBS USRSUBS System and User Subroutines 
PMIVERBS USRVERBS Edit Facility Control Table 

Figure 2-6. Intercomm Tables with User COPY Members 

The tables listed in Figure 2-6 are all described in Chapter 3. 
Entries may be deleted (if function not used) or modified for all tables 
except REENTSBS. Subsystem codes for system verbs and subsystems 
should not be modified, and are also listed in Chapter 3. 

Sample tables are provided on SYMREL for many tables, which may 
be replaced or modified as necessary for a specific installation. Such 
sample tables include: 

o .. 
• • • • • • • • • • • • • • 8 

• 

BTAMSCTS 
FENETWRK 
VTSAMP 
DDQDSTBL 
IXFDSCTn 
LOGCHARS 
MMUVTBL 
MRMCT 
NEWPOOLS 
PADDTBLE 
PAGETBLE 
PMIBROAD 
PMIDEVTB 
PMIFILET 
PMIRDTOO 
PMISTATB 
PTRNTBL 
RPT ••••• 

Front End Terminal Queues (BTAM/TCAM) 
Front End Network Definitions (BTAM) 
Sample VTAM Front End Tables 
DDQ Facility Table 
Data Set Control Table 
MMU Device Processing Definitions 
MMU Vector Table 
Multiregion Communication Table 
Resource Management Pools Table 
Edit Utility Pad Characters 
Page Facility Terminal Table 
Broadcast Terminal Table 
Back End Device Characteristics Table 
File Tables (Change/Display Utility) 
Multiregion Description Table 
Back End Terminal Definitions 
Output Utility Editing Patterns 
Output Utility System Reports (1-50) 

These tables are further described in this manual or in the 
applicable facility manuals. See also Appendix A. 

2-28 



L 

Chapter 3 

MESSAGE MANAGEMENT 

3.1 INTRODUCTION 

This chapter defines table specifications for user-written 
message processing application programs, which under Intercomm are 
called subsystems. Based upon resource requirements and user-coded 
table specifications, all subsystems in concurrent execution affect one 
another's throughput and response time. Procedures to optimize system 
performance are described, along with techniques for implementing 
message processing control facilities. 

be 

In particular, this chapter documents the following subjects: 

• 
• 
8 

" • 
• 
~ 

• 
18 

• 
0 

• 
In 

used 

.. 
• 
" 
• 

General message flow and cancellation processing 

The Front End Verb Table 

Back End table specifications for message utilities 

Message processing facilities 

The System Parameter Area 

The Subsystem Control Table 

Subsystem processing specifications 

Subsystem residency considerations 

Subsystem interfaces and linked it considerations 

Subroutine interfaces and linked it considerations 

Generalized sub tasking 

Time controlled message processing 

addition to other referenced documentation, this chapter is to 
in conjunction with the following Intercomm manuals: 

Basic System Macros • BTAM Terminal Support Guide 

COBOL Programmers Guide • Utilities Users Guide 

PL/1 Programmers Guide • Message Mapping Utilities 

Assembler Language Programmers Guide 

3-1 



Chapter 3 Message Management 

3.2 GENERAL MESSAGE FLOW 

The Intercomm BTAM/VTAM or TCAM Front End interface acts as a 
message handler between the terminal network and the Subsystem 
Controller in the Intercomm Back End which controls processing by 
application programs. The Front End receives messages from terminals, 
formats message headers, validates transactions and routes them for 
Front End coumand processing, or to the appropriate subsystem. Once a 
response has been generated, the Front End will prefix, insert and/or 
append terminal control characters, as required, queue the message for 
the proper terminal, and transmit it to the destined device. Intercomm 
facilities for editing and formatting messages are the Message Mapping 
Utilities for mapping input and output messages, or the Edit Utility 
for input messages and the Output Utility for· output messages. 
Additionally, a Change/Display Utility is provided for display and/or 
update of user files, which itself interfaces with the Edit and Output 
Utilities. 

3.2.1 Input Messages 

To allow the Intercomm Front End to process a message from a 
terminal, all input messages received by Intercomm must follow the 
standard Intercomm format: 

verb 

$ 

verb$text@ 

represents the transaction code. It must be one to four 
alphameric characters, and is defined in the Verb Table used by 
the Front End to validate the incoming message. Once the 
validity of a verb is established, a standard message header is 
prefixed to the message text. 

If the subsystem does not use Message Mapping Utilities, then the 
Edit Utility may be used to preedit the message text to remove all 
terminal/format-dependent characteristics. In all cases, the 
input message is passed to the Back End via Queue Management 
routines. Messages not edited prior to queuing for subsystem 
processing may be edited prior to transferring control to the 
subsystem (COBOL, PL/l) , or on request from the subsystem 
(Assembler Language). Alternatively, any subsystem may perform 
its own editing, or use the MMU subroutine MAPIN. 

indicates a separator character. This may be: 

• A special graphic character (comma, etc.) 

• A New Line character 

• A device-dependent carriage-return/line-feed character 
(CR/LF) 

3-2 



L 

Chapter 3 Message Management 

text 

@ 

This systemwide separator character is defined at Intercomm 
installation time in the System Parameter List SPALIST macro, SEP 
parameter. It must also be defined by the global &SEPCHAR for 
the BTAM or TCAM Front End in the member SETENV. 

indicates optional text data. 

indicates End-of-Transmission (EOT, EOB, etc.). The particular 
character will depend on the hardware characteristics of the 
transmitting terminal. 

The message may consist of only a verb with no text data 
following. In this case, no separator character is necessary. 
Alternate methods for providing the input verb are described in Section 
3.3.4, "Locked Verb Facility," and in the BTAM Terminal Support Guide 
for certain terminals where special keys can signify a verb request, 
such as the 3270 AID key processing and the ATTN key on a 2741. 
Support for AID processing is also provided via the TCAM and VTAM 
interfaces. 

When Intercomm i~ unaJ>le to determine a verb (message routing) 
for an input message ,--~hat message is discarded and the following 
message is returned to the transmitting terminal: 

NO VERB FOUND IN PREVIOUS MESSAGE STARTING xxxx 

where xxxx is the first four characters received from the terminal. 

3.2.2 Output Messases 

Messages for transmission to the network, created by internal 
Intercomm processing or by the various subsystems, are passed via 
FESEND to the Front End and placed in terminal queues to await 
transmission. Figure 3-1 illustrates the relationship between the 
Intercomm components and the message queues. 

The Intercomm Front End utilizes the Queue Management Routines of 
Intercomm to control all message queuing. If a terminal becomes 
nonoperational before message transmission is complete, the Intercomm 
Front End will either requeue the message or reroute it to an alternate 
terminal (if specified). A system control command (TDWN) is available 
to dynamically assign alternate devices. When an alternate device 
assignment exists, all subsequent output messages for the down terminal 
will be placed directly on the queue for the alternate terminal by the 
Front End queuing routines. 

3-3 



Chapter 3 Message Management 

I~ 
J 

~ 
Front Subsystem Back 
End .... Core/Disk ... End 

I--(Telepro- ~ Queues ,... (Message 
cessing (Input) Processing 

Interface ) Interface 

~I Programs) 

Terminal 
t... Core/Disk 
~ Queues 

(Output) 

A ~ 4 ~ 

- .. ,. 
-----

-- FESEND I~ Application ., Subsystems 

A ~ 

Output ~ Utility 

Figure 3-1. Front End/Back End Communication via Message Queues 

3-4 



Chapter 3 Message Management" 

All output messages must have message-ending characters 
(EOT /EOB/ETX, or other va lue , as appropriate to the device) coded at 
the end of the message. This character may be provided via: 

• Output/MMU message formatting utilities, based on coding of 
the terminal's Back End DEVICE macro, EOT and/ or EOB 
parameters 

• Coded by the subsystem before passing the message to the 
Front End via FESEND (or FESENDC); see Programmers Guides. 

• Added/replaced in the BTAMITCAM Front End via the terminal's 
BDEVICE macro, ENDCHAR and/or LAST parameters 

o Automatically suffixed, depending on device type, by the VTAM 
Front End, if appropriate. 

3.2.3 Message/SubsYstem Cancellation Processing 

The following subsections describe cancellation processing in 
terms of message flow. 

Message Cancellation User Exit--USRCANC 

In certain situations, messages must be cancelled by the 
Subsystem Controller to prevent slowdown or failure of the entire 
system. The USRCANC routine, released as member PMICANC, is used to 
inform the terminal operator of this situation. The released USRCANC 
Csect may be modified to handle particular cases in a manner suitable 
to specific subsystems. 

The USRCANC user exit will be called by the Subsystem Controller 
(SYCT400) when a message is cancelled for one of the following reasons: 

• Program check or time-out (system return code is X'FF') 

• I/O error (subsystem return code is X'12') 

• No core available to process message or other unrecoverable 
error such as an output mapping error (subsystem return code 
is X' 08' ) 

• Subsystem stopped due to previous message cancellations 
(return code not applicable) 

The error condition return code is duplicated into the logged 
message header, the address of which is in the fourth parameter passed 
to USRCANC (for all but the last reason). 

3-5 



Chapter 3 Message Management 

Two types of calls can be issued by the Subsystem Controller to 
the USRCANC routine. The first is exercised when the message is 
cancelled due to an error condition. The second is issued if the 
subsystem assigned to process the message is not allowed to process 
further messages. This second condition arises only if a message has 
previously been cancelled and the user has chosen to exercise the 
SYCTTBL macro CANC parameter to stop the subsystem from further message 
processing. 

Message Cancelled Condition 

USRCANC is called with register 1 pointing to a parameter list 
that contains the following four addresses: 

1. Address of message which was being processed 

2. Address of SPALIST 

3. Address of the Subsystem Control Table entry for the 
subsystem processing the message 

4. Address of the logged message header (MSGHCON+I, that is, 
MSGHRETN, contains the Subsystem Controller return code value) 

The first address above may point to an invalid location (or be 
zero) because the subsystem or MMU MAPIN processing may have freed the 
area before control was passed to USRCANC. If the subsystem frees the 
message area, then the message address in the parameter list must be 
set to binary zero. If MMU frees the message, it will set the message 
address to zero. 

The released USRCANC routine generates and transmits an error 
message to advise the operator at the sending terminal that the message 
has been cance lled. This error message will indicate the reason for 
cancellation. (See the cancellation reasons above.) For a message 
cancelled condition, the USRCANC routine does not free the input 
message or any other area. Standard linkage conventions must be used. 

Subsystem Stopped Condition 

If a message was previously cancelled and the user has coded 
CANC=STOP on the associated SYCTTBL macro to cancel the subsystem, the 
parameter list passed via register 1 to the USRCANC routine will 
contain only the first three addresses listed above for the message 
cancelled condition. Called in this manner, the released USRCANC 
generates and transmits an error message to the sending terminal, then 
frees the message area and zeros the address in the parameter list, and 
finally returns a nonzero return code in register 15. 

3-6 



Chapter 3 Message Management 

If the user modifies USRCANC and desires the message to be 
processed des pite the CANC option, the return code must be F' -1' and 
the message may not be freed by USRCANC. Standard linkage conventions 
must be used. 

3.3 THE FRONT END VERB TABLE 

Incoming transactions from a teleprocessing device are identified 
by a transaction code, which under Intercomm is called a verb. Verbs 
are defined in the Front End Verb Table (BTVRBTB) via coding of a 
BTVERB macro for each user transaction code, and each system control 
command. Each BTVERB macro relates a verb to the subsystem which is to 
process the transaction via user-coded subsystem identifiers, called 
recei ving subsystem codes. These codes are placed in the Intercomm 
message header constructed for the incoming message, and are 
subsequently used to search the subsystem table during message routing 
processing. See Appendix B for a detailed description of the Intercomm 
message header. Although the verbs must be unique, more than one verb 
may be processed by a specific subsystem, by specifying the same 
subsystem identifier codes. 

3.3.1 Entries in The Verb Table 

One BTVERB macro must be coded for each four-character verb to be 
accepted by the system. The macro parameters specify the actual verb, 
the receiving subsystem code of the message processing subsystem, 
message editing requirements, etc. To signify the end of the table, 
the last coded BTVERB macro must be followed by a PMISTOP macro. User 
verbs should be coded in a copy member USRBTVRB which is copied into 
the released BTVRBTB at assembly time, as illustrated in the BTVRBTB in 
Figure 3-2, or may be coded after Intercomm verbs, but before the 
PMISTOP. Intercomm verbs are called system commands and are all 
described in System Control Commands. 

Assembly of the Front End Verb Table also produces an index 
(Csect BTVRBNDX) to BTVERB entries, providing a binary search 
capability via the module BINSRCH. This facility allows verbs to be 
grouped in any convenient order, such as by application area. 

If more than 1000 BTVERB macros are defined, the global values 
(released as 1000) in FEMACGBL must be reset to the higher number 
desired to allow sorting of the greater number of verbs for the verb 
index. Additionally, use of Assembler H and/or a larger region size 
may be required for the assembly step of BTVRBTB. 

3-7 



Chapter 3 Message Management 

BTVRBTB 
* 
* 
* 

* 
* 
* 

* 

CSECT 

FRONT END 

BTVERB VERB=TDWN 
BTVERB VERB=TPUP 
BTVERB VERB=STLN 
BTVERB VERB=SPLN 
BTVERB VERB=STLG 
BTVERB VERB=SPLG 
BTVERB VERB=STPL 
BTVERB VERB=SPPL 
BTVERB VERB=LOCK 
BTVERB VERB=UNLK 
BTVERB VERB=RLSE 
BTVERB VERB=FLSH 
BTVERB VERB=QHLD 
BTVERB VERB=QRLS 
BTVERB VERB=RVRS 
BTVERB VERB=STAT BTAMlTCAMlGFE STATUS 

SYSTEM COMMANDS 

BTVERB VERB=NRCD,SSC=J NORMAL CLOSEDOWN 
BTVERB VERB=IMCD,SSC=J IMMEDIATE CLOSE DOWN 
BTVERB VERB=SECN CONTROL TERM. SECURITY ON 
BTVERB VERB=SECF CONTROL TERM. SECURITY OFF 
BTVERB VERB=DSPL,SSC=H,EDIT=YES,CONV=1BOOO DISPLAY 
BTVERB VERB=CHNG,SSC=H,EDIT=YES,CONV=1BOOO CHANGE 
BTVERB VERB=SWCH,SSC=B MESSAGE SWITCHING 
BTVERB VERB=SNBK,SSC=W ECHO INPUT MESSAGE 
BTVERB VERB=LOAD,SSC=L,SSCH=L,CONV=36000 LOADSCT SUBSYSTEM 
BTVERB VERB=COPY,SSC=C,SSCH=C COPY SUBSYSTEM - 3270'S 
BTVERB VERB=FHST,SSC=R,CONV=36000 FILE STATISTICS DISPLAY 

* GPSS VERBS 
* 

* 

BTVERB VERB=FILE,SSCH=G,SSC=P,CONV=36000 
BTVERB VERB=TALY,SSCH=G,SSC=P,CONV=1BOOO 
BTVERB VERB=STRT,SSCH=G,SSC=P 
BTVERB VERB=STOP,SSCH=G,SSC=P 
BTVERB VERB=SNAP,SSCH=G,SSC=P,CONV=36000 
BTVERB VERB=ABND,SSCH=G,SSC=P,CONV=36000 
BTVERB VERB=LTRC,SSCH=G,SSC=P START/STOP LINE TRACE 

* MMU COMMAND 
* 

BTVERB VERB=MMUC,SSCH=M,SSC=M,CONV=1BOOO 

Figure 3-2. Released BTVRBTB (Page 1 of 2) 

3-B 



L 

Chapter 3 Message Management 

-- PAGE FACILITY COMMANDS 
* BTVERB 

BTVERB 
VERB=PAGE,SSC=P,EDIT=YES,CONV=36000 
VERB=SAVE,SSC=P,EDIT=YES,CONV=36000 

-* VTAM VERBS 

- BTVERB VERB=STLU 
BTVERB VERB=SPLU 
BTVERB VERB=RSLU 
BTVERB VERB=VTCN 
BTVERB VERB=VTST VTAM STATUS 

*_*******************************************************************1 
* * * ADD USE R V E R B SHE REV I A COP Y * 
* • 
********************************************************************** 

COPY USRBTVRB 
PMISTOP 
END 

Figure 3-2. Released BTVRBTB (Page 2 of 2) 

The following illustrates a USRBTVRB (as released on SYMREL for use by 
new installations): 

* * MULTIREGION COMMANDS. 
* 

* 

BTVERB 
BTVERB 
BTVERB 

VERB=COMM,SSC=K,CONV=18000 
VERB=LOKR,LOCKEXE=YES 
VERB=ULKR,LOCKEXE=YES 

* EXTENDED SECURITY COMMAND 
* BTVERB 

TITLE 
BTVERB 
BTVERB 
BTVERB 
BTVERB 
BTVERB 
BTVERB 
BTVERB 
BTVERB 

VERB=SECU,SSC=E 
'APW CLASS WORKSHOP SIS VERBS' 
VERB=APW1,SSCH=A,SSC=1 
VERB=INQ1,SSCH=A,SSC=1 
VERB=UPT1,SSCH=A,SSC=1 
VERB=NEW1,SSCH=A,SSC=1 
VERB=APW2,SSCH=A,SSC=2 
VERB=INQ2,SSCH=A,SSC=2 
VERB=UPT2,SSCH=A,SSC=2 
VERB=NEW2,SSCH=A,SSC=2 

3-9 



Chapter 3 Message Management 

Short Verbs 

Intercomm provides a facility to allow verbs with a length of 
one, two or three characters to be accepted, instead of only verbs of 
the standard four-character length. These short verbs are padded on 
the right with Xs before the verb is validated against the Verb Table. 
The BTVERB entry for each short verb must contain the X padding. 

Priority Verbs 

Certain verbs may be specified as high-priority by coding 
HPRTY=YES in the BTVERB macro. The input message header will then be 
flagged so that the message will receive high-priority treatment on any 
subsystem or Front End queue which specifies the priority-queuing 
facility (via the PRYMSGS parameter of the SYCTTBL macro). Any messages 
generated in the course of processing these high-priority input messages 
will also receive high priority if message processing program logic is 
such that input message headers are copied before altering to create 
output message headers. The MSGHUSR byte in the input message header 
is set to a character P to identify priority verbs; subsystems altering 
or omitting this val,ue will cause a message to lose its priority status 
on transfer to another queue. 

Locked Verb Facility 

For certain terminals where prefixing a message with a verb may 
be impractical, Intercomm provides a facility for locking the terminal 
to a verb. The verb is automatically inserted by the Front End for each 
message from the designated terminal. This may be accomplished by one 
or more of the following: 

• Specifying LOCK=verb on the terminal descriptor 
(BTERMILCOMP/LUNIT) in the Front End Network Table. 

• Specifying AUTOLOK=YES on the verb descriptor (BTVERB) 

• Issuing the LOCK system control command from another terminal 
or a subsystem. 

Subsequent unlocking of the terminal from a speCific verb may be 
accomplished dynamically by issuing the UNLK system control command. 

When the LOCK parameter is specified via the terminal descriptor, 
the terminal is automatically locked to the specified verb at startup; 
therefore the first message input from the terminal does not need a 
verb. That message, and all subsequent messages, will automatically 
have the designated verb (and system separator) inserted between the 
Intercom message header and the message text before queuing. When 
AUTOLOK is requested via the BTVERB macro, only the first message 

3-10 



Chapter 3 Message Management 

requires a verb; subsequently the terminal is locked. Issuing the 
LOCK/UNLK system control commands may be done before terminal input is 
begun or to alter subsequent locked verb processing (status). The 
latter case applies particularly to restarted messages; the processing 
subsystem must issue an internal LOCK command if terminal locking is 
required for subsequent input. 

Certain verbs may be defined as lock-exempt; that is, even if the 
terminal is locked to another verb, when the exempt verb is entered 
from the terminal, it is to be processed instead of the locked verb. 
This is designated by coding LOCKEXE=YES for the BTVERB macro, and is 
the default for certain system control commands. The LOCKEXE and 
AUTOLOK parameters of BTVERB are mutually exclusive. When executing 
under Multiregion, LOCKEXE also exempts terminal/region locking. 

Conversational Verbs 

An installation may optionally define certain terminals as 
conversational terminals and certain verbs as conversational verbs. If 
a conversational verb arrives from a conversational terminal, the 
terminal is quiesced (taken out of the polling list) and further input 
is ignored until a message has been written back to the terminal. This 
prevents a terminal from having more than one input message begin 
processing at one time. A routine is scheduled on a time interval to 
issue a time-out message to the terminal in the event that the subsystem 
to which the verb was directed does not respond within the specified 
time. The time limit for each verb is defined on the BTVERB macro. 
The presence of a nonzero time limit indicates a conversational verb. 
In normal operation, if a response does come back from the subsystem 
before the specified interval expires, the scheduled routine is 
cancelled. Conversational mode processing controls input messages 
only. Response to a conversational verb from a conversational terminal 
could be more than one output message. 

This facility is implemented as follows: 

1. Set the &CONVER global in SETENV to if BTAM/TCAM used, and 
reassemble the BTAM Front End modules. 

2. Code CONV=YES for all terminal BTERM/LUNIT/LCOMP macros for 
which this processing is desired. 

3. Code the CONV parameter with the time-out value on the 
conversational verb's BTVERB macro. 

If this facility is used in conjunction with the CONVERSE 
facility (described in the Programmers Guides), the time interval on 
the conversational verb should be slightly larger than the time 
interval passed from the application program to CONVERSE. Use of the 
CONVERSE facility is not recommended if message restart is used. 

3-11 



Chapter 3 Message Management 

Separate Assemblies of Verb and Network Tables 

Normally, the Front End Verb Table is coded with the Front End 
Network Table as one module. In cases where frequent changes of 
entries in the Front End Verb Table occur, or either table becomes very 
large, it may be coded and assembled as a separate module. The Csect 
and member name for the verb table must be BTVRBTB. Internal Csect or 
entry point names, generated by the first occurrence of a macro 
designating a major component, are used for accessing the Network 
Table, which may have any Csect name if assembled separately. When 
assembled separately, the load module name for the Network Table must 
be specified on the Intercomm linked it generation ICOMLINK macro via 
the FETABLE parameter. The BTVRBTB is automatically included. In a 
Multiregion environment, these tables are included only in the control 
region. Sample Front End terminal tables are illustrated in the 
BTAMITCAMlVTAM Terminal Support Guides. 

3.4 BACK END TABLE SPECIFICATIONS FOR THE UTILITIES 

The Intercomm utilities (Edit, Output, Change/Display, and the 
Message Mapping Utilities) are documented in the Utilities Users Guide 
and Message Mapping Utilities. This section describes specifications 
for the utilities of a nonapplication-oriented nature, that is, 
systemwide table specifications controlling the use of the utilities. 
In a Multiregion environment, these tables are required in the control 
region, and in each satellite region which uses the utilities and/or 
Intercomm subsystems. These tables are also required in a simulated or 
Test Mode Intercomm system. The following describes tables used by all 
the utilities, plus additional tables unique to the individual utility. 

3.4.1 Station Table 

The Station Table is core-resident in a Csect named PMISTATB. 
The table is created and maintained by the user. Individual entries in 
the table are created by use of the STATION macro (one for each device 
defined in the Front End Network Table). The end of the table is 
indicated by four bytes of hexadecimal 'FF', generated by the PMISTOP 
macro. Assembly of the Station Table produces a binary search index by 
terminal names (Csect STATINDX). The location in core of the PMISTATB 
Csect is pointed to by a V-type address constant in the field SPASTATB 
of the System Parameter Area. The member PMISTATB on SYMREL contains a 
sample Station Table which may be updated or replaced by the system 
manager to define the network configuration for the utilities. 

The Station Table effectively creates five-character logical 
names for each terminal in the system, and relates that terminal to the 
device characteristics defined in the Device Table. General device 
characteristi cs for an individual terminal may be overridden by coding 
a DVMODIFY macro after the PMISTOP in the Station Table, and specifying 
the label of that DVMODIFY via the corresponding STATION macro. 

3-12 



Chapter 3 

The Station Table structure is as follows: 

PMISTATB CSECT 
STATION • 
STATION 
STATION • 
STATION • 
STATION • 

PMISTOP 
END 

Message Management 

To add a new terminal to the system, the Station Table must be 
modified by adding a STATION macro entry before the PMISTOP macro. The 
Station Table is accessed by all the utilities, and for additional 
internal Intercomm f1.mctions, and therefore is required in all 
regions. If more than 1000 STATION macros are coded, the global table 
FEMACGBL must be modified as described for the BTVRBTB in Section 3.3.1. 

3.4.2 Device Table 

Created and maintained by the user, the Device Table is resident 
in a Csect named PMIDEVTB. Individual entries (one per terminal type) 
are created by use of the DEVICE macro (specifying message editing and 
formatting control characteristics of each device type). The end of 
the table is indicated by four bytes of hexadecimal 'FF', generated by 
the PMISTOP macro. The location in core of the PMIDEVTB Csect is 
pointed to by a V-type address constant in the field SPADEVTB of the 
System Parameter Area. 

The member PMIDEVTB on SYMREL contains a sample Device Table 
which may be updated or replaced by. the system manager to define the 
installation device types. A user-assigned device type (DEVICE macro, 
TYPE parameter) is referenced by the STATION macro, IOCODE parameter. 
The Device Table structure is as follows: 

PM IDEVTB CSECT 
DEVICE ••• 
DEVICE. 
DEVICE 
DEVICE • 
PMISTOP 
END 

3-13 



Chapter 3 Message Management 

To add a new device type to the table, code the necessary DEVICE 
macro before the PMISTOP, then reassemble and relinkedit. The Device 
Table is accessed by all the utilities, and also by internal Intercomm 
functions, and therefore is required in all regions. 

3.4.3 Broadcast Table 

The Broadcast Table - is core-resident in a Csect named BROADCST 
and linkedited with the member name PMIBROAD. The table is created and 
maintained by the user. Each entry in the Broadcast Table represents 
one broadcast group. The end of this table is indicated by four bytes 
of hexadecimal 'FF', generated by the PMISTOP macro. 

The member PMIBROAD on SYMREL contains a sample Broadcast Group 
Table which may be updated or replaced by the system manager. The 
Broadcast Group "TOALL" is used by the optional modules USRSTART and 
USRCLOSE to send a message to all terminals in the group at startup and 
closedown time. 

The Broadcast Table is defined by the BCGROUP macro. The 
broadcast group name (five bytes) is followed by a specification of the 
terminals within the group. A message destined for a broadcast group 
(MSGHTID in the header) will cause a message to be passed to the Front 
End for each terminal in the group. Therefore, all terminals in a 
broadcast group must be of the same device type. The Broadcast Table 
is accessed by the Output Utility, Message Mapping Utilities, and the 
Intercomm Front End. 

In the following sample Broadcast Table (released as member 
PMIBROAD), one broadcast group is defined: 

BROADCAST CSECT 
BCGROUP GROUP=TOALL,TERMS=(CNT01,TEST1) 
PMISTOP 
END 

An optional routine, BROADRTN, will assist in smoothing the 
storage requirement peaks when processing broadcast messages. If 
included, BROADRTN will generate one message at a time with a small 
time de lay before generating the next message. If BROADRTN is used, 
the module must be in the resident portion of Intercomm, and in the 
same region as the Output Utility. 

3-14 

J 



Chapter 3 Message Management 

3.4.4 Message Mapping Utilities Requirements 

The Message Mapping Utilities provide input message editing and 
output data formatting capabilities to Intercomm subsystems through 
callable subroutines. MMU allows a unified specification' of input and 
output formatting requirements, and provides simplified format (screen 
template) generation and data insertion. It can be used instead of the 
Edit and Output Utilities. 

MMU includes all processing options of the Edit and Output 
Utilities, in addition to control and attribute character insertion. 
MHU also provides a means of generating symbolic versions of message 
data areas which can be copied into the application source module for 
ease of definition and reference. 

Tables required by MHU include the Device Table and Station Table 
and, optionally, the Broadcast Table. General device characteristics 
may be overridden for an individual terminal via the DVMODIFY macro 
coded in the Station Table after the PMISTOP. Additional design and 
implementation considerations for MMU are documented in Message Mapping 
Utilities. 

Edit Utility ReqUirements 

The Edit Control Table (ECT) contains all information necessary 
to perform editing of a message by the Edit Utility. The Edit Control 
Table is a variable-length table created and maintained by the user, as 
described in the Utilities User Guide. 

The table resides in core, in a separate Csect labeled VERBTBL. 
The member PMIVERBS on SYMREL contains required ECT entries for the 
Intercomm verbs which require Edit Utility processing. User table 
entries may be added to this member via COPY member USRVERBS, or an 
entirely new VERBTBL Csect may be created. In either case, care must 
be taken to ensure that each new entry has been thoroughly tested prior 
to execution in production mode. Disk-resident table entry references 
are coded within the core-resident table. Each disk-resident entry is 
assembled and linkedited individually, for loading to the VRBOOO data 
set via the File Load Utility (PMIEXLD). A DD statement for VRBOOO 
must be included with execution JCL, if disk-resident entries are used. 

The Intercom system manager must define the systemwide field 
separator character used by the Edit Utility in scanning a message text 
for field delimiters. This same character is used by the Intercomm 
Front End to separate the verb from other message text. The SETENV 
global specification for &SEPCHAR in a BTAM/TCAM Front End must 
correspond to coding of the SEP parameter of the SPALIST macro to 
ensure consistent operation. 

3-15 



Chapter 3 Message Management 

User-coded edit subroutines may be added, but must be coded in 
Assembler Language. If used, the system manager must code the SPALIST 
macro EDITRTN parameter to indicate the highest-numbered edit routine 
in use. Coding specifications are in the Utilities Users Guide. 

In addition to controlling the table specifications for the Edit 
Utility and ensuring their validity in the production environment, the 
system manager may control optional edit features via conditional 
assembly. The globals listed below control conditional assembly of the 
member PMIEDIT. The globals are defined in the member INTGLOBE and 
specified in the member SETGLOBE. 

F=======================================================-================ 
Global Default 

~efinition Specification 
( INTGLOBE) Op tion De fined ( SETGLOBE) 
========================================================F=============== 

&EDERRS 
&EDERMAX 

&OPTRPT 

&EDERRS code specifies that the maximum SETB 0 
number of error messages per input verb is SETA 5 
limited by &EDERMAX. To suppress this 
feature, use &EDERRS SETB 1. 

~--------------------------------------------~----------------
&OPTRPT code specifies that error messages SETB 0 
for non-required fields are not generated. 
To get error messages use &OPTRPT SETB 1. 

-----------~-------------------------------------------- ---------------
&DELCHNG &DELCHNG code controls the CANCEL/CORRECT SETB 1 

feature for keyword input. To activate 
this feature, use &DELCHNG SETB O. 

The Edit Control Program (PMIEDIT) must be a resident module, but 
the edit subroutines (Intercomm or user-supplied) may be resident, 
linkedited as part of an Overlay Region A subsystem group to be 
resident only when the subsystem which requires their use is loaded, or 
linkedited within the Intercomm Transient Subroutine Overlay Region. 
Certain constraints apply in this latter case with respect to 
situations where one subroutine calls another; all called subroutines 
must be linkedited in the same load segment as the calling subroutine. 

3-16 

J 



Chapter 3 Message Management 

3.4.6 Output Utility Requirements 

The Output Utility (PMIOUTPT) is defined by three Subsystem 
Control Table entries in the member INTSCT. This allows routing of 
messages to the Output Utility via three subsystem codes and 
corresponding subsystem queues. Subsystem U is for standard full 
messages; V is only for segmented messages, and N is for messages to 
the control terminal. 

I f segmented messages are processed by the Out put Utility, (that 
is, a series of messages destined for the same terminal, identified by 
message header VMI=X' 51 " X' 52', X' 5C', 01" X' 53 ' for each segment of 
the message text) the System Manager must be aware of three parameters 
on the SPALIST macro controlling message processing: 

• DTIMS, which is the delay time between attempts to check the 
availability of the terminal to assign it to a "segmented 
message in progress" condition by the PMIDVASN module. 

• NTIMS, which is the maximum number of attempts that are to be 
made to assign a terminal to a "segmented message in 
progress" condition when a terminal is already busy with 
other segmented message processing. 

• TIMS, which is the time value (multiplied by two minutes) 
which specifies allowable time between processing of the 
VMI=X'51, and VMI=X'53' messages; that is, the duration 
allowed for device assignment to a "segmented message in 
progress" condition. If a time-out occurs, an errol" message 
is routed to the destination terminal indicating SEGMENTED 
MESSAGE TIMEOUT. 

The following globals (defined in INTGLOBE and specified in 
SETGLOBE) control conditional assembly options of the Output Utility. 

3-17 



Chapter 3 Message Management 

=========================================================== ============ 
Global Option Defined 

----------- ---------------------------------------------------------- -----------------------------------------------

&TCAM Basic TCAM Front End (SETB to 1 to 
activate this facility) 

~----------- -----------------------------------------------
&DDQBACK DDQ Automatic Subsystem Input (SETB to 1 to 

activate this facility) 

Default 
============ 

SETB 0 

------------
SETB 0 

~----------- ----------------------------------------------- -----------
&BROAD Broadcast Groups in use (SETB to 1 to SETB 0 

suppress this facility) 
~-----------.----------------------------------------------- -----------

&RPTBLE Batch Report Table Facility (SETB to 1 to SETB 0 
suppress this facility) 

~----------- ----------------------------------------------- -----------
&ALTRPT Alternate Format Table Facility in use (SETB SETB 0 

to 1 to suppress this facility) 
------------ ----------------------------------------------- ------------

&OUTEXIT User Output Exit USROTEDT not used (SETB SETB 1 
to 0 to activate this facility) 

3.4.6.1 Adding Output Format Table Entries 

User-generated Output Format Table (OFT) entries may be added to 
the Intercom system as either core-resident or disk-resident. Each 
user entry is identified by the name RPTOnnnn, where nnnn is in the 
range 0051 to 9999. Numbers 1-50 are reserved for Intercomm use. 
Individual table entries (REPORTs) must be assembled and linkedited 
separately. These table entries must not use the Csect name PMIRCNTB 
nor include a PMISTOP macro. Generation of OFTs is described in the 
Utilities Users Guide. 

Two members are contained on SYMREL to facilitate linked it of OFT 
entries for the core-resident table: (1) PMIRCNTB--Table Heading 
(Csect name PMIRCNTB); and (2) PMIRCEND--Table End (PMISTOP macro). 
In an Intercomm linked it generated by the ICOMLINK macro, these members 
bracket the common system OFT entries RPT00043 and RPT00045 which 
should be resident. Other Intercomm OFT entries may be made resident, 
if desired. See also installation of system command verbs requiring 
REPORTs, as described in System Control Commands. 

3-18 

J 



Chapter 3 Message Management· 

The following linkedit control statements are used to construct 
the core-resident OFT (entries do not have to be in numeric sequence): 

INCLUDE SYSLIB(PMIRCNTB) 
INCLUDE SYSLIB(RPT00043) 
INCLUDE SYSLIB(RPT00045) 
INCLUDE SYSLIB(RPTOOOnn) 

INCLUDE SYSLIB(RPTOnnnn) 
INCLUDE SYSLIB(PMIRCEND) 

BEFORE ALL RESIDENT REPORTS 

AFTER ALL RESIDENT REPORTS 

Disk-resident OFT entries have no entry in the core-resident 
table. They are loaded to the BDAM data set RCTOOO via the File Load 
Utility (PMIEXLD) for access at execution time. A DD statement for 
RCTOOO must be present in the Intercomm execution JCL. Many Intercomm 
error and statistical messages are produced via OFT numbers 1-50 
released as member names RPT00001 to RPT00050 on SYMREL. These table 
entries are loaded to RCTOOO at system installation time. The block 
size of RCTOOO must be a minimum of 1500 to accommodate Intercomm OFTs. 

3.4.6.2 Error Messages from the Output Utility 

Error messages reflecting problems encountered during message 
processing by the Output Utility are generated and queued for 
subsequent processing via the Output Utility. The messages are 
formatted according to OFT entries which may be disk-resident. Each 
error message is prefixed with identifying information: 

SEQ NO 
SSC 
RSC 
TID 

(Monitor Message Number of message in error) 
(Sending Subsystem Code) 
(Receiving Subsystem Code: U, N or V) 
(Destination Terminal of message in error) 

Each error message explicitly defines the reason for rejecting 
the message being processed, for example: 

THE FROM IS GREATER THAN THE TO FIELD. 

REPORT NUMBER NOT IN MESSAGE. 

RCTnnnn IS INVALID. NOT FOUND. (OFT entry missing for nnnn) 

See Messages and Codes for a precise listing of Output Utility 
error messages. 

3-19 



Chapter 3 Message Management 

3.4.6.3 Output User Exit--USROTEDT 

An optional user-coded exit, USROTEDT, is available in PMIOUTPT. 
Before logging a message and sending it to the Front End, the Output 
Utility' issues a conditional call (CALLIF) to USROTEDT, if such a 
routine has been written and included. USROTEDT is also called by 
FE SEND if the subsystem calls FESEND (FESENDC) directly. In a 
Multiregion environment, if PMIOUTPT is included in a satellite region, 
USROTEDT should be included only in the control region (called by 
FESEND). This will prevent it from being called twice. Standard 
linkage conventions are to be used. 

The parameter list passed to USROTEDT via register 1 contains: 

1. Address of message 

2. Address of System Parameter Area 

3. Address of a fullword in which the user-written routine must 
place a return code. 

Any return code other than 0 will cause PMIOUTPT or FESEND to 
stop the message from being queued for the Front End. If the user 
wishes to create an entirely new message area, an area of storage may 
be obtained (via the STORAGE macro) and a new message may be created 
consisting of header and text. Do not free the storage area occupied 
by the old message. Change the address of the message in the parameter 
list to reflect the address of the new message. 

To generate the code to call USROTEDT, make sure the global 
&OUTEXIT was not set to 1 in SETGLOBE when FESEND and PMIOUTPT were 
assembled for Intercomm installation. 

3.4.6.4 Output User Exit--USROUTCK 

USROUTCK is a user-coded user exit conditionally called (via 
CALLIF) by PMIOUTPT. Its purpose is to allow the user to determine if 
PMIOUTPT is to process the unformatted message, based on 
installation-dependent criteria. If the message is to be cancelled, 
USROUTCK must free it before returning to PMIOUTPT. In this case, the 
user exit is responsible for notifying the terminal that the message 
was cancelled, if a response is expected. 

At entry to USROUTCK, register 8 points to the input message 
(header). If PMIOUTPT is not to process the message, a nonzero return 
code must be returned by USROUTCK to PMIOUTPT in register 15; 
otherwise, a zero return code is required, indicating PMIOUTPT is to 
process and/or forward the message to FESEND. If the message is 
cancelled, PMIOUTPT returns immediately to the Subsystem Controller 
with a zero return code. Standard linkage conventions are to be used. 

3-20 
J 



Chapter 3 Message Management 

3.4.7 Change/Display Utility Requirements 

The Subsystem Control Table entry for the Change/Display Utility 
is provided in the released member INTSCT. The SCT defines the CHANGE 
module as a resident subsystem. The user may redefine the 
Change/Display entry as a dynamically loaded subsystem. Other modules 
referenced by CHANGE include DISPLAY, FORMAT, CRUNCH and PTRNTBLE. The 
UTILITY parameter of the ICOMLINK macro is used to generate the include 
statements. 

All file (format) description records (FDRs) for the 
Change/Display Utility are disk-resident (ddname DESOOO) table entries 
loaded via the File Load Utility (PMIEXLD). See the Utilities Users 
Guide for coding specifications, a description of application subsystem 
interface to the CHANGE utility, and the required user-coded CHNGTB 
table. The DD statement for DESOOO must be specified in the Intercomm 
execution JCL if Change/Display is used. The released PMIVERBS 
contains required ECT entries for the CHNG and DSPL verbs for this 
utility. 

User files accessed via the utility are defined via the GENFTBLE 
macro in the Intercomm File Table (PMIFILET). Additional 
considerations are: 

• There must be an entry in the File Table for each Intercomm 
disk-resident table data set (RCTOOO, VRBOOO, DESOOO, etc.) 
as well as files accessed via Change/Display. 

~ The entry in the File Table defines the block size for data 
set access which must be greater than or equal to the 
physical block size of the user file data block on disk. If 
the optional module PMICKFTB is included, these block sizes 
are verified at startup and dynamically corrected if required. 

~ The last entry must be followed by a PHISTOP macro. 

Following is a sample PMIFILET: 

PMIFILET CSECT 
ENTRY PMIFILTB 

PMIFILTB EQU * 
GENFTBLE FNAME=RCTOOO,BLKSIZE=1500,TYPE=BDAM 
GENFTBLE FNAME=DESOOO,BLKSIZE=750,TYPE=BDAM 
GENFTBLE FNAME=VRBOOO,BLKSIZE=750,TYPE=BDAM 

* BLKSIZE FOR DESOOO,RCTOOO,VRBOOO CORRESPOND TO INTERCOMM RELEASE 
* SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES. 
* ADD USER FILE DESCRIPTIONS HERE. 
* 

GENFTBLE FNAME=USERFILE,BLKSIZE=xxxx,TYPE=ISAM,DESNUM=7 
PMISTOP 
END 

3-21 



Chapter 3 Message Management 

MESSAGE PROCESSING FACILITIES 

The following subsections describe other Intercomm facilities for 
queuing and processing messages. 

3.5.1 Message Switching 

The standard terminal-requested message switching faci.lity is 
activated by the SWCH system control command which uses a subsystem for 
the switching and allows messages to be switched to one or more 
receiving terminals, as well as to Broadcast Groups. 

The Intercomm Front End also provides a Fast Message Switch 
facility, as it recognizes input messages which contain, in place of 
the normal verb, the five-character name of the single terminal to 
which the message should be forwarded. For example, terminal NYCOl 
sends a message to terminal BOS07 in the following format: 

BOS07,THIS IS A SWITCHED MESSAGE 

The message would be routed, completely within the Front End, to 
terminal BOS07. The receiving terminal name is replaced by the sending 
terminal name so that the origin of the message is known. The message 
sent to BOS07 would be: 

. NYC01, THIS IS A SWITCHED MESSAGE 

As with the standard message switching facility, no reformatting 
of the message is done. Messages should therefore be switched only to 
terminals which have hardware characteristics compatible with the 
sending terminal. For example, a multiline message from a terminal 
which uses NL (new line) characters should not be switched to a 
terminal which requires CR/LF (carriage return, line feed) characters. 

If the receiving terminal is not active, or is not currently able 
to receive an output message, the message remains queued until it can 
be transmitted. 

3.5.2 Multimessage Queuing via the Dynamic Data Queuing Facility 

The Front End Data Queuing feature operates in conjunction with 
the Intercomm Dynamic Data Queuing Facility. It enables an application 
to send to the Front End a dynamic data queue (DDQ) that contains 
messages to be transmitted to a terminal. Thus, instead of sending one 
message at a time and having each message queued for Front End 
transmission, and then de queued by the Front End, an entire group of 
messages may be placed on a DDQ and treated as one message. 

3-22 

J 

J 

J 



Chapter 3 Message Management 

For implementation of the data queuing feature, refer to the 
applicable application programmer guides and the Dynamic Data Queuing 
Facility for further details. In addition to the Dynamic Data Queuing 
Facility, the Front End Control Message Facility (see below) must be 
installed in order to use the Front End Data Queuing feature. 

The Dynamic Data Queuing Facility is also used for easy, orderly 
retrieval of segmented input messages, and may be used for queuing of 
output messages to the Change/Display or Output Utilities. 

Front End Control Message Facility 

This facility allows application subsystems to generate and 
transmit control messages to the Front End. Three types are currently 
defined. A control message (FECM) may be either a feedback-request, a 
release-request, or a DDQ-identifier for a group of messages collected 
on a DDQ. For implementation, the module FECMMOD must be included in 
the Intercomm linkedit. 

Feedback-requests, when sent to a terminal, cause the Front End 
to send a message, containing user-specified text, to a user-specified 
subsystem. This message, which is sent when all messages in front of 
the feedback-request message have been transmitted to the terminal, can 
be used, for example, to determine when a report has act ually been 
printed. The feedback facility also allows synchronization of message 
transmission with subsystem processing. A subsystem may issue a 
feedback FECM which signals the Front End to notify the issuing 
subsystem or another subsystem when a certain output message has been 
transmitted to a destination terminal. RLSE system control commands 
may be intermingled with multiple screens being forwarded to a CRT to 
force a previous screen to be overlaid. 

DDQ-identifier control messages designate a DDQ containing 
messages to be sent to the terminal. These messages, which must be 
preformatted (VMI=X'67' or X'57'), are read from the DDQ and sent to 
the terminal. The DDQ, subject to user specification, may be either 
freed or retained. By retaining the DDQ, the messages may be 
broadcast; therefore it is a convenient facility to send canned reports 
or other data. The DDQ may also contain FECMs for other DDQs, or for 
feedback, mixed in with real out put messages (only at the end of the 
DDQ, if VTAM). DDQ FECMs require dedicated queues for the receiving 
terminals. 

Re lease-reques ts, when sent to a terminal, overri de normal CRT 
processing logic, which requires a one-for-one correspondence between 
input and output messages. When the release FECM is processed by the 
Front End, it causes the next message queued for the CRT terminal to be 
transmitted immediately, rather than waiting for input from the 
operator. Under a VTAM Front End, certain protocols (HDFF) may 
preclude immediate transmission of the next message; see SNA Terminal 
Support Guide. 

3-23 



Chapter 3 Message Management 

3.5.4 Page Facility 

The Page Facility provides a browsing capability for CRT output 
messages that have been collected on a disk data set, rather than being 
queued for the terminal. A subsystem may request MMU to pass messages 
to the Page Facility which were formatted by MAPOUT processing, or the 
subsystem may call the Page Facility directly with messages to be 
formatted later by the Change/Display Utility and/or the Output Utility. 

The first message of the series is always returned directly to 
the terminal. The terminal operator subsequently uses Page Facility 
commands to browse and ultimately save or discard the collected 
messages. Further details are described in Page Facility. 

Intermediate Message Data Storage 

Two facilities are provided for storage of data by a message 
processing thread between input messages when an interactive 
conversation is in progress. These are the Store/Fetch Facility (see 
the manual of that name), and the CONVERSE facility described in the 
applicable Programmers Guide. The former provides for storage and 
retrieval of saved data as data strings in core or on disk. The saved 
data may consist of tables, counters, message data, or file data, as 
the strings may be of any length. The CONVERSE facility is used to 
save and restore the dynamic working storage of reentrant higher-level 
language subsystems between input messages, that is, while waiting for 
a response to the last output message. Installation and programming 
considerations for these facilities are described in the referenced 
manuals. 

3.6 THE SYSTEM PARAMETER AREA (SPA) 

The System Parameter Area consists of systemwide variables and 
system component addresses controlling all message processing 
functions. These elements are defined in the member INTSPA which 
contains the following: 

a SPA CSECT--the System Parameter List, defined by the 
SPALIST macro. 

• USERSPA: This is an optional user extension to the 
System Parameter List, with user-defined variables and 
addresses, coded as a separate source module in SYMUSR. 

• SPAEXT: This is the Intercomm extension to the System 
Parameter List. SPAEXT Csect is also generated by the 
SPALIST macro, using the EXTONLY=BOTH parameter. 

Figure 3-4 illustrates typical JCL which may be used to create 
INTSPA, or the released member on SYMREL may be modified to user 
requirements and placed on SYMLIB or SYMUSR. 

3-24 

J 

J 



Chapter 3 Message Management 

3.6.1 System Parameter List (SPA Csect) 

The System Parameter List is a fixed area of 500 bytes in 
length. It contains addresses, control information and statistics for 
the entire Intercomm system. When building the SPA Csect, the System 
Parameter List is generated by coding the SPALIST macro. 

3.6.2 User Extension to the System Parameter List (USERSPA) 

The variable-length USERSPA a110ws definition of user fields 01" 
table areas common to all user SUbsystems. Since a11 subsystems are 
passed the address of the SPA as an entry parameter, application 
subsystems may not alter values within the System Parameter Area. 
Users must instead add user fields to the SPA Csect via USERSPA. User 
additions to the System Parameter Area are coded as a separate source 
module named USERSPA. When the SPALIST macro is assembled, the source 
module USERSPA wi11 automatica11y be copied into the System Parameter 
Area, at a displacement of 500 bytes from the beginning of the SPA 
(plus XI IF4 I), and labeled SPAUSER. The maximum length a110wed for 
USERSPA is 4095 minus 500, or 3595 bytes. 

USER SPA should be correctly referenced by application 
subsystems. For application programmers I use in defining this user 
extension, source statement li brary members shou ld be prov ided in the 
appropriate language available for copying into the program. 

3.6.3 Intercomm Extension to the System Parameter List (SPAEXT Csect) 

The SPAEXT Csect is variable in length to a110w for continued 
flexibility in adding systemwide control variables to the System 
Parameter List. 

3.6.4 Separate Assembly of the SPA and the SPAEXT Csects 

The number of VCONs required by the addition of USERSPA and/or 
edit routines may necessitate separate assembly of the SPA Csect and 
the Intercomn extension to the System Parameter List. The SPALIST 
macro must be assembled twice, once to generate the SPA Csect and once 
to generate the SPAEXT Csect. With the exception of the EXTONLY=YES 
parameter, denoting generation of the SPAEXT, coding of the SPALIST 
macro parameters must, in both cases, be identical. Currently, 
approximately 300 VCONs are generated by the combined SPA and SPAEXT 
Csects, along with VCONs for the Edit Utility routines EDIT0001-0020. 

3-25 



Chapter 3 Message Management 

3.1 THE SUBSYSTEM CONTROL TABLE (SCT) 

Each subsystem is defined to Intercomm by an entry in the 
Subsystem Control Table, generated via the SYCTTBL macro coded in the 
member INTSCT which contains the following: 

• SCT Csect containing: 

The Subsystem Control Table CSCT)--individual table entries 
defining subsystem characteristics and message processing 
scheduling parameters, defined via the SYCTTBL macro. 

The Subsystem Control Table Overlay and Binary Search 
Indices, generated via the GENINDEX macro. 

The SCT Extension--automatically generated SYCTTBL 
extensions for defining dynamically loadable sUbsystems. 

• DYNREQ1 Csect--automatically generated SCT addition for 
reentrant COBOL sUbsystems. 

Figure 3-3 illustrates the relationship of the SPA, the SCT, and 
the Overlay Index. 

SYSTEM 
PARAMETER LIST 

INTSPA 

SYSTEM 
PARAMETER 
LIST 
(SPA CSECT) 

USERSPA 
(OPTIONAL) 

INTERCOMM SPA 
EXTENSION 
(SPAEXT CSECT) 

Figure 3-3. 

SCT OVERLAY INDEX 

HEADER PORTION 

1ST OVERLAY GROUP 

SUBSYSTEM 
CONTROL TABLE 

INTSCT 
SCT CSECT: 
RESIDENT AND 
DYNAMICALLY 
LOADABLE 
SUBSYSTEM 
SCT'S 

1 ST OVERLAY 
GROUP 
SCT'S 

------------------ 2ND OVERLAY 
1----... GROUP 

2ND OVERLAY GROUP 

NTH OVERLAY GROUP 

The System Control Components 

3-26 

SCT'S 

NTH OVERLAY 
GROUP 
SCT'S 

J 



Chapter 3 Message Management 

The SYCTTBL macro defines the following for each subsystem: 

• Subsystem residency (overlay region, VS execution group, 
dynamically loadable, or resident) 

• Subsystem characteristics (subsystem code, program language, 
reentrancy, entry point name, subpool requirements, etc.) 

Processing specifications (immediate or 
queue overflow, priority, concurrent 
limits, scheduling, etc.) 

threshold, queues, 
message processing 

• Control parameters (time-out limit, snaps/WTOs required, 
cancellation criteria, security, restart, etc.) 

If more than 1000 SYCTTBL macros are defined in INTSCT, the global 
values (released as 1000) in FEMACGBL must be reset to the higher number 
desired to allow sorting of the greater number of subsystems for the 
binary search index. Additionally, use of Assembler H andlor a larger 
region size may be required for the assembly of INTSCT. 

Figure 3-5 illustrates the released member INTSCT on SYMREL which 
provides for most of the Intercomm subsystems and indicates where user 
SCT entries may be inserted via a user-coded copy member USRSCTS. If 
an overlay structure is not used, the order of SCT entries is immaterial 
as the Binary Search Index is used by Intercomm to find a particular 
entry. Figure 3-4 shows JCL to create a USRSCTS and assemble and link 
the released version of INTSCT which copies USRSCTS. 

IISPA 
• I ADD 

* 
SPA 

11* 

EXEC LIBELINK,Q=USR,NAME=INTSPA,LMOD=INTSPA 
NAME= INTSPA 

CSECT 
SPALIST 

END 

SYSTEM PARAMETER LIST 

A=A,EXTONLY=BOTH, CCNID=CNTOl,WTO=NO, 

other operands as desired 

IISCT EXEC LIBELINK,Q=USR,NAME=INTSCT,LMOD=INTSCT 
IILIB.SYSIN DD * 
. I ADD NAME= USRSCTS 
* USER SUBSYSTEM CONTROL TABLE ENTRIES 

SYCTTBL 

SYCTI'BL 
IIASM.SYSIN DD DSN=INT.SYMREL(INTSCT),DISP=SHR 
II 

Figure 3-4. Creating the System Parameter Area and SCT 
3-27 



Chapter 3 Message Management 

SCT CSECT 
DC CLB'SCTENTRY' SCTS BEGIN HERE. 

******************************************************************** 
* SCT DEFINITIONS (SYCTTBL'S) FOR INTERCOMM SIS * 
******************************************************************** 
U SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=U,LANG=RBAL,TCTV=120, X 

MNCL=4,DFLN=PMIQUE,BLRI=F,PCEN=10,NUMCL=10, X 
SBSP=PMIOUTPT,RESTART=NO 

V SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=V,LANG=RBAL, X 
TCTV=120,MNCL=4,NUMCL=10,SBSP=PMIOUTPT,RESTART=NO 

N SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=N,LANG=RBAL,TCTV=120, X 
MNCL=4,DFLN=PMIQUE,BLRI=F,PCEN=10,NUMCL=10, X 
SBSP=PMIOUTPT,RESTART=NO 

J SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=J,LANG=RBAL,TCTV=O, X 
MNCL=1,NUMCL=2,SBSP=PMICLDWN,PRTY=3,RESTART=NO 

LL SYCTTBL ECB=YES,WTO=NO,SUBH=L,SUBC=L,LANG=RBAL,TCTV=120, X 
MNCL=4,NUMCL=10,SBSP=LOADSCT,RESTART=NO 

MM SYCTTBL ECB=YES,WTO=NO,SUBH=M,SUBC=M,LANG=RBAL,TCTV=120, X 
MNCL=4,NUMCL=10,SBSP=MMUCOMM,RESTART=NO 

GP SYCTTBL ECB=YES,WTO=NO,SUBH=G,SUBC=P,LANG=RB~L,TCTV=120, X 
MNCL=4, NUMCL=10, SBSP=GPSS, LOG=NO, RESTART=NO 

B SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=B,LANG=RBAL,TCTV=120, X 
MNCL=2,NUMCL=2,SBSP=SWITCH,LOG=NO,RESTART=NO 

P SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=P,LANG=RBAL,TCTV=120, X 
MNCL=5,NUMCL=5,DFLN=PMIQUE,BLRI=F,PCEN=5, X 
SBSP=PAGEMSG,RESTART=NO 

W SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=W,LANG=RBAL, X 
TCTV=120,MNCL=4,NUMCL=10,SBSP=SENDBACK,RESTART=NO 

R SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=R,LANG=RBAL, X 
TCTV=120,MNCL=4,NUMCL=10,SBSP=IXFRPTIQ,RESTART=NO 

H SYCTTBL ECB=YES,WTO=NO,SUBH=OOO,SUBC=H,LANG=RBAL, X 
TCTV=120,MNCL=4,DFLN=PMIQUE,BLRI=F,PCEN=10, 
NUMCL=4,SBSP=CHANGE,RESTART=NO 

HH SYCTTBL ECB=YES,WTO=NO,SUBH=H,SUBC=H,LANG=RBAL,TCTV=120, X 
MNCL=1,DFLN=PMIQUE,BLRI=F,PCEN=10,NUMCL=4, X 
SBSP=CHANGE,RESTART=NO 

CC SYCTTBL ECB=YES,WTO=NO,SUBH=C,SUBC=C,LANG=RBAL,TCTV=120, X 
MNCL=4,NUMCL=10,SBSP=COPYSS,RESTART=NO 

******************************************************************** 
* SCT DEFINITIONS (SYCTTBL'S) FOR USER SUB/SYSTEMS * . 
******************************************************************** 

COpy USRSCTS 
GENINDEX 
PCENSCT 
END 

Figure 3-5. INTSCT Coding of Intercomm Subsytems 

3-28 

J 



Chapts::- 3 Message Management 

Optionally, control of maximum thread concurrency for a group of 
subsystems may be implemented by coding a RESOURCE macro prior to all 
the SYCTTBL macros. The RESOURCE macro is used to provide a systemwide 
limit on the number of threads that may concurrently access a specific 
system resource, or is often used to control concurrent access to a 
data base. It is referenced via the SYCTTBL macro RESOURC parameter. 

Coding Subsystem Control Table (SCT) Entries 

The SCT defines all subsystems executing under Intercomm. The 
table entries coded via the SYCTTBL macro must be in the following 
sequence: 

1. Resident and dynamically loadable subsystem entries 

2. Entries for subsystems in each Overlay Region A overlay 
segment (OVLY parameter) or in each VS execution group (EXGRP 
parameter) if used. 

The OVLY parameter defines the subsystem's residency, and is 
COg·ed according to the following conventions: 

• OVLY=O--indicates a resident, 
dynamically loadable subsystem. 

or VS execution group, 
Default. 

or 

~ OVLY=1--indicates an Overlay Region B subsystem, to be 
scheduled by MONOVLY (see Section 3.9.6). 

G OVLY=2--indicates an Overlay Region C subsystem, to be 
scheduled by MONOVLY. 

• OVLY=3--indicates an Overlay Region D subsystem, to be 
scheduled by MONOVLY. 

• OVLY=4--indicates a subsystem within an Overlay Region A 
subsystem group. It must be coded in ascending consecutive 
order: the first number must be 4; the highest permissable 
number is 62. 

OVLY=62 

Figure 3-6 illustrates a sample coding of SCTs, with resident and 
Overlay A Intercom-provided sUbsystems. More than one subsystem may 
be long to the same Over lay A group. Each group is de limi ted by a 
required label: SCTLRES--for resident (dynamically loadable) 
subsystems; SCTLOVn--for Overlay A subsystem groups, where n is in the 
range of 1 to 59 (corresponding to OVLY numbers 4-62). 

3-29 



Chapter 3 

SCT 
* 
SCT 

CSECT 

COPY SCTLISTC 
CSECT 

DSECT DESCRIPTION 

DC C 'S CTENTR Y , S CTS BEG IN HERE. 
DS OF 

Message Management 

SCTRES 
B 
W 
SCTLRES 

SYCTTBL SUBC=B,SBSP=SWITCH,OVLY=O,NUMCL=4,LANG=RBAL,MNCL=2 
SYCTTBL SUBC=W,SBSP=SENDBACK,OVLY=O,NUMCL=4,LANG=RBAL 
EQU * 

* OVERLAY A GROUP ONE 
H SYCTTBL SUBC=H,SBSP=CHANGE,OVLY=4,NUMCL=4,LANG=RBAL,MNCL=4, X 

DFLN=PMIQUE,PCEN=10,BLRI=F 
HH SYCTTBL SUBH=H,SUBC=H,SBSP=CHANGE,NUMCL=4,OVLY=4, X 

LANG=RBAL,MNCL=1,DFLN=PMIQUE,PCEN=10,BLRI=F 
SCTLOV1 EQU * END OF OVERLAY ONE 
* OVERLAY A GROUP TWO 
U SYCTTBL SUBC=U,SBSP=PMIOUTPT,OVLY=5,NUMCL=10, X 

LANG=RBAL,MNCL=4,DFLN=PMIQUE,PCEN=10,BLRI=F 
V SYCTTBL SUBC=V,SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X 

LANG=RBAL,MNCL=1,DFLN=PMIQUE,PCEN=10,BLRI=F 
N SYCTTBL SUBC=N,SBSP=PMIOUTPT,OVLY=5,NUMCL=4, X 

LANG=RBAL,MNCL=4,DFLN=PMIQUE,PCEN=10,BLRI=F 
SCTLOV2 EQU * END OF OVERLAY TWO 
* OVERLAY A GROUP THREE 
J SYCTTBL SUBC=J,SBSP=PMICLDWN,OVLY=6,RESTART=NO,NUMCL=2, X 

LANG=RBAL,PRTY=3,MNCL=1 
SCTLOV3 EQU * END OF OVERLAY THREE 
* OVERLAY A. GROlJP FOUR 
LL SYCTTBL SUBC=L,SUBH=L,SBSP=LOADSCT,NUMCL=4,OVLY=7,LANG=RBAL 
SCTLOV4 EQU * 
* OVERLAY A GROUP FIVE 
CC SYCTTBL SUBC=C,SUBH=C,SBSP=COPYSS,NUMCL=4,OVLY=8,LANG=RBAL, X 

RESTART=NO 
SCTLOV5 EQU * 
* OVERLAY A GROUP SIX 
GP SYCTTBL SUBH=G,SUBC=P,SBSP=GPSS,LANG=RBAL,OVLY=9,NUMCL=4, X 

RESTART=NO 
SCTLOV6 EQU * 

GENINDEX 
PCENSCT 
END 

Figure 3-6. Sample Coding of INTSCT with an Overlay Structure 

3-30 



Chapter 3 Message Management 

For VS users wishing to code VS execution groups, instead of 
Over lay Region A subsystem groups, the OVLY parameter is coded as 0, 
and the EXGRP parameter is used as follows: 

EXGRP=4--indicates a resident subsystem within a VS execution 
group. It must be coded in ascending consecutive order: the 
first number must be 4; the highest possible number is 62. 

EXGRP=62 

NOTE:· If more than one subsystem code is used for the same 
subsystem (accessed by multiple verbs); then the OVLY or 
EXGRP parameter value must be the same on each SYCTTBL 
pointing to that subsystem. Also, subsystem residency 
must be the same (either resident, or overlay, or 
dynamically loadable). 

VS execution group scheduling is similar to Overlay Region A 
scheduling except that, instead of the overlay supervisor, the VS 
paging supervisor is u~ed to invoke loading of the subsystem logic into 
main storage. See also Chapter 7 on VS installation and page 
preloading. 

Figure 3-7 shows a listing of Intercomm-supplied subsystems and 
reserved subsystem codes. If no specific value is listed for SSCH, 
then it must be binary zeros (OOO--default). Additional subsystems for 
special feature commands are described in System Control Commands. 

3-31 



Message Management 

SSCH SSC 
-=======-=======-======================================================= 

Function (Member Name) J 
------- -------------------------------------------------------------- -------------------------------------------------------
J Closedown (CLOSDWN3: entry PMICLDWN) 

H Change/Display Utility (CHANGE) 

H H Single-thread Display--segmented messages (CHANGE) 

B Message switching between terminals (SWITCH) 

W Message echoing (SENDBACK) 

Loading dynamically linkedited modules (LOADSCT) . 
C C Copy processing for BTAM 3270 terminals (COPYSS) 

G P General Purpose Subsystem (GPSS) 

P Page Facility (PAGEMSG) 

Q Checkpointing (CHCKPTSS) 

Basic Security processing (PMISIGN) 

T Fine Tuner processing (FINTUNER) 

U,N,V Output Utility (PMIOUTPT) 

M Internal processing (Time Zone, etc.) 

Z MROTPUT--satellite regions only under MRS 

K Multiregion commands--control region only (MRCONSS) 

E Dummy subsystem for ESS processing ($$$$SECU) 

D E Data Entry Facility (INTBETAI) 

A G Autogen (ISGEN) 

R File Handler Statistics (IXFRPT01: entry IXFRPTIQ) 

F VS page fix/unfix (PMIFIXB) 

M M MMU command processing (MMUCOMM) 

Figure 3-7. Intercomm-Supplied Subsystems 

3-32 



Chapter 3 Message Management 

Coding Subsystem Control Table Indices (GENINDEX) 

The SCT Indices consist of two elements: the SCT Overlay 
Index--used for scheduling work for resident and dynamically loadable 
subsystems, and for overlay or execution groups within the Subsystem 
Control Table; and the SCT Binary Search Index--used for finding an 
entry in the Subsystem Control Table. Each Overlay Index entry is 
three words in length. There is one entry for resident and dynamically 
loadable subsystem SCTs (OVLY=O), followed by one entry for each 
overlay group. 

As illustrated in Figure 3-3, the System Parameter Area points to 
the SCT Overlay Index, which in turn is used to locate the individual 
SCT groups. 

As illustrated in Figure 3-5, the SCT Indices are generated at 
assembly time by coding the GENINDEX macro after all the SYCTTBL 
entries. However, if multiple overlay group indices for the same 
Overlay A group are desired, or if no resident or dynamic load SCTs are 
defined, the SCT Overlay Index must be hand-coded, as described in 
Appendix C. In this case, the GENINDEX macro must be coded with the 
parameter OVLYNDX=NO, and is placed after the user-coded Overlay Index. 

3.1.3 Coding Overflow Disk Queue Allocations (PCENSCT) 

As illustrated in Figure 3-5, the PCENSCT macro is coded prior to 
the GENINDEX macro. This macro has no parameter and is coded on ly 
once. Its function is described in Section 3.8.1. 

3.1.4 Adding a Subsystem 

In addition to coding the SYCTTBL for a new subsystem, the entire 
Subsystem Control Table structure may have to be reevaluated to 
determine the impact of the new subsystem on response time, throughput, 
and queue space for all SUbsystems. Also, other table entries may be 
required in order to test the new subsystem or utilize it in the 
production environment. 

The Front End Verb Table must be updated with the new verb(s) for 
the added subsystem. Locking, conversational, and other Front End 
processing parameters may have to be considered, depending on the 
terminal type(s) being used. Other Intercomm facilities, such as 
ICOMPOOLs, may be affected, and table or disk-resident entries for the 
Intercomm utilities may be required. 

3-33 



Chapter 3 Message Management 

3.7.5 Subsystem Control Table Verification (CKOVLYNO) 

If included in the Intercomm linkedit, the routine CKOVLYNO will 
be executed at system startup to verify the coding of the SCT Index and 
individual SCTs. In particular, it checks to ensure that each group of 
SCTs indicated by an SCT Overlay Index entry does in fact have the 
SYCTTBL parameter OVLY coded correctly, and that the OVLY group numbers 
are in ascending and consecutive order. I f any table entries are 
incorrect, startup execution terminates with a user abend code g8. 

3.8 SUBSYSTEM PROCESSING SPECIFICATIONS 

Subsystem response time and throughput are affected not only by 
subsystem residency, but also by queue, scheduling and processing Emit 
specifications. These specifications are also defined via SYCTTBL 
macro parameters for each subsystem. 

3.8.1 Subsystem Queue Specifications 

A subsystem queue is a list of messages awaiting processing by 
the subsystem. These messages may be incoming transactions (from a 
terminal) , or passed from another subsystem. These queues are also 
known as input queues, in contrast to output terminal queues of 
messages awaiting transmission. Three types of queues may be defined: 
core queues, high-priority core queues, and disk overflow queues. 

At least one type of queue should be defined. The queuing method 
is controlled by the BLRI parameter. Normally, a priority queue is 
defined only if more than one verb is processed by the subsystem, and 
certain verbs (such as those requiring little subsystem processing) 
should be processed as soon as possible. A subsystem which is not 
response time dependent or which is activated only periodically would 
have little use for a core queue because a core queue ties up system 
resources for holding the message in core. Disk queues are used for 
overflow from the core queue(s) at high activity periods, or to hold 
messages when no core queues are defined. The SYCTTBL AUXS parameter 
is coded when no core or disk queues are defined. 

The NUMCL parameter defines the number of elements in a core 
queue and creates an entry in the internally generated PMICLZZZ Csect 
which defines the core list (queues) for all subsystems operating under 
Intercomm. The purpose of the core list is to contain the addresses of 
all messages that are destined for a subsystem and are still in core. 
When the core list is full, messages are written to overflow disk 
queues that are accessed under the file name (JCL DD statement label) 
specified by the SYCTTBL macro, DFLN parameter. 

3-34 

J 

J 



Chapter 3 Message Management 

In addition to the normal core queue, a priority core queue may 
be defined (by the PRYMSGS parameter of the SYCTTBL macro) for those 
messages requiring priority processing for fast response time. If the 
priority queue is full when adding a priority message to a subsystem's 
queue, it will be added to the end of the normal queue (core or disk). 
A priority message is recognized by Intercomm when a C' P' is in the 
message header field MSGHUSR. The P is inserted during Front End verb 
processing if the BTVERB parameter HPRTY=YES was coded, or if a 
subsystem initializes MSGHUSR before queueing a message for another 
subsystem. 

The disk queues are contained on BDAM data sets which must be 
preformatted with dummy records via the Intercomm utility CREATEGF (see 
Chapter 12). If a disk queue data set is to be shared among several 
subsystems (PCEN parameter in SYCTTBL), assignment of space is 
allocated at system startup time by the module CALCRBN, which 
calculates the appropriate percentage of the actual number of blocks 
(RBNs) on the data set and rounds that down to the nearest multiple of 
8; a minimum of eight RBNs are allocated. If the data set referenced 
by DFLN is exhausted, an indicative message is issued and startup 
abends with a user code 44. Queue and block size considerations 
inc 1ude message lengths and traffic for a given subsystem, as well as 
achievement of minimal IIO activity, since messages with lengths 
greater than disk queue block size are spanned. A maximum of 50 
different disk queue data sets may be defined for the combined 
subsystems in the Subsystem Control Table. The PCENSCT macro, coded 
after the GENINDEX macro, will print the accumulated percentages per 
disk queue data set as part of the assembly of the SCTs; the output 
should be checked whenever a SYCTTBL is added. Typical output 
generated by the PCENSCT macro is illustrated below. 

*** ACCUMULATED PERCENTAGES PER DISK QUEUE *** 

*** QUEUE NAME 
*, QUEUEN 
*, QUEUEA 
*, QUEUEC 
*, QUEUEU 
*, QUEUEH 

PERCENTAGE *** 
40.0 

100.0 
100.0 
100.0 

80.0 

3.8.2 Scheduling and Concurrent Processing Limits 

SYCTTBL scheduling parameters are SCHED, ECB, and THRSH. 
Processing limits are defined by the MNCL and RESOURC parameters, which 
are also directly related to the residency and reentrancy of the 
subsystem. 

3-35 



Chapter 3 Message Management 

3.9 SUBSYSTEM RESIDENCY CONSIDERATIONS 

The subsystem identifier, or receiving codes in the Intercomm 
message header (MSGHRSCH and MSGHRSC fields), is coded for the 
subsystem in the SUBH and SUBC parameters of the SYCTTBL macro. Each 
SYCTTBL must have a unique set of codes which are used by the Intercomm 
subsystem queuing routines to identify the specific subsystem to 
process a transaction. Once found, the transaction is queued for later 
dispatch of the subsystem. Dispatch considerations are based not only 
on systemwide parameters defined for the SPALIST macro, but also on 
subsystem residency, reentrancy and processing specifications. 

3.9.1 Subsystem Reentrancy 

Reentrancy is defined to Intercomm by the LANG parameter of the 
SYCTTBL macro. See the applicable Programmers Guide for criteria for 
reentrant subsystems under Intercomm which may process more than one 
transaction (message) at a time (more than one thread dispatched) ,if 
permitted by scheduling parameters. High-level language subsystems 
coded and defined to Intercomm as reentrant may not, however, be 
linkedited as reentrant. 

3.9.2 . Resident Subsystems 

Definition of a subsystem as resident, dynamically loadable, in 
an Overlay Region A, or in a VS execution group, is a function of 
reentrancy, message traffic, message volume and storage requirements. 
For efficiency, those reentrant subsystems with high volume and/or 
traffic should be made resident. Subsystems with sporadic or single 
periods of volume processing could be made dynamically loadable, while 
those with lower volume but more constant traffic could be defined for 
an overlay or execution group. 

In this discussion, volume represents the possible total number 
of transactions to be processed during an execution of Intercomm, while 
traffic represents the number to be processed within a specific time 
span. Storage requirements for processing of a transaction include not 
only the program area, but also the dynamic working storage (pool 
areas) • 

Subsystem residency is 
required, file and data base 
response time criteria. 

also affected by the processing 
access, message formatting, etc., 

time 
and 

Because loading delays are avoided, resident subsystems 
potentially provide the best response time. They are defined to 
Intercomm in the OVLY=O group, as described above. Throughput is 
controlled by scheduling parameters and also depends on external 
storage requirements and processing time. Resident subsystems are 
linkedited with resident Intercomm modules. 

3-36 

J 

J 



Chapter 3 Message Management 

Overlay A and Execution Group Subsystems 

Depending on scheduling and concurrent processing limits defined 
for each subsystem within the overlay structure, Intercomm controls the 
Overlay A processing. An overlay group may consist of one or more 
subsystems which may be grouped according to reentrancy, programming 
language, processing time, resource requirements, traffic, volume, 
etc. Scheduling and concurrent processing limits are relevant, as, 
once work is dispatched for the group in Overlay A, another group 
cannot be overlaid into the area until all the dispatched threads have 
completed processing. 

Intercomm controls VS execution group processing, depending on 
scheduling and concurrent processing limits defined for each subsystem 
within the VS execution group. An execution group may consist of one 
or more subsystems which are grouped according to reentrancy, 
programming language, processing time, resource requirements, traffic, 
volume, etc. Scheduling and concurrent processing limits are relevant, 
since once work is dispatched for one execution group no other 
execution groups will be scheduled until the current group completes 
its processing. This technique is useful in preventing excessive VS 
paging overhead when real storage is at a premium; all nonzero EXGRP 
subsystems are linked as resident in a contiguous group. 

Those subsystems which are to be executed from Overlay Region A 
must be linkedited according to the same structure depicted in Figure 
3-6. In other words, all subsystems whose SYCTTBL macro OVLY parameter 
is coded as 4 must be inserted in the same overlay segment, all OVLY=5 
in the same segment, etc. These SYCTTBLs must have OVLY coded in 
ascending, sequential order. 

The following example illustrates 
Table with two Overlay A groups defined. 
relate the OVLY parameter definitions to 
are illustrated in Figure 3-8. 

a sample Subsystem Control 
Linkedit control cards which 
Overlay A INSERT statements 

* RESIDENT and DYNAMICALLY LOADABLE SUBSYSTEMS 
SYCTTBL -----
SYCTTBL -----

* OVERLAY A GROUP 1 
SYCTTBL SBSP=SUBSYSA,OVLY=4,--
SYCTTBL SBSP=SUBSYSB,OVLY=4,--

* OVERLAY A GROUP 2 
SYCTTBL SBSP=SUBSYSC,OVLY=5,---

3-37 



Chapter 3 Message Management 

Within one overlay segment, a substructure may be defined for 
subroutines called by, and linked with, a particular subsystem, as 
illustrated by OVERLAY AB; SUBX and SUBY in Figure 3-8. The 
subroutines may not give up control to the Dispatcher (no calls to the 
File Handler, etc.); if such logic is essential, the subsystem of the 
called subroutine must be defined as single-thread processing. 
Otherwise, calls in different message threads processed concurrently 
for that subsystem will cause the overlay substructure to be "overlaid" 
by mistake. 

The appropriate control cards for eligible Overlay A Intercomm 
routines may be generated via the ICOMLINK parameter OVLYSTR=YES which 
also causes inclusion of LOADOVLY in the Intercomm linkedit. For 
asynchronous overlay loading, also code ASYNCH=YES on ICOMLINK (causes 
an include for ASYNCH), and code ASYNLDR=YES on the SPALIST macro. 

IILKED.SYSIN DD * 

Figure 3-8. 

INCLUDE • 
• required Intercomm modules 

INCLUDE SYSLIB(SUBSYSA) 
INCLUDE SYSLIB(SUBSYSB) 
INCLUDE SYSLIB(SUBSYSC) 
OVERLAY A 

• Intercomm Overlay A modules 

OVERLAY A 
INSERT SUBSYSA 
INSERT SUBSYSB 

OVERLAY A 
INSERT SUBSYSC 

OVERLAY AB 
INSERT SUBX 

OVERLAY AB 
INSERT SUBY 

Sample Linkedit Control Cards for Overlay Region A 
Subsystems 

3-38 

J 

J 



Chapter 3 Message Management 

Dynamically Loaded Subsystems 

No special table entries are required for dynamically loadable 
subsystems, other than the LOADNAM and REUSE parameters on the SYCTTBL 
macro. If the BLDL parameter indicates YES, the Subsystem Controller 
searches the STEPLIB 01" JOBUB directory only once for the required 
member location. Thereafter, loading is performed based upon an 
internally generated list of actual file locations. The system control 
command, LOAD, must be used to indicate a change in location. Each 
dynamically loaded subsystem is linkedited independently of the main 
Intercomm load module. 

The subsystem load module consists of the subsystem itself and 
any called modules (compiler-oriented routines not loaded dynamically 
by compiler-oriented code) which are not standard Intercomm/user 
subroutines accessible via REENTSBS. Assembler Language subsystems 
should load Intercomm facility addresses from the SPA/SPAEXT before 
calling an Intercomm routine, and use the MODCNTRL macro to access user 
subroutines defined to Intercomm via REENTSBS (SUBMODS macro). Each 
dynamically loaded subsystem module is then linkedited with the 
Intercomm interface INTLOAD (unless dynamic linkedit is used; see 
below). INTLOAD resolves references to resident Intercomm routines. 
The LKEDP procedure may be used for the subsystem linked it , as the 
following illustrates: 

//LINKSUBS 
//LKED.SYSIN 

EXEC 
DD 
ENTRY 
INCLUDE 
INCLUDE 
NAME 

LKEDP,Q=ABC,LMOD=DYNSUBX 

* 
SUBSYSX 
SYSLIB(SUBSYSX) 
SYSLIB(INTLOAD) 
DYNSUBX(R) 

The LOADNAM parameter of the SYCTTBL macro describing the 
subsystem must then correspond to the LMOD parameter of the LKEDP 
procedure (name of the module in the load library). If the subsystem 
is defined under more than one SYCTTBL (accessed by multiple verbs), 
linked it with ALIAS names to make each definition unique, but do not 
link as either reusable or reentrant. This will result in more than 
one copy loaded in core, which cannot be avoided. The subsystem may, 
however, be defined to Intercomm as reentrant, if coded as reentrant. 

The library used for dynamically loaded subsystems must be 
defined at execution time (STEPUB or JOBLIB). Certain restrictions 
apply if the Dynamic Linkedit facility is used (see below). 

3-39 



Chapter 3 Message Management 

Use of dynamically loaded subsystems requires an INCLUDE of the 
modules LOADSCT, DELOAD, and either ASYNCLDR (MVS, OS/MVT) or VS1LOADR 
(VS1, OS/MFT) for the resident portion of Intercomm. Coding 
DYNLOAD=YES (default) for the ICOMLINK macro automatically generates 
these statements. LOADSCT is used in conjunction with the LOAD 
command. MAXLOAD is the SPALIST macro system control parameter used 
with dynamically loaded subsystems. 

Dynamic Linkedit Facility 

The Intercomm Dynamic Linkedit facility is optionally used in 
conjunction with dynamically loaded subsystems to allow these 
subsystems to be linkedited with unresolved references to subroutines 
and data areas. If these subroutines and data areas are present (and 
resident) within the main Intercomm load module, the Dynamic Linkedit 
facility will resolve the references at startup time by "zapping" the 
load module of each subsystem. 

Using this facility, the INTLOAD interface 
be linkedited with each dynamically loaded 
references to Intercomm resident routines, 
automatically resolved by Intercomm. 

module is no longer to 
subsystem to resolve 
since they will be 

The Dynamic Linkedit facility is a generalized approach which 
permits a single copy of a compiler subroutine which is resident within 
the main Intercomm load module to be used by any loaded subsystem, 
rather than requiring a separate copy along with each loaded 
subsystem. Eliminating duplicate copies of subroutines in this manner 
is particularly useful for COBOL or PL/I loaded subsystems, since a 
single copy of all the standard library routines used by these 
languages can be made resident within Intercomm (if not in the Link 
Pack Area), and thus available to be used by all subsystems. 

The Dynamic Linkedit facility is implemented by including the 
module ICOMDYNL in the main Intercomm linkedit. ICOMDYNL can be placed 
in the startup overlay. However, if the LOAD system control command is 
implemented, it must be resident. Coding DYNLINK=YES (default) for the 
ICOMLINK macro automatically generates the necessary statement. Also, 
the ICOMCESD and ICOMVCON modules must be separately linkedited with 
these names, and as nonreentrant, on one of the load libraries 
specified via STEPLIB or JOBLIB for Intercomm execution. 

Additionally, a work file must be provided to Intercomm using the 
following format: 

IIDYNLWORK DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,1)) 

3-40 



Chapter 3 Message Management 

A listing of Dynamic Linkedit processing results, unresolved External 
References and WXTRNs will be produced by adding an optional DD 
statement to execution JCL: 

IIDYNLPRNT DD SYSOUT=A 

If the LOADSCT routine is used to reload a dynamically loaded 
subsystem which has been relinkedited during Intercomm' s execution, 
LOADSCT will use the Dynamic Linkedit facility to rezap the subsystem. 

The following restrictions apply to the use of dynamic linkedit: 

• Assembler Language address constants will not be resolved if 
coded as "label+nn" where "nn" is nonzero and less than or 
equal to 64K. 

Called programs must be resident 
segment for resolution to take place. 
dynamically loaded subroutines. 

in the Intercomm root 
This does not apply to 

• A VCON referencing a module in an overlay segment will not be 
resolved. Thus, an Assembler Language program may use 
CALLOVLY only if it obtains the VCON of the called program 
from the Intercomm root segment, that is, from the System 
Parameter Area. 

• Load modules on the library which is to be dynamically 
linkedited may not be executed by any other concurrent job. 
Since VCONs can only be resolved to point to one region, the 
load module is therefore executable only in that region. 

~ All modules to be dynamically linkedited during a given 
Intercolllll execution must reside on one data set defined for 

. STEPLIB or, if no STEPLIB, then on JOBLIB. This library must 
be contained in one extent. A careful watch of this library 
space is necessary to ensure that updates do not cause it to 
exceed one extent. Frequent off-line compresses may be 
necessary. This library may not be concatenated with others. 

• However, if STEPLIB consists of concatenated data sets, the 
library containing load modules to be dynamically linkedited 
must be defined by a DD statement with the name DYNLLIB. 
This library must be a single data set, and must also be 
concatenated with STEPLIB for subsequent load processing. 
Code DISP=SHR on both DD statements. This library may not 
exceed one extent (see above) and may not be shared with any 
other Intercomm region. 

• A combination of loadable subsystems linkedited with INTLOAD 
and dynamically linkedited loadable subsystems may be used. 
However, the INTLOAD group may not be on the dynamic link 
library, but must be on one of the other libraries 
concatenated to STEPLIB/JOBLIB. The INTLOAD library may be 
shared across regions. 

3-41 



Chapter 3 Message Management 

• Compress of the dynamic link library may not be done while 
Intercomm is executing. 

Because the load modules of dynamically loaded subsystems are 
modified, they cannot reside on a library shared by another Intercomm 
region. For efficiency, each dynamic load library should be on a 
different disk pack. To convert a subsystem from dynamically 
linkedited and loaded to resident or in the overlay region, the 
subsystem must be recompiled and relinkedited prior to inserting it 
into the Intercomm linkedit. 

3.9.6 Subsystems Assigned to Overlay Region B, C or D 

Some linkage editors limit the number of overlay regions that can 
be defined in a linkedit. Due to the existence of Intercomm Regions 
TRAN and SUB, not all of Overlay Regions B, C and D may be usable. 

Overlay Regions B, C and/or D are used for subsystems which 
require no guaranteed response time. The objective of their use is to 
e ffecti ve ly remove some sub systems from contention for use of Over lay 
Region A. Subsystems assigned to Overlay Region B, C or D have the 
following characteristics: 

• Input messages are queued by region, instead of by subsystem. 

• Subsystem execution is controlled by the Intercorom program 
MONOVLY. 

U Subsystem processing is always single-threaded. 

CI All subsystems in one overlay region should be coded in the 
same language. 

• A Subsystem Control Table entry (SYCTTBL) is defined for 
MONOVLY, not the individual subsystem(s). 

• An additional Verb Table is required for each overlay region. 

There is one Subsystem Control Table entry for each of the 
Overlay Regions B, C or D, in use. Each defines MONOVLY as the entry 
point and the OVLY parameter is coded as 1, 2 or 3 for Overlay Region 
B, C or D, respectively. For example: 

OVLYB SYCTTBL SUBC=B,SUBH=B,OVLY=l,LANG=NBAL, 
SBSP=MONOVLY,NUMCL=2,DFLN=OVLYBQ 

3-42 

x 



L 

Chapter 3 Message Management 

MONOVLY controls the loading of the appropriate subsystem into 
the overlay region, based upon the order of messages retrieved from the 
queue, and a table specification relating the message verb to the 
subsystem entry point. 

Subsystems assigned to Overlay B, C or D, and coded in different 
languages, should have a Subsystem Control Table entry for an overlay 
region for each programming language. For example: 

COBOVLYB 

BALOVLYC 

SYCTTBL 

SYCTTBL 

SUBC=B,SUBH=C,OVLY=l,LANG=COB, 
SBSP=MONOVLY,NUMCL=2,---
SUBC=B,SUBH=A,OVLY=2,LANG=NBAL, 
SBSP=MONOVLY,NUMCL=2,---

x 

x 

The Intercomm Enqueue/Dequeue facility (PMINQDEQ) is used to 
force single-threading of the overlay region. Two restrictions exist 
if more than one language is used per overlay region: the startup 
module CKOVLYNO may not be used to perform Subsystem Control Table 
checking; and the conversational control routine, CONVERSE, may not be 
called by any subsystem aSSigned to the overlay region. 

BTVERB entries in the Front End Verb Table (BTVRBTB) must use the 
subsystem code assigned to the overlay region via the SYCTTBL macro. 
An Overlay Region Verb Table is required for each overlay region. This 
special verb table must have a Csectname of OVLYBTB for Region B, 
OVLYCTB for Region C, and OVLYDTB for Region D. These Csects are coded 
by the user, and must include an entry for each subsystem in the 
particular overlay. Each table entry is twelve bytes in length, as 
follows: 

o Bytes l-4--the four-character verb associated with a 
subsystem in the overlay region 

• Byte 5--Verb Identifier/Edit Flag: X'OO' = editing required; 
X'01' to X'254' = user VMI value; X'FF' = no editing desired 

• Byte 6--X'FF' indicates free the incoming message before 
calling the subsystem, if desired, else code X'OO' 

• Bytes 7-8--unused 

• Bytes 9-l2--the subsystem entry point, coded as a VCON 

A fullword of X'FF', generated by the PMISTOP macro, is required 
at the end of the table. Following is a sample overlay region verb 
table. 

3-43 



Chapter 3 Message Management 

OVLYBTB CSECT 
DC C'EPKF',4X'O',V(EDITTEST) 
DC C'EPKV',4X'O',V(EDITTEST) 
DC C'V250',4X'O',V(EDITTEST) 
DC C'EDKF',4X'O',V(EDITTEST) 
DC C'EDPV',4X'O',V(EDITTEST) 
DC C'EDPL',4X'O',V(EDITTEST) 
DC C'ED32',4X'O',V(EDITTEST) 
PMISTOP 
END 

As illustrated below, the Verb Identifier/Edit Flag controls 
processing of incoming messages via the Edit Utility based upon a test 
of the message header VMI field. 

F==========-===============-============================================ 
Message Verb ID/ 

Header Edit Flag 
VMI (Verb Table 

Value Byte 5) Value Action 
===========F===============F============================================= 

X'FF' ignored No editing required. The message text verb 
is used to locate the table entry defining 
the subsystem to process the message. 

----------- ---------------~--------------------------------------------
X'OO' X'OO' Same as above. Edit Utility is not called. 

-------------------------- ~--------------------------------------------. 
X'OO' X'OI' Edit Utility is called prior to giving 

~----------
X'OI' 
to 
X'FE' 

to control to the subsystem. 
X'FE' 

------------------------------------------------------------
X'OI' Editing is not required. The message 
to header VMI is matched with the Verb 
X'FE' Identifier to locate the table entry 

defining the subsystem to process the 
message. 

3-44 



Chapter 3 Message Management 

The MONOVLY program checks the input verb or the VMI against the 
table and calls the Edit Utility, if specified by the table entry. It 
then brings the program into the overlay area and passes control to the 
program. If the Overlay Region Verb Table is invalid, a message is 
issued and a Snap go is taken; then the overlay monitor returns to the 
Subsystem Controller with a return code .of 4. 

If asynchronous loading (ASYNLDR=YES in the System Parameter 
Area, and the module ASYNCH is present) is being used, the module 
LOADOVLY must be present. It is a necessary interface between MONOVLY 
and the Loader Task ASYNCH. To generate the correct linked it for 
MONOVLY processing, the following must be coded for the ICOMLINK 
Macro: MONOVLY=YES, ASYNCH=YES, OVLYSTR=YES and optionally TRANS=YES. 

3.10 SUBSYSTEM INTERFACES AND LINKEDIT CONSIDERATIONS 

There are no special considerations for coding or linking of 
Assembler Language subsystems except that they should be reentrant and 
use the Intercomm facilities described in the Assembler Language 
Programmer's Guide. Macros supplied by Intercomm to aid in coding 
Assembler Language programs and subroutines are described in Basic 
System Macros. Considerations for higher-level language programs 
supported by Intercomm are described below. 

3.10.1 COBOL Subsystem Interfaces 

Application subsystems may be coded in COBOL-F or VS or ANS 
COBOL, and may also be compiled via the CAPEX Optimizer. However, all 
COBOL subsystems must use the same compiler, because the ILBO 
subroutines may not be compatible. An Intercomm facility allows COBOL 
subsystems to operate in a reentrant mode, processing several messages 
concurrently, as specified by the Subsystem Control Table entry for the 
subsystem. Certain coding conventions must be followed, as described 
in the Intercomm COBOL Programmers Guide. 

The size of the Dynamic Working Storage in the Linkage Section of 
a reentrant COBOL subsystem must agree with SYCTTBL macro values. The 
COBOL Programmers Guide details coding techniques required when the 
amount of storage freed is less than the amount of storage obtained for 
the processing of a message. Two SYCTTBL parameters, GET and FREE, are 
used to specify the amount of dynamic core to obtain on entry to, and 
free on return from, a reentrant COBOL subsystem. The maximum request 
for storage via the GET parameter is 64K, less 304 bytes. 

3-45 



Chapter 3 Message Management 

The Reentrant Subroutine Table (REENTSBS) must be included for 
execution of reentrant COBOL subsystems. This table represents a list 
of Intercomm service routine addresses referenced by a COBOL program 
parameter list for the reentrant subroutine interface module COBREENT. 
User additions to this list may begin at decimal offset 104 and be 
coded in a copy member USRSUBS. User-coded subroutines require an 
entry in this member and COBREENT must be used to interface to a called 
subroutine. Additionally, the supplied COBOL program COPY member 
ICOMSBS must be updated to provide the names and index codes for the 
added user subroutines. 

Figure 3-9 illustrates the standard Intercomm-supplied Reentrant 
Subroutine Table. REENTSBS must be reassembled and relinked every time 
an entry is changed or added to USRSUBS. 

3.10.2 COBOL Subsystem Linkedit Considerations 

To execute COBOL subsystems under Intercomm, the interface 
modules PREPROG, PMICOBOT, and COBPUT must be included in the Intercomm 
linked it (automatic if the ICOMLINK parameter COBOL=YES (default) is 
coded) • Depending on the version and compiler NORES options used, 
COBOL programs require certain COBOL routines (based on coding logic) 
to be available from SYS1.COBLIB, either at linked it time or at 
execution time. These modules are ILBOSRV, ILBOBEG, ILBOCMM, and 
ILBOMSG. 

In addition, ILBOSTPO and ILBOSTP1 may be required if they are 
not entry points within the ILBOSRV module. The modules have several 
subroutines (indicated by a suffix code) which mayor may not be 
linkedited with them on SYS1. COBLIB, depending on the COBOL version 
(release) used, and weak external reference specifications in routines 
of that version. Normally, to cut down on the size of the COBOL load 
module, an execution time library is required if all COBOL routine 
external references are not resolved at linked it time. This execution 
time library provides COBOL subroutines for the COBOL program only when 
needed, thus saving space in the user's region via LOADs and DELETEs. 
For example, ILBOBEGO and ILBOCMMO will always be needed, whereas 
ILBOMSGO only if an error occurs. If EXHIBIT or READY TRACE is coded, 
adding an INCLUDE for ILBODSPO to the Intercomm linkedit may be 
advisable. 

To save space in the Intercomm region, COBOL subsystems should be 
compiled with the same compiler, using the NORES, and NOTRUNC options. 
For dynamically loaded COBOL subsystems defined to Intercomm as 
reentrant (SYCTTBL-LANG=RCOB), use the REUS and NCAL linked it options. 
In addition, to save LOAD and DELETE time (if subroutine not in Link 
Pack), the ICOMLINK parameter RECOBOL=YES (default) should be used to 
generate INCLUDEs not only for Intercomm routines required for 
reentrant COBOL (COBREENT, COBSTORF), but also for the most common 
COBOL subroutines (ILBOSTPO, ILBOBEGO, ILBOCMMO, ILBOMSGO and 
ILBOCOMO), and for the Intercomm/user subroutine table REENTSBS. 

3-46 



L 

Chapter 3 Message Management 

If following the above recommendation is not possible, due to the 
COBOL version in use, the user is advised to perform the following 
steps: 

1. Linkedit ILBOSRVO (PARM='REUS') into a special SRV library, 
with INCLUDE statements for subroutines ILBOBEGO, ILBOCMMO and 
ILBOMSGO, as follows: 

INCLUDE SYSLIB(ILBOSRVO,ILBOBEGO,ILBOCMMO,ILBOMSGO) 
ALIAS ILBOSR,ILBOSRVO,ILBOSRV1,ILBOST,ILBOSTPO,ILBOSTP1 
NAME ILBOSRV(R) 

2. Then concatenate that ~pecial SRV library ahead of the regular 
COBOL library in the SYSLIB data sets for the linked it of the 
COBOL subsystem. 

3. Additional ALIAS names may be used for ILBOSR3, ILBOSRST, 
ILBOBEG, ILBOCMM, ILBOCMM1, ILBOMSG, and ILBOCOM depending on 
unresolved references in the COBOL subsystem linkedit. 

4. The ENDJOB compiler option should be used to prevent 80A, 804 
and 906 abends if the subroutine library is used. 

NOTE: ANS Version 4 or CAPEX Optimizer routines might be on a 
li brary other than SYS 1 • COBLIB. Research this point for 
proper compile and linkedit SYSLIB JCL when using 
Intercomm procedures, and execution time STEPLIB JCL. 

3-47 



Chapter 3 Message Management 

REENTSB1 CSECT 

* * NEGATIVE OFFSETS ARE USED BY SPECIFYING AN OFFSET ENDING IN B'11', 
* WHICH IS INCREMENTED BY 1 AND COMPLEMENTED TO OBTAIN TRUE OFFSET 
* BY COBREENT AND PMIPL1. 
* 

SUBMODS NAME=MAPFREE 
SUBMODS NAME=FECMRLSE 
SUBMODS NAME=FESEND 
SUBMODS NAME=FESENDC 
SUBMODS NAME=ALLOCATE 
SUBMODS NAME=ACCESS 
SUBMODS NAME=MAPURGE 
SUBMODS NAME=MAPCLR 
SUBMODS NAME=MAPEND 
SUBMODS NAME=MAPOUT 
SUBMODS NAME=MAPIN 
SUBMODS NAME=INTUNSTO 
SUBMODS NAME=INTSTORE 
SUBMODS NAME=INTFETCH 
SUBMODS NAME=FECMFDBK 
SUBMODS NAME=FECMDDQ 
SUBMODS NAME=QWRITEX 
SUBMODS NAME=QREADX 
SUBMODS NAME=QWRITE 
SUBMODS NAME=QREAD 
SUBMODS NAME=QCLOSE 
SUBMODS NAME=QOPEN 
SUBMODS NAME=QBUILD 
ENTRY REENTSBS 

OFFSET -92,CODED AS 91 
OFFSET -88,CODED AS 87 
OFFSET -84,CODED AS 83 
OFFSET -80, CODED AS 79 
OFFSET -76,CODED AS 75 
OFFSET -72,CODED AS 71 
OFFSET -68,CODED AS 67 
OFFSET -64,CODED AS 63 
OFFSET -60,CODED AS 59 
OFFSET -56,CODED AS 55 
OFFSET -52,CODED AS 51 
OFFSET -48,CODED AS 47 
OFFSET -44,CODED AS 43 
OFFSET -40,CODED AS 39 
OFFSET -36,CODED AS 35 
OFFSET -32,CODED AS 31 
OFFSET -28,CODED AS 27 
OFFSET -24,CODED AS 23 
OFFSET -20, CODED AS 19 
OFFSET -16,CODED AS 15 
OFFSET -12,CODED AS 11 
OFFSET -8,CODED AS 7 
OFFSET -4,CODED AS 3 

REENTSBS DS OA ALLOW FOR NEGATIVE OFFSETS 
DC A(REENTEND-REENTSBS-4) REQUIRED 
SUBMODS NAME=SELECT CODE 4- FILE SELECT 
SUBMODS NAME=RELEASE CODE 8- FILE RELEASE 
SUBMODS NAME=READ CODE 12- FILE READ 
SUBMODS NAME=WRITE CODE 16- FILE WRITE 
SUBMODS NAME=GET CODE 20- FILE GET 
SUBMODS NAME=PUT CODE 24- FILE PUT 
SUBMODS NAME=RELEX CODE 28- RELEASE EXCL. CONTROL 
SUBMODS NAME=FEOV CODE 32- FILE FEOV 
SUBMODS NAME=DISEL CODE 36- DISAM SELECT 
SUBMODS NAME=DIREL CODE 40- DISAM RELEASE 
SUBMODS NAME=DIREAD CODE 44- DISAM READ 
SUBMODS NAME=DIWRITE CODE 48- DISAM WRITE 

Figure 3-9. REENTSBS Release Version (Page 1 of 2) 

3-48 

J 



Chapter 3 Message Management 

SUBMODS NAME=DIGET CODE 52- DISAM GET 
SUBMODS NAME=DIPUT CODE 56- DISAM PUT 
SUBMODS NAME=DIDEL CODE 60- DISAM DELETE 
SUBMODS NAME=DIRELEX CODE 64- DISAM RELEX 
SUBMODS NAME=COBPUT CODE 68- COBOL MESSAGE SWITCHING 
SUBMODS NAME=MSGCOL CODE 72- MESSAGE COLLECTION 
SUBMODS NAME=COBSTORF CODE 76- COBOL STORFREE 
SUBMODS NAME=CONVERSE CODE 80- CONVERSE 
SUBMODS NAME=DBINT CODE 84- DATA BASE REQUEST 
SUBMODS NAME=LOGPUT CODE 88- LOGPUT 
SUBMODS NAME=PAGE CODE 92- PAGE ROUTINE 
SUBMODS NAME=GETV CODE 96- VSAM GET 
SUBMODS NAME=PUTV CODE 100-VSAM PUT 

********************************************************************** 
*** INSERT USER SUBMODS MACROS *** 
********************************************************************** 

COPY USRSUBS 
REENTEND EQU * REQUIRED AFTER LAST SUBMODS 

ENTRY REENTEND 
REENTSB1 CSECT 

END 

Figure 3-9. REENTSBS Release Version (Page 2 of 2) 

3.10.3 PL/1 Subsystem Interfaces 

In the Intercomm environment, a PL/1 subsystem requires special 
consideration for each allowable option. Specifications of the options 
chosen are indicated for the subsystem in the PL1 and PL1LNK parameters 
of the SYCTTBL macro. These options are as follows: 

1. The PL/1-F compiler, specified via PL 1 =F, the default on the 
SYCTTBL macro or the PL/1 optimizing compiler, specified via 
PLl=OPT on the SYCTTBL macro. 

2. The linkage conventions used by Intercomm to construct the 
parameter list may be either nonbased (character string) or 
based (dunmy arithmetic scalar) format for the first three 
parameters in the list, as specified by the PL1LNK parameter 
of the SYCTTBL macro. 

An Intercomm module is required as the interface between 
Intercomm and the PL/1 compiler in use, either PREPL1 or PREPLI, as 
shown in Figure 3-10. Figure 3-11 illustrates the interface when the 
subsystem is dynamically loaded. 

PREPL1 is the interface for PL/1-F SUbsystems. Each thread of a 
PL/1 subsystem is a separate instance of the PL/1 environment. For the 
F compiler, PREPL 1 issues SPIE and STAE to override PL/1' s SPIE and 
STAE during execution of the thread. 

3-49 



Chapter 3 Message Management 

All storage allocation is performed in the usual PL/l 
fashion--abnormal termination, which does not raise the ERROR 
condition, such as program checks, may leave storage allocated after 
the thread terminates. Storage obtained by PL/l, that is, automatic 
variable, is not monitored by the Intercomm Resource Management 
facility. 

.... PL/l-F Subsystem using linkage 
PREPLl ..... convention defined by the SCT 

Ii'" (SYCTTBL macro PLl=F parameter) 

Subsystem 
Controller 

~ PREPLI ...... 
Optimized PLil subsystem using 
linkage convention defined by ..... 
the SCT (SYCTTBL macro PLl=OPT 
parameter) 

Figure 3-10. PL/l Subsystem Interface Options 

Subsystem Controller -
,£ -

PREPLI PREPLI 

~ .. ~ .. 
resident modules 

~ .. ------- - - - - - - - - - - - - - ~ , 
dynamically loaded 

PLlV modules PLIV 

PL/l-F PL/I Optimizer 
Subsystem Subsystem 

Figure 3-11. Dynamically Loaded PL/l Subsystems 

3-50 



Chapter 3 Message Management 

PREPLI is the interface module for PL/I optimized sUbsystems. As 
released, PREPLI specifies no options. PLIl invocation options STAE, 
SPIE and REPORT should be disabled for production. However, they may 
be specified by changing the PREPLI macro coded within the member 
PREPLI, then reassembling PREPLI. The Intercomm System Manager may 
provide an alternate PREPLI module for testing, specifying some or all 
of the above options. As with subsystems compiled by the F-compiler, 
each thread isa separate instance of the PL/I environment. Since PL/I 
STAE and SPIE- can be suppressed by invocation options, Intercomm STAE 
and SPIE will remain effective. 

Another option available to optimizer users is preallocated ISA, 
which allows PREPLI to allocate the ISA from Intercomm storage, based 
on the specified size on the SPAC parameter of the SYCTTBL macro, and 
to pass it to the subsystem. This makes clean abnormal thread 
termination possible where the ERROR condition is not raised. 

The subroutine interface program PMIPLI must be used.- When 
calling non-PL/I subroutines, it will reformat the parameter list to 
pass data addresses. Subroutines are referenced by specifying the 
offset into the REENTSBS table as the first parameter. The offsets are 
defined for PL/1 in the copy member PENTRY. If a subroutine not 
currently represented in REENTSBS is called, both tables must be 
updated. When coding user entries in REENTSBS, PMIPLI assumes all 
parameters are passed in character format (with the exception of 
MSGCOL, PAGE and CONVERSE). This method can be bypassed when using the 
optimizer. 

For optimizing compiler users, PMIPLI functions can be achieved 
for Assembler Language subroutines by copying the member PLIENTRY into 
the subsystem, or by declaring the subroutine, for example, COBPUT, as 

DCL COBPUT ENTRY OPTIONS (ASM INTER) 

and calling, in the usual PL/I fashion: 

CALL COBPUT (message, return-code) 

Dynamically loaded PL/I subsystems must be linkedited so that the 
load module, specified by the SYCTTBL macro LOADNAM parameter, contains 
the address table PLIV (for F subsystems) or PLIV (for Optimizer 
subsystems). PLIV or PLIV must be specified as the load module entry 
point via a linkage editor ENTRY statement. 

Additional compiler-dependent linked it considerations are: 

• PL/1( F) 

The address table PLIV must be first in the module so that 
the start of all pseudo-register vectors have the same 
format. Also, PLIV must be included during the resident 
linked it before all PL/I modules, so that the order of 
pseudo-register vectors match those of the dynamically loaded 
modules. IHESAPA and IHESIZE must be included in every 
dynamically loaded subsyst~. 

3-~1 



Chapter 3 Message Management 

• PL/1 (Optimizer) 

There are no special ordering requirements for either 
dynamically loaded subsystems or the resident linkedit. This 
simplification is possible because the library does not use 
pseudo-registers, as does the F implementation. 

In the PL/1 subsystem, the procedure given control by Intercomm 
must specify OPTIONS(MAIN, REENTRANT) , or OPTIONS(MAIN), if 
nonreentrant. OPTIONS(MAIN) is used to get the true suJ:>system entry 
point in Csect IHEMAIN(F) or PLIMAIN(OPT). Since resident or overlay 
subsystems use the SBSP parameter on the SYCTTBL macro for this 
purpose, for them OPTIONS(MAIN) is not needed but will be accepted. 

The subsystem should avoid unnecessary data conversion to keep 
PL/1 library routines called by the subsystem to a minimum. If Dynamic 
Linkedit is used, some or all of the PL/1 library subroutines may be 
included in the resident portion of Intercomm, eliminating their 
duplication in each dynamically loaded subsystem that references them. 

PL/1 library subroutines eligible for residency are those 
normally included via automatic library call (control section name, 
preceded by an asterisk in the link m;3.p listing). Either specify the 
NCAL linkage editor option to remove all control sections, or prevent 
automatic call of selected control sections (see below) via linkage 
editor LIBRARY statements. Use of LIBRARY statements to exclude a 
standard set of commonly used routines allows the automatic library 
call to include infrequently used modules when referenced, eliminating 
special programmer effort once a set of resident routines have been 
selected by examining typical linkedits. 

3.10.4 PL/1 Subsystem Linkedit Considerations 

PL/1 subsystems necessitate inclusion in the Intercomm linkedit 
of the Intercomm Abend Intercept Routines SPIEEXIT and STAEEXIT, as 
well as the PL/1 interface routines PMIPL1, COBPUT, PREPL1 and PREPLI, 
as required. Additionally, the common subroutines IHEMAIN, IHESAPA, 
IHELTTA, IHESADA, and IHESAFA should be resident. Coding PL1=F or OPT 
on the ICOMLINK macro automatically generates the necessary include 
statements for the above (except COBPUT). 

When using the PL/1 optimizing compiler, the transient library 
modules are loaded into dynamic storage as required. With a relatively 
high message volume for Pl/1 subsystems, a high overhead can be 
encountered while loading and deleting the transient library modules. 
To ease this problem, load some of the most used modules at startup 
time (via USRSTRT1), such as IBMBPGRA, IBMBPIIA and I BMBP ITA , or make 
them resident in the Intercomm linkedit. 

3-52 



Chapter 3 Message Management 

The Optimizer uses three transient modules which are loaded and 
deleted for each thread. They are IBMBPII, initialization; IBMBPIT, 
termination; and either IBMBPGR, transient library storage management, 
or IBMBPIR, resident library storage management with REPORT. To keep 
them resident, thereby greatly improving response time, the USRSTRT1 
user exit routine could also load them at startup and a USRCLSE1 user 
exit routine could be written to delete them at closedown. 

3.10.5 FORTRfu~ Subsystems 

Application subsystems coded in the FORTRAN language are executed 
under Intercolllll in the same manner as nonreentrant COBOL sUbsystems. 
They are single-threaded. Their SYCTTBL macros should specify 
LANG=FORT and MNCL= 1. They must be linkedited with compiler-dependent 
subroutines; see the description of the FORTLINK procedure in Chapter 2. 

3.11 SUBROUTINE INTERFACES AND LINKEDIT CONSIDERATIONS 

The following subsection describes the use of user-coded 
subroutines with user-coded subsystems and their residency and linked it 
considerations. For further details, see the applicable Programmers 
Guide. 

3.11.1 Resident Subroutines 

Resident and Overlay A Assembler Language subsystems may call 
resident Assembler subroutines using standard linkage conventions. 
Dynamically loaded Assembler Language subsystems must either be 
dynamically linkedited with the resident subroutines, or use the 
MODCNTRL macro to access user subroutines previously defined via the 
SUBMODS macro in REENTSBS; Intercomm routines may be accessed via VCONs 
in the SPALIST. 

Resident, Overlay A and dynamically loaded COBOL and PL/1 
subsystems must use Intercomm interfaces to all noncompiler 
subroutines. The interface routines are COBREENT and PMIPL 1, 
respecti vely. The user subroutines are defined to Intercomm via the 
SUBMODS macro in the REENTSBS table. Copy code tables to define 
subroutine codes to match entries in REENTSBS are ICOMSBS (COBOL) and 
PENTRY (PL/1). PL/1-Optimizer subsystems may optionally call resident 
Assembler Language subroutines directly by adding the name to the 
PLIENTRY table included in the program; however, this option cannot be 
used for dynamically loaded subsystems unless dynamically linkedited. 

3-53 



Chapter 3 Message Management 

A maximum of 350 user SUBMODS entries using the NAME parameter 
(resident), or LNAME and RES=LINKEDIT or RES=BOTH (default) parameters, 
may be defined (due to an Assembler restriction on ESD entries). An 
addi tional 49 are reserved for Intercorom service routine definitions. 
However, additional entries may be defined using the LNAME and 
RES=LOADMOD parameters of the SUBMODS macro. See also the PERMRES 
parameter, as described in Basic System Macros. 

Note the following language interface considerations: 

• Reentrant COBOL subsystems must use the Intercomm interface 
COBREENT to call subroutines, and may only call reentrant or 
reusable COBOL and Assembler Language subroutines. 

o Reentrant COBOL subroutines may be called only by reentrant 
COBOL subroutines and subsystems which use the COBREENT 
interface. 

o PL/1 subroutines may not be called by Assembler or COBOL 
subroutines or subsystems due to language differences in 
parameter list construction. 

a Reentrant PL/1 subsystems must use the Intercorom interface 
PMIPL1 to call PL/1 subroutines; COBOL subroutines may not be 
called. See the discussion of Resident Subroutines (above) 
for Assembler subroutine interface considerations. 

• Nonreentrant COBOL and PL/1 subsystems may call only 
nonreentrant or reusable subroutines and reentrant Assembler 
subroutines. Nonreentrant Assembler subsystems and 
subroutines may call reentrant Assembler subroutines if 
standard linkage conventions are used. 

3.11.2 Subroutines Linked with Dynamically Loaded Subsystems 

Use of this convention is not recommended under Intercorom as it 
impacts reentrancy and multi threading, in addition to adding to the 
size of the load module. 

3.11.3 Dynamically Loaded Subroutines 

Intercomm subsystems have the ability to link to dynamically 
loaded subroutines. For all languages, these subroutines must be 
defined in REENTSBS using the SUBMODS macro. The loaded subroutines 
will be dynamically linkedited at startup time to resolve any unresolved 
VCONs and then loaded as required when accessed by a subsystem. A BLDL 
list for each subroutine may optionally be maintained for efficiency. 
Loaded subroutines will be automatically deleted from storage after a 
user-specified period of inactivity. Optionally, a subroutine can be 
loaded at startup and then made resident for the duration of the 
Intercomm execution (see PERMRES parameter of the SUBMODS macro). 

3-54 

J 



Chapter 3 Message Management 

Subroutines may be dynamically loaded during testing and then 
later be made resident or defined for the subroutine overlay region 
with no changes to the application. New versions of dynamically loaded 
subroutines can be obtained during Intercomm execution by use of the 
LOAD system control command (except if made resident at startup). 

Intercomm imposes no size restriction for these subroutines. 
Dynamic subroutine loading is dependent upon storage availability. 
Loading is overlapped through the use of subtasking. Subroutines which 
issue INTENQ/DEQ or process file I/O, which might cause a time-out, 
should not be dynamically loadable, unless made resident at startup. 

3.11.3.1 Application Programming Conventions 

Language-dependent considerations for application subsystem 
coding are as follows: 

• Reentrant COBOL subsystems use COBREENT and REENTSBS in the 
standard manner; dynamic load is transparent to the 
application program. COBOL subroutines must be coded and 
defined to Intercomm as reentrant. 

• PL/1 subsystems must call PMIPL1 in the standard manner (the 
ENTRY option of the Optimizer is not allowed for 
dynamic-loaded subroutine reference); dynamic load is 
transparent to the application program. Dynamically loaded 
subroutines written in PL/1 require special linkedit 
considerations. In order to maintain the PL/1 environment 
constructed for the calling subsystem, the PL/1 
initialization routines generated by the compiler must be 
removed, and the subroutine entry point must be explicitly 
specified. This can be accomplished by the following 
linkedit control cards for the subroutine (with the name 
SUBROUT) : 

REPLACE 
REPLACE 
INCLUDE 
ENTRY 
NAME 

PLIMAIN 
PLISTART 
SYSLIB(SUBROUT) 
SUBROUT 
SUBROUT(R) 

• Assembler subsystems must issue a MODCNTRL macro to invoke 
dynamic subroutine load. 

Nonreentrant COBOL and FORTRAN subsystems may not use the Dynamic 
Load facility directly. The user may provide a reentrant interface 
routine in Assembler Language for those subsystems. 

3-55 



Chapter 3 Message Management 

3.11.3.2 Implementation 

The macro SUBMODS is coded in REENTSBS and defines the name and 
characteristics of the subroutine (deletion time, residency, etc.) and 
may specify a BLDL list (see Basic System Macros). A 'separate Csect, 
DYNLSUBS, is generated to contain control data for dynamically loaded 
subroutines. The modules PMIDLOAD, DYNLLOAD, and REENTSBS must be 
included in the Intercomm linkedit. Coding DYNLOAD=YES and DYNLINK=YES 
on the ICOMLINK macro will generate the necessary INCLUDE statements. 
See the description of dynamically loaded subsystems and the Dynamic 
Linkedit facility for further installation details. 

3.11.4 Transient Subroutine Overlay Region (TRAN) 

The Intercomm Transient Subroutine Overlay Region allows rarely 
used Intercomm and Assembler Language application subroutines (which 
may give up control) to be linkedited as separate overlay segments in 
an overlay region reserved for this purpose. This can Significantly 
reduce the resident storage requirements of such Intercomrn and 
application subroutines. 

To be eligible for the transient area, a subroutine and its 
callers must follow several rules: 

• All callers of the subroutine in the transient area must call 
the transient area using the CALLOVLY macro. 

~ The subroutine in the transient area must, in all cases, 
return eventually to the calling program. It cannot branch 
away forever into some other module. It must return. 

G Usage of the transient area cannot be nested j that is, no 
subroutine to be used in the transient area can CALLOVLY 
another subroutine which is also in the transient area. It 
can, however, CALL resident subroutines. (See Figure 3-12.) 

• The subroutine in the 
reuseable or reentrant, 
conventions. 

transient 
and must 

area must be 
follow standard 

serially 
linkage 

• The caller must be an Assembler Language program. If the 
user wishes to use a high-level language and call a transient 
subroutine, he must do the following: 

1. Write a reentrant Assembler Language interface, using 
standard linkage conventions, to issue the CALLOVLY for 
the high-level program, and define it in REENTSBS. 

2. Parameters to be passed to the subroutine in the 
transient area must initially be passed to the Assembler 
Language interface by the high-level language. (See 
Figure 3-13.) 

3-56 



Chapter 3 Message Management 

3. The high-level language caller of the Assembler Language 
interface must be defined as reentrant, that is, provide 
save area chaining. 

• The subroutine in the transient area must invariably complete 
its processing within five minutes. The time-out interval is 
fixed by the Intercomm transient subroutine handler. After 
this time, it will be subject to being overlaid by other 
subroutines. 

---------------------------------- --------------------------------------------------------------------- -----------------------------------
Allowed Not Allowed 

---------------------------------- --------------------------------------------------------------------- -----------------------------------
ASUB CSECT ASUB CSECT 

CALLOVLY BSUB CALLOVLY BSUB 

END END 

BSUB CSECT BSUB CSECT 

CALL DSUB CALLOVLY CSUB . 
END END 

Figure 3-12. Illustration of Nested CALLOVLY Coding Conventions 

CALL 'COBREENT' USING CSUBI-code, Parameter-A, Parameter-B 

------------------------------------------------------------------------* REGISTER ONE CONTAINS THE COBOL PARAMETER LIST ADDRESS 
CSUBI CSECT 

Figure 3 -13 • 

USING *,12 
STM 14,12,12(13) 
LR 12,15 
LR 2,1 
STORAGE ADDR=8(13),LEN=72,RENT=NO 
L 3,8(13) 
ST 13,4(3) 
LR 13,3 
LR 1,2 
CALLOVLY CSUB,(1) 
LR 1,13 
L 13,4(13) 
STORFREE LEN=72,ADDR=(1) 
LM 14,12,12(13) 
BR 14 
END 

Using CALLOVLY in an Assembler Language Interface 
for a High-Level Language Program 

3-57 



Chapter 3 Message Management 

The set of Linkage Editor control statements illustrated below 
would result in a root section containing the resident subsystems PGM1 
and PGM2, and in the Intercomm transient area, the subroutines SUB1, 
SUB2, SUB3 and SUB4. The transient subroutine OVERLAY and INSERT 
statements must be placed in the Intercomm linked it after the Intercomm 
OVERLAY TRAN(REGION) statement. 

INCLUDE SYSLIB(PGM1,PGM2) 
INCLUDE SYSLIB(SUB1,SUB2,SUB3,SUB4) 

OVERLAY TRAN(REGION) 
Intercomm transient subroutines 

OVERLAY TRAN 
INSERT SUB1 

OVERLAY TRAN 
INSERT SUB2 

OVERLAY TRAN 
INSERT SUB3 

OVERLAY TRAN 
INSERT SUB4 

PMIOVLAY and LOADOVLY must be included in the Intercomm linkedit. 
The appropriate control cards for these modules and applicable Intercomm 
routines in the Transient Subroutine Overlay Region may be generated 
via the ICOMLINK macro specifying TRANS=YES and requires coding of 
OVLYSTR=YES. 

Since the OS linkage editor cannot create more than four overlay 
regions, the use of one of them as a transient area will restrict the 
application subsystems to the use of Intercomm Overlay Areas A, Band C. 

Since the transient area is a serially reuseable resource, care 
must be taken not to use it for subroutines that, due to frequency of 
usage or duration of processing, will create a decrease in message 
throughput or delay system control functions. 

3.11.5 Subroutine Overlay Region (SUB) 

Intercomm provides an overlay region dedicated to rarely used 
Assembler Language subroutines which follow normal linkage conventions 
and never relinquish control to the Dispatcher (no 1/0, no time delays, 
etc.). Some Intercomm routines are defined for this overlay region and 
thus accomplish a saving of 6-9K. ICOMLINK parameters are the same as 
for Overlay Region TRAN. 

3-58 



Chapter 3 Message Management 

OVERLAY and INSERT statements, for user subroutines eligible for 
this area, must be placed in the Intercomm linked it after the Intercomm 
OVERLAY SUB(REGION) statement, and INCLUDE statements must be added as 
described above for the TRAN area. Use of this area in addition to the 
TRAN area will restrict application subsystems to Overlay A and B only. 

3.12 GENERALIZED SUBTASKING 

The concept of using as sub tasks to perform operations containing 
inherent WAITs, (for example, GET, OPEN, CLOSE, etc.) has been 
generalized. At startup time the generalized sub tasking facHi ty will 
create a pool of general purpose sub tasks which can thereafter be used 
to perform functions of this type. This facility, which is used by 
Intercomm system routines, is also available for use by Assembler-coded 
subsystems or subroutines. A SUBTASK macro is coded to specify a 
subroutine which is to receive control under a general subtask. The 
subroutine executes under the sub task, then returns control to the 
original routine at the next sequential instruction after the SUBTASK 
macro. The linkage between the issuer of the SUBTASK macro and the 
subroutine is similar to a CALL; all registers must be preserved and 
restored as they would be during a CALL. 

The code executed as the sub task cannot relinquish control to any 
Intercomm service routines such as the Dispatcher, FHe Handler, etc. 
nor issue an as WAIT macro. Execution of the subtask logic is 
synchronous with respect to the thread issuing the SUBTASK macro. The 
calling routine may be resident or dynamically loadable, but may not 
execute in an overlay area. The TCTV for the originating subsystem 
must be generous to prevent unnecessary time-outs. 

3.12.1 Special Sub tasks 

SpeCial subtasks are subtasks from the general pool which are 
reserved by Interconm with a unique identification number. Special 
subtasks are defined to allow exclusive use of a subroutine. This is 
useful for subtasking subroutines which may only be executed serially, 
that is, nonreentrant code. 

The first issuance of a SUBTASK macro with an ID number specified 
via the TASKNUM parameter causes Intercomm to fetch a sub task from the 
general pool, assign the ID number to it and place its address in the 
special subtask table. Control is then passed to the subroutine to 
execute under that subtask. For every subsequent SUBTASK macro with 
the same ID specified, Intercomm retrieves the source subtask and 
determines whether it is active. If it is active, an INTWAIT is 
performed until the subtask is free. When it is free, or if it was 
inacti ve, control is passed to the subroutine to execute under the 
subtask, and that subtask is marked active. The ID assigned to the 
sub task is unique and remains in effect until closedown. 

3-59 



Chapter 3 Message Management 

The difference between a general subtask and a special subtask is 
that when a general subtask is requested (no ID is provided), an 
inacti ve subtask is chosen at random from the general pool and control 
is passed to the subroutine to execute under that subtask. If a 
special subtask is requested (an ID is provided with the SUBTASK 
macro), the subtask to which the ID is assigned is located, and control 
is passed to the subroutine only if the subtask is inactive, even 
though there may be other inactive general or special subtasks. This 
method forces serial reusability for the special subtasks. 

If a subroutine is requested under a general subtask while it is 
executing under a special sub task, control will be passed to the 
subroutine and it will execute concurrently under both the general and 
special subtasks. In addition, if a subroutine is executing under one 
special subtask and that subroutine is requested for execution under a 
different special subtask (different ID number), control will be passed 
only if the second sub task is inactive. Intercorom can only determine 
whether a special subtask is active or free; it cannot determine 
whether the subroutine is active, nor can it associate special subtasks 
with subroutines. Thus, to prevent concurrent use of the subroutine by 
multiple requests, a subroutine should always be executed under the 
same special subtask ID. 

As with general subtasks, special subtasks should not relinquish 
control to Intercorom, and they may not issue a WAIT or cause a program 
check. Intercorom does not use special subtasks. 

3.12.2 Implementation 

The number of general and special subtasks in the system is 
specified to IntercoUID via the TASKNUM parameter of the SPALIST macro. 
If the number of special sub tasks in TASKNUM is zero, special subtasks 
will not be allowed. The module ICOMTASK must be included in the 
linked it if general and/or special subtasks are in use. 

To execute a subroutine under a general subtask, code the SUBTASK 
macro in-line and omit the TASKNUM parameter. To execute a subroutine 
under a special sub task , code the SUBTASK macro in-line, and code the 
TASKNUM parameter with a valid subtask ID number (within the range 
specified for the SPALIST TASKNUM parameter). 

The subroutine must be coded in Assembler and must be resident. 
Refer to Basic System Hacros for coding specifications of the SPALIST 
TASKNUM parameter and the SUBTASK macro. 

3-60 

J 



Chapter 3 Message Management 

3.13 TIME CONTROLLED MESSAGE PROCESSING 

The Subsystem Controller automatically generates messages based 
on the time of day, as dictated by the user's Time Zone Table. The 
user specifies through the parameters supplied in the table what 
VerblMessage Identifier is to be defined by the Subsystem Controller as 
part of the cons tructed message header. The message is sent, through 
Message Collection, to the specified subsystem. The message is 
processed at the time of day specified by the user. The format of the 
message produced by Intercomm is as follows: 

• Byte 1-42: Standard Intercomm message header with: 

• Byte 

• Byte 

• Byte 

• Byte 

Byte 

MSGHSSCH set to binary zero, MSGHSSC to C'M' 

MSGHRSC and MSGHRSCH fields set to the values supplied by 
the user 

MSGHVMI field set to the value specified by the user 

43: Item Code=1 

44: Length=1 

45: Time Zone Code Value (supplied by user) 

46: Item Code=2 

47 : Length=2 

o Byte 48-49: Time to allow for processing of this message 
(specified by the user) 

The Time Zone Table is constructed by coding one TMZONE macro for 
each message the user wishes to be automatically started by Intercomm 
based on the time of day. The TMZONE macros must be coded in a Csect 
named PMITIMTB. The end of the table must be delineated by the PMISTOP 
macro, which indicates the end-of-table condition at execution time. 
The receiving subsystem can further trigger later iterations of the 
same message via the Dispatcher. Such a subsystem might be used to: 

• queue System Control Command messages 

• start a remote input terminal or line 

• generate a FECMDDQ for printer output 

The module TRIGGER must be included as a resident program in 
addition to the resident Time Zone Table. 

3-61 



Chapter 3 Message Management 

Following is a sample Time Zone Table: 

PMITIMTB CSECT 
* MESSAGE TO SUBSYSTEM AA AT NOON: 

TMZONE SCHT=1200,PGID=A,PGIH=A,PVMI=N,TMZC=Z 
* * MESSAGE TO SUBSYSTEM XY AT 4:00 PM: 

TMZONE SCHT=1600,PGID=Y,PGIH=X,PVMI=X,TMZC=Y 
* * END OF TABLE 

PMISTOP 
END 

3-62 

J 



Chapter 4 

TASK MANAGEMENT 

4.1 DISPATCHER AND RELATED SERVICE ROUTINES 

The Intercomm multitasking Dispatcher (IJKDSP01) controls all 
scheduling of task execution in the Intercomm environment, replacing 
the Operating System multitasking facility. All system programs (Front 
End, Subsystem Controller, File Handler, etc.) effect overlap of 
operation, interprogram communication and scheduling via the Dispatcher. 

4.2 DISPATCHER QUEUES 

The Dispatcher controls operation via task queues of three 
different types: 

• Execution Queues 

Tasks which are executabls_ based upon their order of 
readiness within order of priority 

• Event Queues 

Tasks which will become executable upon completion of an 
event, indicated via the posting of an Event Control Block; 
whether by the operating system (WAIT queue) or an internal 
posting (IPOST queue--see DISPATCH macro) 

• Time Queue 

Tasks which will become executable at a particular time of 
day, or on completion of a timed wait. 

Tasks are created via the DISPATCH or INTWAIT macros, described 
in Basic System Macros, and the Assembler Language Programmer's Guide. 

4.2.1 Defining the Number of Task Queue Elements 

The Dispatcher contains assembled space for task queue elements 
allowing up to 120 concurrent tasks (executable, event or 
time-dependent). Task queue elements not in use are members of a free 
queue element pool. Except in cases of very high message volume, this 
number of queue elements is satisfactory. The number of queue elements 
is a global specification: 

&NUMWQES within INTGLOBE and SETGLOBE 

4-1 



Chapter 4 Task Management 

To increase the number of queue elements, update the global setting in 
SET GLOBE and reassemble and link IJKDSP01. If the free queue is empty 
when a new task element is to be created, Intercomm abends with a user 
code g01 (see IJKTRACE description, below). To estimate the number of 
WQEs necessary for a high-volume system, add the number of SYCTI'BLs 
generated for Front End processing to the number of BLINE macros and/or 
VTAM lIOs (RCVNO and RCVRSP on VCT macro), and the total MNCL across 
all subsystem SYCTTBLs, plus 50 for Intercomm processing. 

4.2.2 IJKPRINT-Output to SYSPRINT 

This Dispatcher-related service routine calls the PUT entry point 
in the File Handler to output a print line image whose address was 
passed to IJKPRINT in register 1. Print line images must be IBM 
standard format V (variable-length) records, with an ASA printer 
spacing control character as the first text byte. (Maximum logical 
record length is that defined in the JCL for SYSPRINT.) 

A count is maintained of the number of lines printed on the text 
page; when the count exceeds sixty lines, the next line output will 
specify a skip to head of (ol'm (-ASA control character '1'), and the 
line count will be reset. 

Output is directed to the file with ddname SYSPRINT. If the file 
is undefined or incorrectly defined, no output is produced and no 
diagnostic indication is given. 

The DD statement for SYSPRINT must define a DCB with DSORG=PS, 
RECFM=VA, or VBA, LRECL=137 and BLKSIZE=141 or a multiple of 137 plus 4. 

Any program may, if desired, call upon this routine to perform 
routing of similarly formatted records to SYSPRINT. Control is not 
released to the Dispatcher during IJKPRINT processing. 

4.2.3 IJKTRACE-List Dispatcher Queues 

This service routine constructs print line images producing a 
formatted display of all Dispatcher task queues. It is called 
automatically whenever the program check handler (SPIESNAP) is entered 
for a snap 126, and by RMPURGE when purging a subsystem thread with 
outstanding resources not released by that thread. It is also called 
by the Subsystem Controller (SYCT400) when a subsystem times out (snap 
118 produced), by STA1EXIT (for snaps 121 and 122), and by VTERRMOD for 
VTAM error recovery (snap 63). It may also be called for diagnostic 
purposes by any other program. The maximum line length is 120 
characters, giving a maximum LRECL of 125. Successful execution of 
this program also requires inclusion of IJKCESD and IJKWHOIT in the 
Intercomm linked it (see sections 4.2.4 and 4.2.5). IJKTRACE calls 
IJKPRINT to output the print line images to SYSPRINT (see above). For 
efficiency, the SYSPRINT data set should be blocked. 

4-2 

J 

J 



Chapter 4 Task Management 

Each print line image is passed to the IJKPRINT routine for 
output to SYSPRINT. Fields are printed in hexadecimal format, unless 
otherwise noted. The following are detailed explanations of the 
elements of the listing: 

• Heading Line 1--General information giving: 

The Julian date and time (decimal) at entry to the 
routine, as obtained from the operating system clock: 

IJKTRACE ENTERED DATE yy.ddd TIME hh.mm.ss. 

The byte specifying the priority and overlay group of the 
last program path given control by the Dispatcher: 

PRIIOVLY xx 

The byte specified by the last executed SETOVLY macro 
instruction (00 if no overlay structure is used): 

SETOVLY xx 

The caller (Csect name and displacement) of IJKTRACE: 

CALLED BY name+displacement 

• Heading Line 2--Defines the list type, locations and activity: 

The Dispatcher list name whose task elements, if any, are 
printed below: 

aaaaa LIST 

In place of I aaaaa I will appear the list type: FREE, 
WAIT, IPOST, TIME or EXEC. 

The FREE list contains task elements that are unused or 
that represent program paths already either given control 
or cancelled, in the order in which these events occurred. 
The oldest (first) entry in the FREE list is reused when 
required for a new program path. The newest (last) entry 
is for the most recently dispatched task. Only the last 
200 entries are printed. To print more or less, modify 
the local global &FQENUM in IJKTRACE. 

The WAIT list contains task elements for program paths 
awaiting the posting of an Event Control Block (ECB) by 
Intercomm or the operating system. Task elements appear 
in the order in which the requests were made. 

The IPOST list contains 
awaiting the posting of 
internal INTPOST request. 

elements for program paths 
an ECB by Intercomm via an 
Task elements in this list are 

in the order in which the requests were made. 
4-3 



Chapter 4 Task Management 

The TIME list contains task elements for program paths to 
be resumed at a given real time; the list is maintained 
in ascending real time sequence, with first-in first-out 
sequence for equal real time values. 

One EXEC (execution) list for each priority level 
(maximum=4) in the system contains task elements 
representing program paths· .ready to be given control, in 
the order that readiness was determined. 

The addresses of the list table entry, the first task 
element, and the last task element in the list are 
displayed. Where a list is empty (zero count), all three 
addresses are equal: 

WQT xxxxxx FIRST xxxxxx LAST xxxxx 

The decimal count of task elements currently in the list, 
and the highest or lCMest count value that has occurred 
since processing began (highest count for all but the 
FREE list): 

NOTE: 

COUNT aaaa HIlLa aaaa 

if the free queue La value is below 10, the total 
number of task queue elements should be increased 
(see Section 4.2.1). 

S Heading Line 3--Provides task element column descriptors if 
the list contains any task elements (nonzero count). This is 
followed by task element fields, one task element per line. 
The column headings are: 

WQE--Address of the task element. 

FLAGS--Letters corresponding to flag bits in the task 
element, as follows: 

D--Program path has been given control (dispatched). 

C--Program path has been cancelled. 

E--Task element has been placed on execute list. 

P--Task element is (has been) in the IPOST list. 

I--WAIT list fllement is internal ECB. 

T--Task element is (has been) in the TIME list. 

W--Task element is (has been) in the WAIT list. 

NOTE: where an invalid combination of flags has been 
detected, an asterisk (*) precedes the flags field. 

4-4 

J 

J 

J 



Chapter 4 Task Management 

PRIIOVL--The priority and overlay-group portions of the 
priority/overlay byte specified in the DISPATCH or 
INTWAIT macro instruction; the sum of these values is the 
value of the PRI/OVL field. 

ECB/T--The ECB address or real time, where applicable. A 
real time is a 24-bit value with the least significant 
bit representing 1/37.5 of one second in this display. A 
description of converting timer units is provided in the 
chapter on "General Debugging Techniques" in Messages and 
Codes. --
This field is not printed for task elements that have 
been in ne i ther a WAIT, nor the TIME list, and thus may 
be missing where an ECB was posted (internally or 
externally) prior to the issuance of wait request. 

ENTRY PT-Address for transfer of control to resume the 
program path; the high-order (leftmost) byte contains the 
thread number in hexadecimal (if nonzero, subsystem 
processing created the task element). 

PARAMETER--Value to be passed to program in register 1. 

(ECB) --Value in ECB if the FLAGS field contains a W; it 
is the value before posting if the task element is in an 
event list (WAIT, IPOST). 

TIME--for task element that is (was) in time list if the 
FLAGS field contains a T, the time it was (will be) 
dispatched or, if it was cancelled, the time it would 
have timed out. 

CSECT-the Csect (+ displacement if any), that was (will 
be) given control of this task element (see ENTRY PT 
above). If the Csect name is not easily recognizable, 
refer to the CsectlModule name correspondence table for 
Intercomm system modules in Figure 4-1. 

ENTRY--the entry point within the Csect at which this 
Csect was (will be) entered, if known (defined by an 
ENTRY statement within the module). 

SUBSYS--if CSECT is SYCTRL (no ENTRY), or the thread is 
not zero (and the task element not on the Free Q); the 
subsystem code of the subsystem processing under this 
task element. 

SUB NAME--if CSECT is SYCTRL (no ENTRY), or the thread is 
not zero (and the task element not on the Free Q) ; the 
name of the subsystem processing under task element. 

An example of IJKTRACE output is shown in Figure 4-2. 

4-5 



Chapter 4 Task Management 

-================F================ --------------------------------------------------------------------------
CSECT Name Module Name Function 

====================================== ---------------- -------------------------------- ----------------
SYCTRL SYCT400 Subsystem Controller 

----------------- ---------------- -------------------------------------
IXFMONOO IXFHNDOO File Handler Initialization 

----------------- ---------------- -------------------------------------
IXFMON01 IXFHND01 File Handler Processing 

~----------------~---------------- -------------------------------------
IXFABWTO IXFHND01 File Handler ISK 

-----------------~---------------- -------------------------------------
IXFSUBS IXFHND01 File Handler save area processing 

~---------------- ---------------- -------------------------------------
IXFMON09 IXFHNDOO File Handler Closedown 

PMISTUP STARTUP3 Intercomm Startup 
-----------------~----------------~-------------------------------------

STUOVLY STARTUP3 Intercomm Startup 
----------------- ---------------- --------------------------------------

RSMGMNT MANAGER Resource Management 
-----------------~---------------- -------------------------------------

RM.... MANAGER Resource Management subfunction 

MSGCOL BLMSGCOL Message queuing 
-----------------~---------------- -------------------------------------

PMISUBL2 SUBLINK macro subroutine 
-----------------~---------------- --------------------------------------

PNILINK2 LINKAGE macro subroutine 

Figure 4-1. IJKTRACE - Csect/Module Name Correspondence Table 

4-6 



r 
r 

IJ
K

T
R

A
C

l 
lN

T
rp

[O
 

nA
T

£ 
8

,)
.0

1
6

 
T

IM
£ 

IP
.3

5
.1

4
 

I'R
 l

Io
v

U
 

n
o

 
s
n

o
V

l 
Y

 
OA

 
C

A
ll

L
O

 
flY

 
~
Y
C
T
R
l
+
1
3
0
r
 

F
R

£
[ 

L
IS

T
 

'''H
 1

4
2

4
9

0
 

fi
R

S
T

 
1

4
2

"
£

0
 

lA
':

T
 

1 
'I 

<'
A

'I 
0 

C
O

U
N

T
 

0
0

5
'1

 
..

 1
1

l0
 

0
0

'1
3

 

\/
Q

£ 
F"

lA
r.c

; 
"R

 I
 

o
v

t 
rc

al
l 

E
N

T
""

 
rT

 
P

II
P

A
M

[T
rR

 
(E

C
P

' 
ll

l'
l[

 
C

!:
[C

' 
[N

U
Y

 
su

us
's

 
SU

R
 

.,
A

H
r 

1
'1

2
"F

O
 

C
T

 
0

0
 

0
0

 
2

6
r.

C
"1

 
0

5
U

o
;0

2
C

 
15

3"
11

(1
00

 
1

8
:3

9
:0

"
.1

\'
1

 
P

H
IN

U
O

[O
+

4
r.

C
 

9 
1

4
2

6
A

O
 

C
T 

0
0

 
0

0
 

'b
6

C
"i

F
 

1
J'

>
'A

5
0

2
C

 
1
5
~
F
3
n
"
0
 

1
"
:,

)"
:1

.'
9

.6
3

 
rM

 I
 ~
i
l
n
[
Q
.
 '1

£>
C 

PJ
 

I 
'1

,,
,F

 0
 

C
T 

0
0

 
0

0
 

2
ft

"F
 1

R
 

(1
0

1
'1

1
3

3
6

 
0

0
1

';
rc

'I
0

 
11

1:
 4

 3
: 

O
'J 

••
 H

 
S

Y
C

IR
l+

1
2

H
, 

PU
R

G
E

 
"0

 
~
 

1
4

2
5

F
O

 
O

[W
 

0
0

 
0

0
 

1
0

;2
9

3
8

 
O

'l
lA

C
S

tr
 

0
0

1
0

,.
 [I

ll 
0 

Il
C

F
I'

IO
N

O
I+

2
1

5
6

 
O

V
R

lA
P

IO
 

(I
I 

1
.
2
'
~
0
 

O
[ 

II
 

1'
0 

tID
 

1
5

'9
.H

1
 

O
H

A
C

!>
C

[ 
0

0
1

5
[f

t1
l8

 
I
H
H
O
~
O
I
+
'
1
5
6
 

O
y

R
lA

P
IO

 
os 

14
21

12
0 

0[
11

 
0

0
 

0
0

 
1

5
<

'9
3

A
 

0
4
u
c
~
c
r
 

0
0

1
5

["
"
"
 

."
fI

1
0

N
0

1
+

2
1

5
6

 
(IV

 R
l 

A
f' 

I 
(I 

t 

1'
12

5A
I.

' 
C

T 
0

0
 

0
0

 
2

6
'1

F
lL

 
0

0
1

4
1

3
3

6
 

O
O

Ir
.O

I/
l"

 
1

1
1

:3
5

:4
9

.9
2

 
S

Y
rT

lI
L

+
1

2
'1

f,
 

rU
R

G
[ 

"&
j 

1
4

2
7

n
o

 
D

[ 
0

0
 

flO
 

O
O

IH
A

h
A

 
O

O
ln

A
H

O
 

lO
G

I'
U

T
·f

lF
II

 
.... (J
q 

1
4

2
6

C
O

 
D

rl
l 

0
0

 
DO

 
15

2'
1A

II
 

0
0

lA
C

5
C

[ 
0

0
1

5
[6

"
8

 
IH

I'
IO

'f
Il

I+
2

1
"i

6
 

O
V

R
lA

P
I 

Cl 
~
 

1
4

2
5

"
0

 
O

ET
 

AD
 

0
0

 
'6

'1
9

'1
8

 
0

0
1

2
C

'I
3

8
 

0
0

1
2

1
(}

[ 
0 

1
8

:3
5

:1
0

.0
1

1
 

liT
 A

M
S 

1I
'I

+
A

50
 

os (I
I 

1
4

2
8

(.
0

 
O

fT
 

PO
 

DO
 

U
, '

I'
 4

.,
 

0
0

1
'C

3
1

1
0

 
0

0
1

6
Q

"O
O

 
1

1
1

:3
5

:1
0

.1
1

 
U

 1 
A

H
S 

I/
h

9
9

8
 

t 
1

4
2

A
£

0
 

o
rl

l 
A

D
 

0
0

 
IH

O
[O

 
0

0
1

3
1

5
2

C
 

0
0

1
5

6
1

\[
0

 
II

I H
IlT

 +
 [ 

1C
 

I 
1

4
2

R
4

0
 

0(
11

 
8

0
 

0
0

 
1

5
2

9
8

8
 

0
0

U
C

5
C

[ 
D

O
l !

'i
[(

.8
8

 
U

F
H

O
N

O
I+

2
1

!;
6

 
O

V
R

L
A

P
IO

 
I\

)
 
1
~
2
A
H
O
 

D
E

l 
8

0
 

0
0

 
2

6
4

9
'1

0
 

0
0

1
2

C
<

Jl
£

 
O

O
I"

""
F

II
 

1
1

1
:3

5
:1

0
.2

1
 

D
lA

H
S

 I
M

"'
-3

6
 

. 
1

'I
2

C
4

0
 

O
[W

 
liD

 
0

0
 

IH
O

C
O

 
0

0
U

C
5

c
r 

00
15

£6
1.

18
 

IX
F

H
O

N
!l

I+
2

7
5

6
 

O
V

R
lA

P
lf

I 

; 
.-

2
9

7
0

 
O

[W
 

liD
 

0
0

 
II

'I
O

C
O

 
0

3
1

A
C

5
C

,.
 

0
0

1
 'I

f 
6A

 A
 

II
IF

"'
O

H
O

l+
2

1
5

6
 

O
V

R
L

A
P

IO
 

H
2<

JO
O

 
0[

11
 

"
0

 
0

0
 

1
1

4
0

C
O

 
O

O
IA

C
'I

C
E

 
0

0
1

!;
[6

R
It

 
IX

F
'1

0
N

0
1

+
2

7
5

6
 

O
Y

R
lA

P
ln

 

"0
 

'-
2

H
O

 
O

[W
 

A
D

 
0

0
 

1
1

4
0

C
O

 
0

0
lA

C
5

C
[ 

II
O

I5
[6

H
II

 
Il

IF
H

O
N

O
l+

2
1

5
6

 
O

V
R

lA
P

I(
l 

.....
 

1
4

2
5

"G
 

0[
11

 
liD

 
0

0
 

1
1

4
0

C
O

 
0

0
1

A
C

5
C

£
 

O
O

IS
H

A
Il

 
Il

IF
"O

N
0

1
+

2
7

5
6

 
O

V
R

L
A

P
lt

t 
(I

I 
1

4
2

B
7

0
 

0[
11

 
AD

 
0

0
 

11
'1

0C
O

 
0

0
lA

C
5

C
[ 

0
0

lS
l6

A
8

 
Il

Ir
l'

lO
N

0
1

+
2

1
5

6
 

O
V

R
L

A
P

IO
 

H
 

1
4

 2
5/

1 
0 

"
[I

I 
0

0
 

0
0

 
1

1
 '1

0C
 0

 
0

0
lA

C
5

c
r 

0
0

l5
f 

6
A

8
 

II
I F

 H
O

IH
H

 +
 2

7
5

6
 

O
V

R
lA

P
IO

 
~
 

t'
l2

8
1

0
 

O
ll

l 
8

0
 

0
0

 
1

1
'1

0
 C

O
 

0
0

lA
C

5
C

[ 
0

0
1

5
r6

A
8

 
IlC

F'
I'I

O
N

 0
1

+
 ?

l5
f.

 
O

V
R

L
A

f'
IO

 
X

 
t
~
 
1
~
2
"
0
0
 

O
[ 

II
 

8
0

 
0

0
 

I
I
'
I
O
~
O
 

O
O

lA
C

S
C

[ 
0

0
1

'1
£

6
8

8
 

lX
F

I'
IO

N
0

1
+

2
1

5
6

 
O

V
R

L
A

P
IO

 
I 
~
 
1
~
2
8
[
0
 

O
fl

l 
8

0
 

0
0

 
1

I'
1

0
C

O
 

0
0

lA
C

5
C

[ 
0

0
1

5
£

6
/1

8
 

IX
F

H
O

N
O

I+
2

1
5

6
 

O
V

R
lA

P
ln

 
~
>
 

~
 

1
'I

2
H

O
 

D
E

li 
flO

 
0

0
 

11
'1

 O
C 

0 
0

0
1

A
C

5
C

[ 
0

0
1

5
£

6
8

8
 

IX
F

H
O

,"
0

1
+

2
1

5
6

 
O

V
R

l A
P 

J
(l

 

1
'1

2
8

1
0

 
n£

1I
 

8
0

 
0

0
 

lH
O

e
O

 
0

0
 l

A
e5

C
£

 
0

0
1

5
f6

A
II

 
Jl

(F
H

O
'f

O
l+

2
7

5
6

 
O

V
R

L
A

P
IO

 
t"

" 
1

'I
2

R
.O

 
0[

11
 

-8
0 

0
0

 
1

1
4

0
C

O
 

O
O

lA
C

5
C

[ 
0

0
1

S
[6

R
R

 
Il

C
F

1
1

0
N

O
I+

2
1

5
6

 
O

V
R

lA
P

ln
 

.... 
1

"
2

5
0

0
 

D
E

li
 

A
O

 
0

0
 

l1
'1

O
C

O
 

0
0

 t
A

e
5

C
f 

0
0

1
'1

[6
8

8
 

Il
C

F
"'

O
N

O
I+

2
1

5
6

 
O

V
R

lA
P

IC
l 

to
 

("
I'

 
1

'1
2

(.
0

0
 

D
E

li 
8

0
 

0
0

 
1

1
4

0
C

O
 

0
0

1
A

C
5

C
£

 
(l

0
1

5
[6

A
O

 
J)

!F
"'

O
N

O
I+

2
7

5
6

 
O

V
R

lA
P

IC
I 

.....
 

1
4

 2
5

R
 0

 
D

[ 
\I

 
8

0
 

0
0

 
1 

t 
"'

0 
C

 0
 

0
0

lA
C

5
C

[ 
0

0
1

5
E

6
1

1
8

 
ll

(r
I'

lO
N

O
J·

2
7

5
6

 
fl

V
R

lA
P

IO
 

~
 

1'
12

A
D

O
 

0[
11

 
8

0
 

0
0

 
1

1
 '1

0C
 0

 
0

0
lA

C
5

C
[ 

0
0

1
5

£
6

1
1

8
 

1
X
F
"
"
'
O
~
j
O
I
·
2
1
5
6
 

O
Y

R
L

A
P

Jn
 

,...
, 

t'
l2

B
Q

O
 

O
E

l 
11

0 
0

0
 

2
6

 'I
 'J

'I
 £

 
0
0
1
2
C
~
;
'
\
8
 

0
0

1
2

1
0

'1
0

 
1

1
:3

5
: 

1
0

.2
4

 
n

T
A

H
S

IM
+

.'>
O

 
'1:

1 
1
~
2
6
5
0
 

O
[ 

II
 

8
0

 
0

0
 

1
2

'1
:'

5
0

 
0

0
1

2
F

E
:6

2
 

0
0

1
5

6
1

£
1

' 
B

U
ll

 N
 +

1 
fiE

 2
 

IU
 

1
4

2
C

2
0

 
D

lT
 

8
0

 
0

0
 

2
6
~
9
5
2
 

0
0

1
l1

C
1

6
 

0
0

1
5

6
C

C
8

 
1

1
:3

5
:1

0
.3

5
 

G
F

O
R

IV
[R

+
r"

 
(J

q (I
I 

1'
12

 .
.
 0 

O
E

T
 

11
0 

0
0

 
2

6
'1

9
5

5
 

0
0

1
2

C
'I

3
8

 
0

0
1

2
P

O
C

O
 

1
8

:3
5

:1
0

.4
3

 
A

' A
H

S 
IH

+
A

5
0

 
H

2
<

J1
0

 
0[

11
 

liD
 

0
0

 
I1

.I
IO

eO
 

0
0

 1
3A

 2
!'1

£ 
0

0
1

 '1
6 

A
F 

Il 
8

S
C

L
rA

S
f 
"'A

t 
H

2
A

Q
O

 
O

fT
 

11
0 

0
0

 
2

6
4

9
5

A
 

0
0
1
2
C
'
I
~
I
I
 

0
0

1
2

1
0

[0
 

H
I:

3
5

: 
to

.5
6

 
!'l

T
A

",
S 

1
"'

 •
•
 5

0
 

~ 
1

1
'1

2
5

7
0

 
0[

11
 

flO
 

0
0

 
1

2
7

0
£

0
 

0
0

1
3

t5
2

C
 

00
15

61
1[

11
 

8
lH

O
T

+
n

c
 

~
 

t'
l2

A
O

O
 

O
[ 

/1
0 

0
0

 
0

0
1

2
"6

0
"'

 
0

0
1

2
1

0
[0

 
R

lH
IN

+
8

'1
 

II
l 

..
 IN

O
O

O
 

PJ
 

L.
tJ

 
1 

'1
2

C
'I

0
 

O
ET

 
8

0
 

0
0

 
2

6
'1

9
1

C
 

0
0
t
2
C
~
8
0
 

0
0

1
6

<
1

0
1

8
 

1
1

:3
5

:1
1

.4
7

 
B

1
A

"'
5

IM
+

"9
8

 
to

 
~
 

1
4

2
R

!;
0

 
o

n
 

flO
 

0
0

 
2

6
4

9
1

1
0

 
0

0
1

2
C

3
1

1
0

 
00

16
A

55
11

 
1

1
1

:3
5

:1
1

.5
1

 
R

T 
A

 ..
 S

 I
 !

I+
9'

H
I 

H
2

1
C

O
 

O
[ 

l 
A

D
 

0
0

 
2(

,4
91

10
 

0
0

1
2

0
1

1
0

 
0

0
1

6
H

"
"
 

I
I
:
 3

5
: 

1
1

.5
7

 
O

T
A

I'I
S

IH
+

<
19

8 
X

 
PJ

 
1

'1
2

" 
7 

0 
o

n
 

11
0 

0
0

 
2
6
~
9
"
1
 

0
0

1
2

C
3

1
1

0
 

00
16

13
11

 IJ
Il 

1
8

:3
5

:1
1

.1
(,

 
B

T 
A

H
S 

IH
+

<
J9

8 
::s 

1
'1

2
8

3
0

 
O

ll
 

PO
 

0
0

 
2

6
4

9
8

8
 

0
0

1
2

C
9

Jr
 

0
0

 1
6

C
 '1

1 
~
 

1
8

:3
5

:1
1

.8
1

 
RT

 A
I'I

S)
 1

'1
+"

 3
6

 
PJ

 
(J

q 

1
4

2
"
ro

 
O

E
T

 
A

D
 

0
0

 
2

6
'1

'9
7

 
(1

0
1

2
C

'I
3

8
 

0
0

1
2

1
8

A
O

 
1

8
:3

5
:1

2
.1

9
 

O
T

A
"'

S
)"

,+
A

5
0

 
(I

I 

1
4

2
5

)0
 

D
E 

II 
A

(I 
0

0
 

1
2

1
8

 A
D 

O
D

J3
1

5
2

C
 

0
0

1
5

6
0

 I
 II

 
R

lH
O

T
.E

1
C

 
a (I

I 

1
4

?
C

3
0

 
O

U
II

 
PO

 
0

0
 

1
.5

8
lA

C
 

0
0

1
3

;>
0

3
0

 
0

0
1

5
'1

1
1

0
 

""
'1

1
0

0
0

+
(1

5
0

 
::s 

1
'1

2
5

£
 0

 
O

fT
 

8
0

 
0

0
 

2
6

4
9

A
R

 
(l

O
J2

0
1

l0
 

0
0

1
6

C
"3

8
 

t8
:.

5
5

: 
1

<
,.

1
2

 
"
1

A
"
'S

I"
·"

"
"
 

~
 

1.
21

1C
O

 
nE

T 
A

n 
0

0
 

'6
4

9
A

[ 
0

0
1

;>
0

1
1

0
 

0
0

1
6

C
( 

5
9

 
1

8
:3

5
:1

2
.1

1
0

 
"1

 A
M

S
.,1

4 
'1

91
1 

1
4

2
"
2

0
 

O
l 

Ii
 

A
O

 
0

0
 

1 
52

11
( 

II 
1

l0
lA

C
5

C
r 

0
0

1
5

[r
.O

tl
 

IH
I1

0
N

O
l+

2
'5

f,
 

O
V

R
lA

P
IO

 
14

21
11

0 
O

ET
 

11
(1 

liD
 

2
6

'1
"1

'-
00

1;
>

1'
:'1

3"
 

O
(l

12
1A

C
II

 
1

1
1

:3
5

:1
3

.1
2

 
O

T
A

M
S

1I
1.

j\
"i

0 
1'

12
11

£ 
0 

0
['

"
 

8
0

 
0

0
 

1
2

1
A

C
Il

 
0

3
1

2
H

,,
?
 

0
0

1
%

0
0

0
 

I1
ll

ll
 N

. 
I 

R
 [ 

2 
1

'I
2

h
ll

O
 

O
f 

(1
0 

0
0

 
'
O
I
:
"
H
~
 

0
0

1
5

2
f(

'0
 

or
U

IO
O

O
+

'l 
1"

"1
1 

N
 0

0
 0

 
14

1 
;>/

14
1 

0 
£

Il
l 

0
0

 
0

0
 

2
6

1
1

"c
r 

(1
0

1
4

1
3

3
6

 
0
0
1
f
,
O
~
'
1
I
'
 

lA
:_

'!
'I

:J
,)

.I
 ...

. 
S

Y
C

T
R

l+
t;

>
4

I"
 

ru
nG

 r
 



'zJ
 .... ~ (I

I .c
: 

I N
 • ! .... <11
 

H
 

c:.
. fa C

D
:'

- &)
 

to
t .... CA
 
~
 .... Ii: -." ~ N

 o M
) 

w
 ....
, 

W
U

T
 

lI
C

;T
 

li
nT

 
,4

?
4

"
r 

\l
O

[ 
FL

A
G

C
; 

"I
t 

I 
O

Y
I. 

1
4

1
P

4
0

 
\j

 
fi

n 
0

0
 

1
4

,f
lA

O
 

II 
PO

 
0

0
 

1
4

2
"0

0
 

" 
11

0 
11

0 
1

4
''
'1

0
 

110
1 

a
o

 
0

0
 

1
4

2
5

-0
 

Ii
i 

"I
I 

0
0

 
1

4
1

9
,U

 
II

I 
11

0 
0

0
 

1
4

'C
O

O
 

Iw
 

flO
 

0
0

 
1

4
2

U
O

 
H

' 
. 

11
0 

0
0

 

T
I"

E
 
lH

T
 

11
0'

 
J 

4
l'

4
A

/l
 

W
OE

 
rU

G
S

 
fA

 I
 

O
V

l 
14

2R
f.

1I
 

, 
11

0 
0

0
 

1
4

2
B

.0
 

, 
110

 
0

0
 

14
21

13
0 

T
 

AO
 

0
0

 
14

21
19

0 
, 

liD
 

0
0

 
1

4
2

'(
1

0
 

, 
n

o
 

0
0

 
1

4
2

5
3

0
 

T
 

11
0 

0
0

 
1

_
2

8
0

0
 

, 
11

0 
0

0
 

1
4

2
P

B
O

 
T

 
fil

l 
0

0
 

1
4

1
1

£
0

 
T

 
I'D

 
0

0
 

1
_

2
';

"0
 

T
 

11
0 

0
0

 
1

4
2

1
r0

 
T

 
A

D
 

0
0

 
H

2
5

C
O

 
, 

11
0 

00
 

H
2

'C
O

 
T

 
0

0
 

0
0

 
1

4
2

1
f1

0
 

T
 

11
0 

0
0

 
1_

2B
O

O
 

T
 

liD
 

0
0

 
14

2C
fo

O
 

T
 

11
0 

0
0

 
n

u
n

o
 

T
 

!t
o 

0
0

 
1

4
2

6
6

0
 

, 
0

0
 

OA
 

14
21

1F
O

 
1 

0
0

 
0

0
 

.4
2

4
0

;0
 

T
 

0
0

 
0

0
 

1
4

2
8

1
\0

 
T

 
0

0
 

0
" 

.4
2

5
0

0
 

T
 

0
0

 
0

0
 

1
4

2
9

"0
 

T
 

flO
 

0
0

 
1

4
2

9
A

O
 

T
 

8
0

 
0

0
 

.4
2

8
5

0
 

1 
11

0 
0

0
 

H
U

3
0

 
1 

4
0

 
0

0
 

n
'2

A
C

O
 

, 
11

0 
0

0
 

1
4

2
'J

!\
0

 
T

 
0

0
 

0
0

 
1

_
2

6
1

0
 

, 
0

0
 

0
0

 
1

4
2

8
2

0
 

, 
0

0
 

1
0

 
1

4
U

fO
 

T
 

0
0

 
0

0
 

[J
C

[C
 

L
IS

T
 

V
O

l 
1

4
2

4
8

4
 

II
Q

[ 
F

U
G

!:
 

rR
 I

 
o

n
 

14
21

'1
10

 
[ 

0
0

 
0

0
 

[)
([

C
 

lI
S

T
 

li
nT

 
.4

2
4

C
O

 

[I
I[

C
 

L
IS

T
 

\l
U

' 
1

4
2

_
C

C
 

~
.
 

F
II

IS
T

 
'4

:>
8

.0
 

lA
H

 
1

4
."

.0
 

r
C

h
"
 

FN
T

'" 
P

1 
p"

" A
"£

 1
£

"
 

l?
[!

JC
4

 
n

O
l3

2
4

3
0

 
0

0
 .
.
 ,,1

<1
0 

l?
c
n

S
C

 
0

0
 I
2
c
~
r
6
 

4
£

1
2

C
"[

0
 

1
1

.'
1

 q
4

 
"
O

IJ
U

rC
 

O
O

B
A

C
II

! 
II

IC
A

"O
 

U
'1

'I
''
'3

0
 

0
0

0
0

0
0

0
0

 
,,

"
4

"
C

 
l'

0
1

3
2

1
1

3
0

 
0

0
1

5
4

'''
'0

 
1

3
"2

6
C

 
0

0
1

3
2

8
3

0
 

0
0
1
5
U
~
"
 

1
3

U
2

C
 

0
0

1
3

2
8

3
0

 
0

0
1

5
5

1
8

8
 

1
3

8
3

"C
 

0
0

1
3

' l
U

ll
 

0
0

1
5

4
7

JO
 

F 
II

IS
T

 
1

4
"
"
"
0

 
lA

"!
' 

1
4

U
F

O
 

[C
O

lT
 

[N
T

'"
 

PT
 

P
"U

"'
£

T
[R

 
?
"
4

.0
C

 
0

0
1

2
£

6
0

_
 

0
0

1
2

7
n

5
0

 
2

6
U

1
O

 
0

0
1

2
[6

0
4

 
0

0
1

2
1

4
ro

 
'-

6
U

U
 

01
) 1

2
r.

" 
AO

 
O

O
lf

,A
E

fO
 

'6
U

I
R

 
0

0
1

2
C

3
8

0
 

0
0

1
6

0
"'

O
e 

2
6

4
4

3
8

 
0

0
1

2
0

1
1

0
 

0
0

1
6

"8
1

1
1

 
?
,.

a
3

E
 

O
(l

12
C

31
10

 
0

0
1

6
4

5
5

1
1

 
2

M
'3

[ 
0

0
1

2
C

3
8

0
 

0
0

1
6

U
'J

fl
 

2
"
U

_
'1

 
00

12
C

3(
11

1 
O

O
l6

1H
81

1 
2

6
U

5
9

 
0

0
1

2
C

9
1

[ 
0

0
1

6
C

4
1

8
 

2
'4

'6
9

 
0

0
l2

C
3

1
1

0
 

0
0

l6
C

9
3

8
 

"
,U

1
9

 
00

12
C

31
10

 
0

0
1

"C
[5

1
1

 
,,

,U
8

4
 

0
0

1
2

C
9

1
[ 

, 
0

0
 1

';
9

 5
f 

" 
2

'4
U

O
 

0
0

lJ
A

0
0

2
 

0
0

1
 J

14
31

1 
2

6
U

C
"
 

0
0

1
2

C
9

1
£

 
0

0
1

6
 .
.
 7

8
 

'6
"
'C

O
 

1
I0

1
2

C
"O

f 
0

0
1

2
1

[F
8

 
2

"4
B

3
5

 
0

0
1

3
U

1
I2

 
0

1
1

 1
1

f1
5

0
 

2
'4

C
IA

 
0

0
1

4
C

9
8

2
 

0
0

1
_

0
1

1
1

_
 

2
6

4
[6

1
' 

0
2

1
1

8
[0

4
 

0
0

1
5

3
0

9
0

 
2

6
!'

1
M

' 
0

0
1

8
2

4
rO

 
0

0
. '

n
o

 9
2

 
2

fo
6

0
C

r 
(1

01
 U

'-
2

0
 

0
0

0
0

0
0

0
0

 
2

6
6

B
B

l 
0

0
1

4
1

3
3

6
 

0
0

1
5

F
0

9
8

 
2

6
1

1
9

D
 

0
0

H
C

M
6

 
0

0
l"

C
6

1
1

0
 

26
11

3C
C

 
(1

01
 3

",
1 

A
2 

0
0

1
1

1
F

B
O

 
2

"I
I3

C
C

 
1

J0
1

3
9

1
8

? 
0

0
1

2
8

0
0

1
1

 
2

U
D

1
C

 
0

0
1

3
Q

U
2

 
0

0
1

2
1

F
B

O
 

2
6

E
.,

.0
 

0
0

1
4

"1
0

0
 

0
0

 t1
P

.9
C

O
 

2
6

[0
2

9
 

0
0

1
4

1
5

7
0

 
0

0
0

0
0

0
0

0
 

2
6

'0
3

6
 

0
0

1
_

.4
1

0
 

0
0

1
8

£
F

U
 

2
6

F
6

5
4

 
0

0
&

4
8

4
1

0
 

0
0

1
8

£
F

 8
A

 
2

1
9

0
2

6
 

1
I0

lU
R

U
 

0
0

0
2

6
F

2
0

 
2£

11
63

1 
0

3
1

2
0

C
3

' 
0

0
1

5
3

1
£

1
1

 

F
lI

tS
T

 
'4

2
8

1
!0

 
L

A
S

1 
1

4
2

"
"
0

 

[C
H

IT
 

F
N

'''
Y

 
PT

 
P

"
"
 A

"E
 T

F 
R

 
O

O
1

4
.r

A
2

 
0

0
"3

0
1

6
F

 

F
IR

S
' 

1
4

2
4

r:
0

 
lA

S
T

 
1

4
2

4
C

O
 

F
IR

S
T

 
'4

2
4

C
C

 
L

U
' 

1
4

2
H

C
 

cn
ll

N
T

 
00

01
1 

..
 'I

lO
 

00
11

1 

([
C

IU
 

1
1

"
[ 

C
S

E
C

T
 

00
50

C
06

11
 

O
H

tI
0

0
'''

4
!H

I 
1

1
0

5
D

t:
""

" 
n

, 
A

"5
' "

-1
0

0
£

 
00

50
C

O
('

1I
 

C
N

T
O

IH
O

O
-?

O
C

 
0

0
0

0
 0

0
 ti

ll
 

P
"I

S
T

U
"·

3
1

1
1

 
0

3
0

0
0

0
0

0
 

8
"H

O
O

O
·8

5
0

 
3

f 
l2

7
c
r"

 
""

,,
,0

0
0

·8
5

0
 

0
0

1
2

 n
c
o

 
O
I
'
l
H
n
O
O
.
B
~
O
 

0
.H

2
''
'2

8
 

O
"H

O
O

O
·I

I"
)O

 

C
flU

N
T

 
0

0
3

1
 

H
II

lO
 

(1
03

1 

n
C

B
' 

1
1

"£
 

C
SE

C
T

 
1

8
: 
3

5
: 
1

5
.3

1
 

B
L

Il
IN

.n
4

 
1

1
1

:3
5

:1
5

.4
1

 
8

L
H

tN
-"

4
 

1
8

:3
5

:1
5

.4
9

 
8

'A
"'

S
I"

,_
<

1
9

8
 

1
8

:3
5

:1
5

.6
3

 
8

1
'"

S
I"

+
9

9
8

 
1

8
:3

5
: 

U
.5

&
 

8
1

""
'S

I"
'+

"9
8

 
U

:3
5

:1
6

.6
4

 
B

U
I'

IS
I"

+
9

9
8

 
1

8
 :
3

5
: 

1
6

.6
4

 
8

1
 "

"S
 I 

".
"9

1
1

 
1

8
: 
3

5
: 
If

 ••
 11

3 
8

1
'"

S
I"

·"
9

8
 

II
I :

3
 5

:t
 ,
.
 3

6
 

II
T

A
"S

I"
'H

3
6

 
If

!:
 3

5
: 

1
1

.1
9

 
8T

 "
"S

 1
 "

.9
9

8
 

Il
l:

 3
5

:1
1

1
.2

1
 

0
1

''
''
S

 1
"'

."
9

(1
 

1
8

: 
3

5
:1

8
.'

1
1

 
8T

 '"
S

 I 
",

-r
 3

6
 

1
8
:
3
5
:
1
~
.
2
5
 

0
' N

ll
O

A
O

. 3
2

. 
I
I
 :
3

5
 :
2

0
.3

7
 

8
T

"
"
,s

,"
+

r3
6

 
1

8
:3

5
:2

0
.4

5
 

8
1

"
"
5

1
"
+

1
0

2
6

 
U

:3
5

:2
3

.2
3

 
B

U
lo

T
-n

0
2

 
lU

3
5

:2
9

.3
3

 
R

S
"G

H
N

'-
3

t.
2

 
U

:3
5

:4
5

.1
5

 
lr

S
1

3
2

JO
·I

O
C

 
1

8
:3

1
: 
1

2
.9

9
 

C
O

N
Y

[R
S

[·
C

2
f1

 
1

8
:3

1
:5

0
.6

1
 

C
H

E
C

!C
P1

 
1

1
1

:3
9

:0
5

.1
5

 
S

'C
T

R
L

·1
2

4
' 

U
:3

9
:4

5
.4

1
 

R
S

"C
iI

'l
N

T
·"

6 
1

8
:4

1
:_

9
.5

5
 

O
S

C
O

lA
l.

",
."

 
1

'1
:4

. 
:4

9
.5

5
 

fl
S

C
D

IA
l+

9
U

 
IU

4
2

:!
,3

.1
2

 
O

S
C

O
U

L
+

9
6

' 
1

8
:5

2
:5

2
.6

9
 

1A
 I

F
F

 I
C

 
1

8
:5

3
:4

1
1

.1
1

3
 

IN
T

S
'S

 
1

8
:5

4
:0

9
.6

5
 

P
'"

 "
U

T
O

,. 
1

8
:5

4
:5

1
.4

1
 

P
"'

U
U

T
!1

F
 

1
"
:1

3
:5

0
.2

4
 

II
IF

 R
.'T

II
 I 

2
2

:3
5

:0
1

.0
1

 
"A

G
r"

"G
fI

+
1

O
A

 

C
O

U
N

T
 

'O
Il

 
H

I/
L

O
 

0
0

2
6

 

'[
C

8
 t 

T
I"

[ 
r: 

s
[ 

C
, 

I J
K

O
S

r 
0

1
.5

"
. 

C
t)

U
"T

 
11

00
 a

 
""

L
O

 
0

0
0

2
 

("
U

N
T

 
0

0
0

0
 

tl
l/

L
O

 
0

0
1

6
 

~,
 

F
N

U
I ,

 
SU

lJ
ST

S 
f"

tl
O

lU
A

B
 

[C
II

V
A

n
 

['
tf

R
T

 
S

U
8

S
'S

 
l'

lH
IN

O
IO

 
B

L
lH

N
lI

O
I 

H
A

ItO
B

A
C

IC
 

3
/0

0
F

3
 

P
U

It
G

[ 

8S
C

D
lO

U
T

 
R

S
C

D
U

U
T

 
H

SC
D

L
O

U
T

 

JP
/O

IO
l 

[N
T

R
T

 
S

U
8S

T
S

 
IJ

K
R

rT
II

 

S
U

P
 

N
A

H
E 

S
U

8 
N

.,
.'

[ 

'E
S

1
3

2
1

0
 

W
"C

E
"N

G
R

 

S
U

8
 
""'I

E 

'-' 

9 ~
 , ., .c:
 

>J to
 
~
 I <11

 
S ~ ~
 



r 
f 

(
' 

• 

9 I»
 

'1
j 

C
'f' 

(D
 ., 

[
)
t£

c
 

l 
H

T
 

II
(H

 
1

""
'1

D
P

 
F

IR
S

T
 

l'
I?

'1
0

P
 

l
A
~
T
 

1
'I

2
'1

0
fl

 
C

O
U

N
T

 
0

0
0

0
 

H
lI

lO
 

0
0

0
1

 
I 
~
 

~ II
P

O
S

 T
 

L
I 

ST
 

IIQ
T 

F
IR

S
T

 
L

A
S

T
 

C
O

U
N

T
 

0
0

2
('

 
H

I/
lo

 
0

0
3

0
 

oq
 c: 

\/1
1£

 
'1

 
FL

A
G

!':
 

J'R
 I

 
O

V
l 

rC
1

l1
T

 
[N

T
"Y

 
PT

 
P

IU
"
£

l[
R

 
U

C
Il

»
 

""
[ 

C
S

E
C

T
 

[N
T

R
Y

 
SU

B
SY

S 
S

U
l' 

N
A

H
[ 

!b
 

1
lI

2
H

O
 

PI
I 

'1
0 

00
 

1
8

C
9

I'
1

 
0

0
1

7
8

C
1

C
 

(1
0

1
7

9
2

 'I
t 

0
0

 I 
'I 

2'
1F

' 0
 

D
E

U
IA

U
.'1

'1
 

.f
:"

 
1'

1.
25

20
 

I'
ll

 
"
"
 

(1
0 

1
8

l'
6

n
 

(1
0 

l'
I6

0
F

 0
 

(1
0

1
0

0
6

8
'1

 
0

0
1

4
2

5
2

0
 

S
Y

C
T

R
l 

~
C
N
"
I
 '
"
 

f'
G

/O
lf

7
 

"
"
U

T
[S

"
, 

, 
1

"
'5

5
0

 
PI

o!
 

0
0

 
00

 
1

8
C

[0
0

 
0

0
1

'l
6

0
F

O
 

O
O

lI
lC

[ 
5

0
 

0
0

1
'1

2
5

5
0

 
S

Y
C

T
R

l 
S

C
N

"A
lN

 
N

/0
0

0
5

 
P

H
Il

/U
T

P
T

 
N

 . 
1

'1
2

6
3

0
 

PI
I 

0
0

 
0

0
 

1
8

fO
£

R
 

0
0

1
'l

6
0

ro
 

O
O

lf
lC

O
R

tl
 

GO
 I

 'I
 2

"3
 0

 
S

Y
C

T
R

l 
SC

N
H

 A
 IN

 
U

lO
O

[ 
'I 

P
"i

O
U

T
P

T
 

1
'1

2
6

1
0

 
P

II
 

0
0

 
0

0
 

1
8

C
E

'I
C

 
9

0
H

('
o

ro
 

9
0

ll
lC

O
E

C
 

"
0

"
2

&
1

0
 

S
Y

C
T

R
l 

S
C

r.
,U

 I
~
 

V
/0

0
l5

 
P

"'
IO

U
T

P
T

 
en

 
1 

'I 
"
6

 CH
I 

P
II

 
0

0
 

0
0

 
1

8
C

F
 1

8
 

(1
0 

1'
IF

oU
r 0

 
O

O
ll

lU
1

8
 

00
14

2£
0'

10
 

S
H

T
R

l 
S

C
"H

lt
N

 
lL

l0
3

U
3

 
l 

D
A

O
SC

T
 

I»
 

1
'I

2
('

a
o

 
PI

I 
0

0
 

0
0

 
IR

O
O

'lO
 

.0
0

1
'l

6
0

F
O

 
O

O
II

lC
H

O
 

0
0

 l
'I

2
("

0
 

S
Y

C
T

R
l 

S
C

N
H

A
H

' 
u

P
/C

1
O

l.
 

c.
P

S
S

 
8 '1

j 
1

'1
2

6
0

0
 

1'" 
0

0
 

DO
 

IA
O

IO
A

 
0

0
1

'1
(,

0
"0

 
O

O
ll

lO
O

IA
 

o
o

"
u

.O
O

 
S

Y
C

T
R

l 
s
e
N

'"
 IN

 
P

/0
0

0
7

 
P

IG
E

",
S

G
 

~
 

I'
IU

,E
 0

 
rw

 
n

o
 

0
0

 
IO

O
l6

e
 

0
0

 1
 'IF

o 
O

F 
0 

O
O

Il
lO

IO
C

 
0

0
H

2
6

F
:0

 
S

H
T

R
l 

S
e
N

"
' I

N
 

U
/0

0
E

6
 

S
lN

O
O

A
C

K
 

!b
 

1
'1

2
1

0
0

 
PI

./ 
0

0
 

0
0

 
1

8
0

2
H

 
0

0
1

'l
6

0
F

O
 

00
11

10
10

'1
 

0
0

1
'1

2
1

0
0

 
S

Y
C

T
Il

l 
S

C
N

H
II

N
 

tt
l 0

0
 C

 R
 

CH
 A

N
G

F'
 

H
 

1
'1

2
7

1
0

 
ru

 
('

0
 

0
0

 
In

0
2

9
f1

 
0

0
1

'l
6

0
F

O
 

0
0

ll
l0

2
3

R
 

0
0

1
'1

2
1

1
0

 
S

Y
C

T
R

l 
S

C
N

"A
lN

 
!t

H
/C

8
C

8
 

··
N

O
N

[ 
•
•
 

c..
 
~
 

1
'1

2
1

2
0

 
I'

ll
 

0
0

 
0

0
 

1
8

0
2

"C
 

0
0

1
 'l

6
0

F
O

 
0

0
lR

0
2

9
C

 
0

0
1

'1
2

1
2

0
 

S
Y

C
T

R
l 

SC
 "

H
I 

11
\, 

C
C

/C
3C

3 
•
•
 "'

O
N

r 
•
•
 

f
~
 

1
'1

2
1

3
0

 
rl

l 
0

0
 

0
0

 
lB

0
3

6
0

 
0

0
1

'l
6

0
F

O
 

0
0

1
1

1
0

3
0

0
 

0
0

1
'1

2
7

3
0

 
SY

 c
rR

l 
S

C
N

"A
IN

 
l"

/0
3

0
' 

"
I 

S
S

 I
N

(i
 

\0
>

 
1

'1
2

1
5

0
 

I'
ll

 
0

0
 

0
0

 
II

IM
?
8

 
0

0
 J

4
6

0
F

O
 

0
0

1
8

0
lC

A
 

0
0

lH
7

5
0

 
S

Y
C

T
R

l 
S

C
N

"A
 1

N
 

1
l/

0
3

F
 1

 
F

II
T

[S
T

 l 
@

 1
'
I
2
7
~
0
 

P
\.I

 
n

o
 

DO
 

1 
A

O
'l 

8C
 

0
0

1
'l

6
0

rO
 

0
0

1
R

O
'l

2
C

 
0

0
1

'l
?
7

"
"
 

S
Y

C
T

R
l 

S'
C

N
M

A
IN

 
l2

l0
3

F
2

 
S

N
B

K
L

l 
1

'1
2

1
1

0
 

1'
\1

 
0

0
 

0
0

 
le

0
4

F
O

 
0

0
1

'l
6

0
F

O
 

0
0

1
1

J0
'l

'J
0

 
0

0
1

'1
2

7
7

0
 

S
Y

C
T

R
l 

SC
N

M
A

lN
 

l
~
/
0
3
F
3
 

S
N

8
K

l2
 

t"
' 

1
4

2
1

R
O

 
P

\I
 

0
0

 
0

0
 

1
0

0
5

5
'1

 
O

O
I'

l(
.o

ro
 

0
0

1
8

0
4

"'
1

 
0

0
1

4
2

7
8

0
 

S
Y

C
T

R
l 

S
C

a:
"A

iN
 

l 
"
'0

3
"
 4

 
C

O
N

V
IL

 
~
 

to
 

1
'1

2
1

9
0

 
PW

 
0

0
 

0
0

 
1

8
0

5
8

1
1

 
O

O
I'

l6
0

F
O

 
0

0
1

1
1

0
5

5
8

 
0

0
1

'1
2

7
9

0
 

S
Y

C
T

P
l 

S
C

II
I"

A
i'4

 
M

O
/O

'lC
'I

 
T

E
S

T
R

lS
[ 

~
 

1'
12

11
00

 
1'

\1
 

0
0

 
0

2
 

1
8

0
U

C
 

"
o

l'
l(

.o
ro

 
O

O
IR

O
H

C
 

0
0

1
4

2
8

0
0

 
S

Y
C

T
R

l 
S

C
II

I"
U

N
 

C
 I
/C

3
"
 I 

"O
N

O
V

L
Y

 
.... ~
 

1
'1

2
9

4
0

 
PI

I 
0

0
 

0
0

 
1

0
C

F
O

C
 

0
0

1
'l

6
0

F
O

 
0

0
 I

II
C

F
 l

C
 

0
0

 I
"
 2

9
'1

0
 

S
Y

C
T

R
l 

SC
H

M
A

IN
 

M
"/

O
'l

O
' 

""
U

C
O

M
" 

1
'1

2
9

9
0

 
I'

ll
 

0
0

 
n

o
 

1
8

0
1

0
1

 
O

O
I'

l6
0

F
O

 
00

11
10

11
00

 
0

0
"
2

'9
0

 
S

H
T

R
l 

SC
H

M
A

IN
 

R
/O

O
O

' 
I 

II
FR

PT
 1

0
 

1
'I

2
Q

ro
 

pW
 

c
o

 
0

0
 

1
8

C
n

4
 

O
O

I'
l6

8
F

O
 

0
0

 I
II

C
[ 

'''
'' 

0
0

l'
l2

"
rO

 
S

Y
C

T
R

l 
S

C
N

"A
IN

 
JI

O
O

O
 I

 
P

M
IC

lO
II

N
 

"d
 

1
'I

2
A

1
0

 
PI

I 
0

0
 

0
0

 
lI

Io
3

C
4

 
0

0
1

'1
6

0
"0

 
0

0
1

8
0

3
6

'1
 

0
0

 .
.
 2

1
1

0
 

S
Y

C
T

R
l 

S
C

N
"A

lN
 

R
Q
/
0
~
0
8
 

SA
C

O
O

O
L

A
 

I»
 

oq
 

1
'I

2
A

2
0

 
P

II
 

0
0

 
0

0
 

1
8

0
6

8
0

 
0

0
1

"6
0

F
O

 
0

0
1

8
0

6
2

0
 

0
0

"
2

1
2

0
 

S
Y

C
T

R
l 

S
C

N
"A

IN
 

a/
o

O
O

R
 

C
H

C
K

P
T

S
S

 
!b

 
IU

B
II

O
 

PW
 

'1
0 

01
 

1
8

0
7

'1
8

 
0

0
"
6

0
F

O
 

0
0

1
8

0
6

£
8

 
0

0
1

4
2

1
1

8
0

 
S

Y
C

T
R

l 
S

C
N

"A
 11

11 
M

IO
O

O
'l 

"O
N

O
n

 Y
 

l.
tJ

 
H

2
C

IO
 

PI
I 

n
o

 
0

0
 

1
8

0
0

'-
"
0

1
 "

"
 O

F
. 

0
0

 I 
11

00
 "

"
 

0
0

H
2

C
I0

 
S

Y
C

T
R

l 
se

N
M

A
IN

 
B

/O
O

C
? 

51
1 

IT
 C

II
 

0 

I ~ 
....,

 
l.

tJ
 

IJ
K

T
R

A
C

£
 

£
1

"0
[0

. 
'-

"
 

X
 ~ I»
 

oq
 

(D
 

B
 

(D
 

::s C
'f' 



Chapter 4 Task Management 

When all Dispatcher lists have been scanned and formatted, the 
following line is generated: 

IJKTRACE ENDED. 

Control is retained in the current program path for the duration of 
processing by this module; the Dispatcher is not entered, and no other 
system work is performed. 

4.2.4 IJKCESD--Initialize Csect/Entry Tables 

IJKCESD is called once during system startup to scan the main 
Intercormn load module and to scan LPSPA (if the Intercomm Link Pack 
facility is used) in order to create the internal tables used to 
provide the Csect and Entry names for the IJKTRACE report and various 
Intercomm debugging messages, snap printouts, and the Resource 
Management Thread Dump. IJKCESD may be resident or in the startup 
overlay (conditionally called by the STUOVLY Csect). It is 
automatically included if the ICOMLINK macro is used to generate the 
Intercomm linkedit. 

If an LPSPA linked it is used (placing selected Intercomm load 
modules in the Link Pack Area as described in Chapter 7), then a DD 
statement for the load library containing the LPSPA load module must be 
added to the Intercomm execution JCL after the IIPMISTOP DD DUMMY 
statement (library not processed via the File Handler), as follows: 

IILPSPALIB DD DISP=SHR,DSN=LPSPA-Ioad-module-library 

4.2.5 IJKWHOIT--Find Csect/Entry and Subsystem Names 

IJKWHOIT is called by several Intercomm system modules to 
determine the Csect name, and displacement within that Csect, of an 
address passed as a parameter. It may also be called to find out the 
name of the subsystem for which the SCT entry address is passed as a 
parameter. Note that the SCT entry address is the third parameter 
passed to all subsystems on transfer of control from Intercomm. 
IJKWHOIT must be included in the Intercomm linked it as resident 
(automatic if the ICOMLINK macro is used to generate the Intercornm 
linkedit) • 

To find the name of (and displacement within) a Csect in which an 
address in the Intercomm (or LPSPA, if there) or dynamically loaded 
load module resides, call IJKWHOIT as follows: 

CALL IJKWHOIT,({addr},{sct},wherecsect,{wherentry},{wheresub}), 
{O} { 0 } { 0 } 

VL(,MF=(E,list)) 

4-10 



Chapter 4 Task Management 

call: 

4.2.6 

where: 

addr is a pointer to the field containing the address 
whose Csect name is to be found (if only SCT desired, 
code O--see below); 

sct is a pointer to the SCT (SYCTTBL) entry for a 
subsystem (if not desired/available, code 0); 

wherecsect is a pointer to the area to which the caller wants 
the Csect name moved (a print line, for example): 
minimum area length must be 13 bytes for the Csect 
name plus dis placement, if any (if the Csect name 
cannot be found, the val ue UNKNOWN ADDR is placed in 
the area) (if only SCT passed, code 0); 

wherentry is a pointer to the area to which the caller wants 
the entry point name (if available within the Csect) 
moved: ITll.nJ.mum area length must be 8 bytes (if not 
desired, code 0); 

wheresub is a pointer to the area to which the caller wants 
the name of the subsystem (if sct pointer coded) 
moved: ~nlmum area length is 8 bytes. If a 
subsystem defined as resident or· overlay is not 
included in the linkedit, the value **NONE** is 
placed in the area. (If sct is not coded, code 0). 

To obtain only a subsystem name, use the following form of the 

CALL IJKWHOIT,(O,{sct},O,O,wheresub),VL(,MF=(E,list») 
{(r) } 

where (r) is a register pointer to the SCT entry. 

Return Codes: ° - addressees) converted and required 
information moved to user area(s); 

4 - either address not found, or IJKCESD was not 
in the Intercomm linked it , or an error 
encountered at startup no CESD table 
entries were formatted. 

IJKDELAY--Request Time Delay 

This module may be called, instead of using the DISPATCH or 
INTWAIT macros for a timed wait, to introduce a timed delay averaging 
100 milliseconds into a program path. The Dispatcher is given control 
to perform other processing and returns at the expiration of the delay 
interval. No parameters are passed. Standard linkage conventions are 
used. The current thread will resume processing, after expiration of 
the interval, with the same execution priority. There is no REENTSBS 
code; a SUBMODS must be added for the routine if it is not called by an 
Assembler Language program. 

4-11 



Chapter 4 Task Management 

The facility may be utilized to give a time-slicing effect within 
a routine that would otherwise monopolize CPU time. It can also force 
the buildup of parallel program paths for reentrant testing purposes in 
an environment where actual parallel execution otherwise might not 
ensue, 01" it may be invoked to await the passing of a temporary 
condition that is to be resolved by another previously scheduled 
program. 

4.2.7' IJKTLOOP--Trace Program Loop 

This module assists in detecting closed program loops. If it is 
included in the Intercomm linked it , it will be activated automatically 
at system startup. IJKTLOOP functions as an Intercomm subtask. When 
IJKTLOOP is called at startup, a subtask is ATTACHed, followed by a 
CHAP (change priority request) in the Intercomm main task giving the 
subtask the highest priority in the Intercomm region. The subtask: 

• Initializes flags in the Intercomm Dispatcher 

• Issues a STlMER to schedule an exit routine, then 

• WAITs on an ECB to be posted by that exit routine. 

After 30 seconds (real time), the exit routine receives control 
and posts the ECB placing the subtask in the ready state. When the 
subtask receives control, it checks flags in the Dispatcher to 
determine whether various conditions have occurred and to take the 
appropriate actions as follows: 

a If closed loop detection has been deactivated via a call to 
IJKTSTOP (see below), the closed loop subtask is DETACHed by 
the Intercomm main task and closed loop processing is no 
longer operative. 

• If the Intercomm main task is in the WAIT state, then the 
STlMER is reissued to schedule the exit routine and the 
subtask WAITs again without taking fUr'ther action. 

• If the Dispatcher has been entered, indicating that a task 
has been scheduled in the intervening 30 seconds (that is, 
the task that was executing at the start of the 30-second 
interval has returned control to the Dispatcher and thus was 
not in a long duration closed loop), then the 
Dispatcher-entered flag is cleared (flag will be reset by the 
Intercomm Dispatcher in the main task). The exit routine is 
then rescheduled and a WAIT is performed as before. 

4-12 

J 

J 



Chapter 4 Task Management 

• If none of the above conditions are true, the subtask returns 
to the main task, which issues the message numbered MP020I 
and abends with a user code of 909, accompanied by a snap 
with ID=121 , an IJKTRACE printout and a thread dump. The 
abend 909 will be recovered by STAEEXIT (if included in the 
Intercomm linkedit), which cancels the looping thread, issues 
message MP003I, and then transfers control to the retry 
routine, STAERTRY, if it is included in the Intercomm 
linkedit. The retry routine will call IJKTLOOP to reactivate 
the closed loop detector and then restore the Intercomm 
environment (via transfer of control to SPIESNAP at entry 
ABNDCANC) • 

Closed loop detection may be deactivated at any time via a call 
to IJKTSTOP, an entry in IJKTLOOP. No parameters are required; 
standard linkage conventions are followed. This may be use ful if, for 
example, a program thread requires control, or calls an Intercomm 
routine (for example, the File Handler) that requires control, for a 
longer than average duration before returning to the Dispatcher. Once 
the closed loop detector, IJKTLOOP, is deactivated via IJKTSTOP, it 
must be reactivated to reinstate closed loop detection. Intercomm will 
not reinstate it automatically unless a 909 abend occurs. 

Closed loop detection is reactivated via a call to IJKTLOOP. No 
parameters are required; standard linkage conventions are followed. If 
IJKTLOOP is called and closed loop detection is already active, a 
return code of X'04' is returned in register 15 to the caller without 
any further action taken. 

NOTE: The hard-coded interval for the scheduling of the exit is 
30 seconds real time, not task time. This means that the 
time is decremented continuously whether Intercomm has 
control of the CPU or not. This should be taken into 
account if Intercomm runs on the system with other higher 
priority jobs. 

To summarize, IJKTLOOP processing requires inclusion in the 
Intercomm linked it of IJKTLOOP, STAEEXIT, STAERTRY, SPIEEXIT and 
SPIESNAP, in addition to IJKTRACE, IJKCESD, IJKWHOIT, IJKPRINT and 
TDUMP (and the DD statements for SYSPRINT, SMLOG, SNAPDD and optionally 
LPSPALIB). When generating the Intercomm linkedit via the lCOMLINK 
macro, code LOOPTIM=YES. Also see Chapter 8 for further details on 
snap processing and the description of snap 121 in Messages and Codes. 

4-13 



J 

J 

J 



Chapter 5 

RESOURCE MANAGEMENT 

5.1 INTRODUCTION 

Intercomm Resource Management has three major options: 

1. Resource Auditing and Purging 

2. User-defined pools of core storage 

3. Accumulation of core-use statistics 

Allor any combination of these three options can be selected by 
the user, according to installation requirements. If only the pools 
option (recommended) is se lected, Resource Management still provides 
the system with an extremely efficient version of storage management. 
Macros and their parameters referenced in this section are described in 
Basic System Macros. 

5.2 RESOURCE AUDITING AND PURGING 

Resource Auditing refers to the maintenance of a chain of 
resource control blocks (RCBs) defining user-accessed resources for 
every active thread. There are five audited resource types: 

1. CORE--acquisition of storage by invoking the STORAGE macro 

2. FILE--use of a data set indicated by a call to SELECT 

3. DDQ--access to a dynamic data queue indicated by a call to 
QBUILD or QOPEN 

4. DYNL--Ioading of a dynamically loaded subroutine via invoking 
the MODCNTRL macro by the user, COBREENT, PMIPL1 or LOADSCT 

5. NQ--activating an enqueue upon a resource by issuing the 
INTENQ macro 

Each time a thread acquires a resource, a control block is 
created containing information about the resource and is attached to a 
chain of similar blocks. When the thread releases control of the 
resource, the corresponding control block is detached from the chain. 
The on-line TDUMP utility (see Section 5.9) is provided to print out 
the control block chains. This output shows which thread was in 
control, what resources each thread owned, which modul~ acquired each 
resource, and the order of acquisition. 

5-1 



------------ ------

Chapter 5 Resource Management 

Resource Purging means that when a thread completes, normally or 
abnormally, its chain of resource control blocks is checked; in the 
case of a non-empty chain, the used control blocks are released after 
freeing blocks of storage, releasing files, etc. 

All levels of Resource Management will purge Dispatcher queue 
entries for failed message processing threads. With Resource Auditing, 
storage, files, DDQs, loaded subroutines and enqueued resources are 
also purged. Additionally, a "must complete" disable/enable facility 
ensures that threads are not purged during critical operations; that 
is, if a subsystem times out while an I/O event is outstanding, a timed 
wait for the I/O event to complete is effected before attempting the 
purge. 

5.3 USER-DEFINED STORAGE POOLS 

User-defined storage pools are generated by the Intercomm 
ICOMPooL macro and may be dynamically loaded at startup or linkedited 
into the Intercomm load module. A pool is a set of storage blocks of a 
given size; there is no limit to the number of blocks in a pool. The 
lCOMPooL macro also generates an index that permits the at~rage 

management routine to quickly determine whether or not a storage 
request can be filled out of the pools. Freeing an area of pool 
storage is usually just as fast. Furthermore, the code is loop-free, 
so that these time values are constant, and system degradation due to 
storage fragmentation does not occur. The increase in efficiency 
provided by judiciously tailored Intercomm pools more than offsets any 
overhead increment from core-use statistics gathering. Creation of the 
user-defined Intercomm pools (via lCOMPooL macro) is described later in 
this chapter. Acquiring and releasing core under Intercomm is 
accomplished via the STORAGE and STORFREE macros described in Basic 
System Macros. 

5.4 CORE-USE STATISTICS 

Three sets of core-use statistics can be accumulated via the 
RMTRACE routine. Statistics are computed and printed at intervals 
defined in SPALIST macro parameters. 

1. Global statistics--the number of STORAGE and STORFREE macros 
issued, the average storage request length, the number of 
requests filled from the pools, etc. 

2. Breakdown of STORAGE requests into detailed user-defined core 
block size ranges. For each range, the number of requests 
falling into that range is given, plus "concurrency" 
statistics: at any given moment, the concurrency of a range 
is the number of blocks that have been obtained, but not 
freed. In addition to the instantaneous concurrency, high, 
low and average concurrencies are computed. These figures 
are particularly useful in working out pool sizes; the most 

5-2 

J 



Chapter 5 

----------------

Resource Management 

value from a pool is obtained if the block size falls in a 
range with a large number of requests, and the average 
concurrency of the range indicates how many blocks are needed 
in the pool. However, if the size is small, the high 
concurrency may be used to get maximum efficiency, at a 
relatively low cost in storage. 

3. Pool-use detail statistics measure the effects of different 
choices of pools, providing such information as the number of 
requests that could not be filled from the user-defined pool 
(because all the blocks were in use), the average number of 
free blocks, etc. 

5.5 STORAGE CUSHION 

Every version of Resource Management includes the Storage Cushion 
feature. At startup, a block of storage is obtained and held until a 
request arrives that cannot be satisfied out of the Intercomm pools or 
dynamic storage (OS subpool area). The storage cushion is then 
released and no new threads started until the cushion is available 
again. Thus, a temporary shortage of storage is not likely to bring 
the system down. The user specifies the size of the cushion in the 
SPALIST macro CUSHION parameter; a zero size is acceptable. A WTO 
informs the user whenever release and acquisition of the cushion 
occurs. (Front End input operations are also temporarily halted if the 
module SSPOLL is included--see Chapter 7.) 

5.6 RESOURCE MANAGEMENT MODULES AND GLOBALS 

Seven modules automatically included in the Intercomm linked it 
are used to support Resource Management. Their member names are 
MANAGER (Csects: RSMGMNT, RMPC and RMFNQ) , RMPURGE, RMTRACE, TDUMP, 
POOLDUMP, RMNADISA and the core pools definition module. 

• MANAGER is the main Resource Management module. It contains 
entry points for STORAGE and STORFREE macro processing 
(STORAGEM and STORFRED), routines that switch control of 
blocks of storage between threads (RMPASS and RMCATCH), and 
those that handle resource control blocks for files 
(RMFON/OFF), enqueued resources (RMNQON/OFF), etc. 

• RMPURGE is the Resource Purging routine. It is called by the 
Subsystem Controller when a nonzero thread completes to free 
any resources not previously freed by the thread. 

• RMTRACE computes and prints out core-use statistics. (See 
Figure 5-2 for explanation and sample output.) 

• TDUMP prints out RCB chains. (See Figure 5-3.) 

5-3 



Chapter 5 Resource Management 

• POOLDUMP prints out the current status of the user pools. 
(See Figure 5-4.) 

• RMNADISA is the Intercomm disable/enable routine, and is also 
used for resource purging. 

• NEWPOOLS (or user-defined name) contains ICOMPOOL macros 
defining storage pools. 

Four independent options apply to Resource Management, and are 
defined by binary set symbols in INTGLOBE and set in SETGLOBE, 
controlling assembly of the MANAGER module. These options are as 
follows: 

5.6.1 

1. &RM 

If set to 1, Resource Audit and Purge are obtained; it is 
necessary to include RMPURGE amd RMNADISA if this option is 
chosen. Also, TnUMP should be included. 

2. &RMPOOLS 

If set to 1 (required), pool support is·obtained; an ICOMPOOL 
module must be defined. POOLDUMP may be included. 

3. &RMSTATS 

If set to 1, global core-use statistics are provided. 
RMTRACE must be included. 

4. &RMACCT 

If set to 1, detail core block size and pool-use statistics 
are provided. RMTRACE must be included. 

Obtaining a Save Area with Resource Management 

The STORAGE macro has Resource Management parameters. Instead of 
a LINKAGE macro, STORAGE can be issued without supplying a save area or 
a parameter list by the coding of RENT=NO. (See Figure 5-1). The 
macro will generate code to build the list in MANAGER, and MANAGER will 
save registers in its own in-line save area. In fact, with Intercomm, 
the in-line save area is first used, shifting only to the user's save 
area when a storage request fails and a retry is necessary. Thus, 
coding RENT=NO means only one attempt is made to obtain user '3torage; 
however, the retry feature is not as likely to be invoked with the 
Storage Cushion facility in use, and less likely to succeed when it is 
invoked because it competes for storage with the routine that tries to 
reacquire the cushion. If a STORAGE request fails, an error routine 
may be given control as specified by the ERRADDR parameter. VS users 
can optionally specify page boundary alignment in the STORAGE macro. 

5-4 

J 



Chapter 5 Resource Management 

The code in Figure 5-1 illustrates a save area obtained via a 
STORAGE macro. 

*Register 15 is used by the STORAGE macro, as are 14, 0 and 1. Thus, 
*the user must establish a base register other than 15. 

ENTRY SUB 
USING SUB,Rz 

SUB srM 14,12,12(13) 
LR Rz,R15 

*Next, establish addressability to the SPA Csect. 

L Rx,=V(SPA) 

*Issue STORAGE macro to obtain storage for save area and set forward 
*chain in current save area. 

STORAGE LEN=len,ADDR=8(13),SPA=(Rx),RENT=NO 

*Test for valid return (ensure storage was obtained) 

LTR 15,15 
BNZ error-routine 

*Restore registers used by STORAGE (optional) 

LM 1 4, 1 , 12 ( 1 3 ) 

*Initialize new save area 

NOTE: 

L 
ST 
LR 

Ry,8(13) 
13,4(Ry) 
13,Ry 

Get save area address 
Back chain 
Point to new save area 

Rx, Ry and Rz refer to three general registers (2 to 12). 
They have the following uses: 

• Rx points to the System Parameter Area (SPA). 

• Ry temporarily holds the address of the storage obtained. 

• Rz is the base register. 

Figure 5-1. Obtaining a Save Area via the STORAGE Macro 

5-5 



Chapter 5 Resource Management 

The RTNLINK macro, SPA=(r) parameter, is used by Resource 
Management. RTNLINK generates a ca11 to the PMIRTLR Csect, which in 
turn ca11s STORFRED to release the save area. If PMIRTLR finds its 
STORFRED VCON unresolved, it expects the SPA address in register 2. If 
a register has been specified as the SPALIST base in the preceding 
LINKAGE macro, RTNLINK will generate a LR of the base into register 2. 
In cases where a LINKAGE macro was not issued or the SPALIST base is no 
longer valid upon a return, the SPA address must be loaded into a 
register (r) and the SPA=(r) parameter must be coded on the RTNLINK 
macro. 

5.7 INSTALLING RESOURCE MANAGEMENT WITH CORE-USE MONITORING AND POOLS 

5.7.1 SETGLOBE Settings 

The following globals must be defined in SETGLOBE: 

&RMPOOLS 
&RMSTATS 
&RMACCT 

SETB 
SETB 
SETB 

1 use Intercomm pools (required) 
1 "generate global core-use statistics 
1 generate detail usage statistics 

and MANAGER must be reassembled. 

An additional option implemented via the conditional assembly of 
MANAGER with the global &RMINTEG in SETGLOBE SETBd to 1, causes 
validation of the integrity of the storage pools on each entry to 
HANAGER. I f the storage pool area is not intact, an error message 
(RM022A) is generated. This facility assists in detecting problems in 
destruction of storage, often difficult to find due to their random 
nature. This facility is contro11ed by the STRT /STOP system commands, 
and is set off at startup. 

5.7.2 

NOTE: This facility should be used in the test environment 
only, due to CPU overhead. See also the description of 
the TRAP debugging module in Messages and Codes. 

SPALIST Parameters 

Associated parameters in the SPALIST macro are described below. 
Other SPALIST parameters, not used at this level of Resource 
Hanagement, are discussed in conjunction with Resource Auditing. 

Choose appropriate values for these parameters and, if necessary, 
reassemble INTSPA (SPA and SPAEXT Csects). 

5-6 

J 



Chapter 5 Resource Management 

CUSHION 
is the size in bytes of a block of storage (specify in 2K 
(MFT/VS1) or 4K (MVT/MVS) increments) that will be acquired by a 
GETMAIN at startup and released when a request for main storage 
cannot be satisfied. When the cushion is released, the SPAHOLD 
switch is set so that no new threads are started, and a routine 
issuing a GETMAIN is dispatched on a time interval to get the 
cushion back. If unsuccessful, it leaves SPAHOLD set and 
redispatches itself. The default is 2048. 

CUSHTM 
is the interval in seconds between tries at getting the cushion 
back. The default is 1. 

COREACC 
is coded YES if computation of core block size statistics, broken 
down by ranges with pool "concurrencies", and pool-use detail 
statistics are desired. (See Figure 5-2.) The default is YES. 

RMSTIM 
is the time interval, in seconds, between successive invocations 
of the detailed pool usage statistics program (RMTRACE). The 
maximum value is 32,767 (9 hours, 6 minutes and 7 seconds). The 
default is 5 seconds. 

TRACETM 
. is the interva l, in seconds, between printouts of global (and 
detailed) core-use statistics by RMTRACE. The default is 120. 

Defining the Intercomm pools (ICOMPOOL) 

The ICOMPOOL macro is coded by the user to define each user pool 
area and has the following operands: 

LEN 
is the size of a pool block up to a maximum of 256K less 8 bytes. 

NUMBER 
is the number of blocks of that size. 

LOWLIM 
optionally specifies the minimum request size to be filled out of 
this pool. 

For example, to define a pool of 20 16-byte blocks, code: 

ICOMPOOL LEN:16,NUMBER:20 

5-7 



Chapter 5 Resource Management 

To define a second pool of 10 256-byte blocks, and to ensure that 
only requests for greater than 200 bytes (but less than or equal to 
256) will be allocated from the pool, code: 

ICOMPOOL LEN=256,NUMBER=10,LOWLIM=200 

The number of bytes allocated from a pool block will always be 
greater than the block size of the preceding pool. LOWLIM is coded 
only when the difference in block sizes between successive pools is 
large and user intent is to reduce wastage. If LOWLIM were not coded 
in the above example, an infrequent 30-byte request could tie up an 
entire 256-byte block. 

ICOMPOOL macros must be arranged by increasing block size; that 
is, the values of the LEN parameters have to be in ascending order. A 
maximum of 255 ICOMPOOL macros may be coded. 

The following JCL can be used to create the pools member: 

/ / EXEC LIBE,Q=LIB 
./ ADD NAME=member-name 
./ NUMBER NEW1=1000,INCR=1000 
ICOMINX CSECT 

ICOMPOOL macro 1 

ICOMPOOL macro n 
END 

Assemble the new member. One set of pools, member name NEWPOOLS, 
is inc luded on the re lease tape. These poo Is are rough ly si z ed to 
handle the storage requirements of the Intercomm beta test, and may be 
used as a starter set before core-use statistics have been collected. 

The member may be linkedited with the Intercomm load module, or 
it may be chosen dynamically at startup if the dynamic core pool 
facility is in use. (If the latter, the pools may not be linkedited 
with the load module.) If the pool load module is to be selected 
dynamically, the member name must be ICPOOLxx where xx is a two-digit 
number 00-99. When dynamic pools are in use, a number of different 
sets of pool load modules can be created and the proper one will be 
loaded at startup, as described below. 

5-8 

J 



Chapter 5 Resource Management 

5.7.3.1 Dynamically Loaded Core Pools 

At startup -time, the user may dynamically choose a set of storage 
pools for the system to use. That is, instead of choosing a set of 
storage pools at linked it time, a set of pools may be chosen at 
execution time. The set of pools chosen is brought into core via a 
LOAD macro and, for every Intercomm execution, a new set or the same 
set of pools may be chosen. This option may prove advantageous if it 
is desired to experiment with different sets of core pools to find the 
most efficient, or if it is known that at certain times variations in 
system activity make a different set of pools more efficient than they 
would be normally. Also, in some operating systems, the size of load 
modules is restricted, making the use of Intercomm administered storage 
pools difficult. With dynamic core pools, because they are a separate 
load module, the need for relinks of the system for every tuning of the 
pools, and/or the problem of size restriction, can be alleviated. 

To use dynamic core pools, the following must be done: 

• Include the module POOLSTRT in the Intercomm linkedit 

• Exclude NEWPOOLS or whatever member name currently contains 
the ICOMPOOL macros to define the user pool areas. (The 
IOOMLINK macro will generate the proper INCLUDE statements if 
DYNPOOL=YES is coded. If DYNPOOL=NO, an INCLUDE for NEWPOOLS 
is generated but not for POOLSTRT.) 

fa Assemble and link the set(s) of pools (created via ICOMPOOL 
macros) onto a library which will be part of the //STEPLIB 
concatenation for Intercomm execution. The member names for 
the pool load modules must be ICPOOLxx where xx is a 
two-digit decimal number 00-99. 

• If the module POOLSTRT is present in the Intercomm load 
module, it will be called at startup time and it takes the 
following actions: 

1. Checks if the pools were linkedited in with the system. 
If so, no further action is taken and the linkedi ted 
pools will be the ones used in the run. 

2. If not 1), a WTOR is issued requesting a reply in the 
form of a two-digit number which is the suffix of the 
name of the desired pool load module (the xx in ICPOOLxx). 

3. A LOAD is attempted for ICPOOLxx. If found, the module 
is loaded and execution of startup is continued. If not 
found, or if the reply is invalid (not numeric), another 
WTOR is issued, giving the operator the choice of: 

5-9 



Chapter 5 Resource Management 

a) retrying (the first WTOR is reissued and the 
operator may reply with a different two-digit 
suffix) 

b) continuing without pools (all storage for the run 
will be GETMAINed) 

c) cancelling the run - a return to OS is effected 
with a step return code of 16. No dump is taken. 

.. Under a VS (MVS) operating system, do not ORDER the pool 
Csects (ICOMINX, ICOMCHN, POOLACCT, ICOMPOOL, POOLEND) if 
they are dynamically loaded. 

• If the pools are defined in the Page Fixing table (FIXTABLE)j 
they will be page fixed at startup, even if they are 
dynamically loaded. 

If the pools are subsequently to be linked into the Intercomm 
load module, add an INCLtIDE for the desired pools module (ICPOOLxx) to 
the linkedit deck before the system linked it is executed. The INCLUDE 
for POOLSTRT does not have to be removed. 

5.1.4 Specifying Core Block Detail Statistics 

Core block detail statistics are specified by coding the COREACCT 
macro and determining the desired ranges, as described below. 
Additionally, the MANAGER module must be reassembled. 

Initially, core block usage is broken down by ranges: the 
"number of requests" column of the printout (see Figure 5-2) is used to 
decide the pool block sizes j the "average concurrency" is used to 
decide the number of blocks per pool. The ranges are defined by a 
COREACCT macro in the MANAGER module. The COREACCT parameters are: 

(rangel, •••• ,rangen) 
,FROM=start,TO=end,BY=increment 

positional 
optional 

There are two ways to define the ranges: 

1. Explicitly, by naming the range limits in the first 
positional argument. 

2. ImpliCitly, by giving a starting limit, an ending limit and 
an increment. 

5-10 

J 

J 



Chapter 5 Resource Management 

For example, to break down storage core requests into those under 
a thousand and those over, code: 

COREACCT (1000) 

The macro will generate a table with two entries, one for 
requests between 0 and 1000, and the second for requests greater than 
1000. On the other hand, to obtain a breakdown by 256-byte ranges up 
to 4128 bytes, the following code would be used: 

COREACCT ,FROM=256,TO=4128,BY=256 

These approaches may be mixed; the explicit limits have to be 
written in ascending order, but they do not have to be less than the 
implicit limits. The user may thus code: 

COREACCT (504),FROM=32,TO=1600,BY=32 

and the range from 480 to 512 would be broken down further into ranges 
480-504 and 505-512. 

In the MANAGER module as released, the macro is written: 

COREACCT ,FROM=64,TO=4096,BY=64 

The COREACCT macro also generates a routine FINDBUCK for finding 
the table entry corresponding to a storage request size. The code is 
optimal; for the second example with the 256-byte ranges, the routine 
would merely consist of a shift to divide the request size by 256, 
another shift to multiply the result by the table entry length, and an 
add to the table address. For this reason, explicit ranges should be 
excluded and the increment should be a power of two, if statistics are 
to be collected during a production run where efficiency is important. 

Linkedit 

The following modules must be included in the Intercomm Linkedit: 

• MANAGER--storage management 
SET GLOBE updated) 

routine 

• RMTRACE--statistics-gathering routine 

(reassemble after 

• NEWPOOLS or a user-defined I COMP OOLs member--user pools 
(unless dynamically loaded at startup) 

• INTSPA--reassembled SPA and SPA Extension 

• POOLSTRT--if pools are to be dynamically loaded 

5-11 



Chapter 5 Resource Management 

Execution 

In the execution step, include the following DD statement for the 
data set that will receive the statistics: 

IISMLOG DD SYSOUT=A, ] 
II DCB=(DSaRG=PS, LRECL=120 ,BLKSIZE= 120,RECFM=FBA) 

"--------
For efficiency, BLKSIZE may be increased to a multiple of 120. 

To eliminate core-use monitoring, change SETGLOBE so that &RMACCT 
and &RMSTATS are 0, reassemble MANAGER, and take RMTRACE out of the 
linkedit. 

To keep the global statistics, reassemble the SPA with COREACC=NO 
andlor change SETGLOBE so that &RMACCT is 0 and reassemble MANAGER. 

Sample Out put 

Figure 5-2 provides a sample output of core-use statistics. The 
following should be noted: 

• CORE USE STATISTICS 

Except for TOTAL POOL STORAGE, POOL STORAGE AVAILABLE and 
BYTES OUTSTANDING, the figures are cumulative global 
statistics, accounting for all Storage Management activity 
from the beginning of the run. 

o TOTAL ICOMPooL WASTAGE 

Wastage is the difference between the length of the pool 
block and the length of the requested area allocated from the 
block; available blocks are not wastage. PERCENT WASTAGE is 
important; a low figure is desirable. Wastage is controlled 
by the LOWLIM parameter in the lCOMPOOL macro. Wastage is 
broken down by pool in the Pool Use Detail Statistics. 

• ICOMPooL FAILURES 

A count of the number of times a request failed from one of 
the pools because all the blocks in the pool were in use. A 
high figure means that at least one of the pools should have 
more blocks. Failures are broken down by pool in the Pool 
Use Detail Statistics. 

5-12 

J 



Chapter 5 Resource Management 

• QUICK FREES 

This applies only to areas allocated from the pools: "quick" 
means no search was made to find the block containing the 
area to be freed; that is, the address passed pointed to the 
beginning of a pool block, and 8 is subtracted to get the 
pool block header. Most of Resource Management's overhead is 
in STORFRED's search loops, so a higher quick frees value is 
better. 

• AVERAGE SEARCH LENGTH 

For Resource Auditing, this gives the average number of RCBs 
that STORFRED used to find the one corresponding to the area 
being freed, when it could not do a quick free. Without 
Resource Auditing, this is the average number of pool blocks 
STORFRED checked to find the one containing the area being 
freed. 

• RCB TABLE RELOCATIONS 

When the RCB table is full, and an attempt is made to 
allocate an additional RCB, space is obtained to contain the 
current RCB table plus the number of RCBs to add as specified 
by the SPALIST macro parameter RCBSADD. (See Section 5.8.2.) 
This statistic shows the number of times this occurred. More 
than one relocation is undesirable. 

~ POOL USE DETAIL STATISTICS--AVG FREE BLOCKS 

This is the average number of blocks available for 
allocation. If this figure is low, relative to the number of 
blocks in the pool, then failures are usually high, and vice 
versa. 

NOTE: Headings denoting DOUBLEWORDS indicate that the 
calculation is in doublewords: multiply by eight to get 
the corresponding value in bytes. All storage requests 
are rounded up to the next highest doubleword. 

5-13 



CO
RE

 
U

SE
 
S
T
~
l
'
S
'
I
C
S
 

T
I 

ME
 

1
0

.3
9

."
5

 
1

1
3

.0
1

f,
 

S 
TO

R
A

G
rS

 
I!I

lS
U

EO
 

1
2

1
1

0
2

 
D

O
U

B
Ll

 
W

UR
OS

 
R

E
Q

U
[S

T
[O

 
,,

'H
,9

1
O

 
A

V
ER

A
G

E 
R

[Q
U

ES
T 

LE
N

G
TM

 
'" 

9 
~
O
U
B
L
r
.
 

W
OR

OS
 

G
RA

N
TE

D
 

8
'9

6
''1

0
 

H
 It

lH
 

T
Il

l 
s 

rr
 A

I o
n 

1
2

''
'5

 
tll

to
H

 
T

H
IS

 
RU

N 

12"
1 

TO
TA

L 
PO

O
L 

ST
O

RA
G

E 
1

"
 "
"
 

rO
O

L 
ST

O
RA

G
E 

A
V

A
IL

A
8L

E 
9

6
6

8
0

 
PE

R
C

EN
T 

A
V

A
IL

A
B

LE
 

" "
 

'" '0
 

R
rQ

U
£S

T
S 

FI
L

L
E

O
 

FM
 

IC
O

"P
O

O
L 

2
1

 ?
6

5
 

PE
R

C
EN

TA
G

r 
F

" 
IC

O
"r

O
O

L
 

'3
4 

~
 

D
O

U
BL

£ 
W

OS
 

G
RA

N
TE

D
 

FM
 

IC
O

M
PO

O
L 

8
2

2
1

8
2

 
PE

R
C

EN
TA

G
F 

F
" 

IC
O

"'
O

O
L

 
9

2
 

A
Y

FR
A

G
r 

LE
N

G
TH

 
FH

 
IC

O
"P

O
O

L 
3

'J
 

., 
"Z

J 
00

U
8L

[ 
W

OS
 
~
A
S
T
E
O
 

IN
 

IC
O

M
PO

O
L 

3
5

3
1

6
 

A
V

ER
A

G
E 

D
O

U
BL

E 
VD

S 
W

A
ST

ED
 

2 
P 

[R
 C

EN
T 

liA
S 

TA
G

[ 
0;

 
.....

 
lC

o"
pn

O
L

 
FA

IL
U

R
E

S 
1

5
3

5
 

PE
R

C
EN

T 
FA

IL
U

R
FS

 
1 

\.1
1 

o
q

 
t:

 
. 

., 
ST

O
R

FR
EE

S 
IS

5U
[0

 
1

2
1

5
1

 
(1

) 
PO

O
L 

RL
IJ

CK
S 

FR
EE

D
 

1
1

?
2

3
 

Q
U

IC
K

 
n

t£
[!

; 
17

91
18

 
P£

R
C

lN
TA

G
E 

Q
U

IC
K

 
A

S
 

\.1
1 

D
O

U
8L

E 
W

OR
DS

 
FR

EE
D

 
fl

B
7

q
9

1
 

D
O

U
BL

E 
W

OR
DS

 
O

U
TS

TA
N

D
IN

G
 

II
" 

1
3

 
, 

R
E

Q
U

rS
T

S 
N

O
, 

F
IL

L
rO

 
0 

PE
R

cr
N

T
 

NO
T 

F
IL

L
[O

 
0 

N
 . 

A
Y

ER
A

G
E 

SE
A

RC
H

 
Lr

N
G

TH
 

2
9

0
 

RC
B 

TA
U

Lr
 

R
EL

O
C

A
TI

O
N

S 
0 

tlI
J 
I 

>C
 

01
ST

R
I8

U
T

IO
N

 
OF

 
CO

RE
 

8L
O

C
K

 
S

IZ
E

S
 

~ '0
 

RA
NG

E 
N

U
H

B
lR

 
O

F 
R

[Q
U

[S
T

S 
C

O
N

C
U

R
R

EN
C

Y
--

NO
V 

H
IG

H
 

LO
W

 
AY

ER
 A

GE
 

.....
 

(1
) 

1
-

"" 
II

H
 

'I 
6

8
 

1
0

 
5:

'1 

0 
6

5
-

12
11

 
6

6
5

"
 

5
1

 
8

9
 

, 
5

" 
.....

 
1

2
9

-
I 

<J
2 

1
3

0
1

 
5 

1
3

 
2 

6 
n 

1
9

3
-

2
5

" 
1

1
1

' 
21

 
2

1
 

0 
2

0
 

0 
2

5
1

-
3

2
0

 
9

6
9

0
 

9 
2

9
 

1 
II 

., 
3

2
1

-
3

"4
 

5
1

1
 

3 
7 

0 
2 

\.
1

1
(1

) 
, 

I 
3

1
1

5
-

..
..

 It
 

, ...
 

2 
5 

.. 
2 

~
C
:
:
 

H
9

-
5

1
2

 
H

 
0 

2 
0 

I 
~
C
D
 

(1
) 

5
1

3
-

0;
 1

6
 

1
5

f;
 

2 
1 

1 
2 

{J
l 

!I
 1

1
-

6
4

0
 

1
1

" 
2 

1 
I 

:5 
~
 

6
'1

-
7

0
4

 
6

8
 

2 
3 

0 
1 

III
 

7
0

5
-

1
6

8
 

IS
 

2 
3 

0 
2 

~
 

.....
 

1
6

9
-

1'
32

 
2 

0 
1 

0 
0 

CD
 

1
1

3
3

-
1'

96
 

Jl
JI

 
0 

2 
0 

0 
~
 

.....
 

8
9

1
-

9f
,O

 
1

0
 

0 
I 

0 
0 

(
)
 

9
6

1
-

1
0
2
~
 

2
" 

0 
I 

0 
I 

CD
 

1
0

2
5

-
10

11
8 

5
n

 
0 

6 
0 

1 
.....

.. 
1

0
8

9
-

1
1

5
2

 
3 

0 
I 

0 
0 

"t
J 

~
 

I»
 

1
1

5
3

-
1

2
1

"
 

7 
(I

 
3 

0 
" 

(1
) 

oq
 

1
2

1
1

-
12

11
0 

2
5

 
0 

2 
(I

 
0 

CD
 

(1
) 

0 
12

/1
 1

-
1

3
H

 
1

3
1

 
12

 
1

2
 

0 
1

0
 

t:
 

~
 

1
3
~
5
-

1
'0

"
 

7 
0 

I 
0 

0 
., (
)
 

0 
I"

 0
9

-
1

4
1

2
 

2
5

 
0 

, 
0 

0 
(I

) 
.....

 
1

4
7

3
-

1
5

 J
f,

 
'3

 
0 

3 
0 

" 
3

: 
N

 
1

5
3

1
-

H
O

O
 

I 
0 

1 
0 

0 
g 

.....
... 

1
6

0
1

-
1

6
M

 
2 

0 
I 

0 
0 

III
 

1
6

6
5

-
1

7
2

!!
 

2 
0 

I 
0 

0 
oq

 
1

7
2

9
-

1
7

9
2

 
3

6
 

0 
, 

0 
1 

(1
) a 

1
1

q
J-

lA
5

6
 

7 
0 

5 
0 

0 
(1

) 

1
8

5
1

-
1

"2
0

 
5 

1 
2 

I 
I 

:::1
 

C
'f'

 
1

9
?
1

-
1

9
1

1
' 

1
0

5
 

0 
1 

0 
0 

"
R

5
-

2
0

"
"
 

1
7

 
:5 

'5 
3 

3 
2
0
~
9
-

2
1

1
2

 
5 

0 
1 

0 
0 

2
) 

1
3

-
2

1
7

('
 

I 
0 

) 
0 

0 

L 
~
 

L 



r 

"'
l 

.....
. 

~
 

'"S
 

(1
) 

"L
O

C
K

 
S

I7
r 

R
LO

C
K

 S
 

R
E

Q
U

[S
T

S
. 

r 
IL

H
O

 
IJ

l 
3

?
 

5
0

 
11

1 
1

0
 

I I\
)
 . 

6
4

 
1

6
 

lA
l 

1
8

1
 

9
6

 
"0

 
:>

1
1

1
 

2
6

1
0

 
12

11
 

4
0

 
"
H

 
;\

8
e

;!
'i 

If
. 0

 
11 

5
2

3
 

52
.'1

 
tx

l 
><

 
1

9
2

 
I,

 
11

1 
" 

lR
I 

m
 

'0
 

n
it

 
1

8
 

6
0

2
 

!'
iq

ll
 

2
5

6
 

1
1

2
 

2
1

2
 

2
1

7
 

f-
' 

21
18

 
2 

30
;5

 
.,

0;
5 

(1
) 

30
1t

 
2 

"'
3

3
1

 
fl

O
f,

" 
0 

3
2

0
 

1
6

 
It 

" 
..., 

3
3

6
 

1
6

 
11

53
 

4
5

3
 

n 
3

5
2

 
" 

3 
.'I 

0 '"S
 

.'\
11

" 
1

0
 

';
5

 
~
5
 

1
J
l(

1
) 

I 
I 

-
-
c
 

1
t4

8
 

6 
6

l'
1

 
6

0
5

 
5

1
2

 
" 

I"
 

1
4

 
IJ

lt
o

 
!'i

16
 

" 
1

5
6

 
1

5
2

 
(1

) 
61

10
 

4 
1

1
" 

If
,'

}
 

ti
l 

1
0

4
 

'-
6

8
 

5
1

 
~
 

Il>
 
~
 

1
6

A
 

2 
1

5
 

1
4

 
83

2 
2 

2 
2 

1-
'-

to
 
~
 

"'(
. 

2 
1

0
1

 
1

0
1

 
9

6
0

 
2 

JO
 

1
0

 
.....

. 
0 to

 
In

5
6

 
5 

5
1

8
 

5
1

1
 

]2
1

6
 

2 
3

3
 

3
:t

 
1

2
8

0
 

2 
2

5
 

2
5

 
1

3
0

4
 

1
4

 
J2

0
 

7
2

0
 

--- "tI Il>
 

]3
1

1
4

 
3 

II
 

11
 

]"
1

2
 

2 
3

2
 

l
'
 

oq
 

(1
) 

1
1

9
2

 
2 

"" 
6

1
 

19
81

1 
3 

1
1

" 
II

"
 

I\
) 

20
1l

!!
 

2 
1

1
 

, 
0 

2
1

5
2

 
I 

1
0

6
 

11
1 

..., 
3

0
3

2
 

1 
0 

0 
I\

) 
3

2
6

4
 

1 
1 

1 
"
0

3
2

 
1 

1
3

 
1

3
 

r 

l'
n

U
L

 
u

sr
 
o

n
 A

 IL
 

ST
U

 1
S

T
 l

es
 

F 
ft 

tL
E

O
 

H
R

C
E

N
T

 
FA

 I
 L

EO
 

A
V

r. 
FA

E
E

 
O

L
O

C
K

S 
1

1
 

2
0

 
6 

0 
n 

1
0

 
H

 
;> 

1
2

 
11

2 
3 

11
 

0 
0 

5 
3 

J 
" 

II
 

2 
5 

I)
 

0 
1

0
5

 

" 
n 

2 
1

2
6

3
 

1
4

 
J 

0 
0 

1
6

 
0 

0 
1

5
 

0 
n 

II 
0 

0 
1

0
 

9 
2 

5 
0 

0 
" 

" 
3 

3 
q 

6 
2 

1
1

 
1

1
 

, 
J 

1 
J 

0 
0 

2 
0 

0 
2 

(I
 

0 
2 

1 
I 

5 
I 

" 
2 

II 
0 

2 
0 

" 
5 

0 
0 

3 
t3

 
4

1
 

2 
1

1
 

2
1

 
2 

2 
2 

3 
1"

; 
8

9
 

J 
3

2
 

3
1

 
I 

0 
0 

I 
0 

0 
1 

0 
0 

I 

O
E

lL
I/

Il
l)

 
ft

ll
O

C
A

T
E

D
 

2
5

3
 

4
"
"
q

 
2

f.
A

5
4

 
5

1
3

R
l 

9
/1

0
1

 
J 

1
2

0
0

 
1

6
4

2
0

 
S

lt
q

5
 

] 
2.

1/
13

 
2 

'J
P

r;
 1

,6
 

1
5

1
 

1
9

0
2

5
 

1
3

1
 

2
4

8
9

 
29

91
.'1

 
11

63
 

1
0

4
3

6
 

]l
)J

2
8

 
4

1
1

5
 

I
H

5
 

2
0

0
 

JI
ll

! 9
6

 
1

1
6

8
 

n
9

3
2

 
"3

61
1 

3
9

4
l 

1
1

1
3

6
0

 
11

12
6 

3
3

7
3

 
1

3
3

5
3

 
21

59
.'1

 
S

1
0

 
2

2
6

6
0

 
0 

31
18

 
6

5
1

3
 

r 

ftV
G

 
D

B
LW

O
S 

W
A

S
'A

G
l 

(l
 

2 I J J 1 0 0 I 0 0 0 0 2 6 2 3 2 4 0 " " 3 2 
1

5
 

2 0 2 6 
2

"
 

5 1 
3

1
 

0 
2

0
 3 

n i '0
 g '"S
 

IJ
l 

::u
 

(1
) to
 o c: '"S
 o (1
) 3
: ~ Il>
 

oq
 

(1
) B
 

(1
) ::s ~
 



-------~-------- -----

Chapter 5 Resource Management 

5.8 INSTALLING RESOURCE MANAGEMENT WITH RESOURCE AUDIT AND PURGE 

Concurrency figures (see Figure 5-2) may be more accurate when 
using Resource Auditing. The difference is the way in which partial 
STORFREEs are recorded. For example, of 256 bytes, 16 bytes are freed; 
without Resource Auditing, there is no indication that the area being 
freed is part of a larger one. Thus, if the concurrency for the 
16-byte range is decremented, then the concurrency for 16 is one too 
low and the concurrency for 256 is one too high. A subsequent STORFREE 
for the remaining area will make the concurrency for 240 inaccurate as 
well. With Resource Auditing, the RCB is available to indicate that 
the area is part of a 256-byte block; the concurrency is decremented 
for the 256-byte range and a flag set in the RCB. This causes 
accounting for STORFREEs on this block to be skipped so the eventual 
freeing of the other 240 bytes will not affect the concurrencies. A 
few partial frees will not make a significant difference in the average 
concurrencies, the most important figures. The number of partial frees 
in the ranges corresponding to the pools can be estimated by looking at 
the percentage of "quick frees" in the global statistics; a partial 
free will cause at least one search. Other advantages and restrictions 
are described below. 

5.8.1 SETGLOBE Settings 

The following global must be set in SETGLOBE for Resource Audit 
and Purge: 

&RM SETB 

5.8.2 SPALIST Parameters 

In addition to the previously discussed parameters in Section 
5.7, there are two SPALIST macro parameters applicable to Resource 
Audit and Purge. 

• RCBSINT 

The initial number of RCBs. Although the RCBs are chained 
together, they occupy a single area of storage called the RCB 
table. This permits an efficient sequential scan of all the 
RCBs, minimizes storage fragmentation, and reduces the risk 
of useless page faults under VS. Space for the RCB table is 
obtained the first time STORAGEM is called; this parameter 
indicates how many entries should be created in the table. 
The default is 75. 

5-16 

J 



Chapter 5 

NOTE: 

Resource Management 

The RCB table also contains a pointer to the free-RCB 
chain and the 256-entry thread table, making its 
total length: 

4 + (8*256) + 20*(number of RCBs) 

• RCBSADD 

The number of fresh RCBs to add when space is depleted in the 
RCB table. When the available RCBs are exhausted, space is 
obtained for a new table sufficient to hold this many new 
RCBs, plus all the RCBs in the old table. The contents of 
the old table are moved and the storage it occupied is 
freed. The default is 5. 

The area for the expanded RCB table is acquired via a GETMAIN for 
storage from the subpool area. If space for a new RCB table cannot be 
obtained, Intercomm will abend with a code of 1111. This can be 
avoided by making RCBSINT large enough so relocation of the RCB table 
is not necessary. One of the global statistics is the number of 
relocations (see Figure 5-2); use the figure from the last statistics 
printout to compute the right size for RCBSINT. 

5.8.3 Macro Specifications 

Installation of Resource Auditing mandates the following two 
rules for Assembler Language programs: 

1. To pair STORAGE and STORFREE macros, and LINKAGE and RTNLINK 
macros. If a block of storage is obtained with a STORAGE and 
freed with a FREEMAIN, an abend will occur with an AOA if 
storage was obtained from OS dynamic storage, or a 30A if 
obtained from pools (under MVT) where pool storage is in 
subpool 255. If a pool block under MFT is FREEMAINed, 
RMPURGE will first mark the block free, then later reallocate 
it. But the new owner will destroy the OS free-queue chain 
field and thus eventually cause an abend with a 50A. 
Conversely, if a block is obtained with a GETMAIN and freed 
with a STORFREE, Resource Management will issue a RM013A 
message and program check. LINKAGE and RTNLINK both use 
Resource Management to get and free work areas, so the same 
remarks apply to a LINKAGE followed by a FREEMAIN or a 
GETMAIN followed by a RTNLINK. Of course, a LINKAGE can be 
followed by a STORFREE, etc. In other words do not use 
GET MAIN and FREEMAIN macros. 

An AOA may occur in STORFRED. This almost always means that 
a thread has issued a FREEMAIN for a block of storage 
obtained with a STORAGE or LINKAGE. The thread completes and 
there is still an RCB pointing to the freed area; RMPURGE 

5-17 



Chapter 5 Resource Management 

calls STORFRED to free it and an AOA results. The address of 
the block is in register 9. RMPURGE will issue a thread 
dump: look for an RCB belonging to the thread being purged, 
that is, SMLOG's owner, whose resource address matches 
register 9. The ACQUIRED BY field for that RCB will locate 
the module that obtained the storage. (See Figure 5-3.) 

2. Care must be taken not to leave blocks of storage unfreed. 
In one sense, this rule is relaxed, since acquired storage 
will be freed automatically upon return to the Subsystem 
Controller. On the other hand, an area cannot be left to be 
picked up, used, and freed by another thread--passing areas 
between threads must be done explicitly. This forces 
shielding of the area from the purge routine by attaching its 
RCB to Intercomm's chain, then moving the RCB to the 
receiving thread's chain (performed automatically for message 
queuing) so it will be freed if the receiving thread 
completed abnormally. 

There are two ways to handle this: the RCB can be put on 
Intercomm's chain at the time the area is obtained, by coding 
SYS=YES in the STORAGE macro; however, if there is a chance 
of a program check or time-out before the receiving thread is 
informed where the area is, the area should be obtained in 
the normal way, and later its RCB should be switched onto the 
system chain. The PASS macro is used to do the switching: 

PASS LEN=length,ADDR=address and optionally ,SPAEXT=(r) 

Code the length and address exactly as for STORFREE. 
Programs not linkedited with MANAGER must set up a base 
register for the SPA Extension. In particular, Message 
Collection passes the area containing the message; this means 
that while it is usually safe to do a GETMAIN as long as it 
is paired with a FREEMAIN, storage always has to be obtained 
for a message with a STORAGE. If this is not done, a RM009A 
message and a program check will result because RMPASS will 
not find an RCB for the area. 

The receiving subsystem claims the area with the CATCH macro 
coded just like PASS: 

CATCH LEN=length,ADDR=address and optionally ,SPAEXT=(r) 

NOTE: if the SYS=YES parameter is coded on the STORAGE 
macro and the user wi.shes to free the block while its 
RCB is still attached to the system chain, SYS=YES 
should also be coded on . the STORFREE macro. 
Otherwise, Resource Management will search for the 
RCB sequentially through a11 the RCBs in the table, 
which is inefficient. 

5-18 

J 

J 



Chapter 5 Resource Management 

5.8.4 Linkedit 

MANAGER must be reassembled after SETGLOBE is updated. The SPA 
and SPA Extension must be reassembled if the RCB table size parameters 
are changed. The Intercomm linkedit must inc lude MANAGER, RMNADISA, 
TDUMP and RMPURGE, plus whatever modules are needed to support any 
other Resource Management options chosen (see Section 5.6). 

The MANAGER module supports full Resource Management. If pool 
statisti cs accounting is not required, reassemble with the appropriate 
SETGLOBE globals set to O. 

5.8.5 Enqueue-Dequeue Facility 

In a multitasking on-line system it is sometimes necessary to 
serialize the use of a particular resource (main storage, data set, 
etc.) by allowing only one task at a time to "own" the resource. 

It is also sometimes desirable to limit the number of concurrent 
users of a resource to some predetermined maximum. Both these 
facilities are provided by the Intercomm Enqueue-Dequeue routine (Csect 
name PMINQDEQ) through the use of the macros INTENQ and INTDEQ. All 
control is effected by a resource name of from one to fourty-four 
characters; hence all programs utilizing a particular resource must 
include enqueue/dequeue logic referencing the identical resource name 
and providing the identical length of that name (default=16). A 
time-out control prevents "runaway" exclusive control. The inclusion 
of PMINQDEQ in the linked it is automatic, as it is a required Intercomm 
system routine. Resource Audit and Purge monitors the Enqueue-Dequeue 
facility. 

The following example requests and subsequently releases 
exclusive control of the resource whose ID-address is RESOR, within the 
issuer's region only. The default time-out value from the SPALIST 
(NQTIM parameter) will be used. 

INTENQ RESOR 

INTDEQ RESOR 

The example below requests that all other Intercomm regions be 
prevented from using the resource whose ID-address is in register 1. 
Also, up to five tasks within the issuer's region may share use of the 
resource. There will be no time-out protection. The SHARE parameter 
is not defined for the release request. 

INTENQ (1),SHARE=5,SYSTEM=YES 

INTDEQ (1),SYSTEM=YES 

5-19 



Chapter 5 Resource Management 

5.8.6 Thread Hung User Exit--IOEXIT 

If a nonzero thread program checks or times out (TCTV or Enqueue 
time expires), and the thread is disabled, resource purging is 
suspended. A thread may be disabled because: 

• the last action was a file I/O, Store/Fetch flush, message 
queuing, or message logging request which did not complete 
before the time-out. 

• a dynamically loaded subroutine program checked or timed out, 
and this thread originally caused the load of the subroutine 
(that is, issued the first call/link). 

• a Data Base access interface module disabled the thread 
before starting processing of the data base request. 

• the thread is executing under the general or special sub task 
facility. 

A thread is disabled from resource purging via an internal 
DISABLE macro, and subsequently enabled for purging via an internal 
ENABLE macro. At nonzero thread purge time, if an outstanding DISABLE 
exists, purge processing is halted for the TCTV time of the originating 
subsystem, or until all required ENABLEs are issued (whichever occurs 
first). If the TCTV wait time expires without all necessary ENABLEs, a 
user exit IOEXIT is called (by RMNADISA) if coded and included as 
resident in the Intercomm linkedit. Subsequently, a subsystem disabled 
message (RM016I) is issued, a thread dump is produced, and only enqueue 
waits and outstanding WQEs are purged. 

At entry to IOEXIT, standard linkage conventions are used, with 
register 1 pointing to the SYCTTBL entry for the thread being purged. 
The user exit could be used to issue a PMIWTO to alert the operator at 
the control terminal that one of the above disable reasons could 
degrade Intercomm execution time, such as tying up access to the hung 
resource. Optionally, the subsytems accessing the hung resource could 
be delayed from new executions via the system control command DELY ~ 
Repeated OCQurrences of this situation could be cause to close down 
Intercomm until the problem is resolved via dump/program analysis. 
Particularly, check for Enqueue lockouts, excessive Store/Fetch 
flushing, excessive disk queuing (NUMCL too low for 
terminals/subsystems), VSAM exclusive control waits (Control Interval 
Lockouts), Data Base interregion access waits, etc. 

The TALY,DA command (see System Control Commands) can be used to 
display information about currently active and hung threads. 

5-20 

J 



Chapter 5 Resource Management 

5.9 DEBUGGING AIDS--THREAD RESOURCE AND POOL DUMPS 

5.9.1 The Thread Resource Dump 

This consists of a listing of all outstanding Resource Control 
Blocks (RCBs), broken down by thread. The dump is written by a routine 
called TDUMP onto a SYSOUT data set called SMLOG. Thread dumps are 
taken when a program check occurs and when a thread completes without 
freeing all its resources. One call to TDUMP is from SPIESNAP 
(accompanying a 126 snap); another is in RMPURGE, the routine called to 
purge "leftover" resources. If the thread dump is followed in the 
printout by a pool dump, it was taken by SPIESNAP; if not, it was taken 
by RMPURGE. TDUMP is also called by STAEEXIT to accompany snaps 121 
Clong-term loop control) and 122 (user/system abend), and by PMINQDEQ 
to accompany a snap 114 (enqueue time-out). An RCB for SMLOG will 
always appear at the top of the list of resources of one of the 
threads. (If it does not, storage destruction has occurred in the 
Thread Status Table, entry point TSTATAB, in SYCT400.) The thread 
owning SMLOG therefore had control when the dump was taken. 

TDUMP is called with register 1 pointing to the address of a 
fullword argument~ To dump one thread's resources, the argument is the 
thread number, that is, three bytes of zeros and the thread number in 
the low-order byte. Thread number can be obtained from IJKTHRED (an 
entry in the Dispatcher) which is the label of a fullword field 
containing the currently executing thread number in the low-order 
byte. For example: 

LA R1,=V(IJKTHRED) POINT TO IJKTHRED ADDRESS 
CALL TDUMP 

To dump all the threads, CALL TDUMP with R1 pointing to the address of 
an argument of -1. 

The RCBs are stacked, that is, a thread's most recently acquired 
resource is located at the top of its list and the oldest is at the 
bottom. This is useful in determining what a subsystem was doing just 
before the dump was taken. The contents of the in-line save area 
(INTSAVE) used by STORAGEM and STORFRED provide useful information in 
case of a snap, and is one of the areas snapped in an indicative dump 
(see Chapter 8). In a full snap, use the linked it to find the MANAGER 
module (Csect RSMGMNT), and then look for the literal 'RMSAVE REGS 14 
to 12' in the EBCDIC printing on the right side of the dump. The 
register contents (14-12) begin after the literal; there is no space 
for save area chaining. Register 15 can be checked to see if the 
module was entered at STORAGEM or STORFRED. 

Successful execution of TDUMP requires including IJKCESD and 
IJKWHOIT in the Intercomm linked it (see Chapter 4), and a DD statement 
for SMLOG (see Section 5.7.6). 

5-21 



Chapter 5 Resource Management 

The following explains the thread resource dump in Figure 5-3: 

• THREAD/SUBCODE 

The three-digit thread number, 000-255, in decimal, followed 
by the two-byte subsystem code in hexadecimal. For thread 
000 (the system resource thread), the subcode is meaningless. 

• RESOURCE TYPE 

There are five resource types: CORE, FILE, DDQ, DYNL and 
NQ. For an enqueue resource, the entry will either be 

NQ(OWNER)--thread has control of the resource 

NQ(WAIT)--thread is waiting for control 

NQ(POST)--the ECB for the enqueue has been posted and the 
thread will get control after the Dispatcher transfers 
the corresponding WQE to the execute list 

• ACQUIRED BY 

The Csect name (+ displacement), or the address, of the 
location immediately following a branch-and-link. If the 
resource is an area of storage, it may locate a call to 
ST ORAGEM, a ca 11 to PMILINK2, a P ASS macro or a CATCH macro. 
If the resource is a file, it locates the call to SELECT. If 
the resource is an enqueue, it locates the call to PMINQDEQ 
generated by an INTENQ macro. If the resource is a DDQ, it 
locates a call to QBUILD or QOPEN. If the resource is a 
dynamically loaded subroutine, it locates the issuer of a 
MODCNTRL macro which requested access to the subroutine. 

• SUBPOOL NUMBER 

Either nnn or lCOM. lCOM means the storage was acquired by 
MANAGER from the IntercoDID pools, not dynamic (subpool nnn) 
storage. 

• RESOURCE ADDRESS 

If storage, this is the start of the block. If a file, this 
is the address of the external DSCT; there is usually another 
RCB for an area of storage containing the external DSCT. If 
it is an enqueued resource, this is the address of the 
72-byte resource-ID block obtained by PMINQDEQ. There will 
always be a storage RCB in the thread 000 list containing the 
10 block. Immediately after an NQ(WAIT) or NQ(POST), the RCB 
will be an RCB for a 128-byte work area which is chained to 
the 10 block. If the resource is a DDQ, this is the address 
of the internal Queue Locate Block (QLB). If the resource is 
a subroutine defined in REENTSBS via a SUBMODS macro with the 

5-22 



Chapter 5 

• 

Resource Management 

LNAME parameter, this is the address of that macro's 
expansion in the DYNLSUBS Csect generated within REENTSBS. 

RESOURCE LENGTH 

The length of a storage resource (in decimal). Note that 
this value may be less than LOWLIM if a partial free was done 
from an ICOMPOOL - block (flagged by an asterisk after the 
length value). -

• ICOMPOOL HEADER 

The address of the doubleword control block prefixed to the 
pool block from which the storage resource was allocated. 
Generally, eight less than the resource address, unless part 
of the area has been freed or passed to another thread. 

• ICOMPOOL BLOCKSIZE 

The size of the pool block from which the area was allocated. 

• FILE NAME 

The file ddname. The owner of SMLOG caused the thread dump. 

• DDQ NAME 

The 16-byte DDQ identifier. 

• SUB NAME 

The eight-byte (dynamically loaded) Subroutine (DYNL) 
identifier (defined via a SUBMODS macro--see Chapter 3). 

• NQ/DQ NAME 

The 16 to 44 characters of the identifier passed to PMINQDEQ 
via an INTENQ macro. 

• RCB ADDRESS 

The location of the 20-byte RCB. There are a few things the 
RCB indicates that do not appear in the thread dump. A file 
RCB contains the address of the internal DSCT in a field 
labelled RCBIDSCT. An enqueue RCB has a flag set if it is an 
enqueue on an OS resource, and the address of the enqueue 
ECB is in RCBNQCHN. A storage RCB has a flag set if it is 
left over from a larger area. See the RCB Dsect in any of 
the Resource Management modules for flag settings and offsets. 

Note: the phase IS ACTIVE BUT OWNS NO RESOURCES usually indicates the 
thread is in a CONVERSE wait. 

5-23 



'S
l .... ~
 

'1
 

(1
) 

V
l I W
 . I I-
' 

(1
) >-
i ~
 

(1
) 

I\
) 

V
lQ

. 
I N
~
 

.1
::

'(
1

) to
 o s:: '1
 

()
 

(1
) t:l
I ! -"tI I\

) ~
 
~
 

o ..., w
 

.....
.. 

TI
IR

EA
D

 
R

E
SO

U
R

C
r 

D
lIM

P 

T
H

R
U

O
I 

R
ES

O
U

R
C

E 
Su

nC
oD

E
 

H
P

r-

0
0

0
/0

0
0

1
 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
('I

R
E 

0
0

0
/0

0
0

0
 

C
G

:'!
[ 

0
0

0
/0

0
0

0
 

CO
RE

 
"0

0
/(

1
0

0
0

 
C

oR
E

 
0

0
0

/0
0

0
0

 
rO

R
r.

 
11

00
/0

00
0 

CO
RE

 
0

0
0

/0
0

0
0

 
C

O
R

E 
0

0
0

/0
0

0
0

 
C

O
ll

f 
0

0
0

/0
0

0
0

 
CO

RE
 

0
0

0
/0

0
0

0
 

C
aR

r 
0

0
0

/0
0

0
0

 
C

O
R

E 
0

'0
0

/0
0

0
0

 
C

O
R

f 
O

O
O

IO
O

O
D

 
C

O
R

E 
O

O
U

B
II

O
O

 
C

O
R

E 
00

0/
01

10
0 

CO
RE

 
no

ol
O

O
O

O
 

C
O

R
f 

01
10

/0
00

0 
C

O
R

r 
(1

0
0

/0
0

0
0

 
CO

RF
. 

0
0

0
/0

0
0

0
 

CO
RE

 
0

0
0

/0
0

0
0

 
C

O
R

E 
0

0
0

/0
0

0
0

 
CO

RE
 

0
0

0
/0

0
0

0
 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
C

R
E 

0
0

0
/0

0
0

0
 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
O

R
r 

00
11

/0
00

0 
C

O
R

f 
0

0
0

/0
0

0
0

 
C

O
R

E 
0

0
0

/0
0

0
0

 
cn

R
r 

0
0

0
/0

0
0

0
 

CO
RE

 
0

0
0

/0
0

0
0

 
r.n

R
E

 
0

0
0

/0
0

0
0

 
FI

L
E

 
nO

O
IO

O
O

O
 

CO
RE

 
C

O
O

/D
O

D
O

 
C

O
R

E 
0

0
0

/0
0

0
0

 
CO

RF
: 

0
0

1
1

0
0

0
0

 
C

O
R

r 
IIO

O
/O

O
D

O
 

C
O

R
E 

0
0

0
/0

0
'0

0
' 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
O

R
E 

0
0

0
/0

0
0

0
 

CO
RF

. 
0

0
8

/0
0

0
0

 
CO

RE
 

0
0

0
/0

0
0

0
 

tO
R

F.
 

0
0

0
/0

0
0

0
 

C
O

ftE
 

(1
0

0
/0

0
0

0
 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
O

R
E 

0
0

0
/0

0
0

0
 

C
O

R
E 

O
O

O
/tl

O
O

O
 

C
O

R
f 

0
0

0
/0

0
0

0
 

CO
RE

 
0

0
0

/0
0

0
0

 
C

O
R

E 
0

0
0

/0
0

8
0

 
C

O
R

f 
0

0
0

/0
0

0
0

 
CO

RE
 

~
 

A
C

nU
IR

E
D

 
S

IP
 

RY
 

'/
0

. 

""
P

U
R

G
E

·l
lA

 
IC

"'
" 

rO
IT

C
n

.r
6

 
IC

"'
" 

S
Y

C
l"

L
·,

6
 

IC
O

M
 

B
U
~
I
S
I
"
.
A
2
2
 

IC
O

I'I
 

8
U
"
~
 '
"
.6

3
r
 

IC
n'

" 
8

L
H

"'
·1

2
B

4
 

TC
OM

 
8L

H
tl

T
41

20
4 

IC
O

M
 

B
 U

"S
 1

11
46

:i
£ 

IC
O

M
 

R
L

H
(l

T
41

2S
4 

IC
O

M
 

B
L

H
',T

·1
2S

Il
 

Ic
nM

 
O

LH
 I

 "
.1

8
6

2
 

IC
O

M
 

B
 T

A
"'!

; I
H

.6
3

E
 

IC
O

" 
P

H
IR

[T
R

Y
.f

lA
6 

Ir
O

I1
 

8T
 A

HS
 I

 "
'.6

31
': 

I C
O

" 
8S

C
O

IA
L

·O
D

2 
rC

O
M

 
P
'
'
'
'
'
£
T
R
Y
.
8
A
~
 

IC
O

I1
 

M
SS

C 
O

L
.1

l6
2 

IC
O

M
 

B
L

H
lI

T
.C

I2
 

IC
O

M
 

P
M

I!
:U

O
l2

·F
2

 
IC

O
M

 
P

H
IR

E
T

R
Y

.8
A

6 
IC

O
H

 
"'

S
r.

C
O

L
+

F
80

 
IC

O
M

 
8

L
H

tl
T

·C
I2

 
IC

O
M

 
P"

'I!
C

:U
B

L
2+

F2
 

TC
OM

 
M

S
G

C
O

L
·4

62
 

le
n"

, 
"S

G
C

O
L

·4
6

2
 

le
O

H
 

9T
A

M
S

IM
.6

3£
 

JC
O

'" 
8

L
H

IN
·I

R
F

C
 

n
o

o
 

O
L

H
IN

+
18

62
 

IC
O

M
 

II 
T

A
'lS

 I
M

.6
3

E
 

IC
O

" 
8 

SC
LE

 A
S

[.
A

O
II

 
IC

O
'" 

II
IF

M
O

N
O

I+
3

8
.'

 
IC

O
M

 
8

U
M

S
IH

·C
1

2
 

B
T

A
H

S
II

1H
.3

E
 

IC
O

" 
B

lH
IN

·1
8

6
2

 
tC

O
M

 
M

S
G

C
P

L
·"

2
 

0
0

0
 

M
S

G
C

O
L

H
62

 
0

0
0

 
M

S
G

c
o

l.
"6

' 
0

0
0

 
M

SG
C

O
L

·1
l6

2 
0

0
0

 
M

SG
C

O
L

+4
62

 
0

0
0

 
M

SG
CO

L 
••

 6
2

 
0

0
0

 
"'

S
6C

O
L

·1
l6

2 
0

0
0

 
M

SG
C

O
L

+1
l6

2 
0

0
0

 
M

S
G

C
O

L
·U

,2
 

0
0

0
 

"
S
G
C
O
L
·
4
6
~
 

0
0

0
 

M
S

6C
O

L
+

46
? 

0
0

0
 

M
SG

C
O

L 
•
•
 6

2
 

0
0

0
 

M
S

G
C

O
L

·4
62

 
0

0
0

 
"'

S
G

C
O

l·
1l

62
 

0
0

0
 

"S
G

C
O

".
1l

62
 

0
0

0
 

"'
S

G
C

O
L

.4
62

 
0

0
0

 
P
"
I
S
U
R
L
?
~
2
 

IC
O

H
 

C
.L

L
rD

 
"
' 
R
~
r
U
R
G
[
.
2
4
r
 

R
[
~
f
)
U
A
C
r
 

R
tS

O
U

"C
E

 
IC

O
"P

O
O

L
 

IC
O

M
PO

O
L 

A
I)

D
R

rs
s 

LE
N

!:T
H

 
tl

E
IO

E
R

 
U

L
O

("
K

SI
Z

[ 

15
3C

C
O

 
11

8 
I 5

 ~
C
l
l
n
 

'J
(.

 

1
5

2
F

 3
0 

4
0

 
1

5
2

r2
A

 
6

4
 

15
rE

F
O

 
33

6 
1

5
rr

L
II

 
33

f,
 

1
6

1
[ 

30
 

1
0

4
0

 
1

6
1

[2
8

 
1

0
%

 
1

6
C

4
1

8
 

1
3

0
4

 
16

C
41

n 
1

3
0

4
 

1
5

2
F

7
8

 
11

0 
I 

5
2

r 
1

0
 

M
 

1
"1

7
"0

 
3

6
0

 
U

17
51

1 
3P

4 
I"

 IJ 
')0

 8
 

1
3

0
4

 
1

6
"9

0
0

 
1

3
0

4
 

15
20

11
0 

.8
 

1
5

2
0

7
8

 
M

 
1

5
3

2
9

/l
 

~
6
 

15
32

'1
0 

"
6

 
1

5
6

5
8

8
 

2
2

4
 

15
65

11
0 

2
2

4
 

I"
 O

[ r
 0

 
1

3
0

4
 

I6
A

H
O

 
1

3
0

4
 

15
71

C
O

 
I
'?

· 
1

5
7

1
B

8
 

2
5

('
 

I,
.·

"H
 8

 
1

3
0

. 
16

"1
.1

10
 

I.
U

Il
 

1
5

1
5

M
 

2
5

6
 

1
5

7
5

.8
 

2
5

6
 

1
5

7
1

£
.0

 
1

5
2

-
15

11
11

ft
 

;>
56

 
1

5
5

C
0

8
 

1
8

4
 

15
5C

O
O

 
1

9
2

 
15

63
81

1 
2

2
. 

15
"3

B
lI

 
'2

4
 

1
5

4
£

6
8

 
1

2
0

 
1

5
U

6
0

 
1

2
8

 
1

5
7

2
9

8
 

8
8

· 
15

72
'1

0 
2

5
6

 
15

51
\1

10
 

11
14

 
15

5A
18

 
lq

2
 

15
61

£1
1 

22
4 

1
5

6
1

£
0

 
2

2
' 

15
4£

E
O

 
1

2
0

 
1 !

IU
D

" 
1

2
8

 
1

6
6

6
0

0
 

1
2

8
· 

16
65

F
II

 
9

6
0

 
16

88
E

II
 

1
0

3
2

" 
1

6
8

B
E

D
 

12
11

0 
1

6
9

5
F

8
 

1
3

0
. 

1
6

9
5

ro
 

13
01

l 
1

0
0

5
6

0
 

2
4

6
4

 
15

6C
C

8 
22

4 
15

6C
C

O
 

22
4 

IH
E

5
1

1
 

I 
!I 

0"
 

I6
C

E
5

0
 

1
3

0
4

 
1
~
J
1
C
O
 

34
4 

1
6

1
1

8
8

 
3

5
2

 
1

5
3

5
1

0
 

8
8

 
1

5
3

5
6

8
 

9
6

 
1

7
5

 D
E 

0 
lI

ol
A

18
 

13
01

l 
lU

A
U

 
1

3
0

. 
15

67
51

1 
2

2
4

 
1

5
6

1
5

0
 

2
2

4
 

1 
DI

I (
,11

0 
3

0
. 

1
0

H
Il

0
 

3
0

. 
10

41
)E

O
 

30
1l

 
1

0
4

0
.0

 
30

4 
1

0
1

l"
'0

 
30

1l
 

10
4C

71
1 

3
0

. 
1

0
3

6
1

0
 

3
0

. 
1

0
3

1
5

0
 

30
4 

10
32

1'
0 

30
4 

1
0

3
3

0
0

 
30

4 
10

34
£1

1 
3

0
4

 
10

31
11

0 
3

0
4

 
IR

FO
O

O
 

3
0

" 
10

31
11

0 
30

4 
10

3"
A

O
 

3
0

. 
10

31
\0

0 
3

0
4

 
15

5:
:'9

8 
1

2
0

 
10

;5
29

0 
12

'1
 

l,
 

T
I
H
r
:
I
~
.
3
~
.
1
0
.
 
D
A
T
E
=
I
I
3
.
0
1
~
 

F
IL

E
/D

O
Q

/S
U

B
/N

Q
/O

n 
R
C
~
 

NA
M

E 
A

D
D

R
ES

S 

19
C

O
[I

J 
I"

'C
3

8
6

 
I "

C
f,

B
 0

 
19

C
4F

A
 I

 
'''

C
6

2
4

 I
 

19
C

!'I
4f

1 
I 

I "
C

6
6

 0
 

1
9

C
1

2
4

 
19

C
26

4 
Iq

p
H

 0
 

l'
B

U
II

 
19

1"
'C

8 
I'

JC
IB

O
 

1
9

C
2

5
0

 
I"

C
Il

8C
 

19
C

3(
1'

 
19

B
04

11
 

1 
98

92
C

 
I 

"C
 7

18
 

I 

19
C

6C
Il

 
),

IC
"O

O
 

19
C

39
0 

1 
Q

8
'6

8
 

19
C

64
C

 
19

C
5F

C
 

19
C

 l
E

C
 

I 
'
l
O
A
~
 8

 
I'

B
E

8
8

 
I 
'c

"
"
o

 
19

C
21

11
 

19
U

E
 5

" 
C

PU
03

 
19

85
8(

1 
19

C
43

0 
"C

O
A

C
 

1
9

C
U

C
 

19
C

Il
58

 
I '

IC
 n

c
 

I'
C

7
H

 
1 

'8
!'

15
8 

I'
C

 1
61

l 
I'

C
6

E
C

 
1

9
C

5
7

0
 

1 
'l1

l8
C

 0
 

.,
C

O
F

e 
I9

C
50

C
 

1
9

C
Il

n
 

19
B

E
 7

C 
19

8F
6C

 
19

C
63

R
 

I'
1C

18
8 

19
C

 3
1

8
 

~
 

o ! c+
 

~ V
l 

~
 

(1
) 

to
 

o s:: '1
 

(
)
 

(1
) x ~ I\
) i (1
) ::s c+
 



..., .... ~
 ..., (D
 

\1
1

 
I W
 . ; '0
 

.....
 

(D
 

I-
i 

0
- ..., (D
 

I»
 

\1
1

0
. 

I N
~
 

\1
1

(D
 

CA
 o c: ..., C

) 
(D

 

~
 

~ '0
 

""
' 

."
 

I»
 

~
 

N
 o ..., w
 

'-
' 

r'
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
Ix

rM
O

N
O

I·
3

'U
" 

fl
O

O
1

0
0

0
0

 
C

O
R

E 
r 

M
 I 
';

IJ
O

l2
 .
"
"
 

0
0

0
1

0
0

0
0

 
C

O
R

E 
I 
I
I
F
"
'
O
N
O
I
.
~
/
I
"
"
 

0
0

0
/0

0
0

. 
C

O
R

r 
""

U
S

1
"R

T
.3

3
0

 
0

0
0

/0
0

0
0

 
C

O
R

r 
P
I
I
I
I
~
u
n
l
2
+
n
"
 

0
0

0
1

0
0

0
0

 
C

O
R

E
 

P
"
'
<
:
U
"
L
~
+
R
"
 

(l
O

O
IO

O
O

D
 

fi
L

E
 

G
fD

R
IY

[R
+

U
, 

0
0

0
/(

1
0

0
0

 
F

IL
E

 
lI

T
A

 ..
 S

 .
..

. 
~
C
6
 

0
0

0
 l
o

o
n

 
fi

L
E

 
8 

TA
O

IS
 J

II'
 +

 3
C

 I;
 

O
O

O
IO

D
O

O
 

F
IL

E
 

.n A
M

S 
1

"+
 3

C
6

 
0

0
0

/0
0

0
0

 
F

lU
: 

l
\
U
"
'
S
I
"
'
+
~
C
6
 

9
0

0
/0

0
0

0
 

F
lU

 
B

U
"
S

I"
'+

3
C

6
 

0
0

0
1

0
0

0
0

 
fi

L
E

 
B

U
"l

S
I"

+
3

C
6

 
0

0
0

/0
0

0
. 

n
u

: 
B

T
,,

!1
S

I"
.3

C
6

 
(1

0
0

/0
0

8
8

 
f
l
l
[
 

8
T

"
"
S

I 
..

 ·;
\C

6
 

0
0

0
/1

1
0

0
0

 
F

IL
E

 
8

U
M

S
I 
..

. 
3

C
6

 
O

O
O

IO
O

D
D

 
F

IL
E

 
II 

""
4

S
 J

 1
II

.3
C

6 
0

0
0

/0
0

1
1

0
 

F
IL

E
 

8
U

M
S

' .
. ·

3
C

6
 

0
0

0
/0

0
0

0
 

F
ll

t 
II

T
""

S
II

II
·3

C
6

 
0

0
0

/0
0

0
0

 
fI

L
E

 
8 

"
''
'S

 .
"
. 

3
C

6
 

0
0

0
/(

1
0

0
0

 
F

IL
E

 
8

"
''
'I

5
1

''
·3

C
6

 
0

0
0

/0
0

0
0

 
f
il

E
 

B
U

M
S

1
"·

:,
\C

6
 

0
0

0
/0

0
0

0
 

r 
JL

E
 

8T
A

I1
S

1 
..

 ·3
C

6
 

0
0

0
/0

0
0

0
 

F
IL

E
 

8 
TA
~'
S 

1M
 +

 3
C

" 
0

0
0

/0
8

0
0

 
C

O
R

E
 

8
U

M
S

 I
M

+
ao

 
0

0
0

/0
0

0
0

 
C

O
R

E
 

P
"J

!;
U

B
L

2
+

R
" 

0
0

0
/0

0
0

0
 

C
O

R
E

 
P
"
1
S
U
A
l
?
·
8
~
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
Il

If
H

O
N

0
1

+
3

1
1

f2
 

O
O

O
/O

O
U

O
 

C
O

R
E 

Il
Ir

l'l
O

N
O

 1
.3

8
"
"
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
IX

f 
H

O
N

I) 
1

+
3

8
r2

 
0

0
0

/0
0

0
0

 
C

O
R

E
 

I
X
F
'
I
0
~
n
l
+
3
8
A
"
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
II

IF
"O

N
O

 1
+

3
1

1
r2

 
0

0
0

/0
0

0
0

 
C

O
R

E
 

"
"
"
O

N
0

1
+

3
"
"
"
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
D

O
G

fR
A

N
S

+
5

0
" 

0
0

0
/0

0
0

0
 

C
O

R
E

 
O

O
Q

T
R

A
N

5
·5

0
4

 
o

o
o

ln
o

o
o

 
C

O
R

E
 

D
O

Q
T

R
"N

S
+

5O
" 

0
0

0
/0

0
0

0
 

C
O

R
E

 
Il

IF
"O

N
0

1
+

3
8

f2
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
I 

I(
""

O
N

O
 l
+
3
l
\
A
~
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
IX

F
1

1
0

N
0

1
+

3
A

F
2

 
O

D
D

/D
O

D
O

 
C

O
R

E
 

J 
Jl

f 
H

O
N

O
 1

+
38

11
4 

0
0

0
/0

0
0

0
 

C
O

R
E

 
I 

lC
"'

1
0

N
O

I+
3

8
F

2
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
IX

F
I'

IO
N

O
I+

3
8

A
" 

O
O

O
IO

O
G

O
 

C
O

R
E

 
II

IF
"O

N
O

I+
3

8
F

2
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
J 

II
F"

'O
N

O
 1

+
3

1
"
"
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
IW

fH
O

N
O

I·
3

8
F

2
 

0
0

0
/0

0
0

0
 

C
O

R
E

 
J
J
1
F
~
O
N
n
l
+
:
'
I
R
A
"
 

0
0

0
/0

0
0

0
 

F
IL

E
 

S
T

u
n

Y
U

H
1

2
 

0
0

0
/(

1
0

0
0

 
F 

Il
£

 
S 

T
u

n
Y

L
'.

'"
 2

 
0

0
0

/0
0

0
0

 
F

IL
t 

S
T

U
n

V
l '

+
4

1
2

 
0

0
0

/0
0

0
0

 
F

IL
E

 
5

T
U

:l
V

lY
+

4
1

2
 

0
0

0
/0

0
0

0
 

F
IL

E
 

S
lU

O
V

lY
+

"1
2

 
0

0
0

/0
0

0
0

 
F

IL
E

 
ST

U
II

V
L

 '+
4

1
2

 
0

0
0

/0
0

1
1

0
 

F
IL

E
 

S
T

U
O

V
U

·"
1

2
 

0
0

0
/0

0
0

0
 

F 
Il

£
 

S
T

U
'l

V
lY

+
"1

2
 

0
0

0
/0

0
0

0
 

F
IL

E
 

S
T

U
'l

Y
L

'+
4

1
2

 
-

-
-
-
-
-

-
-
"
.
_

-
-
-
-
-
-
-
-
-

I C
 fI 

..
 

1
C
;
~
"
3
"
 

I C
,,

" 
1

,)
5

f 
3

0
 

IC
O

II
II

 
1

5
3

 t 
CI

I 
0

0
0

 
IR

9P
R

I)
 

,,:
:0

 .. 
1

5
"
U

8
 

IC
rl

l1
 

1
5

5
(1

4
" 

1
1

7
£

1
1

" 
1

7
""

A
O

 
1

1
4

 ''
J1

t 
IH

A
2

0
 

1
1

"'
1

4
8

 
IH

C
IR

 
1

1
4

6
3

0
 

'1
7'

11
')1

1 
1

1
4

C
6

0
 

1
1

!l
0

9
8

 
1

7
1

1
0

8
8

 
1

1
4

0
0

0
 

1
1

4
6

1
8

 
1

1
"
9

0
8

 
I1

H
F

O
 

I1
4

O
C

8
 

1
7

4
6

C
O

 
1

1
"8

8
R

 
IC

O
 ..

 
1

1
4

5
"0

 
te

O
M

 
1

5
"
"
"
0

 
IC

O
M

 
16

26
1:

10
 

lC
1)

1I
I 

1
5

2
"(

1
8

 
IC

Il
 ..

 
1

5
3

0
r8

 
It

O
 ..

 
IS

2
"
6

0
 

IC
O

" 
1
5
~
3
8
1
1
 

H
~
O
"
 

1
5

2
"3

1
l 

IC
"
"
 

1
5

"3
3

0
 

IC
O

H
 

1
5

3
0

2
8

 
IC

O
I1

 
1

6
"5

2
1

1
 

I 
C

O
 ..

 
1

6
3

9
8

0
 

IC
O

H
 

1
5

"
"
'0

 
IC

O
 ..

 
1
5
"
~
A
R
 

IC
O

" 
1

5
2

3
[8

 
1 

C
O

 ..
 

1
5
~
2
2
0
 

lC
O

H
 

1
5

2
3

C
O

 
Ic

n
 .. 

1
5

4
1

 'I
I 

Je
O

M
 

1
5

2
3

9
8

 
IC

O
M

 
1

5
4

0
8

8
 

I 
C

""
 

1
5

2
3

1
0

 

JC
""

 
1

5
4

1
1

0
 

lA
H

C
C

 
1

8
[ 

"D
C

 
1

(,
[o

;[
C

 
1

0
rO

F
C

 
IO

O
C

 D
C 

1
8

0
1

lC
 

1
8

0
2

2
C

 
IR

C
0

3
C

 
IA

C
R

"C
 

(
' 

"
6

 
1

5
3

"3
0

 
<

J(
. 

20
R

 
1

5
5

F
2

8
 

2
2

" 
9

6
 

1
5

3
tr

.0
 

9
6

 
1

"2
0

 
1

1
2

 
1 
5

"
"
t 

0 
1:1

11
 

I" 
" 

10
;5

11
"0

 
I"'

'' 

3
1

0
"
 

1
1

4
5

3
9

 
3

2
6

"
 

1
2

R
 

1
5

H
3

R
 

1 
?A

 
3

9
2

 
1
6
~
U
I
I
 

"""
 

3
2

 
1

5
2

"
"
0

 
3

2
 

8
8

 
1

5
3

0
fO

 
9

6
 

3
~
 

1
'5

2
"5

8
 

3
2

 
1

0
" 

1
5

"
3

8
0

 
t2

A
 

3
2

 
1

5
2

"
3

0
 

3
2

 
1

0
" 

1
5

4
3

2
"
 

1 
2

8
 

9
6

 
1

5
3

0
2

0
 

q
6

 

"0
0

 
1

6
"
5

2
0

 
6
~
0
 

5
1

6
 

1
6

3
9

1
8

 
51

1;
 

3
2

 
1

0
;2

"0
8

 
3

2
 

10
" 

1
5

"2
A

O
 

12
11

 
3

2
 

1
5

2
3

£
0

 
3

2
 

1
0

4
 

1
5

"
2

1
8

 
1

2
" 

3
2

 
1

5
2

3
8

8
 

3
2

 
1

0
4

 
1

5
4

1
9

0
 

12
1!

 
3

2
 

1
5

2
3

9
0

 
3

2
 

1
0

" 
1

5
"
0

"
0

 
1

2
 I!

 
3

2
 

1
5

2
3

6
8

 
3

2
 

1
0

" 
1

5
"
'0

"
 

I 
21

1 

C
H

IN
 

P
"U

L
t 

N
II

K
O

I 
S

H
0

2
 

o
G

u
n

l 
C

H
I0

2
 

C
N

T 
01

 
IN

 11
0 

') 
L

O
N

D
I 

C
P

U
0

2
 

C
IN

O
l 

C
H

IO
I 

N
Y

C
(l

2 
l 

"X
O

 I
 

P
"R

O
I 

R
O

 ..
 O

l 
P

H
L

0
3

 
8

0
S

0
1

 

IN
l[

R
L

O
G

 
IN

T
E

R
L

O
G

 
IN

T
E

R
lO

G
 

IN
T

[R
lO

G
 

IN
T

[R
L

O
G

 
IN

T
E

R
lO

G
 

IN
H

R
L

O
G

 
IN

H
R

L
0

6
 

IN
H

R
L

O
G

 

(
' 

1 
<o

r 
01

11
 

1
9

0
 ('

91
1 

1
9

0
('

0
" 

1
9

8
6

8
"
 

1
9

0
6

5
C

 
l'

JE
I"

""
 

1
9

1
1

"'
0

 
1

9
0

6
3

4
 

1
9

8
6

0
C

 
1

9
8

5
F

 IJ
 

1
"l

1
I5

E
."

 
1

"8
5

0
(1

 
1

9
8

5
8

t 
1

9
8

')
"8

 
1

"
8

5
9

"
 

19
E

15
6C

 
1 

'J
1

l5
""

 
1

9
8

5
3

0
 

n
0

5
lC

 
1

9
R

5
0

8
 

1
9

8
4

F
" 

1
9

8
"E

O
 

1 
9
8
~
C
C
 

1
'J

8
"8

8
 

1
9

8
"5

4
 

1
9

R
"9

0
 

1
9

8
" 

lC
 

1
9

6
3

1
8

 
1

9
8

2
"0

 
J 

9
8

3
F

O
 

1
9

8
3

0
C

 
1

9
8

3
t8

 
1

"
8

3
8

"
 

1
9

8
3

6
"
 

1
9

8
2

1
1

8
 

1
9

8
2

1
4

 
1

9
8

3
5

0
 

1
9

8
3

3
C

 
lq

A
3

2
8

 
1

9
8

3
1

4
 

1
9

8
3

0
0

 
1 

'J
1\

2£
 C

 
1
9
8
~
O
8
 

1
9

8
2

C
" 

1
"
8

2
8

0
 

1
9

8
2

'C
 

1
9

1
\2

4
C

 
1

9
8

2
3

8
 

1
"
~
2
2
"
 

1
9

8
2

1
0

 
1

9
8

1
fC

 
19

11
1E

8 
1

9
8

1
0

"
 

1 
<J

81
C

 0
 

1
9

8
1

A
C

 

Ii '0
 , ..., \1

1
 

~
 

(D
 

CA
 o c: ..., C

) 
(1

) f ::s I»
 

()
:I

 
(D

 a (1
) ::s ('
t'

 



(1
0

0
/0

0
0

0
 

f"
1

l[
 

S
T

U
n

Y
ly

· .
..

 ?
 

If
lO

5
C

 
0

0
0

/0
0

0
0

 
F

IL
[ 

ST
U

n
Y

lY
.4

1
2

 
1

1
1

0
r6

C
 

0
0

0
/0

0
0

0
 

F
IL

E
 

5 
TU

O 
V

l Y
* 

4 
I 2

 
lo

n
'H

C
 

0
0

0
/0

0
0

0
 

CO
RE

 
S

T
U

I)
V

lY
·1

22
2 

01
10

 
JI

'lF
I 
4 

C
 0 

0
0

0
/0

0
0

0
 

C
O

R
E 

I 
XF

 1
10

NO
 I

. 3
R

 A
4 

IC
O

I1
 

15
3U

oo
 

"I
] 

0
0

0
/0

0
0

0
 

C
O

R
E 

U
S

K
S

T
R

T
.6

4
 

IC
O

I1
 

15
E

<
;5

0 
~
.
 

~
 

oo
nl

O
O

O
O

 
C

O
R

f 
JX

fF
A

R
·I

IR
8

 
Ic

n
l1 

1
5

2
0

4
0

 
0

0
0

/0
0

0
0

 
CO

RE
 

IX
£I

II
O

N
O

I·3
I1

A
4 

Ic
nl

1 
IS

2F
C

O
 

'1
 

(1
) 

01
10

l1
l0

00
 

C
C

R
f 

JI
IF

M
O

N
O

 I
. 
~
R
 A

4 
le

O
I1

 
1

5
4

0
0

0
 

0
0

0
/0

0
0

0
 

C
O

PE
 

ST
O

S 
TA

R
T+

 1
£

 
IC

O
I1

 
1

5
5

5
4

0
 

U
1 I W
 . en
 ; 

(1
0

1
/0

0
0

 
IS

 
A

C
T

IV
E

 
A

t'lT
 

I)I
IN

S 
NO

 
R

fC
:O

II
P

C
rS

. 
'0

 .... 
0

0
2

l0
0

C
" 

F
IL

E
 

T
D

U
14

r·5
A

 
15

0A
"4

 
(b

 
0

0
2

l0
0

C
, 

C
O

R
r. 

S
Y

C
T

R
l·

1
2

1
? 

IC
O

I1
 

1
5

3
F

,"
 

>-
J if
 

(b
 

I»
 

U
1 

0
-

I I\
):

:d
 

~
(
b
 

00
"'

C
C

JC
3 

C
O

R
r. 

IC
I1

T
S

T
.1

6 
IC

O
I1

 
15

3U
90

 
to

 
0 s:::

 
'1

 
(
)
 

(b
 

tI
 

C
U

R
R

EN
T 

N
U

I1
0E

R 
O

F 
U

N
U

SE
D

 
R

C
B

"S
 

=
 0

11
1 

s::: a '0
 

'"
' 

."
 

III
 

O
Q

 
(b

 

w
 

0 ..., w
 

~
 

15
1"

,,,
 

96
 

15
30

R
8 

~
0
4
 

1 
"E

5
U

 
40

 
15

21
13

8 
9(

' 
1
5
~
F
 8

A
 

10
4 

15
3F

F
 8

 
lfo

O
 

l"
i5

53
11

 

11
0 

IS
"f

9
0

 

"
6

 
15

30
11

8 

«.
 

IN
 t

IC
 A

TE
 S

 
TH

 '
"
 

L 

IN
T

£R
lO

G
 

1
9

1
1

1
'"

 
IN

T
[R

lO
G

 
1 

q
p

 11
1 4

 
IN

T
E

R
lO

G
 

.,
8

1
1

1
1

 
1

9
0

0
1

4
 

9
6

 
1
9
~
I
S
C
 

30
4 

1
9

8
1

H
 

M
 

IC
J8

12
0 

96
 

19
1\

1 
DC

 
I 

21
1 

I
Q

8
0

r:
8

 
16

0 
lC

JR
IIO

O
 

0
2
2
~
 

R
fS

O
U

R
C

E
S 

O
IlN

EO
 

BY
 

T
H

IS
 

T
H

R
E

A
O

. 
(1

06
11

15
6 

O
Y

T
[S

 
O

f 
H

A
IN

 
ST

O
R

A
G

E
. 

03
1 

F
IL

E
S

. 

SI
1l

0G
 

1
9

,.
'4

0
 

9
6

 
I"

B
8

f 
0 

0
0

0
2

 
R
[
S
~
U
R
C
E
S
 

O
IlN

[O
 

BY
 

T
H

IS
 

T
H

R
[A

O
. 

O
O

O
O

O
RO

 
8Y

T
E

S 
O

F 
I1

A
IN

 
ST

O
R

A
G

E
. 

~
O
l
 

F
IL

E
S

. 

%
 

IC
J8

R
A

O
 

00
01

 
R

[S
O

U
R

C
E

S 
OW

NE
D 

BY
 

T
H

IS
 

T
H

R
[A

D
. 

0
0

0
0

0
9

6
 

R
Y

TE
S 

O
F 

~
A
I
N
 

ST
O

R
A

G
r.

 

• 
PA

R
T

IA
L

 
FR

EE
 

"A
S

 
B

EE
N

 
D

O
N

[ 
ON

 
T

H
IS

 
R

lO
C

K
' 

L 

0 ::r
 

II
I 

'0
 

ci
" 

(b
 

'1
 

U
1 

::
d 

(D
 

to
 

o s::: '1
 

(
)
 

(b
 ~ II

I 
O

Q
 m
 

(1
) ::s ci
" 



Chapter 5 Resource Management 

5.9.2 Status of Intercomm Administered Storage (Pool Dump) 

This is produced by a call to POOLDUMP. There are no parameters 
for the call, as with the thread dump. POOLDUMP is written onto 
SMLOG. Currently, the only time a pool dump is taken is after a 
program check; the call is in SPIESNAP following the call to TDUMP. 
Figure 5-4 illustrates part of the output from POOLDUMP. 

The pool dump consists mainly of a block-by-block listing of the 
status of the Intercomm pools. It also includes the status of the 
storage cushion (if it is released, the SPAHOLD switch is set and no 
new threads are started) and the address of the RCB table. The latter 
information may be useful in examining the free-RCB chain. The 
location of the top RCB in the free chain is the first fullword in the 
RCB table. It is given as a halfword offset (divided by 4) from the 
start of the table. The length of" the freed resource is a fullword 8 
bytes into the RCB, followed by the resource's address and the address 
of the call that acquired it. However, RCBs are taken from the top of 
the free chain as well as returned there, so the one at the top of the 
chain may have been freed for some time. 

If any of the addresses appear strange (such as 404040 or 
BBBBBB), that is a good indication that storage destruction has 
occurred (possibly by the owner of the preceding pool block). RMINTEG 
processing (see Section 5.7. 1) or the TRAP module (see Messages and 
Codes) may be used to find the culprit. 

Finding the Dynamically Loaded Pools 

Under Release 9 of Intercomm, pointers to all pool VCONs (address 
of ICOMPOOL CSECT, etc.) are located in the SPAEXT. (Under earlier 
versions, they were located in MANAGER). Thus, if the addresses of 
these items are required in debugging a snap, the fullwords located in 
the SPAEXT which are listed below contain the addresses of the entry 
points listed at the right: 

===================================== 
SPAEXT Label 

--------------------------------------------------------------------------
SEXICMPL 
SEXPOOLN 
SEXICMCH 
SEXICMNX 
SEXPOOLA 

------------------------------------------------------------------
ICPOOLxx Csect 

------------------------------------------------------------------
ICOMPOOL 
POOLEND 
ICOMCHN 
ICOMINX 
POOLACCT 

Note: When ordering resident pool Csects, the above order may be used; 
POOLEND must be ordered immediately after ICOMPOOL. 

5-27 



Chapter 5 

STaTUS OF INTERCOMM aDMINISTERED STORaGE 

r204~-~'Tr STORaGE CUSHION hOT RELEaSED. 
CUSHlo~ ADDRESS = 11'1A~ 
PCA TlBlE aT 19A888. LENGTH = 10052 ~'TfS. 

4~O TOUl ReBS. 
170 rUE RCBS • 

• "USER ~~OL. RLJCKLfNGTH = "~3~. 
qlOCK IN USE. HEADER LorATIO~ = 161758 
THRElD/~S = 0/0000. SUABLnCK ADDRrss = 161760. Lr~GTH = 

H TOTAL BLOCK~ • 
.. FR(£ BLOCI(S • 

••• U~[R POOL. BlOCKLrNGTH = 00.4P 

Al~CK IN USE. HrADER LoraTtoN = !6~~A8 
THP[lO/SS = 0/0000. ~IBAlOCK aDDR~5S = 1~~~«O. lEN~T~ = 

Rl'CK IN USE. H£AOE~ lorATlnN = 162C"0 
THREAD/~S = O/O~OO. SUABLOCK ADDRfSS = 162C08. L[NGTH = 

f. TOTAL BLOCKS. 
4 FAEE I!LOCK!: • 

••• USER POOL. BLOCKL£NGTH = 00512 

- TOTAL RLOCKS. 
4 FPEE I!LOCKS • 

••• USER PJOL. 8LOCKLEN;TH = 00576 

RlOCK IN USE. HEADER LOCATION: 163978 
THP[AD/SS = "0000. SUBBLOCK ADDPESS = 163980. Lr.NGT~ = 
"LOCK IN U~E. HElOrR LOfATION = 163£08 
T"RUO/~S = a/o~co. SUABLOCK AOORES5 = 163[10. LENGTH 

• TOTAL FlLOCI(<;. 
2 FRrE flLOCKS. 

•• • US [R POOL • BlOCI(l£NGT~ = 00640 

I!L(lCK IN U5E. HE A Of R LOCATION = 16452~ 
THRUDISS = 11/0000. SlIBBL OCK ADlIRE: SS 

ALOCK IN USE. HI' A D£ R LOC AT ION = 1647A 8 
THR£ aD/5S = 01"000. SUBBl (JCK lOORrss 

~LOCK IN USE. HEaDER LocaTION = 16~A3~ 

= 164528. LE:NGTH 

= 1647fl O. LE:NGT H 

= 

= 

THREAOISS = ~/onoo. SIlflBLOCK ADDRESS = 16 .. 38. LENGTH = 

4 TOTAL BLOCKS. 
1 FREE RLOCkS • 

•• ·USER POOL. OLOCKLrNGTH = 0070. 

~ TOUl FlLOCK~. 

:> FREE BLOCkS • 

••• USfR POOL. RLOCKlE:NGTH = 00768 

BLOCK IN U~E. "EADrR LOCATION = 165~4B 
THRflO/~S = 0/0000. SU86LOCK aDDRrsS = 165250. LENGTH = 

RLOCK IN USE. HElDrR LO~lTION = 1~55~" 
T~READ/55 = "/0000. SuB8LOCK ADDRESS = 165558. LENGTH = 

2 TOTAL RLOCKS. 
o FREr SLeCKS. 

Resource Management 

440. RCB nFFS£T = OOOCB4. GOT BT lAr5D[ 

576. pca OFFSlT = 0009~C. ;nT BY ll9B3~ 

5~8. PCA "FFS!:T = 0011~8. GOT ~Y IA07!C 

600, PCI! OFFSET = 000900. GOT BY 1A?B~4 

600. RCB OFfSET = 001A08. 60T BY 1~3~q( 

600. PCB OFFSET = 0017a4. ;OT 8' Il157A 

76&. RCR OFFSET = 001410. GOT BY 1.7514 

168. RCB OFFSET = 000054. GOT BY 131 9 b4 

Figure 5-4. Sample Pool Dump 

5-28 

J 

J 



Chapter 6 

FILE HANDLER SPECIFICATIONS 

6.1 INTRODUCTION 

The Intercomm File Handler provides data management facilities of 
the operating system to all user processing programs. Only external 
data management planning (data set organization and processing 
techniques) is required by the user. Internals are handled entirely by 
the File Handler. 

The general purposes of the File Handler are to eliminate all the 
required input/output programming within those application programs 
functioning in the on-line system, and to coordinate all concurrent 
requests for input or output operations from the on-line programs. An 
I/O operation is requested by simply calling a File Handler service 
routine. 

When a request for an input or output operation is received by 
the File Handler, the appropriate control blocks are generated, the 
operation is started and other programs in concurrent execution are 
allowed to continue operation. The File Handler provides overlap of 
I/O operations via the Intercomm Dispatcher (Event Queue). It is the 
interaction of the File Handler and the Dispatcher that provide 
Intercomm's multithreading facility within application programs and/or 
Intercomm programs during data set I/O operations. 

In general, the functions performed by the File Handler provide: 

• All I/O operations against on-line system data sets under 
monitor control 

• Total overlap of all I/O operations with on-line application 
program processing 

• I/O error analysis and simplified reporting of errors to the 
application programs 

• Detection of errors which would otherwise cause abnormal task 
termination 

• Elimination of opening and closing of data sets at each 
execution of an on-line processing module 

• Exclusive record (or file) control preventing simultaneous 
record updating 

6-1 



Chapter 6 File Handler Specifications 

• Simplified linkage and 
considerations, control 
processing programs 

removal of 
blocks and 

all data management 
exit routines from 

6.2 ACCESS METHODS 

All supported data set organizations (sequential, direct, keyed) 
and processing techniques (by logical record, by physical block, 
indexed sequential, random) are available to programs written in any 
language which may execute under Intercomm. Any data base structure 
may be accessed either directly by the user, or through the Intercomm 
File Handler. There is, therefore, no restriction imposed upon 
interfacing with any supported or unsupported (EXCP or BPAM) access 
methods. 

The following access methods are supported by the File Handler: 

• VSAM--Virtual Storage Access Method (KSDS, ESDS, RRDS) 

• BDAM--fixed and variable length (keyed/non-keyed) 

• BSAM--fixed, variable and undefined length 

• QSAM--fixed, variable and undefined length 

• BISAM--fixed and variable length 

~ QISAM--optionally treated by File Handler as BISAM 

• CFMS--IBM's Chained File Management System (see Section 6.13) 

~ IAM--Innovation Access Method 

• DISAM--Intercomm-developed and supplied access method 

• AMIGOS--Comress-developed access method 

While partitioned data sets are not supported, an individual 
member may be processed as a sequential data set. 

6.2.1 QISAM via BISAM 

ISAM support may optionally function for QISAM via BISAM, which 
is essentially transparent to the application programmer. QISAM 
requests may be coded (GET, PUT), but the File Handler will operate as 
if they were made for BISAM, eliminating multiple DCBs and reducing the 
range of exclusive control. A large core reduction is realized upon 
elimination of QISAM routines and the associated channel program and 
I/O areas. See Sections 6.2.8 and 6.4.5 for further details. 

6-2 

J 

J 

J 



Chapter 6 File Handler Specifications 

6.2.2 VSAM and VSAM/ISAM Compatibility 

The VSAM access method of VS is fully supported through the File 
Handler in a manner which allows most existing ISAM files accessed by 
subsystems through the File Handler to be converted to VSAM files with 
no modification to the subsystems. New VSAM functions which did not 
exist in ISAM are also supported by the File Handler for use by newly 
developed application subsystems. 

6.2.3 lAM 

An interface with lAM, a transparent replacement access method 
for ISAM (using BDAM files), developed by Innovation Data Processing, 
Inc., is provided within the File Handler. AMlGOS and DISAM may not be 
used in the same region, but ISAM can be used. To implement Intercorom 
support, set &lAM in SETGLOBE to 1 and reassemble IXFHNDOO, IXFHNDO 1 , 
IXFQISAM, IXFFAR, ICOMCESD and IJKCESD. 

6.2.4 DISAM 

The File Handler provides support for DISAM, an Intercomm
supplied access technique consisting of ISAM index files and one or 
more BDAM data files, both of which are fixed or variable length. In 
addition, the data files can be referenced by either relative block 
number (RBN) or by relative track (TTR). (This support is described in 
Section 6.12.) DISAM and lAM should not be used in the same lntercomm 
region. 

6.2.5 AMIGOS 

An interface with AMlGOS, a replacement access method for ISAM, 
developed by Comress, Inc., is provided within the File Handler as an 
unsupported feature. This facility is described in the Intercomm 
AMlGOS Users Guide. AMlGOS may not be used in the same Intercomm 
region with ISAM, lAM or DISAM. 

6.2.6 Exclusive Control 

Exclusi ve control for update of a record is provided at the data 
set level (QISAM), physical record level (BISAM), and by record block 
(BDAM) to prevent simultaneous file updates from destroying one 
another's updates. If Resource Auditing is in use, the purge function 
automatically releases exclusive control in the event that a subsystem 
omits the release function (due to logic error, program check or 
time-out). If Resource Auditing is not in use, a File Handler 

6-3 



Chapter 6 File Handler Specifications 

exclusi ve control time-out routine will, after an internally specined 
period of time, automatically release those records still held by the 
processing thread. To activate the File Handler exclusive control 
time-out routine, the File Handler must be reassembled with &RM set to 
zero in SETGLOBE. The File Handler, as released, re lies on Resource 
Auditing to perform this function, not the time-out routine. 

The following facilities of exclusive control are applicable to 
particular access methods: 

• QISAM 

Optional QISAM via BlSAM provides exclusive control at the 
physical record level. 

• BISAM/BDAM 

The manner in which the File Handler provides exclusive 
control for ISAM files minimizes overhead. Each exclusive 
read request requires only one READ. No OS enqueues are 
issued. This results in minimal 1/0 activity and CPU usage. 

See Section 6.6, "File Attribute Records," XCTL parameter for ISAM 
files, and ICOMBDAMXCTRL parameter for BDAM files. 

For VSAM files, the access method provides exclusive control for 
update if Shareoption 1 or 2 is specified at file creation time. The 
File Handler provides exclusive control for a Shareoption 4 file if 
requested by a FAR parameter described later in this chapter. Also, 
shared or exclusive control for VSAM files (created with Shareoption 2 
or 4) across multiple Intercomm regions (batch or on-line) in the same 
CPU is provided if requested by the user. 

6.2.7 Dynamic Buffering 

The File Handler will allow dynamic buffering for all data sets 
accessed via BISAM. The BUFNO parameter in the DD statement is ignored 
during execution and buffers appropriate for the block size are 
obtained at the first access following a SELECT, and freed by the 
subsequent RELEASE. This feature should reduce the dynamic subpool 
requirements for users with many ISAM files accessed on-line. There is 
no upper limit placed on the number of concurrent threads accessing a 
file (hence, exclusive control cannot be forced by BUFNO=1). The 
buffers will be obtained through Intercomm Resource Management; low 
core conditions in the d,{namic pools are handled by time delays between 
retries for buffer space. Additionally, this feature eliminates the 
need to open all data sets at startup time to ensure adequate buffer 
pool space. 

For VSAM files, buffer pools via IBM's Local Shared Resources 
option is supported as described later in this chapter. 

6-4 

J 

J 



Chapter 6 File Handler Specifications 

6.2.8 Overlapped GET And READ/WRITE Processing 

The following facilities of sequential file support are 
applicable to particular access methods: 

a QSAM/QISAM 

If the QISAM via BISAM option is not utilized, the File 
Handler may support both QSAM and QISAM in an overlapped 
manner. All GETs to QSAM and QISAM files are totally 
overlapped with other processing in the Intercomm 
environment. Without modifying OS, Intercomm will overlap 
GETs to QSAM and QISAM files with other Intercomrn productive 
work, without placing the entire task issuing a GET into a 
WAIT state. The SETL and ESETL macros, which are used by the 
File Handler when applications use GET/PUT logic on ISAM 
files, are also overlapped with other Intercomm activity. 
This facility is implemented automatically via the 
Generalized Subtasking facility (see the SPALIST macro, 
TASKNUM parameter). 

In addition, the File Handler will always leave one QISAM DCB 
open throughout the day for users of each QISAM file. If 
concurrent use of a QISAM file by two or more applications is 
required, a second (or third, etc. ) DCB will be opened, as 
required. For the majority of messages, the extra QISAM DCBs 
will not have to be opened. This applies only to QISAM, 
since under Intercomm other access methods require only one 
DCB for the file. However, for shareable sequential input 
files on disk, multiple DCBs are also opened (see Section 
6.5.4). 

• BSAM/BISAM 

During overlap of I/O, the total of all READ and WRITE 
requests against a DCB may exceed the NCP subparameter. The 
excess threads may time out (Snap 118) trying to access the 
same DCB. 

The amount of overlapping against the same DCB can be 
controlled by the MNCL parameter of the SYCTTBL macro. Where 
many subsystems use the same ddname for BSAM or BISAM 
operations, they may be placed in competing Overlay A or VS 
execution groups. (See the OVLY and EXGRP parameters of the 
SYCTTBL macro.) The total MNCL value for all such subsystems 
within a group may not exceed the NCP value. Alternatively, 
the number of concurrent users of a resource (ddname ) may be 
limited by the RESOURCE macro used in conjunction with 
associated SYCTTBL macros (see the RESOURC parameter). 

6-5 



Chapter 6 File Handler Specifications 

6.2.9 

For a few users, it may be necessary to single-thread certain 
1/0 functions; that is, bypass the overlap of 1/0. Among the 
File Handler options which can be specified for the Data Set 
Control Table are single-thread physical sequential BSAM 
reads and do not overlap BISAM reads. Either or both 
requests are easy to implement on a systemwide basis via the 
OPTIONS parameter of the IXFDSCTA macro used to generate the 
file control table, but can severely degrade system 
performance. 

The amount of overlapping may optionally be controlled by 
application logic. Intercorom's INTENQ macro (with SHARE 
specified as less than or equal to the NCP value) and a 
subsequent INTDEQ macro may be used to control concurrent use 
of a specific resource (file). 

See also the FAR option NCPWAIT described in section 6.6.1. 

Creating and Defining ISAM Files 

Because Intercorom uses the more efficient IBM BISAM access method 
agai~t ISAM files, where possible, certain restrictions apply 
concerning the creation and definition of ISAM files for use under 
Intercorom: 

o Do not define separate Area Names (PRIME, INDEX, OVERFLOW) 
when creating the file. Let the access method allocate these 
areas from the primary allocation defined for the file and 
from the CYLOFL DCB parameter on the DD statement. It is 
better to use the IBM Utility IEBISAM (or an Assembler 
Language program using BISAM) to create the file than to 
create it with a COBOL or PL/1 program. Do not define the 
file as blocked. 

• Use only one DD statement on the execution JCLj do not deflne 
separate Area Names. The only DD parameters necessary are 
DISP= OLD or SHR, the data set name, the unit and volser if 
not catalogued, and the DCB parameter DSORG=IS. Optionally, 
OPTCD may also be specified for the DCB parameter. 

• If an existing file to be used on-line under Intercorom does 
not meet the above criteria, use the FAR parameter 
OPEN=QUEUED to force only QISAM (GET/PUT) access to the file 
(see Section 6.6). 

6-6 

J 



Chapter 6 File Handler Specifications 

6.2.10 Undefined Record Support 

Undefined record support applies to QSAM/BSAM only. Full 
GET /PUT, READ/WRITE support for undefined records on sequential data 
sets is provided by the File Handler. The application program must 
supply the record length as a parameter for File Handler calls. 

6.2.11 Variable Length Sequential File Support 

The application program must be aware that each block starts with 
a BDW (halfword of block length plus 4, followed by a halfword of 
binary zeros), and each record with an RDW. When READ and WRITE are 
used, blocking and deblocking of blocked files must be performed by the 
application program. If GET and PUT are used, the access method will 
block and deblock the file (if RECFM=VB). Whatever form, the record 
always starts with an RDW (halfword of record length plus 4, followed 
by a halfword of binary zeros). For output, the application program 
must initialize the ROW before calling the File Handler. When WRITE is 
ca 11 ed for a blocked fil e , both the BDW and the RDWs (for each record 
in a block) must be initialized. The type of acces_s to _the file must 
be specified by a FAR OPEN option; BASIC if READ/WRITE is used, QUEUED 
if GET/PUT is used. DCB=DSaRG=PS must be specified on the DD 
statement. Also specify BLKSIZE (add 4 bytes for BDW), LRECL 
(including ROW) if a blocked file, and NCP=n and OPTCD=C (see 
Overlapped Processing above). See also the FAR NCPWAIT and WRITE OVER 
parameters. 

6.2.12 Sequential Output Disk File Flip-Flop Facility 

This facility invokes automatic protection of Intercomm from an 
x37 abend resulting from running out of space on a BSAM (sequential 
output) disk file or the Intercomm Log (when logging to disk). 

A companion disk file must be defined to effect this protection. 
The ddname of the companion file is constructed by right-"padding" the 
ddname of the original file, up to the maximum of eight characters, with 
the character 'C'; one character of the ddname is replaced, if 
necessary. The following illustrates construction of the alternate 
ddname: 

Original No. Chars. Alternate Comment 

INTERLOG 8 INTERLOC Last character 
replaced by 'C' 

DISKX 5 DISKXCCC Padded with ' CCC' 

XYZ 3 XYZCCCCC Padded by 'CCCCC' 

6-7 



Chapter 6 File Handler Specifications 

The two data sets are used alternately. When one gets full, the 
resulting x37 abend is intercepted, the full data set is closed, and 
output is written to the companion data set. The message FR080R :is 
issued to instruct the operator to copy the full data set off-line, 
effecti vely "emptying" it so that it may then be reused. When both 
data sets become full, the message FR081 I is issued, and Intercomm 
enters the wait state until the operator replies to FR080R. 

To implement this facility, the module IXFB37 must be included in 
either the InterCOITml linked it or the Intercomm Link Pack Module, and 
the original disk file (for example, INTERLOG) must have the B37 FAR 
option specified. x37 abend protection may not be specified for any 
original file whose ddname is eight characters ending with the letter 
C. The DD statement for the alternate disk file (ddname ending in C) 
must be specified after the IIPMISTOP DD DUMMY statement in the 
Intercomm JCL to prevent an internal DSCT from being created. No 
on-line access to the alternate file by non-system (Intercomm) programs 
is allowed. 

Both the original and the companion data sets must reside on a 
DASD device, must be defined as physical sequential (DSORG=PS), may 
only be accessed using WRITE, and must have a disposition of SHR to 
allow off-line accessing after an x37 abend-~s occurred. Neither data 
set may be DUMMY nor have a dsname of NULLFILE. If they do not meet 
these criteria, then the original data set will not be marked as 
eligible for abend recovery. The data sets must be preallocated in 
another job, not in a previous step of the same job. The NCP count. 
(DCB subparameter) must be exactly the same for both data sets, if 
chained scheduling is used. If recovery of the file after a system 
crash is desired, see the description of ICOMFEOF in Chapter 12. Abend 
protection is automatically forced for INTERLOG if INTERLOC is 
correctly defined. For other files, the user may also wish to specify 
the FAR options OPEN=BASIC and NCPWAIT. WRITEOVER (DISP=NEW) is forced 
for all files with x37 abend protection. 

6.2.13 File Recovery 

As a special feature, Intercomm provides for off-line restoration 
of updated files, on-line recovery of updated files during message 
restart, and for dynamic backout (Backout-on-the-Fly) after an 
application program check or time-out. These facilities are described 
in the File Recovery Users Guide. 

6.2.14 Dynamic File Allocation Facility 

This special feature provides for dynamic allocation (creation) 
and access of sequential files not defined in the Intercomm execution 
JCL. This feature is described in Dynamic File Allocation. 

6-8 

J 



Chapter 6 File Handler Specifications 

6.2.15 On-line File Control Commands 

Two Intercomm system commands (see System Control Commands) are 
provided to perform on-line control of file access and to display 
statistics on file access. These are: 

• FILE command--open or close a file; prohibit or allow access 
to a file; change the processing status (read only or -~llow 
writes) ; and under MVS to dynamically allocate and deallocate 
files defined in the Intercomm execution JCL (see Section 
6.2.15) • 

• FHST command--display statistics on file selection and access 
for one or all files and/or VSAM LSR buffer pool usage; see 
also the description of File Handler Statistics Reports in 
Section 6.10. 

6.2.16 Dynamic Deallocation and Reallocation via FILE Command 

Two FILE command parameters are available to dynamically 
deallocate and reallocate on-line files. The parameters ALLOC and 
DEALL make use of MVS Dynamic Allocation services via the DYNALLOC 
macro (SVC 99). The syntax of, and response messages pertaining to, 
these parameters are fully described in System Control Commands. The 
following discussion deals with restrictions and operational 
considerations for these parameters. 

The main purpose is to allow a file which is accessed thru the 
Intercomm File Handler and originally allocated to Intercomm via JCL to 
be deallocated and thus made available for processing by batch jobs. 
Once the batch jobs are completed, the file may then be reallocated to 
Intercomm and thus again become available for on-line subsystems. The 
commands cannot be used to allocate a file to Intercomm which was not 
originally allocated via the Intercomm execution JCL. 

When MVS deallocates the file, all traces of it (JFCB, etc.) are 
disconnected from the job doing the deallocation. After deallocation, 
no reference to the file exists in the system control blocks belonging 
to Intercomm; it is as though the file was never allocated to Intercomm 
in the first place. In order to successfully reallocate the file 
later, information about the current allocation must be saved before 
the file is deallocated. That information is obtained out of various 
system control blocks such as the JFCB, TIOT and UCB, and saved in a 
storage area which is pointed to by the internal DSCT for the file. If 
it is known that the file will not need to be reallocated to Intercomm 
later in the run, the NOREALC option of the DEALL parameter can be 
used. This option causes the obtaining and saving of the reallocation 
information to be bypassed, thus saving some processing time and 
storage. Under MVS, do not code FREE=CLOSE for any data set. 

6-9 



Chapter 6 File Handler Specifications 

In order to keep the amount of information that must be obtained 
and saved about a file to a minimum, and because certain information is 
unobtainable, the following restrictions on the reallocation of a file 
must be considered: 

• Temporary data sets (&&dsname) may be deallocated but not 
reallocated. 

• A data set whose DISP status was NEW in the beginning of the 
rtm (as coded on the JCL DD statement) will have a status of 
MOD when reallocated. 

• If the ddname in the FILE command describes a concatenated 
data set, only one of the members of the concatenation will 
be reallocated. The member of the original concatenation 
that will be reallocated is unpredictable: 

if IIDD1 
II 
II 

DD DSN=FILEA 
DD DSN=FILEB 
DD DSN=FILEC 

and DD1 is deallocated, upon reallocation, DD1 will point to 
either FILEA, FILEB or FILEC but not the original 
concatenation sequence. 

• When a data set is deallocated, any subsequent reallocation 
will be attempted using DD statement parameters assigned via 
the original JCL. Any parameters not provided will not be 
supplied and the IBM defaults for them will be taken, as 
necessary: 

DSN 
member-name 
Generation 
Data Group 
LABEL number 
LABEL type 
SYSOUT class 

UNIT 

VOL=SER 

as coded on DD statement 
as coded on DD statement for a PDS. 
if coded on DD statement 

as coded on DD statement 
as coded on DD statement 
will be A upon reallocation. SYSOUT 
class may be overridden with the DEALL 
command CLASS option. 
Direct access types: 2305-1, 2305-2, 
2314, 3330, 3330-11, 3340, 3350. Tape 
units: 2400, 3400. If the unit type is 
not one of the above, SYSDA will be used 
for reallocation. 
the first 5 volumes coded on the DD 
statement. Only one unit will be 
requested for a tape multivolume data 
set. For a DA multivolume data set, as 
many units as there are volumes will be 
requested for PARALLEL MOUNT. 

6-10 



Chapter 6 

DISP 

File Handler Specifications 

as coded on DD statement with exception 
of NEW which is changed to MOD upon 
reallocation. 

• Cata logued data sets are an exception to the above. For a 
catalogued data set, UNIT type and VOL=SER information is not 
checked. All other information, including LABEL data, is 
verified. 

• If a data set is named by more than one ddname, each ddname 
must be named by the operator on a separate FILE command (for 
example, VSAM base and alternate index paths). 

The following DCB subparameters will also be preserved for the 
specified data types; all other parameters will be taken from the 
internal DCB or DSCB: 

Buffering techniques (BDAM, QSAM, BSAM) 
Block size (BSAM, QSAM, BDAM) 
Data set organization (BSAM, QSAM, BDAM) 
DCB error options (QSAM) 

BFTEK 
BLKSIZE -
DSCRG 
EROPT 
LRECL - _ Logical record length (QSAM, BSAM) 
NCP 
OPTCD 
RECFM 
DEN 
KEYLEN 
LIMCT 
BUFNO 

Number of channel programs before CHECK (BSAM, BISAM) 
Operational services (QSAM, BSAM, BDAM) 
Record format (QSAM, BSAM, BDAM) 
Tape density (QSAM, BSAM) 
Key length (Keyed BDAM or ISAM) 
Search limit (Keyed BDAM) 
Number of buffers (all) 

NOTES: DSORG=PO data sets are not supported by the File Handler 
and may not be deallocated. Sequential output disk data 
sets defined for x37 abend protection may not be 
deallocated. VSAM data sets may be reallocated but JCL 
overrides (AMP=AMORG) of VSAM parameters will not be 
preserved. That is, upon reallocation, VSAM will take 
all necessary parameters from its control blocks. IBM 
currently does not support the provision of VSAM AMP 
parameters via dynamic allocation. 

6.2.16.1 Retry of ALLOC or DEALL After Error 

Upon completion of the DYNALLOC macro, a return code in register 
15 indicates whether or not the request completed successfully. If it 
did not, the error reason code field in the dynamic allocation request 
block is checked. The error reason codes are divided by IBM into 
classes as documented in the IBM OS/VS2 SYSTEM PROGRAM LIBRARY - JOB 
MANAGEMENT manual. An error code whose two-byte hex value is X' 02nn I 
is represented to be significant of a failure due to insufficient 

6-11 



Chapter 6 File Handler Specifications 

system resources. As such, Intercomm will consider such errors 
temporary and preserve the internal control blocks necessary for a 
retry. An error code whose value is other than X'02nn' is a permanent 
error, due to an invalid parameter list, system routine error or 
environment error. When these occur, the internal control block 
necessary for the function is freed and the request cannot be retried 
by entering a subsequent ALLOC or DEALL. In either case, after a 
failing ALLOC or DEALL, the status of the file remains the same as it 
was before the failing command. In the case of a permanent error, a 
snap (ID=34) is taken of the SVC 99 request block and the parameter 
list used to attempt the request. The snap is not taken for a 
temporary error. An error message is issued to the requesting terminal 
for both temporary and permanent error conditions. 

6.2.16.2 Sub tasking of DYNALLOC Macro 

When a request for allocation is accepted by the operating 
system, a certain lag time for volumes to be mounted, off-line units to 
be varied, etc., may occur before the allocation request can complete. 
In order to avoid forcing all Intercomm activity to wait while these 
events take place, the system will attempt to issue the DYNALLOC under 
a general subtask. To take advantage of this, the user should 
implement the Intercomm Generalized Subtasking facility in his system 
(see Chapter 3). As many general subtask.s should be created as there 
are expected to be concurrent DE ALL or ALLOC commands entered, plus the 
number required for other system and user functions. This is important 
because, if a general subtask is not available, ICOMTASK performs the 
subtasked code (the DYNALLOC macro) under the main task, which may 
cause a significant deterioration of system performance. 

6.2.16.3 Status of Files While Deallocated 

Intercomm closes and marks a file as locked in the internal DSCT 
before deallocating it. This means that any subsystem selecting the 
file through the File Handler will receive a return code of C'9' in the 
status field, and no I/O can be done. If the deallocation request 
fails, the file will remain locked but may be unlocked by a FILE$UNLOCK 
command. Thus, the operator may free the file for subsystems to use 
until the deallocation request is retried. If the deallocation is to 
be retried immediately, however, it is recommended that the file not be 
unlocked so as to avoid the time lag involved in quiescing the file a 
second time. 

Once a file has been deallocated, it remains locked until a 
subsequent successful reallocation (FILE$ALLOC) request occurs. An 
unlock command cannot unlock a deallocated file. Upon successful 
reallocation, the file is immediately marked unlocked, regardless of 
whether or not it was locked prior to deallocation by a FILE$LOCK 
command. 

6-12 

J 



Chapter 6 File Handler Specifications 

6.3 VSAM FILE SUPPORT 

All three VSAM file types (key-sequenced, entry-sequenced and 
relative-record) are supported under Intercomm. Access may be either 
sequential or direct via key, relative byte address (RBA) or relative 
record number (RRN), where applicable. Generic keyed access may also 
be performed. Additionally, alternate index (path) and base cluster 
processing may be performed against KSDS files. Details on access 
parameters and restrictions are provided in the Intercomm Programmers 
Guides. 

Several additional restrictions and processing considerations 
apply to using VSAM files as follows: 

~ Do not define a JOBCAT DD statement for the Intercomm 
execution JCL stream. 

~ If user catalogs are used, define the STEPCAT DD statement(s) 
after the //PMISTOP DD DUMMY statement (see Section 6.5) in 
the Intercomm execution step in order to prevent File Handler 
access to the catalog at startup. DISP=SHR must be coded. 

• If an ESDS file is loaded on-line, at least one (dummy) 
record must preexist on the file, otherwise, if a read (GETV 
call) is made against the file before the first write (PUTV 
call) is issued on-line, an unpredictable error return code 
will result if there are no existing records in the file. 
Also, the file should by loaded by only one subsystem which 
should be single-threaded (MNCL=1). When allocating the file 
via IDCAMS, specify RECOVERY (not SPEED) on the DEFINE 
statement. 

a STAEEXIT must be included in the Intercomm linked it to ensure 
closing of VSAM files after an abend occurs (see the 
description of STAEEXIT usage in Chapter 8 and of its 
processing in Messages and Codes). Note that Intercomm file 
closing is not performed after a system cancel (x22 abend) 
under MVS, or if a second abend condition occurs during 
STAEEXIT processing (VS1 and MVS). The VS Operating System 
does not perform VSAM file closing if STAEEXIT does not 
successfully complete, nor, of course, if a system crash 
(requiring reIPL) occurs. Therefore, it may be necessary to 
add steps to the Intercomm execution JCL stream to run IDCAMS 
on critical (updated) files before starting/restarting 
Intercomm. While a VERIFY operation will make an 
inquiry-only file accessible (but does not update the 
catalogue), it is recommended to use a REPRO (unload/load) 
operation against a file updated (added to) on-line in the 
previously unsuccessful execution. 

• When using an alternate index to access a base cluster, the 
base file should be opened at startup; use the FAR parameter 
OPEN=VSAM (see Section 6.6). 

6-13 



Chapter 6 File Handler Specifications 

6.3.1 Using a VSAM Local Shared Resources Pool 

Local Shared Resources is a VSAM facility which allows selected 
VSAM data sets to share a common set of buffers rather than having a 
pool created for each data set at ACB open time. This facility 
implements a more efficient utilization of VSAM buffers and of dynamic 
storage since buffers will be acquired for a data set only when an I/O 
operation is started and are returned to the pool when the I/O 
completes. The buffer pool is acquired by VSAM when the BLDVRP macro 
is issued at startup, ensuring that the buffer pool will reside in a 
contiguous storage area and thus reducing storage fragmentation. Since 
the Intercomm File Handler overlaps I/O requests for VSAM data sets, 
use of Local Shared Resources can cut down on paging requests for I/O 
buffers; if a page containing a buffer is fixed for one I/O operation, 
no subsequent paging need be done for other I/O operations which 
require buffers residing on the same page. Additionally, the user has 
the option to page fix the whole resource pool in real storage which 
may prove advantageous if use of the pool is expected to be heavy. For 
further information on Local Shared Resources, see the IBM VSAM Options 
for Advanced Applications manual. 

To install Local Shared Resources under Intercomm, first code the 
applicable BLDVRP parameters on the SPALIST macro. The parameters on 
the SPALIST are coded exactly the same as they would be coded on the 
VSAM BLDVRP macro (omitting the TYPE parameter) • Coding these 
parameters causes a list form of the BLDVRP macro (a BLDVRP parameter 
list) to be built in a Csect named VRPLIST. The BLDVRP parameter list 
is variable in length, the length dependent upon the number of buffer 
pools there are. (Each VSAM buffer size coded causes a pool to be 
built; for example, if 512 and 1024 are specified, a pool of 512-byte 
buffers and one of 1024-byte buffers are built.) 

One and only one local shared resource pool may be built per 
Intercorom region. For each region in a Multiregion Intercomm, code 
BLDVRP parameters on each region's SPALIST. 

The pool is built at startup when an execute form of the BLDVRP 
macro is issued naming the list form BLDVRP in the VRPLIST Csect. Once 
this is accomplished, the resource pool characteristics cannot b~ 
changed until Intercomm is brought down and back up again with a 
revised version of the SPALIST coding in the linkedit. Furthermore, 
the pool will not be built if Intercomm does not find at least one VSAM 
data set to be connected to it, as discussed below. Once BLDVRP 
completes, a message is issued giving status information on the pool. 
If unsuccessful, the return code is displayed. Certain parameters can 
be checked at assembly time (such as invalid buffer size) but others, 
such as failing GETMAIN, are contingent on cir'!Umstances. If the 
BLDVRP fails, it is not retried and VSAM buffers will be built per data 
set as usual. 

If it is desired to fix the buffer pools and/or I/O control 
blocks in real storage, the Intercomm Interregion SVC (IGCICOM) must be 
installed in the system (see Chapter 7). For further information on 
the FIX option of BLDVRP, see VSAM Options for Advanced Applications. 

6-14 

J 



Chapter 6 File Handler Specifications 

6.3.1.1 Connecting Data Sets to the LSR Pool 

The local shared resource pool will be built only if the user 
specifies data sets to be connected to it. This is done by a FAR 
option, LSR, coded on a FAR statement for each data set that is to use 
the shared resources. When LSR is coded, the File Handler will alter 
the ACB for the data set to connect it to the resource pool and test 
special OPEN return codes for it. Also, resource-pool-oriented usage 
statistics may be accumulated for the buffer pools. These statistics 
are discussed in Section 6.10; File Handler Statistics. 

Specifying LSR for a VSAM file also causes its ACB to be opened 
at startup, provided a VSAM resource pool exists. (That is, BLDVRP was 
successful.) If a VSAM resource pool is not created, the data set is 
not opened at startup unless OPEN=VSAM is also specified on the FAR 
card. 

Even though a local shared resource pool may be created 
successfully, a data set may be unable to connect to it. This latter 
fact is discovered when its ACB is opened and VSAM returns a special 
return code indicating the error. (These error conditions and return 
codes are fully discussed in VSAM Options for Advanced Applications.) 
When an attempt to connect a data set to the resource pool fails, the 
File Handler will issue a message to call attention to this error and 
then retry the OPEN, this time using the normal nonshared buffers. 
That is, the retry of the OPEN will not specify connection to the 
shared resource pool. When an attempt to connect a data set to a 
resource pool fails, it is usually due to a conflict between the data 
set control interval size and resource pool specifications, or because 
the data set is empty. The return code in the error message can be 
used to determine the necessary action to be taken. 

During execution, any VSAM request failing due to a lack of 
resources (for example, STRNO exceeded or no buffers available) will be 
retried on a 1/3-second basis. Statistics about these failures may be 
kept and reported SO that the resource pool configuration may be 
adjusted accordingly, as described in Section 6.10.1. 

6.3.2 Sharing VSAM Files Under Intercomm 

When a VSAM Shareoption 2 or 4 file is shared by multiple 
Intercomn on-line or batch regions in the same CPU, the VSAMCRS FAR 
option can be used to augment VSAM shared file protection. For 
Shareoption 1 data sets, VSAM provides total READ/WRITE integrity. For 
Shareoption 3 files, VSAM provides no integrity; integrity for such 
files is not provided by Intercomm either. 

For Shareoption 2 files, VSAM provides complete WRITE integrity 
in the update region; that is, it will allow only one GET-update/ 
PUT-update or PUT-insert at any time. VSAM does not provide READ 
integrity in this instance; a record just read by one region may be 
updated or deleted by another before the first region is finished 

6-15 



Chapter 6 File Handler Specifications 

processing it. The VSAMCRS FAR option augments VSAM processing by 
providing READ integrity for Shareoption 2 files. Under this option, 
Intercomm will issue an OS ENQ for shared control of the file on the 
first GET by a thread, and retain that ENQ until the last user in the 
same region releases the file. This will allow any region sharing the 
file to read from the VSAM file, but no user may update that file until 
all regions have released shared control. Conversely, no region may 
read from the file while one region holds an exclusive control ENQ on 
the file for the purpose of updating. Thus, Intercomm ensures that a 
user program ~lways has the latest copy of a VSAM record. The VSAM 
file in the read-only region must also have the READONLY FAR option 
specified for it. 

For Shareoption 4 files, VSAM provides minimal aid toward 
READ/WRITE integrity. The VSAMCRS option will ensure file integrity in 
this case again by ENQing on the file for shared control before GETs, 
and for exclusive control before GET-update/PUT-update or PUT-insert. 
In addition, an exclusive control ENQ within the region is issued 
before processing any sequential request (for update or not) so as to 
preserve VSAM positioning for the file. A DEQ and an ENDREQ are issued 
at subsystem release time to release this positioning as well as to 
cause VSAM to write out any updated buffers. 

To conclude, the VSAMCRS FAR option should be coded when: 

• READ integrity is desired for a Shareoption 2 VSAM file which 
will be updated by another sharing Intercomm region. 

~ A Shareoption 4 file will be shared across two or more 
Intercomm regions. 

If any batch regions will be sharing the file while Intercomm is 
executing, the batch access should be performed via the File Handler. 
If this is not done, the user program should issue an OS ENQ before any 
VSAM access, and DEQ afterwards (see the description of the VSAMCRS FAR 
option for enqueue names). Further information on sharing of VSAM 
files may be found in the IBM VSAM Programmers Guide. 

6.3.2.1 Implementation for Sharing VSAM Files Across Regions 

The VSAMCRS option must be coded on a FAR card for a Shareoption 
2 or 4 VSAM file in every Intercomm region which will share that file. 
In addition, the module IXFVSCRS must be linked with the File Handler, 
IXFHND01. IXFVSCRS is Link Pack eligible so it must be linked with 
IXFHND01 when the File Handler is Link Pack resident. Tte File Handler 
will check for the VSAMCRS option when SELECT is called and ensure that 
the IXFVSCRS module has been linkedited with it. If IXFVSCRS is not 
present, SELECT will shut off the option, mark the file locked, and 
return a code of 9. The VSAM file may be used but only if the operator 
unlocks the file via the FILE command (see System Control Commands). 

6-16 

J 



Chapter 6 File Handler Specifications 

If VSAMCRS is coded for a Shareoption 3 file, the option is ignored and 
the file is locked. In this case, the file may be used if the operator 
unlocks the file via the FILE command. However, if the operator 
unlocks a file which was locked because of either of the above reasons, 
unpredictable errors may occur. 

If VSAMCRS is coded for a Shareoption 1 file, it is ignored but 
the file is not locked. However, VSAM may not allow the region to open 
the file because Shareoption 1 restricts processing of a file to a 
single region. 

6.3.3 

The Intercomm Interregion SVC (IGCICOM) must be installed. 

Note: TCTV time-out values of subsystems using VSAMCRS files 
may have to be increased substantially, depending upon 
volume of activity against the files used. The ENQ 
issued by IXFVSCRS is done with time-out suppressed, so 
that the limiting value is the subsystem time-out value. 
However, if an OS ENQ request for exclusive control never 
completes during thread purge processing because the 
thread is disabled (see Chapter 5), then further access 
to the file may be prevented because an update request 
never completed. The TALY, DA system control command may 
be used to determine thread status. 

ISAMlVSAM COMPATIBILITY UNDER INTERCOMM 

Subsystems accessing ISAM files can function with little or no 
modification when their files are converted to VSAM. Intercomm's 
ISAM/VSAM interface does not use IBM's VSAM/ISAM interface modules. 
ISAMlVSAM support is provided as an option which is specified by 
setting the global &VSISAM to 1 in SETGLOBE before assembly of IXFHND01. 

The File Handler, when processing a converted VSAM data set, uses 
QISAM-compatible access for a GET or PUT call and BISAM-compatible 
access for a READ or WRITE call. An ISAM retrieval is converted to a 
VSAM GET for update. If a key is provi ded, it is, of course, treated 
as a full key. For GET, with a key, positioning and a search for a 
greater or equal key is performed. For READ, a search is made for an 
equal key. The FHCW is initialized internally for this operation. 

ISAM delete code processing continues to function as usual via 
the OPT(l) subparameter of AMP on the DD statement. The new OPTCD 
parameters (I,lL) which specify supplementary delete code processing 
are also supported. 

The appropriate Intercomm Programmers Guide should be consulted 
for specifics on coding techniques and return codes. 

6-17 



Chapter 6 File Handler Specifications 

6.4 FILE HANDLER COMPONENTS 

The File Handler is organized into eight control sections: 

F=============================:========================================= 
Member CSECT Function 

F=============================:========================================= 
IXFDSCTn IXFDSCTA Data Set Control Table 

~------------ ---------------- ---------------------------------------_. 
IXFHNDOO IXFMONOO File Handler Initialization 

IXFMON09 File Handler Termination 
~------------.----------------.-----------------------------------------

IXFHND01 IXFMON01 File Handler Processing 

~------------ ---------------- -----------------------------------------
IXFQISAM IXFQISAM QISAM Scan Mode via BISAM 

~------------ ---------------- -----------------------------------------
IXFFAR IXFFAR File Attribute Record Processing 

~------------.----------------.-----------------------------------------
IXFB37 IXFB37 File Flip/Flop Processing 

------------- ---------------- -----------------------------------------
IXFVSCRS IXFVSCRS VSAM Cross-region Control Processing 

The functions of each control section are detailed below, and 
diagrammed in Figure 6-1. If any new version of any supported access 
method (particularly VSAM) is installed, all File Handler components 
must be reassembled and relinked. 

6.4.1 Data Set Control Table (IXFDSCTA) 

The Data Set Control Table (DSCT) contains, during execution, an 
entry for each file (data set) that may be processed by the File 
Handler. Each entry contains the data set name (corresponding to the 
name of the Job Control DD statement defining the file); the addresses 
of any Data Control Blocks or Access Control Block constructed to 
process the file; buffer addresses; flags defining file characteristics 
(data set organization, device type, disposition, and access method); 
flags identifying the current processing status of the file; I/O error 
flags; and a pointer to an associated File Attribute Block (FAB) , if 
any, created at initialization time via IXFFAR. 

Fixed information in each entry is inserted by the initialization 
routine (IXFMONOO) at startup, and variable information is recorded in 
the entry during execution by the File Handler processing routine 
( IXFMONO 1 ) • 

The first DSCT entry is preceded by a DSCT header containing a 
count of the number of entries used, and flags for communicating 
general processing options from IXFMONOO to IXFMON01. The DSCT is a 
resident table containing 20 entries, assembled as a Csect within the 
member IXFHND01. As described below, this individual control section 
may be replaced to change the size of the DSCT to accommodate more 
files. 

6-18 

J 



Chapter 6 

Task Input-Output ~able 

I 

TIOT 

-
...... 

ICOMIN 

File Attribute 
Records 

User Data Sets ~ 

.. 

Unit Control 
Blocks 

UCB 

...... 

IXFMONOO 

IXFDSCTA 
+ 

FAB _ 
...... ~~ -. 

IXFMON01 

File Handler Specifications 

Job File 
Control Blocks 

I 1\ 
SYS1. 

SYSJOBQE 
V \ 

Step 
Ini tialization 

IXFFAR 

Data Set Control Table 
(DSCT) and File Attribute 
Blocks (FABs) 

File Handler 
Processing ......... ...--1 

\ V ----~~~~~~------------~ 
IXFQISAM/IXFB37/IXFVSCRS 

~, 

Application 
Program 

IXFMON09 

Release and close each data 
set specified in DSCT 

Figure 6-1. File Handler Components. 

6-19 

Step 
Termination 



Chapter 6 File Handler Specifications 

6.4.1.1 Defining the Data Set Control Table 

The File Handler Data Set Control Table (DSCT) specifying the 
maximum number of data sets to be accessed is created by the Intercomm 
macro, IXFDSCTA. The File Handler file processing member (IXFHND01) 
contains a DSCT allowing up to 20 data sets (DD statements) to be 
accessed during Intercomm execution. Additionally, the Intercomm 
release contains three other members, one of which may be utilized to 
allow 50 data sets (IXFDSCT1), 100 data sets (IXFDSCT2), or 200 data 
sets (IXFDSCT3). Code the DSCT parameter on the ICOMLINK macro, when 
generating the Intercomm linkedit control statements, to specify which 
member is to be used. Alternati vely, an installation may generate its 
own DSCT by coding the IXFDSCTA macro to specify a more precise 
maximum. Any DSCT to be used in lieu of the File Handler DSCT must be 
included prior to IXFHNDOO and IXFHND01 in the Intercomm linkedit. 

The IXFDSCTA macro also allows specification of File Handler 
options and statistics requirements as discussed in subsequent 
sections. The Intercomm-supplied DSCTs specify no options; statistics 
are for detailed access statistics. Refer to Section 6.9.4 on IXFDSCTA 
options and to Section 6.10 on File Handler statistics for procedures 
to follow if other than a release version of the DSCT is used. 

6.4.2 File Handler Initialization (IXFMONOO) 

This Csect (within member IXFHNDOO) is executed at system startup 
to initialize all entries in the Data Set Control Table. The names of 
all Job Control DD statements in the current job step are found from 
the operating system Task Input Output Table (TIOT). For each DD 
statement, the allocated device type is determined (through a system 
macro instruction) and coded information from the DD statement is 
accessed (from the associated Job File Control Block). Additional 
information is determined by opening, and subsequently closing, the DCB 
or ACE, if VSAM. If the data set cannot be opened, it is flagged as 
locked (unusable) in the DSCT, and an error message is issued to the 
system console. If corrective action is taken, see the FILE command 
(in System Control Commands) for dynamically altering the status of a 
file. If the device type and data set characteristics are supported by 
the File Handler, the name and selected information from the above 
sources is transferred to an entry in the DSCT. Subsequently, 
additional fixed information concerning the data set is located from 
FAR options specified for the data set. This FAR information is also 
transferred to the DSCT entry, or File Attribute Block, as applicable. 

When the TIOT has been completely scanned, the DSCT header' is 
then filled in. Should the initialization routine be inadvertently 
called again at any time after the DSCT has first been initialized, no 
action will be performed. If, during File Handler initialization, the 
DSCT becomes filled and unprocessed TIOT entries remain, a console 
message is written and the job step is terminated. 

6-20 



Chapter 6 File Handler Specifications 

6.4.3 File Attribute Record Processing (IXFFAR) 

This routine is executed in File Handler initialization during 
Intercomm startup to read and analyze an input data set defining 
various optional attributes per on-line file, such as input only, 
update only, name alias, open at startup, exclusive control processing, 
etc. FAR specifications are described in Section 6.6, and in the 
Intercomm File Recovery Users Guide. 

6.4.4 File Handler Processing (IXFMON01) 

This Csect (within member IXFHND01) is composed of one mainline 
routine for each function (SELECT, RELEASE, LOCATE, GET, PUT, GETV, 
PUTV, READ, WRITE, RELEX). Each mainline routine verifies the caller's 
parameter list, maintains the DSCT status information, determines the 
access method to be used, issues the appropriate Data Management 
Input/Output macro instructions, checks and moves the record or block, 
and sets the resulting status code for the caller. Exclusive control 
processing is also performed if requested and/or applicable depending 
on data set type. See Section 6.7, "File Handler Service Routine 
Summary." Other Csects in this module are IXFSUBS which performs save 
area acquisition and chaining, and IXFABWTO which issues an error 
message and forces a program check (via ISK-see Messages and Codes) 
when an unrecoverable logical or physical error occurs. 

6.4.5 QISAM Scan Mode via BISAM (IXFQISAM) 

IXFQISAM provides the interface so that the function of QISAM 
Scan Mode is supported by using BISAM. Core requirements are 
significantly reduced when an indexed sequential file accessed by QISAM 
and BISAM can be accessed only through BISAM. The set of control 
blocks, buffers, channel programs and work areas, tied up for QISAM as 
long as the data set is open, is thereby eliminated. 

IXFQISAM must be included in the Intercomm linked it , along with 
the other File Handler modules even if IXFHND01 is in the Link Pack 
Area. If IXFHND01 is resident, the following statements must precede 
the include statement for IXFHND01: 

CHANGE GET(GETZ) 
CHANGE PUT(PUTZ) 

These statements are automatically generated by the assembly of the 
ICOMLINK macro. Thus, a program call to the GET or PUT routines will 
initially enter IXFQISAM. If the request is not for a file to be 
processed by this module, control is transferred to the revised entry 
points (GETZ and PUTZ) in IXFHND01. If this is not used, remove the 
INCLUDE statement for IXFQISAM and the two CHANGE statements in order· 
to reduce processing overhead for sequential files accessed via GET and 
PUT. 

6-21 



Chapter 6 File Handler Specifications 

6.4.6 File Handler Termination (IXFMON09) 

This routine, (a Csect in IXFHNDOO) calls the RELEASE function to 
close each data set opened by the File Handler. When a file is closed, 
it is closed for every access method for which it was opened, and all 
buffers and main storage areas previously acquired for construction of 
control blocks are released. 

Typically, this step termination routine is required only once 
per job stepi it may be incorporated in a nonresident segment of the 
overlay program structure. The abend intercept routine STAEEXIT 
conditionally calls IXFMON09i therefore, if it is nonresident, the 
overlay region it occupied may be overlaid in a dump. 

6.4.7 Sequential Output File Abend Control (IXFB37) 

IXFB37 receives control from IXFHND01 after an x37 abend has 
occurred for a sequential output disk file defined for such abend 
protection. It cancels the outstanding WQE requests (posted with a 
code of X'40') representing chained writes against the file which has 
become full, opens the alternate data set, and then restarts the 
outstanding writes against that data set in the same order in which the 
writes were initially issued so that sequential record integrity is not 
lost. 

6.4.8 VSAM Cross-region Shared Control (IXFVSCRS) 

If included in the same linked it (Intercomm region or Link Pack) 
as IXFHND01, IXFVSCRS is called for every access to a VSAM file. If 
the file was defined as eligible for cross-region processing, IXFVSCRS 
determines the type of system ENQ to issue (for shared or exclusive 
control or to CHNG to exclusive control, if applicable) via an 
Intercomm INTENQ macro. An INTDEQ is issued and ENDREQ processing is 
performed when the subsystem thread or resource purging (RMPURGE) calls 
RELEASE for the file. 

6-22 



Chapter 6 File Handler Specifications 

6.5 DATA SET SPECIFICATIONS 

Every data set which may be accessed during the course of 
Intercomm execution (from startup to closedown) must be defined by 
appropriate DD statements in the execution JCL. All files must be 
mounted prior to initiation of Intercomm, except those for which 
deferred mounting is specified. After initiation, a subsequent 
requirement for mounting a deferred data set, or a volume of a 
multi volume tape file, may cause suspension of all message processing 
activity in the system until the request is satisfied, depending upon 
the operating system used. 

All data sets accessed under Intercomm control must be previously 
existing data sets (DISP=OLD or SHR), except sequential output data 
sets (DISP=NEW or MOD). That is, VSAM, BDAM or ISAM data sets to be 
accessed on-line must be created in a step preceding the execution of 
Intercomm. The Intercomm-supplied utilities CREATEGF (for non-keyed) 
or KEYCREAT (for keyed) may be used to initialize BDAM data sets. 

Message processing programs will refer 
one- to eight-character ddname, as specified 
definition statement defining the data set. 
the same data set must refer to it by the same 

to each da ta set by its 
in the job control data 
Each program which uses 

ddname. 

It may be desirable to exclude certain DD statements containing 
the DSORG parameter (such as data sets controlled by a DBMS attached in 
the Intercomm region) from being included in the DSCT table. To 
accomplish this reduction in size of the DSCT, insert 

IIPMISTOP DD DUMMY 

after the last DD statement to be included in the DSCT. All Intercomm 
data sets must precede this statement, except those used for snap 
output and dynamic linkedit, and the JCL for BTAM lines. 

6.5.1 Required DD Parameters 

All DD statements defining data sets to be processed by the File 
Handler must specify the DeB subparameter DSORG=(PS, DA or IS) for SAM, 
BDAM or ISAM data sets, or AMP=AM:>RG for VSAM data sets. For fixed 
length VSAM files, specify AMP=(AMORG, 'RECFM=F'). Files for which 
DSORG or AMP are not specified on the DD statement will not be 
considered by the File Handler when constructing its internal data set 
control information at system startup. 

A DUMMY file (or DSNAME=NULLFILE) may be specified for any data 
set referenced through the File Handler, and any DSORG listed above may 
be specified. This is useful in eliminating unnecessary data set 
definition and 1/0 operations upon data sets that are not to be used in 
a given job. For example, the output log file may be eliminated by 
specifying a dummy data set, or an indexed file containing no existing 

6-23 



Chapter 6 File Handler Specifications 

records can be simulated for testing program logic by specifying a 
dummy data set. Any File Handler operation may be called for a dummy 
data set; successful completion return status will be given to the 
requesting program for operations other than input; EOF or KEY NOT 
FOUND return status will be given when an input operation (GET or READ) 
is attempted. This feature does not apply to x37 abend protected files. 

For sequential, multivolume output files, SUL should be coded in 
the LABEL parameter to avoid subsystem time-outs which could occur 
between volume mounts. 

6.5.2 Required DCB Parameters 

The DCB parameters listed in the following table should be 
contained in each data set label. The label is created from parameters 
specified in the DD statement when the file is created or is 
subsequently opened for output or updating. Any parameters omitted 
from the data set label must be specified in the DD statement used in 
the processing job step. 

----------- ---------------------------------------------------------------------- -----------------------------------------------------------
DCB 
Parameter Function 
----------- ---------------------------------------------------------------------- -----------------------------------------------------------
DSORG specifies PS (sequential), IS (indexed) or DA (direct). 

DSORG is required on the DD statement (unless VSAM). 

AMP specifies AMORG for all VSAM files and is required on the 
DD statement. 

RECFM specifies record format: F, FB, U, V or VB (with A 
and/or S). 

BLKSIZE specifies exact or maximum block size, including 4 for 
BDW, if applicable. 

LRECL specifies exact or maximum logical record length, 
including 4 for RDW, if applicable. 

----------- ----------------------------------------------------------
KEYLEN specifies key length (IS and Keyed DA only). 

specifies relative key position (IS only). 

OPT CD specifies standard DCB macro parameters. E must be added 
for Keyed BDAM with extended search option. 

LIMCT specifies the number of records or tracks to search when 
using the extended search option for Keyed BDAM. 

NCP specifies the maximum number of I/O operations that may 
be started for a sequential data set (BSAM or BISAM). 

6-24 

J 

J 



Chapter 6 File Handler Specifications 

6.5.3 Read-Only Data Sets 

One or more data sets may be specified as read-only by means of 
FAR parameters. Requests for output operations upon data sets 
specified as read-only are not accepted. For VSAM alternate index 
processing, all paths but the one used for update must have read-only 
specified. 

Read-only speCification provides a method for protecting a data 
set for inquiry only when referred to by one ddname, while allowing 
full access to programmers using another ddname for update of the same 
data set. However, the inquiry requests may not always access the most 
recently updated version of the record, depending on the buffer 
emptying processing of the access method used. 

6.5.4 Shareability of Sequential Data Sets (QSAMIBSAM) 

A sequential data set is shareable among subsystems executing in 
the same Intercomm region if: 

• The data set disposition is OLD or SHR (read-only) and not on 
tape (can be repositioned) 

• The data set disposition is either NEW or MOD (write-only) 
and interleaving of output records is immaterial (tape or 
disk) and the DCB is not closed via RELEASE. 

A sequential data set is not shareable if it resides on tape and 
has disposition OLD or SHR. 

If a sequential data set is shareable, the following occurs: 

1. The status code returned by SELECT is a 1 if a SYSOUT data 
set, disk output, or on tape (0 if disk input). 

2. Write operations upon 
different threads are 
without repositioning. 

the file requested by the same or 
performed in the order requested, 

3. Processing modes may not be intermixed: If GET or PUT 
processing is used by any program, no other program may 
employ READ or WRITE processing upon the same file, and vice 
versa. 

4. A disk data set with DISP=OLD or SHR is repositioned and 
processed from the beginning for each new subsystem thread (a 
new DCB is opened for each thread). 

6-25 



Chapter 6 File Handler Specifications 

6.5.5 Data Set Disposition 

The disposition indicated on the DD statement is related to the 
operations which can be performed upon the file, as follows: 

a NEW/MOD--The file can only be a sequential shareable data set 
(see above), and no input operations are allowed. 

• OLD/SHR--Both input and output operations are allowed 
(provided the data set is not read-only); output operations 
(depending on access method restrictions and processing 
options) may be rewrites of existing records, additions of 
new records, insertions of keyed records, or writing over of 
an existing sequential file (see FAR WRITEOVER parameter). 

6.5.6 SYSIN/SYSOUT Data Sets 

If data sets are defined as DD *, DD DATA, or DD SYSOUT=x and are 
accessed through the File Handler, they are processed in the same 
manner as shareable sequential data sets ,. even though the actual 
assignment is either to a unit record device or intermediate 
direct-access storage. The implied dispositions are: SYSIN--OLD; 
SYSOUT--NEW. For SYSOUT data sets, DCB parameters are required: 
DSORG=PS, RECFM and BLKSIZE, also LRECL if blocked. Under MVS, do not 
code FREE=CLOSE for a SYSOUT data set because it is opened and closed 
during File Handler initialization; the close will automatically 
deallocate the data set. Use the FILE command to dynamically 
deallocate it. 

6.5.7 Reserved ddnames 

The following ddnames are reserved for Intercomm System use and 
should not be assigned to user data files: 

• CHEKPTFL--System Checkpoint File 

• DESOOO--File Description Records File (Change/Display) 

• DYNLLIB--Dynamic Linkedit Load Module File 

• DYNLPRNT--Dynamic Linkedit Print File 

• DYNLWORK--Dynamic Linkedit Work File 

• FASTSNAP--Used by Fast Snap facility (see Chapter 8) 

• FRLOG--File recovery image printing at restart time 

6-26 

J 

J 

J 



Chapter 6 File Handler Specifications 

• ICOMIN--File Attribute Record input 

• INTERLOG--System log (current) 

• INTSTORn--Used by Store/Fetch Facility (and MMU) 

• LOGDISK--Restart Work File 

• NEWSNAP--Alternate snap data set used by Spinoff facility 

• NULLFILE-Dummy File (File Handler) 

Q PAGES--Used by Page Facility 

iii PMISTOP--Delimits last DD statement to be processed by File 
Handler 

~ RCTOOO--Output Utility Format Table disk-resident entries 

• RESTRTLG--System log (for restart) 

• RJExxxxx--One per input spool data set and one per RJE 
terminal (OS RJE facility) 

a RJEDD--Used for SCRATCH of output data set (free spool space) 

• RJEINQ--RJE Input Stream Data Set 

~ RJEOUTQ--RJE Writer's Output Stream 

• RJERJCTS--RJE Job Status File 

~ RPTOOO--Batch reports to Tape File (Output Utility) 

• SECOOO--Basic Security disk-resident table entries 

• SECURITY--Extended Security System File 

• SIMCARDS--Front End Simulator parameter cards 

• SMLOG--Statistical data and other output from Resource 
Management (thread dumps, etc.) 

• SNAPDD--Snap dumps 

• STATFILE--File Handler Statistics File 

~ STSLOG--System Tuning Statistics Report File 

• SYSABEND--Used if abends are to dump all of storage 

• SYSPRINT--Used by IJKTRACE, IJKPRINT, messages etc. 

6-27 



Chapter 6 File Handler Specifications 

• SYSSNAP--ID=15 snaps (test mode) 

• SYSSNAP2--ID=20 snaps (test mode) 

• SYSUDUMP--Used if abends are to dump Intercomm region only 

• THREDLOG--Backout-on-the-Fly facility DDQ File 

• VRBOOO--Edit Control Table disk-resident entries (Edit 
Utility) 

Additional system files with user-assigned ddnames for the 
following system facilities: 

e BTAM output queues--names assigned in BTAMSCTS (BTAMQ) 

o VTAM output queues--names assigned in VTAMSCTS (VTAMQ) 

• Disk Message Queues--names assigned in Subsystem Control 
Table (PMIQUE) 

~ Front End Simulator input data sets (DDNAME=Terminal-ID), and 
simulated Local 3270 print files (SCRxxxxx) 

• Page Facility (in addition to, or instead of, PAGES) 

• Multiregion Support (MRS) disk message queues (DDQs) 

~ Dynamic Data Queuing (DDQ) 

• Data Entry (INTBSKRM, INTBDTET, INTBDTnn) 

o Autogen (AUTOGPCH) 

6.6 FILE ATTRIBUTE RECORDS (FAR) 

The FARs are read during File Handler initialization by the 
module IXFFAR after all internal DSCTs have been initialized, and the 
information from the FARs is encoded in DSCT appendages called File 
Attribute Blocks (FABs). The ddname of the FAR data set is ICOMIN; any 
card image data set accessible via QSAM GET is allowed. 

Several types of specification may be made via the File Attribute 
Record input data set. They are: 

• Defining a data set (by ddname) as input only. This means 
there will be no output activity allowed on the file. Any 
attempt to alter the file will be treated as an error by the 
File Handler. Coding this facility has exactly the same 
effect as coding ddname=R in the EXEC statement PARM field. 

6-28 

J 



Chapter 6 File Handler Specifications 

• Defining a BISAM data set (by ddname) as update only. The 
file will be opened for updates, not for inserts; an attempt 
to insert a record will be treated as an error. A core 
saving at least equal to the block size of the file is 
realized by this definition. 

a Defining an alias for a data set (by ddname). This causes 
the File Handler to treat all calls referencing the file as 
if they referenced its alias. This technique is useful for 
mixing SYSOUT data from different routines using different 
hard-coded ddnames without reassembling. Two ddnames that 
are aliased must have the same DCB parameter specifications. 

• Specifying that the file be opened at system startup. 
Opening DCBs or ACBs at startup reduces storage 
fragmentation; once storage is allocated for a DCB/ACB it 
will stay allocated for the rest of the run, unless the file 
is closed via a RELEASE request to the File Handler with the 
close option, or the FILE command. Opening the files at 
startup time segregates long-term storage holdings at the top 
of the region, hence eliminating fragmentation that would 
occur when files are opened at first access. 

• Specifying that the high-level index of a BISAM file be kept 
in storage. Index level must be above the cylinder level. 

• Specifying the ddname of a duplex out put file. This causes 
all output operations against the primary file to be 
replicated automatically against the duplex output file. The 
result of this is to create an on-line backup copy of a 
critical sequential output file. This specification is 
allowed only if both files are sequential output. The duplex 
relationship is not symmetrical. For example, if DD2 is a 
duplex of DD1, then users selecting DD1 would have their 
output duplexed on DD2; but users selecting DD2 would not 
have their output duplexed on DD1. Do not use for the 
Intercomm log or x37 abend protected files. 

• Marking a file permanently down if any I/O call to the File 
Handler results in a status code of C' l' or C' 9' • When a 
file is marked down, then all calls to perform I/O will 
result in a status code of C' 1', all SELECTs result in a 
C '9', and all RELEASEs complete normally. After all current 
users of a down file have released it, the file will be 
closed. 

• Specifying Intercomm logic for BDAM exclusive control, rather 
than that of the operating system. A significant reduction 
in CPU requirement is gained, but no other region may request 
exclusive control on that file. Do not use DISP=SHR. 

6-29 



Chapter 6 File Handler Specifications 

• Specifying Intercomm logic for ISAM exclusive control. The 
default assumed is that ISAM exclusive control updates are 
limited to BISAM access within a single region. This is most 
efficient and should apply to most users. Users whose 
requirements differ must specify the XCTL FAR attribute. 

• Specifying Intercomm logic for VSAM cross-region shared and 
exclusive control for VSAM Shareoption 2 and 4 files. 

• Overwriting of an existing sequential file (DISP=OLD or SHR) 

• Forcing a wait state when NCP is reached for an output 
sequential file. For example, NCPWAIT is specified for the 
file with the ddname of QX1, and NCP=2 is coded on the JCL 
for QX1. A processing thread calls the File Handler which 
proceeds to write a block to the file. The File Handler does 
an internal wait (that is, exits to the Dispatcher until the 
ECB for the write is posted complete). The Dispatcher gives 
control to a second thread which also calls the File Handler 
to write a block to QX1. The File Handler issues that write 
and discovers that an earlier write to the same file is still 
outstanding, and that NCP for the file is 2. The File 
Handler issues a HARDWAITj that is, the Intercormn main task 
goes into the wait state until the ECB for the first I/O is 
posted complete. Execution then resumes with the first 
thread made acti ve and the second waiting on its I/O to the 
file. 

• Preventing xJl abends for sequential output disk files and 
Intercornm log. 

o Provide Local Shared Resources buffer support for VSAM files. 

6.6.1 Coding the FARs 

The coding format for FARs is: 

ddname,attribute1,attribute2, ••• attributen. 

FAR data may be coded from co lumn 1 to 72 j leading blanks are allowed; 
however, embedded blanks are not ailowed. 

A complete description of the FAR parameters and syntax for 
coding is contained in the File Recovery Users Guide. In the simple 
case of utilizing FARs to specify attributes not associated with File 
Recovery, the attributes are: 

6-30 

J 

J 

J 



Chapter 6 File Handler Specifications 

ALIAS=ddname 

B37 

to define an alias for a data set, in order to route I/O 
operations to the alias data set. The originating ddname will 
have the FAR attributes of the alias file; no other attributes 
may be coded on this statement. x37 abend protection may not be 
requested for the originating ddname. 

applies only to sequential output disk files and the Intercomm 
Log (if to disk). Invokes an automatic facility to protect 
Intercomm from an x37 abend resulting from running out of space 
on this file. Installation specifications are in the section 
"Sequential Output Disk File Flip-Flop Facility" in this chapter. 

COREINDEX 
requests that the highest-level index of a BISAM file be kept in 
main storage. This option applies only to files large enough 
that the index hierarchy goes above the cylinder level. Cannot 
be used for IAM files. 

DUPLEX=ddname 
specifies the ddname of one or more duplex output files. When a 
duplex output operation is performed, the status code returned to 
the caller is C'O', if any output operation was successful. 
Otherwise, the status code from the first operation is returned. 

NOTE : When duplex files are specified, all associated files are 
automatically flagged with the ERRLOCK attribute. 

ERRLOCK 
to force marking a data set permanently down, when any I/O call 
to the File Handler results in a status code of C'1' or C'9'. 

ICOMBDAMXCTRL 

LSR 

to indicate that Intercomm logic is to be used for BDAM exclusive 
control, rather than that of the operating system. 

cause a VSAM data set to be connected to the VSAM local shared 
resource pool at ACB OPEN time. The data set must be a VSAM data 
set which is currently loaded (LSR cannot be used to load a data 
set) and the resource pool must have buffers large enough to 
contain the data set's control intervals. The SPALIST BLDVRP 
parameter must be coded if LSR is coded. (See "Using a VSAM 
Local Shared Resources Pool" in Section 6.3.) 

6-31 



Chapter 6 File Handler Specifications 

NCPWAIT 
forces Intercomm into the wait state when the number of pending 
I/O's to a sequential file has reached NCP for that file. 
Intercomm becomes active again when the first I/O in the series 
is posted complete. This option is forced for INTERLOG, the 
Intercomm log data set. 

NOTE: This option should be used with caution. Its improper 
use can cause the system to enter the wait state 
excessi vely and performance will deteriorate as a 
resul t. Concurrent I/O requests should be controlled by 
SYCTTBL parameters as described in Section 6.2.8. 

OPEN={BASIC } 
{QUEUED} 
{BOTH } 
{VSAM } 

requests that the file be opened at startup time, rather than 
waiting for the first I/O request. The meanings of the 
subparameters depend on the file organization: 

direct: 
BASIC open BDAM DeB 
QUEUED not applicable 
BOTH not applicable 

indexed sequential: 
BASIC -- open BISAM DeB only 
QUEUED -- open QISAM DCB only 
BOTH -- open both BlSAM and QISAM DCBs 
(If IXFQISAM is used, the only valid specification is BASIC; 
BOTH or QUEUED will generate unpredictable results.) 

sequential: 

VSAM 

READONLY 

BASIC open BSAM DCB only 
QUEUED -- open QSAM DCB only 
BOTH -- open both BSAM and QSAM DCBs 

-- open VSAM ACE 

to define an input only data set. 

UPDATE ONLY 
to define a BlSAM data set allowing updates, but not inserts. 

6-32 

J 

J 



Chapter 6 File Handler Specifications 

VSAMCRS 
indicates that a VSAM Shareoption 2 or 4 file will be shared by 
more than one region in the same CPU and that updates will be 
performed by at least one region. Intercomm will augment VSAM 
shared file processing and provide read integrity for Shareoption 
2 files and read/write integrity for Shareoption 4 files by means 
of OS ENQs: QNAME= INTERCOM , RNAME=VSAM-dsn (up to 44 
characters). This FAR specification must be coded for the file 
in question for every region which will share the file. See also 
"Sharing VSAM Files Under Intercomm" in Section 6.3. 

WRITEOVER 
allows a complete rewrite of an existing physical sequential file 
(DSOOG=PS, DISP=OLD or SHR). If this option is not specified, 
any data written to the file will be added at the end of existing 
data (that is, DISP=MOD assumed). If WRlTEOVER and READONLY are 
specified for the same file, READONLY will be used and no writing 
to the file will be allowed. That is, READONLY suppresses 
WRITEOVER. 

XCTL={QISAM} 
{MULTIREG} 
indicates that ISAM exclusive control updates are performed using 
QISAM, or from multiple regions. These specifications are 
functionally equivalent, and result in an OS ENQ at the file 
level. This is the least efficient means of assuring exclusive 
control, and can be avoided by restricting the updates to BISAM 
and to within a single region. 

6-33 



Chapter 6 File Handler Specifications 

A typical FAR input data set might be: ~ 

III COMIN DD * 
MASTFILE,READONLY,COREINDEX 
TRANFILE,UPDATEONLY,OPEN=BASIC 
CUSTRECS,ALIAS=MASTFlLE 
INRECS,READONLY 
1* 

When ALIAS is specified, it must be the only attribute defined for a 
particular ddname. In other words, coding a FAR as: 

TRANSIN, UPDATE ONLY , ALIAS=INTRANS 

is invalid syntax. When an ALIAS is defined: 

ddnamel,ALIAS=ddname2 

any call to SELECT for ddnamel will cause subsequent calls to READ, 
WRITE, GET, PUT, GETV or PUTV to operate on ddname2. There is no need 
for a DD statement with ddnamel in the execution JCLj the ALIAS 
attribute overrides all specifications for ddnamel. Any reference to 
ddname2 thus refers to ddname2 and the associated FARs for ddname2, if 
any. 

To code the FAR for duplexed output: 

ddnamel,DUPLEX=ddname2 

All WRITEs to ddnamel will be dupiicated on the ddname2 data set. DD 
statements for both data sets must be present in the execution JCL. 

IXFFAR will WTO images of each FAR read from lCOMIN in the course 
of processing. Thus, IXFFAR error messages (FRnnnI) may easily be 
related to an individual FAR. Once the FAR syntax is correct, you may 
suppress the image WTOs (80~character card images) by inserting the 
following card at the beginning of the FAR deck: 

NOMESSAGES 

FAR images will be suppressed j error messages will still be printed. 
This card must be the first record of ICOMIN. 

NOTE: No internal DSCT is created for lCOMIN. 

6-34 

~ 

J 



Chapter 6 File Handler Specifications 

6.7 FILE HANDLER SERVICE ROUTINE SUMMARY 

The following discussion provides a brief summary of File Handler 
functions. The specifics of calling procedures are discussed in 
greater detail in the Intercomm Programmers Guides. 

The File Handler Service Routines are entry points within the 
File Handler Csect IXFKlN01. Each service routine is called with a 
parameter list, as summarized in Figure 6-2. The File Handler 
determines specific operations to be performed, based upon the 
parameter list and DCB information. Parameters for File Handler calls 
are: 

EXTDSCT 

FHCW 

Area: 

Key: 

Block-id: 

(External Data Set Control Table): 12-fullword, 
control block area supplied (but not modified) by the 
calling program. 

(File Handler Control Word): four-byte option/status 
area initialized prior to call to request special 
functions and analyzed after call to determine status 
of operation. 

I/O area wi thin calling program (ddname in the case 
of SELECT or RELEASE with close option). 

Requested key. For undefined record format, this 
field contains the record length. RRN for VSAM RRDS. 

Requested BDAM block-identification (RBN, TTR, or 
MBBCCHHR), or Relative Byte Address (RBA) for VSAM. 

The SELECT function is called before the first access to a file 
in order to: 

3 Verify the availability of the file. 

• Position the file for subsequent sequential access. A 
reuseable (direct access input) file will be repositioned to 
the beginning of the file - for subsequent sequential 
retrieval. A nonreuseable (tape, direct access output) file 
will be positioned after the last record previously processed. 

• Initialize and chain the External DSCT area. 

The RELEASE function is called after the last access to a file in 
order to: 

• Free any dynamically obtained buffers and control blocks 

• Update file status tables and perform necessary housekeeping 
functions (unchain External DSCT area). 

6-35 



Chapter 6 File Handler Specifications 

A special RELEASE function may be used after the above operation 
has been performed to close all shared control blocks for a given file 
if there is no currently outstanding operation being performed against 
the file by the system. 

-----------------------

----------------------
SELECT 

RELEASE 

GET 

PUT 

READ 

WRITE 

RELEX 

GETV 

PUTV 

-----------
S;y:mbol 

R 

I 

D 

DI 

U 

E 

---------- -------- -------------------------- -------- -----------------
EXTDSCT FHCW AREA KEY BLOCK-ID 

---------- -------- --------------------------- -------- -----------------
R R R 

R R 

R R R I or U 

R R R U 

R R R DI or U D 

R R R DI or U D 

R R 

R R R I E 

R R R I E 

---------- -------- -------- ----------- -----------------
Indicates 

Required parameter 

Optional for ISAM or VSAM KSDS and RRDS files, otherwise 

invalid 

Optional for Keyed BDAM file (extended search), required 

for random BDAM (instead of key) 

Required for Keyed BDAM, ISAM and DISAM files, otherwise 

invalid 

Required for accessing a BSAM or QSAM file with 

undefined record format (DCB=RECFM=U)--record length 

Required for address-accessed VSAM (RBA), instead of key 
Invalid Parameter 

Figure 6·2. File Handler Service Routine Parameter Summary 

6-36 

J 



Chapter 6 File Handler Specifications 

The GET function may be used to access the next sequential 
logical record from a QSAM or ISAM data set. In the case of 
application programs requiring QISAM retrieval logic, the GET function 
is used either to obtain the next sequential record for processing, or 
to locate a record by key and continue sequential processing with the 
located record. The File Handler may implement QISAM logic through the 
Basic Indexed Sequential Access Method (BISAM), transparent to the 
application program. 

The PUT function is used to write or rewrite a record or a 
block. When creating a new QSAM data set, new records are written 
using the PUT function. When updating an existing QSAM or (logical) 
QISAM data set, the last record obtained by a GET function may be 
rewritten by calling the PUT function as the next operation upon the 
file. 

The READ function is used to access physical blocks located 
within BSAM, BISAM, or BDAM data sets. For sequential data sets, each 
request for a READ function will process a physical block of records, 
which must be deblocked if necessary by additional programming. For 
indexed sequential data sets, each request for a READ function will 
locate (through an index search) the block containing the desired 
record, but will read only the single record specified by the key. For 
direct access data sets, each request for a READ function will process 
a physical block indicated by relative block number (RBN), relative 
track and record (TTR) or actual address (MBBCCHHR). In the case of 
BDAM without keys, the requested block is retrieved. In the case of 
BDAM with keys, the key search begins at the block specified, 
continuing until the search is complete. (Use of the extended search 
option is based upon DCB parameters including LIMCT.) 

The WRITE function is used either to write the next sequential 
block in a new output BSAM data set, or to update the last block or 
record obtained by a READ function from a BSAM, BDAM or BISAM data 
set. The WRITE function can be used to insert records to a BISAM data 
set specified by key (position located through an index search). A 
record to be rewritten must have been previously read; an inserted 
record must not have been previously read. WRITE with key is the only 
function which will add records to an indexed sequential data set. 

The GETV and PUTV functions are used to access VSAM data sets, 
requesting either sequential or direct access via key, relative byte 
address, or relati ve record number. A keyed access call for direct 
retrieval may provide either a generic (leading portion of a) key or a 
full key, and may specify either a search for an equal (generic) key or 
for the first greater-or-equal (generic) key. All retrieval calls are 
processed assuming that no update is to be performed unless the caller 
specifies otherwise. All calls allow for subsequent sequential access 
(key/RBAIRRN parameters not passed). The caller may switch back and 
forth from any access technique to another, provided VSAM rules are not 
violated; for example, keyed request against an entry-sequenced data 
set. 

6-37 



Chapter 6 File Handler Specifications 

6.8 LOCATE FACILITY 

An additional File Handler service routine, LOCATE, provides 
access to internal DSCT information for Assembler Language programs 
only. The LOCATE function is intended primarily for system use in 
altering the normal processing of a file. LOCATE provides access to 
data management control blocks used by the File Handler. A call to 
LOCATE will return data set specifications, error indicators and 
related information. This data, not available via other File Handler 
calls, can then be examined and/or judiciously altered. 

A parameter list of variable length (depending on the amount of 
information required) is passed to LOCATE. The specific format is: 

CALL LOCATE, (work-area,fhcw,dsctfld(,dcbfld,decbfld,iobfld) ),VL, X 
MF=(E,list) 

Each parameter suffixed with "fld" must specify a fullword 
field. The address of the requested control block will be returned in 
each of these fields. The first three parameters are required; the 
remaining three are optional. 

The parameters passed to LOCATE are defined as follows: 

• work-area--pointer to a File Handler work area which may be: 

A location containing a ddname. If dcbfld is specified, 
a public DCB is to be supplied (that is, an opened DCB to 
be shared by all users of this file is returned). 

A File Handler work area (External DSCT) for a previously 
selected file. If dcbfld is specified, a private DCB :Ls 
to be supplied (that is, the DCB returned is to be used 
only for I/O operations referencing the specified work 
area. The DCB will be closed when the work area is 
RELEASEd. ) 

• fhcw--the File Handler Control Word name. The completion 
status, in character format, will be returned in the first 
byte. Completion codes are: 

C'O'--control blocks located 

C'9'--file not located or improper type 

• dsctfld--pointer to a location on a word boundary. The 
address of the internal DSCT will be returr.ed here. The 
IXFDSCTA macro should be used to generate a Dsect. 

6-38 

J 

J 



Chapter 6 File Handler Specifications 

• dcbfld--pointer to a location on a word boundary. The 
address of an opened Data Control Block (DCB) will be 
returned here (see work-area, above). If this parameter is 
the last coded, the DCB will be one for sequential access 
(GET /PUT) • If add itional parameter( s) follow, the DCB will 
be one for basic access (READ/WRITE). The record length, 
block size, and other data set characteristics are specified 
in the DCB. (For details, see IBM System Control Blocks, and 
macro instruction IHADCB.) 

~ decbfld--pointer to a location on a word boundary. Address 
of a Data Event Control Block (DECB) for basic access will be 
returned here. Contents of the DECB vary by acces method. 
For BDAM or BISAM, error status indicators are present in the 
DECB. (See IBM System Control Blocks.) This pointer must be 
hex zeros if file is not yet selected (address of ddname of 
the file is supplied for work-area). Address of DECB will 
not be returned in such a case. 

a iobfld--pointer to a location on a word boundary. Address of 
the last used Input/Output Block (IOB) will be returned 
here. If no READ/WRITE operation has been performed, a zero 
value is returned. 

LOCATE for VSAM, with dcbfld and decbfld specified, returns an 
opened ACB and a RPL address, respectively, even if the data set was 
converted from ISAM. 

Programs which must refer to fields within the internal Data Set 
Control Table may be coded as in this example: 

CALL 
L 
USING 

LOCATE, (work-area,fhcw,dsctfld) ,VL 
register,dsctfld 
DSCT,register 

IXFDSCTA 

6-39 

Locate DSCT Entry ~ 
Load Entry Address I 
Make Fields Addressable I 

Define DSCT Fields 



Chapter 6 File Handler Specifications 

Some of the fields which may be useful are: 

DSCTDCBQ pointer to QSAM or QISAM DCB 

DSCTDCBS pointer to BSAM or BISAM DCB 

DSCTDCBD pointer to BDAM DCB 

DSCTDECB pointer to DECB for BSAM, BISAM or BDAM 

DSCTACB pointer to VSAM ACB 

DSCTRPL pointer to VSAM RPL 

Each of the above fields contains a significant value only if the high 
order bit of the word is 1 (use TM field,X'80'). 

6.9 FILE HANDLER OPTIONS 

A number of File Handler options may be specified to further 
customize performance for an installation's needs. These options are 
specified via JCL, tables or conditional assembly of the File Handler. 

6.9.1 Exclusive Control Time-Out 

This option within the File Handler specifies a maximum time 
limit that a particular record or block may be held in exclusive 
control by a particular message processing thread. This time value 
represents the actual duration of message processing time between a 
request for exclusive control and the subsequent release of exclusive 
control by file update, or access to the same External DSCT 
representing a message thread's access to· a file. This value is a 
constant defined within the member IXFHND01. The standard setting 
represents two minutes for exclusive control at the physical block 
level, ten minutes for exclusive control at the data set level. An 
Intercomm System Engineer should be consulted to adjust this value. 
This feature does not apply to VSAM files. 

6.9.2 Conditional Assembly of the File Handler 

Several File Handler options are specified by global settings and 
subsequent conditional assembly of File Handler modules. The globals 
are defined in the member INTGLOBE and specified in the member SETGLOBE. 

6-40 

J 

J 

J 



Chapter 6 File Handler Specifications 

The following members must be reassembled and linked: 

IXFHNDOO,IXFHND01 

If the &VSAM or &VSISAM globals are set to 1, the modules must be 
reassembled whenever a new version of VSAM is installed (setting 
&VSISAM to internally forces &VSAM to 1). The globals are 
illustrated below. 
F==================-==================================================== 

Global Default 
Definition File Handler Setting 
(INTGLOBE) Function (SETGLOBE) 

======================================================================== 
&ISAM Allow ISAM access SETB 1 
&VSAM Allow VSAM access SETB 
&VSISAM Allow VSAM/ISAM compatability SETB 1 
&AMlGOS Allow AMlGOS file access SETB 0 
&IAM Allow lAM file access SETB 0 
&DYNALOC Allow Dynamic File Allocation SETB 1 

6.9.3 

Note: the &DYNALOC global specifies program usage of the special 
feature described in Dynamic File Allocation for data sets 
not defined in Intercomm execution JCL and is unrelated to 
FILE command processing. 

Subtasked GETs 

The File Handler has a generalized subtasking facility to allow 
all GETs (both QSAM and QISAM) to be overlapped with other Intercomm 
processing. The reason for the facility is that the GET macro does not 
return control to a task, when it is issued to retrieve a record, until 
the record is obtained. Without subtasked GETs, the File Handler, and 
therefore Intercomm, would go into a wait state whenever a GET was 
issued. Using a subtask to perform the GET allows Intercomm to 
continue processing while only the subtask remains in the wait state. 
(The operating system must have the IDENTIFY feature and multitasking 
capability.) The module ICOMTASK must be included in the linkedit. 

At startup a user-specified number of generalized sub tasks must 
be created, which will issue the GETs, when called upon to do so by the 
main Intercomm task. The user specifies the number of general sub tasks 
to be created in the TASKNUM parameter of the SPALIST macro. 

Each subtask 
subtask, all GETs 
wi th each other. 
GETs themselves to 

executes GETs serially. Therefore, with only one 
will be overlapped with other processing, but not 
Specifying a larger number of subtasks allows the 
be executed concurrently. 

File Handler closedown (IXFMON09) detaches all the subtasks. 

6-41 



Chapter 6 File Handler Specifications 

6.9.4 IXFDSCTA Options 

The four bytes beginning at displacement 4 from the start 
(header) of the IXFDSCTA Csect are the "options" bytes for the File 
Handler, and can be coded to give the various options listed in Figure 
6-3 either by the appropriate hex digits coded in the OPTIONS parameter 
in the IXFDSCTA macro, or can be patched into the Intercomm load module 
at execution time (Csect name: IXFDSCTA, displacements: 4, 5, 6 
and 7). 

--------------------------------------------------------- --------------------------------------------------------------------- ------------
Op tions Code 

--------------------------------------------------------- --------------------------------------------------------------------- ------------
Do not overlap BISAM (single-thread) XX 40 XX XX 

Allow unit record devices in DSCT XX XX XX 80 

Disable automatic initialization XX XX XX 01 

GET: Time-slice option xx XX 80 XX 

Single-thread PS READs XX 80 XX XX 

BDAM: Prevent exclusive control XX 02 XX XX 

BDAM: Force exclusive control XX XX 02 XX 

BDAM: Single-thread nonexclusive READs XX 20 XX XX 

BISAM: Prevent exclusive control XX 04 XX XX 

BISAM: Force exclusive control XX XX 04 XX 

BISAM: Bypass RE-READ option (exclusive control) XX 01 XX XX 

Figure 6-3. IXFDSCTA Options 

6.9.5 User-Specified DCBs 

The File Handler provides the ml.nJ.mum necessary control blocks 
and options for processing a file. Certain increased performance 
processing options require that the user supply the data control 
block. Such nonstandard options include resident master indexes, main 
storage work areas for ISAM data sets, etc. 

DCBs should be supplied to the File Handler before they are 
required for I/O operations. The user startup exit (USRSTRT1) in 
Intercomm is a convenient point at which to supply DCBs. 

6-42 

J 

J 

J 



Chapter 6 File Handler Specifications 

The user routine must be written in Assembler Language and use 
standard linkage conventions. The following statement must precede the 
first named or unnamed control section in the user's module: 

PUNCH' REPLACE IXFDSCTA' 

A COPY statement for the system library member IXFDSCTB must be 
coded in the user routine. This will generate both a Csect (IXFDSCTA) 
and a Dsect (labeled DSCT) in the assembled routine. The REPLACE 
statement generated by the PUNCH command will, during link editing, 
delete the Csect. 

To supply a DCB to the File Handler, call the LOCATE function. 
This will store the address of the Data Set Control Table (DSCT) in a 
user-supplied area: 

CALL LOCATE,(ddname,fhcw,dsctfld),VL,MF:(E,list) 

The return status (first byte of fhcw) from LOCATE must be tested 
before proceeding. If the code is nonzero, the file is not available 
for accessing; no DCB can be supplied. 

If the file is available, dynamic main storage should next be 
acquired (STORAGE macro). The number of bytes obtained should be the 
length of the user-supplied DCB. The user DCB can then be constructed 
in this dynamic area. Or, if constructed elsewhere, the DCB can now be 
moved to the area. Unused bytes at the beginning of the DCB must be 
copied into the dynamic area. The symbol naming the DCB macro 
instruction must correspond to the first byte of the area. The DCB 
need not be opened; however, an OPEN macro can be issued if desired. 

Having created a DCB in dynamic storage, load the DSCT address 
returned by LOCATE into a register. The statement: 

USING DSCT,register 

should be in effect at this point. The proper DSCT field to contain 
the address of the created DCB can now be addressed; this field will be 
one of the following: 

• DSCTDCBQ for a QSAM or QISAM DCB 

• DSCTDCBS for a BSAM or BISAM DCB 

~ DSCTDCBD for a BDAM DCB 

Bit zero of the field DSCTDCBx should now be tested: 

TM DSCTDCBx,X'80' 

If the bit is on, a DCB already exists; no new DCB can be 
supplied. If the bit is off, place the address of the user DCB in the 
field DSCTDCBx. Next, or (01) x'80' into the first byte of DSCTDCBx. 

6-43 



Chapter 6 File Handler Specifications 

The File Handler will now use the supplied DCB for subsequent I/O 
operations. Use will continue until closing of the data set is 
executed explicitly or by implication. (Closing of the data set would 
be implied by a RELEASE with the close option.) Upon explicit or 
implied closing: 

• The supplied DCB will be closed. 

• The main storage area occupied by the user DCB will be 
freed. (Storage freed will correspond in length to the 
standard DCB for the particular access method.) 

A new DCB must be supplied if subsequent processing is desired. 

Figure 6-4 illustrates a possible user-coded routine to supply a 
user DCB to the File Handler. 

USRCSECT 

MYDCB 
DCBLEN 
ADDRDSCT 
STAT 

TITLE 
PUNCH 
CSECT 

CALL 
CLI 
BNE 
L 
USING 
TM 
BO 
LA 
STORAGE 
MVC 
ST 
MVI 

DCB 
EQU 
DC 
DC 
COPY 
END 

Figure 6-4. 

'USER SUPPLIED BISAM DCB TO FILE HANDLER' 
REPLACE IXFDSCTA' 

LOCATE,(MYDCB+40,STAT,ADDRDSCT),VL 
STAT,C'O' 
NODDNAME ERROR. DDNAME NOT DEFINED 
2,ADDRDSCT 
DSCT,2 
DSCTDCBS,X'80' 
DCBINUSE ERROR. DCB ALREADY IN USE 
O,DCBLEN 
LEN=(O),SYS=YES ••• 
O(DCBLEN,1),MYDCB 
1,DSCTDCBS 
DSCTDCBS,X'80' 

DSORG=IS,MACRF=(RUS,WUA),DDNAME=MYDD, ••• 
*-MYDCB 
F'O' 
CL4' , 
IXFDSCTB 

Sample User-Supplied DCB 

6-44 

J 

J 

J 



Chapter 6 File Handler Specifications 

6.10 FILE HANDLER STATISTICS REPORT 

The optional program IXFRPT01, when included in the resident 
Intercomm linked it , produces statistical reports of File Handler 
usage. Reports on all files accessed are periodically written to 
SYSPRINT. Data for these reports is maintained in the internal DSCT 
and optionally on the disk data set STATFILE. The printed figures 
reflect cumulative file activity; that is, total activity since 
Intercomm startup or the last reinitialization of STATFILE (if 
defined,). A second entry point, IXFRPTIQ allows on-line inquiry via 
the FHST command. To allow terminal commands, a SYCTTBL for a resident 
subsystem must be defined in the SCT with entry point IXFRPTIQ, along 
with the appropriate verb definition for FHST in BTVRBTB. In this 
case, a terminal operator asks for statistics for a particular file or 
all files; the requested information is returned to his remote 
location. See System Control Commands. 

The general layout of the File Handler Statistics Report is shown 
in Figure 6-5. The leftmost column lists ddnames of all accessed files 
in the system. The second column shows how many times each file has 
been selected. Columns three through six show the number and type of 
accesses to the file (less detail may be obtained; see below). At the 
right hand side of the page, total accesses per file are shown. 
AVERAGE shows the average number of accesses per SELECT. (For 
SYSPRINT, which has no SELECTs, no average is calculated.) At the end, 
a summary line showing total activity for all files is printed. 

DATE 83.056 FILE HANDLER STATISTICS REPORT TIME 1 0 : 19 : 38 • 7 PAGE 1 

DDNAME SELECT GET PUT READ WRITE TOTAL AVERAGE 
INTERLOG 12 0 0 0 43 43 3.58 
STSLOG 2 0 48 0 0 48 24.00 
INTSTOR2 9 0 0 1 1 0 11 1.22 
SYSPRINT 0 0 521 0 0 521 
SMLOG 5 0 649 0 0 649 129.80 
WAGEMSTR 14 0 0 41 27 68 4.86 
STOKFILE 4 4 0 0 0 4 1.00 
PARTFILE 6 0 0 6 0 6 1.00 
PMIQUE 5 0 0 0 0 0 0.00 
RCTOOO 9 0 0 9 0 9 1.00 

SUMMARY 66 4 1218 67 70 1359 20.59 

Figure 6-5. File Handler Statistics Report 

A terminal request for statistics for a particular file produces one 
line of output formatted exactly as a body line in the SYSPRINT report. 

6-45 



Chapter 6 File Handler Specifications 

The number of statistics options is globally specified via the 
&FHSTATS global in SETGLOBE (released as 5 for selects, gets, puts, 
reads and writes). A corresponding number of fullword buckets are 
generated at the end of each internal DSCT entry for each file accessed 
via the File Handler. 

If less detailed statistics options are desired, change the 
&FHSTATS global value to 3 (selects, inputs, outputs) or 2 (selects, 
accesses) and reassemble and relinkedit the following modules (if used): 

AMHNTFC 
CFMSINTF 
DDQMOD 
DDQSTART 
INTSECOO 
INTSTORF 
IXFB37 
IXFCHKPT 
IXFCREAT 

IXFCTRL 
IXFDISAM 
IXFDSCTn 
IXFDYALC 
IXFFAR 
IXFHNDOO 
IXFHND01 
INFLOG 
IXFQISAM 

IXFRPT01 
IXFRVRSE 
IXFSNAPL 
IXFVERF1 
IXFVSCRS 
LOGPUT 
PMISNAP1 
PMITEST 
RMPURGE 

IXFRPT01 is initially dispatched by startup. Thereafter it 
dispatches itself on the time interval specified by the global &RPTINTV 
in the member SETGLOBE. As released, the report is produced at ten 
minute intervals. If this value is changed, reassemble STARTUP3. The 
time interval for dispatching IXFRPT01 can be changed during Intercomm 
execution. This is accomplished by issuing a DISPATCH macro instruction 
for IXFRPT01. The address of the new time interval (in timer units) is 
passed in register 1. The IXFRPT01 rescheduling cycle can be halted by 
dispatching IXFRPT01 on a time interval of O. The dispatching of 
IXFRPT01 is stopped by closedown. A final File Handler Statistics 
Report is produced, but IXFRPT01 is not rescheduled. As written, 
IXFRPT01 supports up to 1596 files (internal DSCT table entries). If 
more are defined in the Intercomm JCL, change the value coded for 
FLAGTBL in the save/work area to the number of files divided by 8 (each 
bit represents one file). 

At each execution of IXFRPT01, statistics are retrieved from 
internal File Handler tables. If defined, the STATFILE disk data set 
is also updated. Updating consists of summing figures from the internal 
tables with those already accumulated on STATFILE. The internal tables 
are then zeroed out. A report reflecting the total figures on STATFILE 
is then written to SYSPRINT. The number of lines per print page may be 
modified by changing the global setting for &PAGELIN in IXFRPT01 
(defaul t=55) • 

When entered via an inquiry from a terminal, IXFRPT01 also 
retrieves required data from STATFILE, if defined. Statistics in 
internal tables are added in and the on-line report is sent to the 
requesting terminal. STATFILE is not updated, nor are the internal 
tables zeroed. Statistics for all files, even if never selected, are 
displayed when an FHST command without a ddname is entered. The number 
of lines per display (including headers) depends on the terminal line 
length (minimum=80) and buffer size (defaults to 24). 

6-46 

J 



Chapter 6 File Handler Specifications 

6.10.1 File Handler LSR Statistics 

In addition to the normal File Handler statistics, when a Local 
Shared Resources pool is present, statistics on all of the buffer pools 
in the resource pool may be gathered. Since the buffer pools are 
shared among data sets, the statistics are reported on a pool rather 
than data set basis. Information about the individual data sets using 
the pool is displayed as usual in the data set section. To implement 
LSR statistics, the &FHSTATS global must be set to 5 and the modules 
listed in the previous section reassembled if &FHSTATS was less than 5. 

The following statistics are displayed for Local Shared Resources 
(see illustration): 

BFR SIZE 

REQ REJ 

BFRFND 

BUFRDS 

STRNO EX 

STRMAX 

one line of statistics for each pool size in the 
resource pool. 

number of requests (requiring a given size 
buffer) which were rejected because there were 
not enough buffers of that size to satisfy it 
(the amount reflects all retries of rejected 
requests) . 

number of requests satisfied by data found in a 
buffer of that pool size (no IIO needed to 
satisfy request). 

number of reads to bring data into a buffer of 
that pool size. 

number of requests that were rejected because no 
placeholders were available; reflects all retries 
of rejected requests (kept for resource pool as a 
whole) • 

maximum number of placeholders in use at anyone 
time (accumulated for the whole resource pool, 
not on a buffer pool size basis, because 
placeholders are assigned to the resource pool as 
a whole). 

Note that, when LSR is used, VSAM at tempts to use bu ffers that 
are the size of a data set's control interval(s). If no buffer pools 
of that size exist, VSAM uses the next larger size. Thus if X and Y 
are pool buffer sizes and Z is a control interval size such that Z is 
larger than X but smaller than Y, buffers for control interval size Z 
will be taken out of the pool of size Y buffers. When the "request 
rejected" statistics are displayed, they will show the number of 
requests rejected for each control interval size rather than buffer 
size. One should be aware, however, that the buffer pool that had no 
buffers available for the request was that of the next larger size. 

6-41 



Chapter 6 File Handler Specifications 

Also, when a key-sequenced data set is used with LSR, both the 
data component and the index component share buffers from the LSR 
pool. If the data and index component have different CI sizes, both 
buffer sizes must be available in the pool (with the exact sizes or the 
next higher size) and buffers must be free in the pool for the request 
to be satisfied. Thus, a request may be rejected if either buffer pool 
size is temporarily out of buffers. VSAM gives no indication as to 
which buffer size was unavailable, so when a KSDS request is rejected, 
this is reflected in the statistics under both CI sizes. This fact 
must be considered when making adjustments to the LSR pool based on the 
File 'Handler statistics. 

DATE 83.056 VSAM LSR POOL STATISTICS TIME 10: 19: 38.7 PAGE 2 

BFR SIZE REQ REJ BFRFND BUFRDS 

512 0 3 1 
1024 0 0 0 
2048 0 0 0 
4096 0 0 0 
8192 0 0 0 

12288 0 3 1 
16384 0 0 0 
20480 0 0 0 
24576 0 0 0 
28672 0 0 0 
32768 0 0 0 

STRNO EX 0 STRMAX J 
A LSR statistics display may be requested at a terminal '/ia the 

FHST command. 

6.10.2 Creating the File Handler Statistics File (STATFILE) 

STATFILE must contain a number of records at least one greater 
than the maximum number of files in the system. The STATFILE record 
consists of an eight-byte ddname and four bytes for each statistic. 
Totals on STATFILE are cumulative and may represent daily or weekly 
totals, etc. , that is, cumulative for se'reral Intercomm jobs. A 
schedule for reinitializing STATFILE should be established to meet the 
needs of the particular Intercomm installation. 

6-48 

J 

J 



Chapter 6 File Handler Specifications 

To create STATFILE, use the CREATEGF utility (see Chapter 12), 
for example: 

Iistepname 
IISTEPLIB 
IISYSPRINT 
IISTATFILE 
II 
II 
IISYSIN 
F STATFILE 
II 

EXEC 
DD 
DD 
DD 

DD 
xx 

PGM=CREATEGF 
DSN=INT.MODREL,DISP=SHR 
SYSOUT=A 
DISP=(NEW,KEEP),DSN=STATFILE,SPACE=(TRK,(2,1», 
UNIT=unit,VOL=SER=volume, 
DCB=(DSORG=DA,BLKSIZE=560) 

* 

where xx is the number of blocks to create based on the value of n 
below. 

At Intercomm execution time, the following DD statement must be 
present for STATFILE: 

IISTATFILE DD 
II 

DSN=STATFILE, DISP=(OLD, KEEP) , 
VOL=SER=volume,UNIT=unit, 
DCB=(DSORG=PS,BLKSIZE=560,LRECL=n,RECFM=FB) II 

where n is: 

16 if only collecting SELECT and ACCESS statistics (&FHSTATS 
set to 2). 

20 if SELECT, INPUT, and OUTPUT statistics are to be 
collected (&FHSTATS set to 3). 

28 if SELECT, GET, PUT, READ, and WRITE statistics are to be 
collected (&FHSTATS set to 5). 

The SYSPRINT data set must be specified in the Intercomm 
execution JCL as follows: 

IISYSPRINT DD SYSOUT=A, 
II DCB=(DSORG=PS,BLKSIZE=141,LRECL=137,RECFM=VA) 

The SYSPRINT file should be blocked for optimum throughput since PUTs 
to the file are not overlapped (see Section 4.2.2). 

6-49 



Chapter 6 File Handler Specifications 

6.11 USING THE FILE HANDLER SEPARATELY FROM INTERCOMM 

The File Handler may be used independently of any other Intercomm 
components, if desired, by linkediting the modules BATCHPAK, IXFHNDOO, 
and IXFHND01 (preceded by IXFDSCTn, if a separate Internal DSCT table 
is needed) with any application program. File Handler interface coding 
is exactly the same as used in on-line programs; the same entry points 
(including SELECT and RELEASE) are called, and the same parameters are 
used. Unresolved external references, beginning with 'IJK' (Dispatcher 
entry points), will be bypassed during execution. However, if a VSAM 
or x37 abend protected file is being processed, IJKDSP01 must also be 
included. 

When the File Handler is used off-line by a processing program, 
that is, used separately from Intercomm, the initialization routine 
(IXFMDNOO) may be called prior to any File Handler processing; however, 
this module will be automatically called, if necessary, when the File 
Handler is first used in a job step. If errors occur during 
initialization, IXFMONOO returns to the operating system with a return 
code of 16. The File Handler will not use any "unresolved" entry 
points to other Intercomm modules if these are not available during 
execution. At the end of processing, the batch program should issue a 
second call to RELEASE with the close option, to close the file 
(required for VSAM). 

FAR processing will also be performed if IXFFAR is included in 
the linkedit, along with a DD statement for ICOMIN (and FAR statements) 
in the execution JCL. For VSAM file processing, if any of the 
following FAR options are used, additional linked it considerations 
apply: 

o LSR include an INTSPA (SPALIST macro assembly with 
EXTONLY=BOTH and with LSR pool definitions; do not specify 
the FIX option) before the include statement for BATCHPAK 

o VSAMCRS - include KEYFLIP (before the include for IJKDSP01), 
PMINQDEQ, IXFVSCRS, and then INTSPA before the include 
statement for BATCHPAK; INTSPA must contain a SPALIST macro 
assembled with a SET GLOBE in which the Intercomm Interregion 
SVC was specified (&MRSVC not 13). 

6-50 

J 

J 



\. 

Chapter 6 File Handler Specifications 

6.11.1 Using the File Handler in LINKPACK for Batch Programs 

To interface a batch program to the File Handler in the Intercomm 
Link Pack Module in the Link Pack Area, the following steps are 
necessary: 

1. Prepare the Link Pack Facility as described in Chapter 7. 

2. Write an interface routine (INTERFAC) to: 

• CALL MULTISPA 

• CALL LPSTART 

• CALL BATCHPGM 

where BATCHPGM is the entry point of the user batch program. 

3. Include in the linkedit 

• INCLUDE SYSLIB(MULTISPA) 

• INCLUDE SYSLIB(LPSTART) 

• INCLUDE SYSLIB( LPINTFC) 

• INCLUDE SYSLIB(IJKDSP01) (if VSAM file accessed) 

• INCLUDE SYSLIB(IXFDSCT1) 

~ INCLUDE SYSLIB(IXFHNDOO) 

• INCLUDE SYSLIB(IXFFAR) (if FAR options used) 

• INCLUDE SYSLIB(BATCHPAK) 

• INCLUDE SYSLIB(BATCHPGM) User Batch Program 

• INCLUDE SYSLIB(INTERFAC) User Interface Routine 

• ENTRY INTERFAC 

6-51 



Chapter 6 File Handler Specifications 

6.12 DISAM--A FILE HANDLER ACCESS TECHNIQUE 

The Indexed Sequential Access Method (ISAM) offers certain 
conveniences in the maintenance of files that must afford random access 
to indi vidual records, but also must be maintained in a particular 
sequence for either batch processing or scanning purposes. These 
conveniences, however, are accompanied by serious disadvantages with 
respect to accessing efficiency and parallel program execution, both of 
which are major factors in the throughput capacity of on-line systems. 

In particular, every ISAM operation except rewriting a block 
involves an index level search and data read. All are performed 
through time-consuming sequentially chained physical access operations, 
which monopolize the hardware I/O channel throughout their duration, 
even during periods when no productive data transfer is occurring. The 
high minimum elapsed time necessary to complete one logical function, 
especially where overflow chains are present, is one serious drawback 
of ISAM files, while the inability to overlap the physical accesses of 
different programs is another obstacle to total machine efficiency. 
Finally, the fact that addition of new records may cause relocation of 
other records places a severe restriction on the ability of different 
programs to process the same file in other than a batch mode--one 
program at a time. 

Where maintaining a sequence is unnecessary or avoidable, a 
direct-access (BDAM) file is preferable to an indexed organization. 
Although this may require more planning and coordination among 
designers and programmers, a worthwhile conservation of machine usage 
by programs may be realized. ISAM provides the most carefree random 
access programming and will function even if proper record distribution 
and file maintenance are neglected, but the price of automatic 
arrangement of one's unique data base by a standard program may be a 
serious degradation of performance. 

Where maintaining a sequence is necessary, however, a compromise 
solution may be more efficient for some applications. Scanning ability 
and ready insertion and deletion of records may be retained while 
channel interference, record relocation and parallel proceSSing 
restrictions may be reduced through a combination of ISAM and BDAM 
files forming a data base. In this concept, known as DISAM, the ISAM 
portion of the data base contains only keys and pointers to the 
remaining data contained in the BDAM portion of the data base. (See 
Figure 6-6 for an illustration of the DISAM organization.) 

While the reduced total size of the ISAM file may slightly 
decrease average index search time, and the reduced record size may 
decrease buffer space and overflow area requirements, the average time 
to access a data record generally will increase. This is due to the 
termination of the ISAM operation when a pointer to the data record is 
read, and another BDAM access is required to read the data. The 
offsetting gains in performance, however, are realized in several ways. 

6-52 

J 



Chapter 6 

ISAM DATA SET 

---OFFSET---

DISAM RECORD AREA 

File Handler Specifications 

BDAM DATA SET 

DATA 
RECORD 

DATA 

Figure 6-6. DISAM Data Base Structure 

Overflow chains of lengthy data records are eliminated, reducing 
performance degradation as the file content changes. More 
significantly, a program may reserve exclusive control of a particular 
data record while other programs process different records of the same 
file; this, in turn, results from data records not being relocated when 
other records are added, thereby permitting simultaneous access to the 
same data base by several programs. For applications where the volume 
of file updates and additions is high, this factor may be significant 
in the file design decision. 

6.12.1 DISAM File Handler 

To simplify coding standard DISAM operations, a DISAM File 
Handler (module name: IXFDISAM) is provided, with functions and 
calling sequences similar to those of the standard File Handler; the 
DISAM module in turn calls the standard modules for basic I/O functions. 

6-53 



Chapter 6 File Handler Specifications 

The terms defined below are used in the subsequent function 
des crip tions: 

• Work-area 

This is a twenty-seven-word main storage area beginning on a 
word boundary, in which the DISAM File Handler places and 
maintains both control and status information during 
processing. This area is initialized by the File Handler 
when the data base is selected, and its contents are used by 
the File Handler in performing subsequent operations. 

NOTE: If an application program is to be reenterable, main 
storage for all work areas and nonconstant data must 
be dynamically obtained. 

• Status-area 

This is a four-byte main storage area consisting of: 

--Byte 1--completion status 

--Byte 2--option byte 

--Bytes 3 and 4--offset value, when used 

• The completion status is stored by the DISAM File Handler 
after every operation, and will be one of the following: 

__ CIO' 

Operation completed normally. 

--C'1' 

An IIO error (such as data check) occurred during the 
operation. 

--C'2' 

During input the specified record could not be found, 
the end of the file was reached during sequential 
input, or the offset value or record pointer are 
invalid or specify no record. 

During output the record being added has the same key 
as an existing record, or the record being rewritten 
was already released (by time-out) from exclusive 
control. 

6-54 

J 



Chapter 6 File Handler Specifications 

--C '9 ' 

The file cannot be accessed. Possible causes: an 
omitted DD statement (or omitted DSORG in the 
statement), a misspelled file name, output operation 
on a read-only file, permanent file error (such as 
overflow area full), work area was overlaid, or 
format is not fixed length. 

The option byte must be inserted by the calling program 
before each call for a function where options can be 
specified. The options and their codes are given in the 
individual function descriptions which follow. 

The offset value is a binary quantity (relative to zero) used 
to locate the BDAM record pointer within the ISAM record. A 
default offset value is specified when the file is selected; 
thereafter any operation where no value is specified will use 
the default value. This field is two bytes in length, and 
must be filled with blanks, binary zeros (low-values), or 
hexadecimal FFs (high-values) when no value is to be 
specified. 

• Record-area 

A main storage area of sufficient size to contain both one 
index record (ISAM logical record) and one data record (BDAM 
record). Figure 6-6 indicates the relationship of these 
records to the record area. The index record begins in the 
first byte of the record area and its length is one logical 
record length (LRECL). The data record begins in the next 
byte after the index record and its length is the block size 
(BLKSIZE) of the BDAM file. 

Within the index record are one or more record pointers, 
which are three-byte binary fields specifying the relative 
block number (RBN) of a record in the BDAM file. Valid RBN 
values are 1 through one less than the number of blocks in 
the file. Each record pointer field must be filled with 
either blanks, binary zeros (low-values), or hexadecimal FFs 
(high-values) when no data record is to be specified. 

To locate a specific data base record, the DISAM File Handler 
first reads the index record having the specified (or next 
higher) key, locates a record pointer within the logical 
record using the offset value supplied, and reads the 
indicated data record. The record area then contains both 
the index and data portions of the file item desired. 

6-55 



Chapter 6 

6.12.2 

File Handler Specifications 

Al though the index record may contain data as well as record 
pointers, the parallel processing advantage of DISAM is 
realized when the BDAM data set contains all the updatable 
information pertaining to the file. The use of several 
record pOinters in the index record permits one ISAM data set 
to be the index to several BDAM data sets! or permits an 
index record to point to several data records in the same 
file. The actual record formats, file usage and file 
creation are freely established by the user to suit the 
application, while the DISAM File Handler assists in 
performing all processing operations as required. DISAM is 
implemented on-line by coding DISAM=YES for the lCOMLINK 
macro when generating the Intercomm linkedit control 
statements. 

DISAM File Record Formats 

The DISAM access method allows for 
records in both the index and data files. 
formats are allowed; that is.: 

fixed or variable length 
All combinations of record 

• Fixed-length ISAM and fixed-length BDAM 

• Fixed-length lSAM and variable-length BDAM 

• Variable-length ISAM and fixed-length BDAM 

• Variable-length ISAM and variable-length BDAM 

In addition, the ISAM file may be blocked or unblocked. 

6.12.3 BDAM Records 

For variable-length BDAM records, the first four bytes consist of 
a block length field containing a two-byte binary length followed by 
two bytes of zeros; the next four bytes contain a record length fie ld 
consisting of a two-byte binary length (four less than the block 
length) followed by two bytes of zeros; that is, there is an eight-byte 
prefix for every variable-length BDAM record. Input records received 
by the user will contain the length fields, and output records must be 
ini tialized by the user with the length fields containing the correct 
length. The four bytes for each length field are included in the 
lengths, and the eight bytes for both fields are included in the 
BLKSIZE value for the file. A relative track and record number (TTR) 
must be used as the BDAM record pointer in the ISAM record for 
variable-length BDAM records. For a description of relative track 
addressing, see the appropriate Intercomm Programmers Guide. 

6-56 

J 



Chapter 6 File Handler Specifications 

6.12.4 Size of Record Area for Variable Length Records 

The record area must be large enough to contain the maximum size 
record for each file (the value given as LRECL for the ISAM file and as 
BLKSIZE for the BDAM file). 

The four bytes for the length field are included in the length 
value and in the LRECL value for the file. 

The DISAM user must allow for these four bytes in the offset to 
the BDAM record pointer within the ISAM record (that is, if the BDAM 
record pointer begins in the third data byte of the ISAM record, the 
offset is two for fixed-length ISAM records and six for variable-length 
ISAM records). 

6.12.5 ISAM Offset Value 

For variable-length ISAM records, the first four bytes of the 
record are the length field containing a two-byte binary length 
followed by two bytes of zeros. Input records received by the user 
will contain the length field, and output records must be set up by the 
user with the length field containing the correct length. 

6.12.6 DISAM Operations 

Each operation is invoked by a CALL, in a 
programming language used, to the entry point 
letters. The parameters passed in the CALL 
parentheses and are replaced by the name 
corresponding field. 

form sui table to the 
shown in upper case 
are listed between 

or address of the 

NOTE: In Assembler Language, the VL operand must always be 
specified. 

To select a file for accessing, invoke this operation: 

DISEL (work-area ,status-area ,name-area) 

• Work-area 

A twenty-seven-word area aligned on a word boundary. The 
area is initialized at this time and must be specified in all 
subsequent function calls. 

6-57 



Chapter 6 File Handler Specifications 

• Status-area 

--option byte (2nd byte of status-area) 

The data record delete option is specified if this field 
contains a character 'F'. A record in the data file is 
considered deleted if the first byte of the record contains 
X'FF' • An attempt to read a deleted record results in a no 
record found condition. If the delete option is not 
specified at SELECT time, no deletion of records is possible 
in the data file. 

--Offset value (last two bytes of the status-area) 

The value specified at this time will be used as a default 
value in any subsequent function call that does not specify 
an offset. If no offset is specified at this time, a default 
value of 1 is assumed. 

• Name-area 

A sixteen-byte area, the first eight bytes containing the 
ddname of the ISAM data set and the next eight bytes 
containing the ddname of the BDAM data set. The ddnames are 
the names of the job control DD statements defining the file 
for the current job step. A ddname less than eight bytes 
must be left-justified with remaining bytes blank. 

For random input, invoke this operation: 

DIREAD (work-area,status-area,record-area(,key-area) 

o Status-area -- option byte 

Leave the option byte blank if none of the special processing 
options below are required: 

1 or X -- Hold the data record in exclusive control until 
subsequently released or rewritten by this 
program. No other program requesting exclusive 
control can read or update the same data record 
until it is released. 

2 or I -- Read the index record only and do not use the 
offset value. 

3 Read the index record only, and retain exclusive 
control of the index data set until released. 

6-58 

J 



Chapter 6 File Handler Specifications 

4 or D -- Read a data record only. The record area is 
assumed to contain a previously read index record 
and the offset value is used, as previously 
specified, to obtain the data record pointer. 
The key area parameter must be omitted when 
specifying this option. 

5 

7 

NOTE: 

Combine the functions of 1 and 4. 

Read both index and data, and retain exclusive 
control of both the index data set and the data 
record until released or rewritten. 

Performance is degraded when exclusive control of the 
index data set is requested. This is normally not 
necessary, even when record pointers are inserted or 
replaced, unless variable data fields are made part 
of the index record. 

• Status-area--offset value 

This value is used to locate in the index record, the record 
pointer to· the data record. If no value is specified, a 
default value is used (see DISEL operation). 

• Key-area 

This parameter must be supplied unless reading a data record 
only. The key area is as long as the key length (KEYLEN) of 
the index data set, and contains the exact record key to be 
located. 

For random update, you may invoke the following operation after a 
random input operation to replace the record last read: 

DIWRITE (work-area,status-area,record-area(,key-area) 

• Status-area--option byte 

blank Update the data record. If the previous 
operation retained exclusive control of the 
index and/or data records, control is 
released. 

6-59 



Chapter 6 

2, 3, or I 

File Handler Specifications 

Update the index record. If the previous 
operation retained exclusive control of the 
index record, the record is rewritten. 
Otherwise, the index record is reread and 
only the new record pointer is inserted 
before the record is rewritten. 

7 Combine the above functions. 

• Status-area--offset value 

If the data record is updated, the offset value is 
locate the record pointer in the index record area. 
index record is rewritten, the new record pointer 
index record-area replaces the old record pointer. 

o Record-area 

used to 
If the 
in the 

An index record must previously have been read or moved into 
this area. The record pointer associated with the data 
record may be changed if the index record is being rewritten; 
in this case, the current index record may be reread into 
this area. An updated or new data record is written from the 
data portion of the area. 

• Key-area 

This parameter must be provided if the index record is to be 
rewritten; otherwise it must be omitted. 

For sequential input, invoke the following operation (normally 
used to obtain the next sequential data base record): 

DIGET (work-area,status-area,record-area(,key-area)) 

• Status-area 

Option byte and offset value are the same as those listed for 
random input. 

• Key-area 

Supply this parameter only when beginning or restarting 
sequential processing at the first record having an equal or 
higher key. When this parameter is omitted in the first 
operation following file selection, processing starts at the 
beginning of the file. 

6-60 

J 



Chapter 6 File Handle~ Specifications 

For sequential update, you may invoke the following operation 
after a sequential input operation to replace the record last read: 

DIPUT (work-area,status-area,record-area(,key-area)) 

• Status-area 

Option byte and offset value are the same as those listed for 
random update. 

• Key-area 

This parameter must be provided if. the index record is to be 
rewritten; otherwise it must be omitted. 

For random addition of records to the file, invoke the following 
operation: 

DIADD (work-area ,status-area, record-area ,key-area) 

.. 

0 

Status-area--option b~te 

blank Write the data record. Add a new index 
record using the specified key. 

R Write the data record. Update the index 
record having the specified key. 

Status-area--offset value 

The offset value is used to locate the record pointer in the 
index record area. If no record pointer is specified, the 
data record is written in the next available block and the 
index record is appropriately added or updated. 

• Key-area 

For ADD operations there must not be a duplicate key in the 
index data set. For UPDATE operations, there must be an 
index record with the specified key. 

6-61 



Chapter 6 Fi1e Handler Specifications 

To delete records from the file, the delete flag will be set, 
provided the delete option has been specified, in both the index and 
the data records. Alternatively, the user may mark a data record as 
deleted by placing hexadecimal OOs or FFs in the record pointer field 
of the index record. To perform a delete, invoke the following 
operation: 

DIDEL (work-area,status-area,record-area(,key-area)) 

• Status-area--option byte 

I 

D 

blank 

Delete the index record having the specified key. 

Delete the data record, using the record pointer 
value in the index portion of the record area. 

Delete the index record having the specified 
key. Delete the data record using the record 
pointer value obtained from the index record. 

• Status-area--offset value 

The offset value is used to locate the record pointer in the 
index record-area. 

• Key-area 

The key field is required if the index record is to be 
deleted; otherwise it must be omitted. 

NOTE: Deletion of a record is performed by rewriting with 
X'FF' moved into the first byte of the record. 

To release exclusive control of a record when no update is to be 
performed, invoke the following operation: 

DIRELEX (work-area , status-area) 

• Status-area--option byte 

I 

D 

blank 

Release exclusive control of the index record 
only. 

Release control of the data record only. 

Release control of both index and data records. 

6-62 

J 



Chapter 6 File Handler Specifications 

To release a file from processing, invoke the following as the 
last operation on a file: 

I DIREL (war k -area. 0 tatuo -area) 

6.12.7 ISAM Conversion Utility--DISCONV 

The DISCONV utility is used off-line to convert an existing 
indexed sequential file to a DISAM data base. The DD statement with 
ddname ISFILE must specify the existing ISAM data set. The ddnames 
DISINDX and DISDATA refer to the DISAM index file and the DISAM data 
file, respectively. All desired DCB attributes must be specified on 
the DD statements. The logical record length of the index file 
(DISINDX) must be large enough to contain the record pointer and the 
key, and the two fields must not overlap. 

If fixed length BDAM data files are used and the block size of 
the data file (DISDATA) is equal to or greater than the logical record 
length of the ISAM file, the record key will be included in the data, 
and the record padded with binary zeroes. Al ternati vely, the block 
size may be equal to the logical record length of the ISAM file minus 
the key length; the key will not be included. 

The PARM field of the EXEC statement may contain the offset to 
the record pointer field within the index record, and the number of 
dummy blocks to be written at the end of the data file, to contain 
additions. Both these parameters are in keyword form, for example: 

/ / STEP 1 EXEC PGM=DISCONV,PARM='OFFSET=2,BLOCKS=25' 

The default for the offset value is 1 (that is, the second byte 
of the record). The default for the number of dummy blocks is zero, 
allowing no additions. 

6.12.8 Index File Reorganization Utility--DISREORG 

The DrSREORG program can be used off-line to reorganize the index 
file of a DISAM data base. The DD statement with ddname DISINDX must 
specify the DISAM index file. The DD statement with ddname DISTEMP 
must specify a temporary work file, on tape or disk, large enough to 
contain the index records fran the DISAM index file. The index file 
will be reorganized and rewritten in the same area it previously 
occupied. 

6-63 



Chapter 6 File Handler Specifications 

6.13 INTERCOMM CFMS SUPPORT 

Use of the IBM Chained File Management System is available to 
Interconm users via an interface routine. CFMS may be utilized in one 
or more batch regions where Intercomm is operational. All the 
functions of CFMS are available to the Intercomm user. 

CFMS does not change the standard Intercomm environment. 
Furthermore, the Intercomm implementation of CFMS requires no 
modifications to the standard CFMS calling sequence. Standard CALL 
statements as specified in the CFMS Program Description Manual, IBM 
reference SH20-0777, are used for all activity against the CFMS files. 

CFMS data sets are accessed via the File Handler and as such are 
eligible for all File Handler options. Of special import to users 
performing file updates on-line is the File Recovery feature, an 
extended capability to the Intercomm system. 

Since CFMS is not reentrant and not serially reusable, each 
application subsystem must have its own copy of the CFMS "IOPROCESS" , 
"FlLEORG" , "MAINLINE", "CB$BM" , "CB$CH" , "PL$BM" and "PL$CH" modules, 
as applicable, just as is normally required when executing CFMS 
directly in a batch environment. 

This requirement restricts the usage of CFMS to a single 
subsystem, since multiple copies of the same module in a single 
linked it will yield duplicate entry points, unless the subsystem is 
either dynamically loadable and dynamically linkedited (see Chapter 3), 
or the entry point names are changed at linked it time. Furthermore, 
because CFMS is nonreentrant, each application subsystem must be 
single-threaded to prevent access to the subsystem by more than one 
user concurrently. Single-threading is easily accomplished by 
specifying a value of one on the MNCL parameter in the SYCTTBL macro 
describing the subsystem. The interface routine CFMSINTF, which 
enables CFMS to run under Intercomm, is reentrant; therefore only one 
copy need be present in the Intercomm system, no matter how many 
application subsystems are utilizing CFMS. 

When the CFMS "IOPROCESS", "CB$BM" and "PL$BM" modules are 
assembled, certain standard OS macros, performing the OPEN, CLOSE, 
CHECK and WAIT access method service functions, must be replaced by 
Intercomm-supplied macros. The replacement of these four macros 
enables the IntercoIIID CFMS Interface, CFMSINTF, to intercept all I/O 
requests made by CFMS, thus allowing the interface to channel these 
requests through the standard Intercomm File Handler instead of having 
CFMS funnel them directly to OS. 

These macros are supplied with Intercomm as two source members, 
the first, CFMSMAC 1, is to be used only with the "IOPROCESS" module and 
the second member, CFMSMAC2 is to be used when assembling either the 
"CB$BM" or the "PL$BM" CFMS language interface modules. The macros are 
included at assembly time via a concatenation to the Assembler'S SYSIN 
input data set. Since the assembler requires that in-line macros 
appear before any source code, the member CFMSMAC1 or CFMSMAC2 must be 
concatenated as the first data set to the assembler's SYSIN file. 

6-64 

J 



Chapter 6 File Handler Specifications 

I I ASM.SYSIN DD 
II DD 

DSN=INT.SYMREL(CFMSMACx),DISP=SHR 
DSN=CFMS.SOURCE({IOPROCESS}),DISP=SHR 

{CB$BM } 
{PL$BM } 

The Intercomm implementation of CFMS does not change the standard 
CFMS calling sequence. However, it is possible that an additional 
return code, a hexadecimal FFFF, may be passed back to the user, by the 
interface, to indicate an abnormal condition. To maintain a 
consistency with CFMS standards for posting error conditions, this 
return code is placed in bytes 11 and 12 of the work area the user 
supplies to CFMS. 

code: 
The following conditions will cause the generation of this return 

• An OPEN request for one or more of the named CFMS files did 
not complete successfully. This condition normally occurs as 
the result of a missing DD statement or the omission of 
certain required parameters on the DD statement. 

• An unrecoverable I/O error has occurred while accessing a 
CFMS file. 

• An invalid request has been made by CFMS to the interface. 
This condition occurs only if the contents of the 1/0 control 
blocks within CFMS were destroyed. 

Since all CFMS I/O activity is routed through the File Handler, 
the user may elect to utilize one or more of the File Handler options 
to further control I/O activity on the CFMS files. One such option is 
the explicit designation via a File Attribute Record (FAR), of a file 
as being READONLY. By declaring a file as READONLY, the File Handler 
will reject any requests to write to that file and will ignore any user 
requests, through the File Handler, to obtain exclusive control of that 
file. 

To implement CFMS, include CFMSINTF in the Intercomm linked it in 
addition to the IBM CFMS interface modules. 

6-65 



J 

J 



Chapter 7 

EXECUTION OF INTERCOMM 

7.1 INTRODUCTION 

Execution of Intercomm entails a linkedit of all resident 
user-coded and Intercomm-supplied routines and tables, and resident or 
overlay subsystems, to produce an executable load module, followed by 
execution in Test Mode, or in live mode with actual or simulated 
terminals. The mode of execution is controlled by the EXEC statement 
PARM data and system logic determining whether or not specific system 
routines were included in the load module. 

The Intercomm System Manager(s) may provide as many as four 
different linkedit versions of Intercomm for use at an installation: 

1. A production system for actual day-to-day operation 

2. A terminal testing system, 
tested via operator entry 
terminal input 

inc luding user subsystems being 
at terminals, and/or simulated 

3. A Test Mode system, including production subsystems for 
volume testing 

4. A minimal Test Mode system, including only system programs 
and service routines required for testing one subsystem. 

This chapter documents the following topics: 

~ Generating a linked it deck 

~ The Intercomm linked it 

a Execution JCL 

• System startup 

• System closedown 

• Live operation 

• Intercomm quiesce facility 

• OS/VS operation 

• MVS operation 

• Interregion SVC installation 

• Link Pack Feature 

7-1 



Chapter 7 Execution of Intercomm 

7.2 GENERATING A LINKEDIT DECK 

The required linkage editor control statements to produce an 
Intercomm load module for execution may be generated initially via the 
ICOMLINK macro (described in Basic System Macros). Based upon global 
settings in the SETENV and SETGLOBE members and user-specified 
parameters or default values for ICOMLINK, assembly of ICOMLINK 
produces (punches) INCLUDE statements for the required Intercomm 
routines, and OVERLAY and INSERT statements for their overlay structure 
(if desired). The required entry point to the Intercomm load module is 
PMISTUP. Recommended JCL to produce the linkedit deck is as follows: 

II EXEC ASMPC,Q=LIB 
IIASM.SYSGO DD SYSOUT=B 
IIASM.SYSIN DD * 
* GENERATE LINK EDIT DECK 

ICOMLINK user-defined-parameters •••• 
END 

1* 

~-----------------------------------------------------------------------
NOTE: the output from SYSGO can be member of a PDS such 

as SYMUSR, a TSO data set, etc., as desired. 

INCLUDE statements must then be added for application subsystems 
and subroutines (except those dynamically loaded) • In addition, 
appropriate OVERLAY and INSERT statements for some of these modules may 
be defined if an overlay structure is used. Overlay areas for 
application subsystems and subroutines are described in Chapter 3 of 
this manual. Also, if executing under VSl or MVS, ORDER statements may 
be placed at the beginning or end of the linkedit. 

7.3 THE INTERCOMM LINKEDIT 

The actual linkedit may be accomplished via the Intercomm 
procedure LKEDP. The SYSLIB definition for this procedure references 
only the Intercomm libraries; the user must provide additional DD 
statements to reference system libraries, such as SYS1.TELCMLIB 
(teleprocessing access method modules), SYS1.COBLIB (COBOL modules), 
and user libraries for application subsystems, etc., as appropriate. 
An example of the use of the LKEDP procedure is shown in Figure 7-1. 
The SYSIN data set can be a PDS member (from SYMUSR) or TSO (CMS) data 
set. 

The linkedit error messages should be examined for unresolved 
references. Many vptional features are implemented by Intercomm 
conditional calls; in this case unresolved references present no 
problem. The Intercomm S.E.O.D. may be consulted to verify the 
critical nature of unresolved references. 

7-2 

J 

J 



Chapter 7 Execution of Intercomm 

IILINK EXEC LKEDP,Q=xxx,LMOD=ICOMEXEC 
11* THE FOLLOWING SUBSTITUTION JCL ADDS THE COBOL 
Ilf LIBRARY TO THE CONCATENATION SEQUENCE OF INT.MOD&Q, 
Ilf INT. MODUSR , INT. MODLIB, INT. MODREL: 
IILKED.SYSLIB DD 
II DD 
II DD 
II DD 
II DD DSN=SYS1.COBLIB,DISP=SHR 
IILKED.SYSIN DD * 

INCLUDE 

INCLUDE 

If 

LINKEDIT DECK PRODUCED 
BY ICOMLINK MACRO 

PLUS REQUIRED INCLUDES 
FOR USER MODULES AND TABLES 

Figure 7-1. Using LKEDP Procedure to Generate Intercomm Load Module 

Linkage Editor External Symbol Table Overflow 

If the following error message: 

IEW0254 ERROR - TABLE OVERFLOW--TOO MANY EXTERNAL SYMBOLS IN ESD 

occurs during linkage editor execution, override the linkage editor 
SIZE parameter in the following manner: 

IILINK EXEC LKEDP , Q=xxx,LMOD=ICOMEXEC , 
II PARM.LKED='SIZE=(512K,100K),XREF,LIST,LET,NCAL' 

Refer to IBM linkage editor documentation for appropriate SIZE values 
to use. Add OVLY to the parms if an overlay structure is desired. Do 
not code either REUS or RENT. 

Linkage Editor Parameters 

There are two linkage editor parameters which influence the 
J'lUIDber of overlay FETCH operations and, in turn, the response time for 
a loaded program. 

If the Downward Ccmpatible (DC) option is specified when 
linkediting, the maximum block size created on the load library will be 
1024 bytes. This means that for a 10K overlay program to be loaded, at 
least 10 FETCH operations will be executed. This will considerably 
slow the response time of the program because of the extra IIO 
invol ved. The solution is to ensure that there is no DC parameter for 
the linked it step (see SIZE override example, above). 

7-3 



Chapter 7 Execution of Intercomm 

In the SIZE parameter, the maximum record size of a disk unit 
will be equal to one half of the value of the second parameter (yyy) of 
SIZE= (xxx, yyy) • If the text record size is too small, there will be 
additional FETCH operations, again slowing response time. Therefore, 
specify twice the maximum text record size (for 3330s, yyy should equal 
26K; for 3350s, yyy should equal 40K; for 3380s, yyy should equal 80K). 

7.4 EXECUTION JCL 

The execute (EXEC) statement is the first statement of each job 
step and contains the load module name and data that pertains to the 
job step. The principal function of the Intercomm execute statement is 
to identify the load module to be executed and define Intercomm's mode 
of execution. The execute statement is coded as follows: 

Iistepname EXEC PGM=load-module-name, 
II PARM='mode-of-execution(,WTO 
II ,ddname=R,ddname=R, ••••• 
II ,ddname=A,ddname=A, ••••• 
II ,ddname=B,ddname=B, ••••• 
I I , VOL=number ) , 

load-module-name 
indicates the name of the Intercomm load module to be executed. 

mode-of-execution 
describes the function to be initiated. Acronyms that define the 
mode of execution and their functions are: 

=========-=============================================================~ 
Acronym Execution Mode Options I 

------------------
STARTUP 

RESTART 

RESTRNL 

TEST 

TESTR 

TESTRNL 

============================================================= 
Normal startup with terminals 

Restart mode of startup, including processing of log for 
message restart 

Restart without log; will call RESTORE if checkpoint is 
used 

Execute Test Mode of Intercomm 

Test Mode with full restore and restart capability 

Same as RESTRNL, except in Test Mode 

7-4 



Chapter 7 Execution of Intercomm 

WTO 

NOTE: To preserve semipermanent DDQs (especially if spooled 
printer output created via MMU) and/or semipermanent 
Store/Fetch strings, Intercomm must be brought up in 
restart mode; if message restart is not used, code RESTRNL. 

if specified, indicates that optional messages (MS003I and MS008I) 
are to be printed on the CPU console. See Messages and Codes. 
Refer also to the SPALIST and SYCTTBL WTO parameters. 

ddname=R 
specifies the ddnames of those data sets that are to be 
"readonly. " Each ddname is coded followed by the equal sign and 
an R. FAR statements may be used instead of coding this parameter 
(see Chapter 6). 

ddname=A 
specifies the ddnames of those data sets that are updated using 
AMIGOS as an access method. Each ddname is coded followed by the 
equal sign and an A. 

ddname=B 
specifies the ddnames of those data sets that are AMIGOS "readonly" 
files. Each ddname is coded followed by the equal sign and a B. 

VOL=number 

7.4.1 

specifies, for TOTAL users, the value representing the QUIET 
interval to be passed to TOTAL (in a separate region) when 
Intercomm closes down. (TOTAL support is described in Data Base 
Management System Users Guide.) 

Global WTO and MCS Routing 

Users can force and/or suppress routing of system messages issued 
in Intercom. via the PMIWTO and PMIWTOR macros. The SPALIST macro has 
four parameters for this purpose: 

• FMCSWTO 

• SMCSWT0 

• FPMIWTO 

• SPMIWTO 

The SPALIST parameters specify, for both MCS (CPU console) and 
Intercomm routing, the options to be suppressed, and those to be forced. 
This facility could be used, for example, to prevent any system messages 
(except WTORs) from being sent to the CPU console, or to force all 
messages to SYSPRINT. See Basic System Macros for coding specifications. 
See also the WTOPFX parameter of the SPALIST macro for message prefix-ID 
override feature, and Messages and Codes for message syntax. 

1-5 



Chapter 7 Execution of Intercomm 

7.4.2 STEP LIB or JOBLIB Requirements 

Execution JCL must reference the following libraries as STEPLIB 
or JOBLIB data sets: 

~ The library containing dynamically loaded subsystems and 
subroutines. 

• The library containing compiler-oriented dynamically loaded 
service routines, such as SYS1.COBLIB. Frequently used 
routines should be made resident whenever possible. 

• The library containing the Intercomm load module. 

• The library containing user versions of Intercomm tables 
which may be loaded at startup. 

3 MODREL--required if dynamic linkedit is used, and the 
ICOMCESD and ICOMVCON modules are not contained on one of the 
above-mentioned libraries. 

Concatenation sequence is critical to performance. The order of 
the DD statements is installation-dependent, based upon frequency of 
access. MODREL is infrequently referenced, and should be among the 
last in the series. If an overlay structure is used, the library 
containing the overlay loaded routines should be first in the 
concatenation stream. 

7.4.3 DD Statement Requirements 

The execution JCL contains Data Definition (DD) statements 
describing all data sets accessed by Intercomm. The following DD 
statement names are required: 

• INTERLOG 

The system log data set (tape or disk; see Chapter 9). 

• SMLOG 

Resource Management statistics reports and thread dumps 

7-6 

J 

J 

J 



Chapter 7 Execution of Intercomm 

• STSLOG 

System Tuning Statistics reports 

• SYSPRINT 

For IJKTRACE output, statistics reports, system messages, etc. 

• SNAPDD 

For snap out put 

• SYSUDUMP 

For abend output if SNAPDD unusable 

o RCTOOO 

Output Format Table disk-resident Entries 

Additionally, for subsystem and terminal queues: 

(I PMIQUE 

Intercomm subsystem disk queues (Output, Change/Display, 
etc.) as defined in the SYCTTBLs at system installation time 

The Intercomm BTAM/TCAM terminal disk queues defined via 
SYCTTBLs in the BTAMSCTS module at Front End installation time 

• VTAMQ 

VTAM terminal disk queues defined via LUNIT /LCOMP macros for 
a VTAM Front End 

• ddnames 

Additional installation-dependent disk queue data sets 

Additionally, for Test Mode execution: 

• SYSSNAP 

Test Mode input messages (snaps with ID=15) 

• SYSSNAP2 

Test Mode output messages (snaps with ID=20) 

7-7 



Chapter 7 Execution of Intercomm 

Additional Intercomm data sets that may be required are described 
in this manual with each particular feature; that is, FAR Parameters 
Input File, File Handler Statistics File, Checkpoint File, Terminal 
Simulator Input, Dynamic Linkedit, etc., and in the special feature 
manuals. 

NOTE: All Intercomm and user data sets accessed by the File 
Handler must include the DCB parameter DSORG (or AMP, if 
VSAM) on the DD statement and, except for sequential 
out put data sets, must be DISP=OLD or SHR. The Intercomm . 
utility CREATEGF may be used to format BDAM data sets 
such as disk queues. (See Chapter 12, "Off-Line 
Utilities". ) 

7.5 SYSTEM STARTUP 

System startup is accomplished by the module STARTUP3, consisting 
of a resident Csect given control by OS, and an overlay Csect 
performing the main system initialization functions. The resident 
module, PMISTUP, accomplishes the OS linkage conventions, calls 
POOLSTRT (if in link) to load Intercomm pools (see Chapter 5), and 
issues STAE/ESTAE macros if the module STAEEXIT is included in the 
Intercomm linkedit (see Chapter 8). 

The overlay module, STUOVLY, performs analysis of the "mode of 
execution" parameter and, based on the presence of system modules, 
performs initialization functions in the following order: 

a Set PMIWTO/R messages global Job/Region Identifier 

~ LPSTART - resolve VCONs from Link Pack Module 

o SSINIT - START/STOP command function initialization 

~ FASTSNAP initialization 
if FASTSVC specified and FASTS NAP DCB present 
if DCB opened successfully-set on SEXFSNAP 

• Configuration initialization 

CPU Model SEXMODEL 
Operating System SEXBITS1 
Release Number SEXVERSN 
Region Boundaries SEXPPBEG, SEXPPEND 
Link Pack Area SEXLPBEG, SEXLPEND 

• Set SPINOFF snap spooling for MVS if FREE=CLOSE specified 

• Open SNAPDD data set (PMISNAP DCB) 

• STOSTART - start Store/Fetch initialization 

7-8 

J 

J 



Chapter 7 Execution of Intercomm 

a Attach ICOMDYNL - Dynamic Linkedit initialization 

• VSINIT - VS initialization - fix the Fix Table (if any) 

• IXFMONOO - File Handler initialization 
IXFFAR - FAR specifications processing 

• IJKCESD - initialize Csect/Entry table for debugging reports, 
etc. 

• TASKSTRT - Generalized sub tasking initialization 

• Initialize log buffers (unless Satellite Region with single 
region logging) 

.. 
• 
• 
• 
~ 

~ 

• 
G 

CIt 

• 
4» 

acquire storage for number/size buffers defined in SPA 
SELECT per log buffer 

PM IDATER set date in SPA 

ILBOSTPO ANS COBOL initialization 

ASYNCH Attach overlay load sub task if present 

ASYNCLDR Attach dynamic load sub task if present 

Determine mode 
SPAMODE 

Startup (0) 
Restart (4 ) 
Test (8) 

Determine restart (Live or Test) options 

MRSTART - initialize Multiregion if applicable 

CKOVLYNO - Overlay A numbers between 4 and 62 and 
ascending sequence, if overlay used 

CKLINK - check over lay linked it structure corres ponds to SCT 

USERINIT - user exit for Basic TCAM MCP active test 

SCT initialization - all SYCTTBLs 
Open Basic TCAM process queue DCB, if applicable 
SELECT disk queue; if queue cannot be selected (opened), 

flag SCT entry to only use core queue 
Initialize auxiliary SCT - point to primary 

• CALCRBN - allocate RBNs for Front End and SCT disk queues 

1n 

• Open Basic TCAM destination queue DCB (QTAMOUT), if applicable 

• If SAM modules in link, check SAMTABLE included 

7-9 



Chapter 7 Execution of Intercomm 

• PMIPRIME - If Test Mode, prime input data buffers 

• RESTORE - if no restart log; initialize checkpoint file, if 
checkpointing desired 

• DDQSTART - initialize Dynamic Data Queuing facility 

• LOGPROC - process restart log: checkpoint, restart, file 
recovery, data base recovery, serial restart (if used) 

• INTERLOG initialization (unless Satellite Region with single 
region logging) 

set log buffer count to NCP (if NCP lower) 
free OS buffers 

• TRIGGER - Time Zone Table processing 

• dispatch CHECKPT - checkpoint processing 

• dispatch TRAFFIC - overlay subsystems message traffic control 

~ DBSTART - data base initialization 

• dispatch LOGINPUT - extra log input - threshold testing 

• dispatch IXFRPT01 - File Handler Statistics reporting 

• RJESTART - OS RJE facility interface initialization 

• TCAMSTRT - Basic TCAM user initialization 

~ BTAMSTRT - BTAMlGFE/Extented TCAM initialization 
Front End Table Verification (BTVERIFY, TCAMVER) 

o VTSTART - VTAM initialization 

• PMICKFTB - adjust block size, try selecting each file in 
PMIFILET 

• PMIFIXA - page fix all specified areas 

• BLDL for all dynamically loadable SIS - move resident BLDL to 
SCT extension - validate load module size against SEXSPMAX 
(SPALIST--MAXLOAD parameter) 

• dispatch DELOAD - dynamic subsystem loading processor 

Qt PMIDEBUG - debugging WTOR (see Messages and Codes) 

• dispatch PMIHARDW - allow Intercomm quiesce (adjust timers) 

• post Multiregion active, if used 

7-10 

J 

J 

J 



Chapter 7 Execution of Intercomm 

• wait for Dynamic Linkedit to end, detach subtask 

G check dynamic subroutines 
if in link, flag as permanently resident 
if to be permanently resident, load and flag as resident. 

• STOSTART - wait for Store/Fetch initialization to complete 

o MMUSTART - initialize Message Mapping Utilities 

• USRSTART - user exit - issue startup broadcast messages or 
ESS sign-on messages (call USRSTRT1 from USRSTART) 

• INTSTS - start System Tuning Statistics reporting 

IIiJ GENESIS - dispatch Subsystem Controller for all resident and 
dynamically loadable SCTs and for all SCTs in first overlay 
group (if used) 

• dispatch TRANGEN - Model System Generator activity 

~ issue startup complete message with latest SM level, SPA 
address 

o issue SPIE using SEXSPICA «1,13),15) if SPIEEXIT in linked it 
(see Chap ter 8) 

(j dispatch LOWCORE - (core flush routine when cushion released 
condition) - wait on SEXLOCOR ECB 

Q indicate startup complete - post SEXSTUPE for VTAM - set 
SEXSTRUP in SEXSWTCH 

• IJKTLOOP - closed loop detection routine initialization 

• dispatch exit to the Dispatcher. 

At completion of system startup, both the Back End and Front End 
(if required) have created tasks on the Dispatcher queues to perpetuate 
their operation. Control is then transferred to the Dispatcher to 
continue execution and manage the Intercomm multithreading environment. 

7.5.1 Startup User Exits--USRSTART/USRSTRT1 

A conditional call (CALLIF) is made to the user exit USRSTAHT 
prior to completion of system startup and after initialization of the 
Front End, File Handler, etc. If included in the load module, this 
routine is given control with register 1 containing the address of the 
execution parameter list. A member USRSTART is included with the 
Intercomm release. 

7 -11 



Chapter 7 Execution of Intercomm 

The USRSTART routine, as released, formats and sends a message to 
the broadcast group name TOALL at startup time. The message states: 

.. * GOOD MORNING .. * INTERCOMM IS READY: MM-DD-YY HH.MM 

The Output Format Table entry is RPT00045. MORNING will be 
replaced by AFTERNOON or EVENING at the proper time of day. An entry 
must be made in the Broadcast Table PMIBROAD (BROADeST Csect) for the 
group name TOALL. This is provided in the released version of this 
table. Add to it the names of all terminals to receive the startup 
message. 

If the Extended Security System (ESS) is in use, an internal 
USRSTART routine generates sign-on prompt messages instead. 

Additionally, USRSTART calls a routine named USRSTRT1 if it is 
coded and included in the linked it (also called by ESS). USRSTRT1 must 
be coded in reentrant Assembler Language and use standard linkage 
conventions. At entry to USRSTRT1, register 1 points to the address of 
the OS formatted PARM values coded on the EXEC JCL statement for 
Intercoum execution. No return code is expected. This user exit may 
perform additional installation-dependent startup processing, if 
necessary. 

USRSfART is writ ten in reentrant Assembler Language. The member 
name, Csect name and load module name are all USRSTART. See also the 
USRSfRT parameter of the ICOMLINK macro to provide/prevent automatic 
linked it inclusion. 

7.6 SYSTEM CLOSEDOWN 

The closedown functions are performed upon receipt of the NRCD or 
IMCD transactions (see System Control Commands) or, in the case of Test 
Mode, when all subsystem queues are empty. Closedown in a Mul tiregion 
Intercomm system is described in Multiregion Support Facility. 

Closedown in live mode (or with simulated terminals) consists of 
routing a message to the closedown subsystem, PMICLDWN, an entry in 
CLOSDWN3. This subsystem will continue to scan the SCTs and requeue a 
message for itself until all messages are processed (NRCD) or messages 
in progress are complete (IMCD) • A final checkpoint is taken and 
control is passed to the Front End to ensure that all messages queued 
for transmission to operational terminals are sent before closing the 
line DCBs and/or VTAM ACB. The Intercoum log buffers are flushed and 
the log is closed before issuing final System Tuning and File Handler 
Statistics. The File Handler termination routine (IXFMON09) is then 
called to close the files prior to job termination. 

Closedown in Test Mode completes the Back End termination 
functions described above because an NRCD command is internally 
generated, or the job terminates with an Abend 999, indicating all 
input messages have been processed. These options are controlled by 
the TSTEND parameter on the SPALIST macro. 

7-12 

J 

J 

J 



Chapter 7 Execution of Intercomm 

7.6.1 Closedown Time Limit 

Under certain circumstances, a normal closedown (NRCD) may be 
initiated, and then, due to subsystem or terminal conditions, it is 
discovered that closedown will take excessive time to complete. There 
are two methods by which this eventuality may be handled: 

• A user-specified maximum time limit on the SPALIST (CLDNLIM) 
will be set at the beginning of closedown processing; at the 
expiration of this time interval, closedown will not wait for 
any further terminal or message processing, but will 
terminate all Intercomm system functions and return to the 
operating system. See also the SPALIST macro CLDTO parameter. 

~ An IM:D may be entered during closedown processing. This 
will have the same effect as the expiration of the time 
interval described above. 

When forc ing a premature closedown by these techniques, an Intercomrn 
restart may be needed to recover messages queued or in process at the 
time of closedown. 

7.6.2 Closedown User Exits--USRCLOSE/USRCLSE1 

A conditional call (CALLIF) is made to a user exit (USRCLOSE) 
prior to completion of closedown cleanup processing (final checkpoint, 
statistics reports, etc.) • A member USRCLOSE is supplied with the 
Intercomrn release. 

The released member will send a message to the broadcast group 
name TOALL during normal closedown processing. The message states: 

*** GOOD MORNING *** INTERCOMM IS CLOSED: MM-DD-YY HH.MM. 

RPT00045 is used and the MORNING is replaced by AFTERNOON or 
EVENING at the proper time of day. An entry must be made in the 
Broadcast Table (BROADCST) for the group name TOALL. (See Section 
7.5.2, "Startup User Exits," above.) 

USRCLOSE also calls the user exit routine USRCLSE1, if it is 
included in the linkedit. USRCLSE1 must be coded in reentrant 
Assembler Language and use standard linkage conventions. At entry, 
register 1 points to a parameter list containing the address of the 
entered closedown message and the address of the System Parameter 
Area. No return code testing is done. 

USRCLOSE is wri t ten in reentrant Assembler Language. The member 
name, Csect name and load module name are all USRCLOSE, which is 
automatically included in the Intercomm linkedit. 

7-13 



Chapter 7 Execution of Intercomm 

7 .• 7 LIVE OPERATION 

Execution of Intercomm in live mode necessitates that terminal 
operation (the Front End) is activated for actual or simulated (see 
Chapter 8) terminals. When startup functions are complete, terminal 
input/output processing begins. 

The system may be activated as a cold start with no consideration 
for any previous execution (EXEC statement parameter STARTUP), or as a 
warm start with message restart/recovery performed (EXEC statement 
parameter RESTART). Restart/Recovery functions are described in detail 
in Chapter 9. 

HASP Modification to Run Intercomm Under HASP 

HASP does not permit the use of the dispatching priority 
parameter (DPRTY) on the EXEC JCL statement. Since Intercomm requires 
the use of this parameter to establish its dispatching level above all 
other jobs, a modification to HASP is required to provide this 
capability. The following one-statement change to the source code will 
permit the use of the DPRTY parameter: in module XEQ, replace the 
instruction at label XJCLXQPR with an unconditional branch to label 
XJCLEXIT. 

Intercomm and ASP 

In order for Intercomm to execute successfully, it requires a 
higher dispatching priority than other jobs operating in the system. 
When running under ASP, it is necessary to set up a job class which is 
permitted to use the as dispatching priority parameter on the EXEC 
statement for Intercomm. This can be accomplished by modifying the ASP 
initialization deck, to specify JPRTY=JOB on the CLASS statement which 
defines the class under which the Intercomm job will execute. 

7.7.3 Execution JCL 

Execution JCL requires speCifications for the network 
configuration. A typical live execution job with a BTAM Front End is 
shown in Figure 7-2. 

7-14 

J 



Chapter 7 

IIICOMEXEC 
IISTEPLIB 
II 
II 
IIINTERLOG 
II 
II 
11* 
11* 
11* 
11* 
IISMLOG 
II 
IISTSLOG 
II 
IISYSPRINT 
II 
IIRCTOOO 
IIPMIQUE 
IIBTAMQ 
IIUSERFILE 

11* 
IIPMISTOP 
IISYSUDUMP 
IISNAPDD 
11* 
11* 
11* 
IIDYNLLIB 
IIDYNLWORK 
IIDYNLPRNT 
IILINE1 

11* 
IIPRINTLOG 
IISTEPLIB 
IIINTERLOG 
IISYSPRINT 

NOTE: 

EXEC 
DD 
DD 
DD 
DD 

Execution of Intercomm 

PGM=ICOMLIVE,PARM='STARTUP',REGION=1024K 
DSN=INT.MODUSR,DISP=SHR 
DSN=INT.MODLIB,DISP=SHR 
DSN=INT.MODREL,DISP=SHR 
DSN=&&INTLOG,VOL=vvvvvv,UNIT=unit, 
DISP=(,PASS),LABEL=(,SUL), 

DCB=(DSORG=PS, RECFM=VB,BLKSIZE=4100, LRECL=4096, NCP=8,OPT CD=C) 

NOTE THAT INTERLOG BLOCK SIZE MUST BE AS LARGE 
AS THE LONGEST EXPECTED LOGGED MESSAGE (+4). 

DD SYSOUT=A, 
DCB=(DSORG=PS,LRECL=120,BLKSIZE=multiple-of-120,RECFM=FBA) 
DD SYSOUT=A, 
DCB=(DSORG=PS,LRECL=120,BLKSIZE=multiple-of-120,RECFM=FBA) 
DD SYSOUT=A, 
DCB=(DSORG=PS,RECFM=VBA,BLKSIZE=multiple-of-137-+4,LRECL=137) 
DD DSN=INT.RCTOOO,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF) 
DD DSN=INT.PMIQUE,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF) 
DD DSN=INT.BTAMQ,DISP=OLD,DCB=(DSORG=DA,DPTCD=RF) 
DD DSN= •••••• 

USER DATA SET DEFINITIONS 

THE FOLLOWING ARE NOT PROCESSED BY THE FILE HANDLER 
DD DUMMY 
DD SYSOUT=A or DUMMY 
DD SYSOUT=A STANDARD SNAPS 

FOLLOWING IS FOR DYNAMIC LINKEDIT 

DD DSN=INT.MODUSR,DISP=SHR 
'oD UNIT=SYSDA, DISP= ( ,PASS) ,SPACE=( CYL, (1,1)) 
DD SYSOUT=A 
DD UNIT=nnn 

EXEC 
DD 
DD 
DD 

TERMINAL NETWORK DEFINITIONS IF BTAM USED 

PGM=LOGPRINT,COND=EVEN 
DSN=INT.MODREL,DISP=SHR 
DSN=&&INTLOG,DISP=OLD,DCB=BLKSIZE=5000 
SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=121) 

Figure 7-2. Typical Live Execution JCL 

if executing with VSAM data sets, place STEP CAT DD 
statement(s) for user catalog(s) after the IIPMISTOP DD 
statement (do not use JOBCAT) so that the File Handler does 
not process the catalog at startup. 

7-15 



Chapter 7 Execution of Intercomm 

For remote terminals accessed via BTAM, the sequence of the DD 
statements describing operational lines must correspond to the network 
configuration definition in the Front End Network Table. The LINEGRP 
macro defines the ddname in the execution JCL. The order of the DD 
statements for each line group defines the physical unit addresses 
relati ve to the associated sequence of BLINE macros, as depicted in 
Figure 7-3. Remote lines must be on the byte-multiplexor channel 
(Channel 0). 

For local BTAM (3270) and graphics terminals, the sequence of the 
DD statements for each line is related to the sequence of the BTERH 
macros as illustrated in Figure 7-4. Local terminals are defined on a 
block-multiplexor channel (not Channel 0). 

Low-Core Condition--SSPOLL 

When a low-core condition exists, the user may optionally prevent 
additional leased-line terminal and/or TCAM input to the Intercomm 
system. Polling is automatically temporarily halted and later resumed 
when sufficient storage becomes available. Include SSPOLL in the 
resident portion of the Intercomm linked it to activate this feature. 
The system control commands SPPL and STPL, may be used at other times 
to temporarily halt input. 

7-16 

J 

J 



Chapter 7 Execution of Intercomm 

• A BTAM NETWORK TABLE CODED AS FOLLOWS REQUIRES JCL DDCARDS 
• AS ILLUSTRATED BELOW 
R01 LINEGRP DDNAME=RR1,------

BLINE 
BTERM 
BTERM 

BLINE 
BTERM 

BLINE 
BTERM 

LGNAME=R01,-----
TERM=RR101,-----
TERM=RR102,------

LGNAME=R01,-----
TERM=RR201,------

LGNAME=R01,-----
TERM=RR301,------

------------------------------------------------------------------------II. DDCARDS FOR LINEGRP R01 
IIRR 1 DD UNIT=031 
II DD UNIT=032 
II DD UNIT=033 

(TERMINALS RR101,RR102,ETC.) 
(TERMINALS RR201,ETC.) 
(TERMINALS RR301,ETC.) 

Figure 7-3. LINEGRP, BLINE Sequence and JCL for Remote Terminals 

* A NETWORK TABLE CODED AS FOLLOWS FOR GRAPHICS OR LOCAL 3270 
* TERMINALS REQUIRES JCL DDCARDS AS ILLUSTRATED BELOW 
L01 LINEGRP DDNAME=LL1,------

BLINE 
BTERM 
BTERM 
BTERM 

LGNAME=L01,-----
TERM=LL001,-----
TERM=LL002,-----
TERM=LL003,------

~-----------------------------------------------------------------------
II. DDCARDS FOR LOCAL 3270 BLINE 
IILL1 DD UNIT=301 (TERMINAL LL001) 

DD UNIT=302 (TERMINAL LL002) 
DD UNIT=303 (TERMINAL LL003) 

Figure 7-4. BLINE, BTERM Sequence and JCL for Local Terminals 

7-17 



Chapter 7 Execution of Intercomm 

7.8 INTERCOMM QUIESCE 

It is sometimes necessary to stop the CPU while running Intercomm 
so that maintenance or volume switching can be done. However, if the 
CPU is stopped for a significant period of time (more than one minute), 
it is likely that, when processing is resumed, Intercomm's event-timing 
will have been disrupted, resulting in various time-outs. This causes 
erroneous cancellation of messages, snaps 114 and 118, etc. 

The Quiesce facility allows the CPU console operator to stop all 
Intercomm processing by replying to an outstanding WTOR prior to 
stopping the CPU itself. When processing is to be resumed, Intercomm 
can be reacti vated by replying to a subsequent outstanding WTOR. All 
of Intercomm' s internal timings are adjusted to reflect the lost time, 
thereby avoiding time-outs. 

The Quiesce facility is optional, and is provided by including 
the module PMIHARDW in the Intercomm linked it • This module, which is 
dispatched at startup time, puts out a WTOR (MU001R) with the following 
text: 

REPLY "ICOMHALT" WHEN YOU WANT INTERCOMM TO TEMPORARILY STOP PROCESSING 

This WTOR will remain outstanding until needed. When the proper 
reply is given, Intercomm will go into the wait state, after putting 
out another WTOR (MU002R): 

REPLY "ICOMSTART" WHEN YOU WANT INTERCOMM TO RESUME PROCESSING 

At this point, it is safe to stop the CPU. When the CPU is again 
started, Intercomm can be reactivated by replying to this latter WTOR. 
The first WTOR will then be put out again allowing the procedure to be 
repeated if and when necessary. 

The time interval during which Intercomm is quiesced is lost to 
the system. If a one-hour time-dispatch was done by some internal 
routine at 12:00 P.M., this interval would normally expire at 1 :00 
P.M. If, however, Intercomn was quiesced from 12:20 to 12:25, the 
interval will expire at 1:05. 

7-18 



Chapter 7 Execution of Intercomm 

7.9 OS/VS OPERATION 

All VS support is applicable to both VS1 and MVS. Installation 
and operation of Intercomm with VS follows the previously described 
procedures, plus additional considerations documented in this section 
to take advantage of VS facilities. More considerations applicable 
primarily to MVS are described in Section 7.10. The VS vocabulary is 
illustrated below: 

------------------------------------------------------------------------------------- ------------------------------_._------------------------
Reference Meaning 

-------------- ---------------------------------------------------------------------- --------------------------------------------------------
EPS Ex~ernal Page Storage; Page Data Set 

Page Fault A page is referenced that is not residing in real 
storage, but on EPS. 

Page Segment of main storage, 4K for MVS, 2K for VS1 

Page Loading Transfer of page from EPS to real storage 

Page Fixing Marking a page as nonpageable; that is, remains 
in real storage full-time 

The major difference between OS/MFT or OS/MVT and operation of 
Intercomm under VS is the unpredictable nature of program loading in 
the partition/region. Under as, when a job is loaded, the user knows 
the job is actually residing in main storage. This is not true for VS, 
where there are two types of storage: Real Storage and External Page 
Storage (EPS), also referred to as the Page Data Set. Only a certain 
portion of a load module actually resides in real storage; most of it 
(depending on real core availability, number of jobs concurrently 
running, etc.) will reside on EPS. 

When a program references a page that currently resides on EPS, 
an I/O operation must be performed in order to transfer that page from 
EPS into real storage. This procedure is called page loading. Each 
time a page that is residing on EPS is referenced (a page fault), the 
task's TCB is marked nondispatchable by VS until the referenced page is 
loaded. This can result in extensive degradation of response time in 
an on-line system, since the task (Intercomm) must wait until I/O 
completes. 

With Intercomm, there are two alternatives to avoid page faults: 
page preloading and page fixing. These two facilities can be 
implemented independently or in conjunction with each other. Under MVS, 
both facilities require installation of the Intercomm Interregion SVC 
(see Section 7.11), while under VS1, only page fixing requires the SVC. 

7-19 



Chapter 7 Execution of Intercomm 

7.9.1 Page Preloading 

Using the page preloading feature, the same process is executed 
as when a page fault occurs; that is, page loading from EPS must be 
requested. However, if the page loading is requested by the user 
(Intercomm) before the page fault actually occurs, the task's TCB will 
not be marked nondispatchable. Thus, the task will not be in a wait 
state until the I/O completes and therefore other processing can 
continue while the I/O is still in progress. Page pre loading under 
Intercomm is done for pages that are likely to be on EPS at the time 
they are referenced again; that is, save areas and return points to 
application programs are preloaded prior to transfer of control from 
the Dispatcher. 

7.9.2 Page Fixing 

To fix a page means to allocate a real storage page frame to a 
virtual address (on a page boundary), and reserve that piece of real 
core for the page until an UNFIX command (VS macro) is issued (or until 
re-IPL time). Care should be taken in implementing the page fixing 
facility for two reasons: 

1. There is no VS end-of-job cleanup for releasing fixed pages. 
Provisions to unfix pages under Intercomm are made in 
closedown and STAEEXIT (which means, under normal closedown 
and abend conditions, the pages previously fixed will be 
unfixed) . 

2. Real storage allocated to a fixed page is taken away from the 
system, rather than from the application's partition/region. 
Therefore, if too many pages are fixed, serious degradation 
of the system and batch jobs can be encountered. 

The page fixing feature is invoked at startup via a call to a 
nonreentrant module, PMIFIXA. All entries contained in the FIXTABLE (a 
user-coded table identifying groups of pages) will be fixed. If an 
unrecoverable error occurs, all pages (including those just fixed) will 
be unfixed and the user is notified of such action. After startup 
completes, the pages fixed by PMIFIXA can then be unfixed (and fixed a 
subsequent time) via the PGFX system control command. This transaction 
is processed by the single-thread subsystem PMIFIXB. (Installation 
requirements for the PGFX command are described in System Control 
Commands.) 

7-20 

J 

J 



Chapter 1 Execution of Intercomm 

VS Installation Procedures 

To install VS processing in conjunction with standard Intercomm 
installation, follow the steps below: 

1. Update the member SET GLOBE to specify global settings for the 
VS system in use ( change from SETB ° to SETB 1). These 
globals are listed in Chapter 2. 

2. All VS page management macros, that is, PGFIX, UNFIX, PGLOAD, 
PGFREE, IHBPSINR, etc., must be available on SYS1.MACLIB. 
These macros are distributed on AMODGEN (initial distribution 
library of your VS system). 

3. Provision must be made for installation of the Intercomm 
Interregion SVC, as described in Section 1.11. 

4. Reassembly to incorporate VS macros must be performed for: 

• VSINIT for VS initialization at startup (required) 

o PMIPGLD and LOADPAGE for the Page Pre loading facility 

~ PMIFIXA and PMIFIXB for the Page Fixing facility 

5. For page fixing only, FIXTABLE must be coded. FIXTABLE is 
generated using the Intercomm macro lCOMFIX. Each entry of 
the table represents a group of pages specified by the name 
of the first module in the first page, the number of pages 
(maximum 32), and a three-character identifier of the group. 

The Csect name of the table is arbitrary. The table must be 
linkedited as resident, along with all the pages specified in 
the table (see Section 1.9.4, "Page-Fixing Guidelines," 
below). Sample FIXTABLE coding is: 

II EXEC ASMPCL,Q=USR,NAME=FIXTABLE,LMOD=FIXTABLE 
IIASM.SYSIN DD * 
FIXTABLE CSECT 

1* 

ICOMFIX ADDR=BTVRBTB,PAGES=10,ID=FTD 
ICOMFIX ADDR=SYCTRL,PAGES=10,ID=BKD 

END 

Add table specifications for the PGFX command, if used (see 
System Control Commands). 

7-21 



Chapter 7 Execution of Intercomm 

6. The following INCLUDE statements for the Intercomm linkedit 
deck are generated automatically by the ICOMLINK parameter 
VS=YES: 

INCLUDE SYSLIB(VSINIT) 
INCLUDE SYSLIB(KEYFLIP) 

for Page Preloading: 

-resident or startup overlay 
-resident 

INCLUDE SYSLIB(PMIPGLD,LOADPAGE) -resident 
for Page Fixing: 

INCLUDE SYSLIB(PMIFIXA) 
INCLUDE SYSLIB(INTPAGE) 
INCLUDE SYSLIB(PMIFIXB) 
INCLUDE SYSLIB(FIXTABLE) 

-resident or startup overlay 
-resident (MVS only) 
-resident or loadable subsystem 
-resident 

7. ORDER statements should be used to group modules and force 
page boundary alignment. For example: 

Intercomm Nucleus--
ORDER 
dRDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 
ORDER 

VTAM Front End--

SPA(P),SPAEXT,INTSCTDD 
PMISUBL2,PMIRTLR,PMILINK2 
PMIRTL4,PMIPREL4,PMIPRELR 
LOADPAGE,PMIPGLD 
IXFDSCTA 
BITSECT, LOGPUT, STARTWRC,MSGACOOO 

(if used) 

MSGCOL,PMIRETRV (if not in Link Pack) 
PMICLZZZ,SCTINDX, FQES, SYCTRL, RMPURGE, RMNADISA 
FDITCB,RMPC,RMFNQ,RSMGMNT,RMTRACE 
POOLACCT,POOLCONS, I COMINX , ICOMCHN, ICOMPOOL,POOLEND 
KEYFLIP,EXECWAIT,IJKDSP01 
STATINDX,BINSRCH,FESEND 
PMIEXTRM 
INTVRBOO 
BTVRBNDX, FEINDX 
ATTIDTBL,AIDDATA 

(if not in Link Pack) 
(control region only, if MRS) 
(control region only, if MRS) 
(control region only, if MRS) 

ORDER VCT(P) ,VTIDTABL, ICIDINDX, VTIDINDX, VTAMCLZZ 

BTAMITCAM Front End--
ORDER BLHIN(P),REQBUFOO,BTSEARCH 
ORDER AIDCSECT,HEADSECT,IECTTRNS 
ORDER BTADPL,BTPOLFLP,BTAMSECT 
ORDER BMHOOO, OUT3270 ,BLHOT,QUEUEMOD , BTAMCLZZ 
ORDER GFEINTFC,TCAMINTF,TCAMASYN,IEDQB1 (TCAM only) 

And, if BTAM switched lines used--
ORDER BTBACKSP,PEXCSECT,DIALSECT 

7-22 

J 

J 

J 



Chapter 7 Execution of Intercomm 

7.9.4 

8. If an overlay structure is not needed, remove all OVERLAY and 
INSERT statements from the Intercomm linkedit deck generated 
by ICOMLINK; code OVLYSTR=NO (default) and TRANS=NO (default) 
on ICOMLINK. Also redefine overlay subsystems (if any) to 
resident or dynamically loadable in the SCT (see Chapter 3). 

Page Fixing Guidelines 

Freq,uently referenced pages, that is, pages referenced by every 
transaction, such as the Front End line handlers, should be fixed. The 
following is a list of suggested Intercomm Csects to be fixed, arranged 
in order of importance: 

1. First consider fixing: 

Intercomm nucleus Csects listed above. 

2. Then, if possible, fix: 

a. BfAM Front End Csects listed above (or VTAM if used), and 
the Csect continuing the Front End network definitions. 
Also if priority queuing used, add: 

PMIPRNDX,BTMPRNDX,VTMPRNDX 

b. File Handler Routines (if not in Link Pack) 

IXFMON01, IXFSUBS, IXFVSCRS (VSAM), IXFLOG (if used) 

c. Store/Fetch and MMU Routines (if not in Link Pack) 

INTSTORF, MAPIN, MAPOUT, MMUVTBL, EDITTRTS, DEVDESC, 
DEVDESCU, MMUED001-3, MMUED008, MMUDDM, MMUDDMU, etc. 

d. Output Utility & Back End Tables 

PMIOUTPT, SUBOUTPT, PMISERCH, TERMCONV, DVASN 
PMITRTAB, PTRNTBLE, PMIFILET, PMISTATB, PMIDEVTB 

e. Edit Utility, Tables & Subroutines 

EDITCTRL, SUBEDIT, FIXEDIT, VERBTBL, PADDTBLE, -EDITRTNS, 
EDIT3270, EDIT0001-nnn 

f. High Level Language Interfaces 

PREPROG, COBREENT, COBPUT, COBSTORF, PMICOBOT 
PREPLI, PREPL1, PMIPL1 
REENTSB1, DYNLSUBS 

g. Extended Security System 

INTSECOO 

7-23 



Chapter 7 Execution of Intercomm 

3. If executing in a Multiregion environment, then 

a. For the Control Region: 

MRINPUT, MRQMNGR, MRXQMNGR 

b. For each Satellite Region: 

MRINPUT, MROTPUT, MRXOTPUT, MRCSAMOD (if MVS) 

4. Then, as required, fix: 

Resident user modules frequently referenced such as message 
routing subsystems, critical response subsystems, etc. 

For a small-scale system (one megabyte or less of real storage), 
it is not wise to fix too much storage. There will be a trade-off 
point where pages that are not fixed will be paged in and out 
extensi vely. It is advisable to fix not more than one-third of the 
linked it size, and then fix more on a trial and error basis • 

. It is important to realize the interrelationship between the 
FIXTABLE and the ORDER statements placed in the linked it • Since pages 
can only be fixed on a page boundary, the address specified in the 
lCOMFIX macro will be rounded down to the next lower page boundary 
(unless it is already on a page boundary). This might r-esult in 
overlap of pages fixed, which does not cause any et'r'Or' conditions. 
However, VS might unexpectedly not fix the last part of a certain 
module. To avoid this, the length of each module to be fixed should be 
calculated from the Csect sizes in the linkedi t, and then corr-es ponding 
ORDER statements should be inserted in the linked it deck, and another 
linked it executed. 

VS Syste~ Tuning Considerations 

If using LOADPAGE, it is important to have enough ICOMPOOL blocks 
for LOADPAGE save areas. If the LOADPAGE save area is acquired from 
subpool zero, two page faults may occur and therefore LOADPAGE saves 
only one page fault. Thus, the LOADPAGE save area should be obtained 
via ICOMPOOLs to maximize system performance and prevent unnecessary 
page faults. The length of the save area is defined by the EQU labeled 
WORKLEN in the LOADPAGE module. 

There must, additionally, be as many LOADPAGE save areas as there 
are ECBs in LOADPAGE as specified by the PLECBT EQU value in LOADPAGE. 
The number of ECBs used may affect system performance. The number of 
ECBs can be changed by altering the number of fullwords (released as 8) 
defined at the label PLECB in LOADPAGE, then reassembli.ng LOADPAGE. 

This technique is also applicable to PMIPGLD save areas. 

1-24 



Chapter 7 Execution of Intercomm 

7.9.6 Subsystem Considerations 

In lieu of defining subsystems in an overlay structure, a VS 
parameter may be specified in the SYCTTBL macro, EXGRP=n, defining 
groups of subsystems which may be allowed to process messages 
concurrently. Its purpose is to prevent all resident application 
subsystems from executing concurrently upon receipt of a message, since 
each message processing thread requires save areas, message areas, I/O 
areas, etc., which could result in a massive page-in/page-out operation 
if enough real storage is not available. If the EXGRP parameter is 
specified, only one of the execution groups will be processing at a 
time, and paging will be reduced. Using this scheduling technique, all 
subsystems are defined as resident (SYCTTBL macro parameter OVLY=O) and 
the Subsystem Control Table entries must be sequenced by EXGRP number 
(in ascending order). (The execution group number becomes the "over lay 
number" in the generated SCT control byte SCTPONU.) The SCT Index must 
be generated, as described in Chapter 3, via the GENINDEX macro, or if 
user-coded; each index entry defines an execution group of SCTs. Also, 
TRAFFIC (Csect in module TRAFFICQ) should be ordered with SYCTRL. 

If page preloading is not in use, disk queuing for messages is 
often more efficient than core queues under VS due to I/O activity 
overlapped via the standard File Handler facilities. 

If page pre loading is in use, storage queuing should be used 
since the paging activity (which is more efficient than BDAM I/O) i-lill 
be overlapped. 

The RTNLINK macro (for Assembler Language subsystems) also has a 
VS-oriented parameter called PRELOAD, which, when coded, causes the 
page that contains the high order save area to be pre loaded and 
therefore prevent a page fault. 

VS SYSGEN Considerations 

For effective performance, observe the following points when 
speCifying VS SYSGEN parameters: 

• Execute Intercomm at the highest possible priority. 

• If executing under VS1, separate page (EPS) data sets onto 
different packs (channels) from those containing SYS1.SYS~ADS 
and SYS1.SYSJOBQE data sets. 

• Separate JES spooling data sets onto different packs from 
page (EPS) data sets. 

• Separate frequently used Intercomm and on-line user data sets 
onto different disk drive channels from those used for 
operating system and page (EPS) data sets. 

7-25 



Chapter 7 Execution of Intercomm 

7.9.8 

• Specify locations of data sets carefully; that is, put the 
System Catalog between SYS1.LINKLIB and SYS1.SVCLIB. 

• Choose carefully between resident and SYS1.LINKLIB SVCs; that 
is, OPEN/CLOSE should be resident, if possible. 

VS1: WTP User Message Limit 

Appearance of the following message indicates that the problem 
program WTP message limit has been reached for this job step. 

VS1:WTP IEF094I WTP USER LIMIT REACHED FOR •.• 

The limit is set at SYSGEN and/or at IPL time. The SYSGEN 
defaults to a maximum of 15 messages. If your CPU console is also 
Intercomm's control terminal, messages to it will be limited by the 
STEPWTP parameter of JES. After the limit has been reached, any 
Intercomm messages (Intercomm is the problem program) sent to the 
console will be ignored by the WTP routine. See also the SPALIST macro 
PMIWTO message routing override parameters described in Section 7.4.1. 

7.9.9 VS2: SPIE Macro 

SPIE macro expansion under OS differs from VS2. Execution under 
OS of modules containing the SPIE macro assembled under VS results in 
abnormal job termination when an OCx program interrupt occurs, despite 
inclusion of SPIEEXIT software. Such OS-assembled modules execute 
successfully under both OS or VS, but VS-assembled modules containing 
SPIE execute successfully only under VS and not as. 

Intercomm members containing the SPIE macro are 3TARTUP3, FQES, 
PREPLI, PREPL1 (and PLlINTFC macro), STAEEXIT, STAERTRY, and INTSPA. 
Also, the off-line modules LOGANAL and MRBATCH. When running a shared 
VS and OS Intercomm, any assemblies of the above should be done with 
the as Macro Library. In general, all of the above modules should be 
reassembled if included in the linked it , unless already reassembled at 
installation time or executing under MVS. 

7-26 



Chapter 7 Execution of Intercomm 

7.10 MVS OPERATION 

Installation and operation of Intercomm under r1VS require a few 
considerations in addition to the general VS installation procedures 
described in Section 7.9. The MVS user should consider: 

~ Each live Intercomm region must run as a nonswappable task. 
In order to make Intercomm nonswappable, the name of the 
Intercomm nucleus may be placed in the operating system's 
Program Properties Table (PPT) in key 8 to 15, or the SYSEVENT 
macro may be inserted in STARTUP3 (see Technical Information 
Bulletins). For a BTAM Front End reg ion- with remote 
terminals, the operating system automatically marks the task 
nonswappable. Additionally, Intercomm should have the highest 
dispatching priority in the system (above TSO, if used). 

~ Because BTAM dynamic buffering is not supported, Intercotllln 
suppresses dynamic buffering under MVS. Therefore, the 
LINEGRP macro, BUFL parameter, must specify a value at least 
as large as the longest message expected, with the exception 
of bisync devices (see Basic System Macros). LINEGRP macro, 
BUFNO parameter, must specify a value at least as large as 
the value assigned to the NUMLN parameter (the number of 
BLINE macro instructions subordinate to the LINEGRP). 

• Concatenate SYS1. AMODGEN after SYS1.MACLIB in all Intercomm 
procedures (including INTASMF) executing the assembler. 

o The following Intercomm modules must be reassembled and 
linkedited: STARTUP3, STAEEXIT, IXFHND01, PMISNAP1, 
STAERTRY, TRAP, FEt1SG, SNAPRTN, and, if used, BLHTRACE. 

a If executing in a Multiregion environment, the following must 
be reassembled: MRLOGOT (if used), MRPURGE, MRQMNGR, 
MROTPUT, MRINTER and MRCSAMOD (also add to linkedit). 

o INTPAGE must be included in the Intercomm linkedit (resident) 
for page fixing. 

a GAMFQES instead of FQES must be used in the linkedit. 

.. BTAM (and TCAM) Front End modules, particularly BTSEARCH 
(which contains the BTAM RESETPL macro), must be reassembled, 
if in the Intercomm linkedit. Also reassemble every time an 
operating system upgrade is made. 

a The entire VTAM Front End, if used, must be reassembled. 
Also reassemble every time an operating and/or VTAM system 
upgrade is made. Ensure that the correct VS system library 
containing VTAM macros and Dsects is in the SYSLIB 
concatenation stream. 

7-27 



Chapter 7 Execution of Intercomm 

• Reassemble the Front End Network Table due to possible 
changes in DCB, ACB and RPL macros. Also see Technical 
Information Bulletins regarding a user modification to the 
Intercomm LINEGRP macro (due to optional IBM PTF to DCB 
macro) • 

• Eliminate the subsystem overlay structure, if at all 
possible; convert subsystems to dynamically loadable, or 
define as VS execution groups. Eliminate internal overlay 
structure subsystem linked its, if previously used. 

• If previously used in a non-MVS environment, the Intercomm 
Interregion SVC must be reassembled and reinstalled. It is 
required to use either page preloading or page fixing, a 
Multiregion system, ESS, and cross-region sharing of VSAM 
files. 

Invalid installation of the Interregion SVC may result in a dump 
simulating a SOC1. If executing under MVS/SE, use of PMIPGLD may 
impact system performance; remove if degradation occurs. In addition, 
if subsystem time-outs occur, remove LOADPAGE. 

If executing with 
considerations apply under 
Multiregion Support Facility. 

a Multiregion 
MVS. These are 

environment, further 
fully documented in 

An operator cancel (S122 and S222) will not give control to final 
cleanup processing in the STAEEXIT routine. Therefore, PMIDEBUG should 
be included in order to cancel Intercomm with a dump. This is also 
recommended for flushing the Intercorom log buffers and closing the log, 
and closing VSAM files. A system x22 cancel will not accomplish this. 
See Messages and Codes for a description of STAEEXIT processing and the 
use of PMIDEBUG. Coding DEBUG=YES on the ICOMLINK macro for the 
linked it generation forces an include for PMIDEBUG. 

Intercomm and the MVS operating system components which affect 
Intercomm execution must be tuned on an ongoing basis. See Chapter 11 
for general tuning recommendations, plus those specific to execution 
under MVS. 

7-28 

J 

J 

J 



Chapter 1 Execution of Intercomm 

1.11 INTERCOMM INTERREGION SVC--&MRSVC 

The member IGCICOM on SYMREL is a type 1 SVC routine which 
provides for interregion communication or general use in protect key 
zero, and is required for page fixing in a VS1/MVS installation, 
Multiregion installation, the Extended Security System, and 
cross-region sharing of VSAM files. The SVC must be reinstalled if 
converting to MVS. 

The Interregion SVC performs the following functions: 

• Posts an ECB in another region 

~ Waits on an ECB in another region 

~ Executes Intercomm system functions in protect key zero 

To implement the Interregion SVC, the following steps must be taken: 

1. Assign a number for a type 1 SVC for Intercomm use. 

2. Modify the global &MRSVC (member: SETGLOBE) to reflect the 
number assigned in Step 1. (&MRSVC is released with a value 
of 013. Execution of an Intercomm routine requiring the SVC, 
without resetting &MRSVC and assembly and linked it of the SVC 
routine, will result in a user abend with a random 
identification. ) 

3. Assemble and linkedit: 

:. IGCICOM as IGCnnn, where nnn is the assigned SVC number; 
linked it parameters are LIST,LET,DC,RENT 

• KEYFLIP (all regions for a Multiregion system) 

~ INTSPA (all regions for a Multiregion system) 

~ MRBATCH (if used) 

• Rellnkedit OS/VS Nucleus (IEANUC01: to include SVC)j add 
a DD statement for library containing IGCnnn (usually 
SYS1.SVCLIB or MODLIB). 

4. When structuring the linked it deck for the Intercomm load 
module, KEYFLIP must be included before the Intercomm 
Dispatcher (IJKDSP01). Do not include KEYFLIP unless the SVC 
has been installed. Otherwise, miscellaneous program checks 
will occur. 

Invalid installation of the Intercomm Interregion SVC is signaled 
by an IBM error message. 

1-29 



Chapter 7 Execution of Intercomm 

7.12 INTERCOMM LINK PACK FEATURE 

The Intercomm Link Pack Feature allows operation of more than one 
Intercomm region (11 ve, simulated, batch, or Test Mode) simultaneously 
without duplicating identical Intercomm routines from region to 
region. Various Intercomm routines are linked together and loaded into 
the Link Pack Area and shared among the various Intercomm regions. 
(See Figure 7-5.) Such routines are generally used more than others; 
over 100K of storage is saved. Since the Link Pack Area is separate 
from the Intercomm area, the Intercomm system is therefore divided into 
two interfacing sections, the Link Pack Module (LPM) containing the 
Link Pack routines and the Intercomm Region (IR). 

I 
N 
T 
E 
R 
C 
0 
M 
M 

R 
E 
G 
I 
0 
N 

1 

OPERATING SYSTEM NUCLEUS 

FRONT I MULTIREGION I TEST MODE N 
END N INTERFACE N INTERFACE 0 

T T N 
PART OF E PART OF E PART OF 
BACK END R BACK END R BACK END I 

C C N 
0 0 T 

SUBPOOLS M SUBPOOLS M SUBPOOLS E 
M M R-------------

C 
R R 0 
E E M 
G G M 
I I 
0 0 R 
N N E 

G 
2 3 I 

0 
N 
S 

LINK PACK AREA 

Link Pack Module 
consisting of many 
Intercomm Back End 
modules 

Figure 7-5. Link Pack Module Working in Conjunction With 
Several Intercomm Regions 

7-30 

J 

I 
I 



Chapter 7 Execution of Intercomm 

An additional advantage is that reentrant user Assembler Language 
routines to be executed under Intercomm may also be placed in the LPM 
in the Link Pack Area. 

Entry point names for all Intercomm Link Pack modules are defined 
to the Intercomm region via the interface module LPINTFC. At Intercomm 
startup, the module LPSTART initializes VCONs for those entry points 
with actual addresses of Link Pack routines, using the Link Pack 
resident interface routine LPSPA. It should be noted that the LPINTFC 
and LPSPA modules provide entries for all Link Pack eligible Intercomm 
modules. The physical makeup of the Link Pack Module is only 
determined by the linked it of the LP and Intercomm regions. VCONs in 
LPSPA will be unresolved for those Intercomm components that the user 
has chosen to keep in the Intercomm region. LPSTART will issue a 
PMIWTO for each of these modules indicating that they have been 
resolved within the Intercomm region, and not in the Link Pack Area. 

During Intercorom execution, LPINTFC loads the actual address of a 
called Link Pack routine using the initialized VCONs which reside in 
the System Parameter Area. Startup initializes word 1 of the OS save 
area with the System Parameter Area address for subsequent use by the 
LPM routines. Intercorom components eligible for the Link Pack Module 
are illustrated in Figure 7-6, along with their corresponding entry 
point names. 

Preparation necessary to utilize the Link Pack Feature is 
provided in the following. Macros discussed in these sections are all 
described in Basic System Macros. 

7-31 



Chapter 7 Execution of Intercomm 

~=========================================-============================== 
Entry-Point Module(s) To Include 

Component Name For LPM Linkedit 
F==========================================F============================= 

Message Collection MSGCOL BLMSGCOL 
---------------------------- -------------~-----------------------------

Retriever RTRVER PMIRETRV 
~------------------------------------------~-----------------------------

Edit Utility EDIT PMIEDIT, PMIFIXED 
EDIT3270* 

~------------------------------------------~----------------------------. 
Output Utility OUTPUT PMIOUTPT, (USROUTCK), 

PMIVMI56* 

-------------------------------------------~----------------------------. 
Change/Display Utilities CHANGE or CHANGE, DISPLAY 

DISPLAY or FORMAT, CRUNCH 
CHGDIS 

----------------------------- -------------~----------------------------
File Handler (IXFQISAM FILEHND IXFHND01, IXFVSCRS*, 
not in Intercomm linkedit) IXFB37*, IXFLOG* 

------------------------------------------------------------------------File Handler (IXFQISAM FILHNDQI IXFHND01, etc.(see above) 
in Intercomm linked it) 

~---------------------------- -------------~-----------------------------
Store/Fetch SFETCH INTSTORF 

~---------------------------- -------------~----------------------------
Dynamic Data Queuing DDQ DDQMOD 

~----------------------------
Message Mapping Utilities 

-------------1------------------------------
MMU MAPIN, MAPOUT, MMUTRTS, 

MMUED001-003 & -008, 
LOGCHARS (or username), 
MMUDDM, MMUDDMU, MMUDDMX, 
MMUDDMT, MMUDDMF, MMUDDMM 
MMUCOMM** 

-------------------------------------------~----------------------------
Terminal Lookup PMIEXTRM PMIEXTRM 

-------------------------------------------~-----------------------------
Enqueue/Dequeue Functions NQDEQ PMINQDEQ 

-------------------------------------------~-----------------------------Conversational Support CONVERSE CONVERSE 

* Include only if used for corresponding feature (3270 terminals, 
VSAM files, etc.) 

** LPENTRY definition required (see 7.12.6) 

Note: If the user exit USROUTCK is to be used with PMIOUTPT, it 
should also be included, and must be reentrant. 

Figure 7-6. Applicable Intercomm Components for LPSPA/LPINTFC Macro 

7-32 



Chapter 7 Execution of Intercomm 

7.12.1 Preparation of the Operating System 

On the SUPRVSOR macro, code: OPTIONS: COMM. This coding allows 
modification of the Link Pack Area at Initial Program Load (IPL) time. 

Create a member on SYS1.PARMLIB named IEAIGGxx, where: 

• IEAIGGxx specifies the name (LPSPA) of the member containing 
the Intercomm Link Pack Module, and 

• xx is the suffix used when the operator replies "RAM=xx' at 
IPL. 

If the Link Pack Module does not reside on SYS1.LINKLIB, LNKLSTOO 
must be properly coded, as indicated in the IBM manuals. 

The Link Pack Module should not reside on a STEPLIB or JOBLIB 
library of an Intercomm region. If it is, the Link Pack Module would 
then be loaded into the Intercomm region, rather than using the copy in 
the Link Pack Area. 

7.12.2 Preparation of the Link Pack Module (LPM) 

Assemble and linked it the LPM interface routine LPSPA using the 
LPSPA macro, as follows: 

II 
II 
I I ASM.SYSIN 

1* 

EXEC ASMPCL,LMOD=LPSPA,Q=USR, 
PARM.LKED:'XREF,LIST,LET,NCAL,RENT' 
DD * 
LPSPA A=A,MODS=( ••••• ) 
END 

RENT must be specified to cause the linkage editor to flag the 
output as reentrant. Additionally, each module in the LPM must be 
relinked as reentrant: use the LKEDP procedure and override the 
linked it parms by adding RENT; place the output load module in MODUSR. 

Example of LPSPA macro: 

LPSPA A=A,MODS:(MSGCOL,RTRVER,FILEHND) 

This generates an LPSPA Csect to be used 
Collection, the Retriever and File Handler modules 
Area. 

7-33 

to place Message 
in the Link Pack 



Chapter 7 Execution of Intercomm 

Linkedit the LPSPA Csect, together with all other component 
modules to go in the Link Pack Area, as follows: 

II EXEC LKEDP,Q=USR,LMDD=LPSPA, 
I I PARM. LKED= 'RENT, •••• ' 
IILKED.SYSLMOD DD Library to contain LPM 
IISYSIN DD * 

1* 

INCLUDE SYSLIB(LPSPA) 
INCLUDE SYSLIB(member-name,member-name, ••• ) 
ENTRY LPSPA 
NAME LPSPA 

\J RENT must be specified to cause the linkage editor to flag 
the output as reentrant. 

• NAME statement specifies the Link Pack Module name (LPSPA) as 
it appears on IEAIGGxx on SYS1.PARMLIB. 

member-name spec ifies the module (s) to be inc luded for each of 
the applicable Intercomm components, as defined in Figure 7-5. 

Under MVS, LPSPA can be placed in the MLPA data set, as long as the 
data set is in the system catalog. 

In order for Intercomm system programs to provide Csect names for 
Link Pack Modules in messages and reports, add the following DD 
statement to the Intercomm execution JCL after the IIPMISTOP DD 
statement: 

IILPSPALIB DD DISP=SHR,DSN=name-of-library-containing-LPSPA 

7.12.3 Preparation of Intercomm Region (IR) 

Assemble and linkedit the IR interface routine LPINTFC using the 
macro LPINTFC, as follows: 

II 
I I ASM.SYSIN 

1* 

EXEC ASMPCL,LMOD=LPINTFC,Q=USR 
DD * 
LPINTFC MODS=( ••••• ) 
END 

7-34 



Chapter 7 Execution of Intercomm 

Create a standard Intercomm linked it deck using the output of the 
ICOMLINK macro, as described in the previous sections. Delete the 
INCLUDE statements for the modules put in the LPM, or relinkedit the 
Intercomm Region load module, as indicated in Figure 7-7. Only the 
REPLACE statements for the Csect names of the specific components in 
the previously created Intercomm Link Pack Module should be utilized. 

1/1 EXEC LKEDP,Q=xxx,LMOD=name 
IISYSIN DD * ENTRY PMISTUP 

INCLUDE SYSLIB(LPSTART) 
REPLACE MSGCOL Message Collection 
REPLACE PMIRETRV Retriever 
REPLACE EDITCTRL Edit 
REPLACE FlXEDIT Edit 
REPLACE PMIOUTPT Output 
REPLACE IXFMON01 File Handler 

INCLUDE SYSLIB(Intercomm) 
INCLUDE SYSLIB(LPINTFC) 
OVERLAY AB Add to Startup 
INSERT LPSTART Overlay (if used) 

remainder of overlay 
structure from 
original linked it (if used) 

1* 

. Figure 7-7. Relinkediting Intercomm Region for Link Pack Feature 

7.12.4 User Routines in the Link Pack Area 

Prior to placing a non-Intercomm module in the LPM, the following 
preparation is required: 

1. Coding Conventions 

2. 

The module must be coded in Assembler Language and obey 
certain coding restrictions, as described below. 

Entry Point Specifications 

A VCON for the module's en try point must be assigned via the 
User Spa, or the Subsystem Control Table. In the latter 
case, the module would have to be a subsystem and the SYCTTBL 
macro will automatically provide the VCON. 

7-35 



Chapter 7 

7.12.5 

NOTE: 

Execution of Intercomm 

Verify that the SYCTTBL macro(s) for subsystem(s) in 
the Link Pack Area do not specify that the subsystem 
is dynamically loaded. Also, under VS, if messages 
for the subsystem(s) are to be scheduled as if the 
subsystem(s) were in overlay (EXGRP not equal to 0) 
the CKLINK module should be removed from the 
Intercomm linkedit. 

Coding Conventions for User LPM Routines 

Modules in the LPM may not have TEST=YES coded for any LINKAGE 
macros. Since modules in the LPM are not linkedited with the rest of 
Intercomm, many external symbols cannot be resolved at linked it time. 
Any unresolvable external references needed by the module during 
execution must, therefore, be provided, directly or indirectly, through 
the System Parameter Area. Likewise, when subsequently passing control 
to rou tines not in the Link Pack Area, a normal "CALL entry, ••• " wi.ll 
not work. 

To overcome this limitation, the System Parameter Area and Spa 
Extension are used as a communication area between the IR and the LPM, 
and vice versa. The User Spa is also available for any external 
symbols required by the user which are not already present (see Chapter 
3). The SPALIST Dsect contains labels of User Spa fields; therefore, 
the problem of unresolved external symbols is reduced to obtaining the 
addresses of the SPA (also for User Spa areas) and SPAEXT. 

All subsystems are given the address of the System Parameter Area 
upon entry to the subsystem. In the exceptional case when the SPA 
address is not passed as a parameter to a module in Link Pack, the 
GETSPA macro can be used. The macro obtains the SPA address from word 
1 of the as save area which was initialized during startup. The macro 
is coded as follows: 

GETSPA REG=r 
USING SPALIST,r 

Execution of the macro loads the System Parameter Area address in 
the register specified for the REG parameter. The most frequent uses 
of the Spa and Spa Extension are for the macros shown in Figure 7-8. 
The Spa extension address is in the Spa at the label SPAEXTAD and may 
be placed in a register by use of a load (L) instruction. Do not 
forget USING statements to establish addressability for the SPALIST and 
SPAEXT Dsects. 

Finally, any module in Link Pack must be reentrant. 
attempts to modify itself, an OC4 program check will 
Furthermore, each load module included as linkedit input when 
is created must have been itself linkedited with PARM='RENT, ••• '. 

7-36 

If it 
result. 
the LPM 

J 



Chapter 7 

CALL 

STORFREE 

INTWAIT 

DISPATCH 

Execution of Intercomm 

L 15,SPAWRITE V(WRITE) 
CALL (15) 

L 15,SPAFREE V(STORFREE) 
STORFREE •• ,LINK=(15) 

L 14,SPAKINT DISPATCH ON INTERVAL 
DISPATCH •• ,INTVL=n,LINK=(14) V(IJKINT) 

L r,SPAEXTAD 
USING SPAEXT,r 
L 14, SEXKDSP 
DISPATCH •• ,LINK=(14) 

or 

SPA EXTENSION ADDRESS 

DISPATCH EXECUTE 
V(IJKDSP) 

Figure 7-8. Frequent Uses of System Parameter Area 
and SPA Extension in User LPM Routines 

7.12.6 Entry Point Specifications for User LPM Routines 

Even if a module requires no external symbols after acqu~r~ng 

control, it cannot get control at all unless its entry point can be 
found. Therefore, each entry point to which control can be passed from 
the Intercomm region must have a VCON reserved in the User Spa, having 
a label beginning with SPA. At Intercomm startup, all such VCONs will 
be initialized to point to the Link Pack entry point, if it is resolved 
in the LPM and unresolved in the IR. 

The LPENTRY and LPVCON macros define user entries in the LPSPA 
and LPINTFC, respectively. These macros must be coded and assembled 
with the respective Csects, as described below. For each entry point 
in the LPM which is to be called symbolically, that is, "CALL name", 
instead of "CALL (15)", the LPINTFC can be coded as follows: 

LPINTFC MODS=( •••• ) 
LPVCON 
LPVCON 
LPVCON 
END 

One LPVCON macro must be coded for each such entry point, except 
if a subsystem is referenced via a SYCTTBL macro. 

7-37 



Chapter 7 Execution of Intercomm 

Similarly, when creating the LPSPA Csect, an LPENTRY macro must 
be coded defining each user entry point to the LPSPA. 

NOTE: 

LPENTRY 
LPENTRY 
LPENTRY 
LPSPA 
END 

All LPENTRY macros must precede the LPSPA macro, and must 
be coded for subsystems as well as subroutines. 

Assume a user subsystem has an entry point of SUBSYST, a 
subsystem code of 'X', and a user subroutine has an entry point of 
LPROUTN. First, a VCON would have to be assigned in the User Spa; 
suppose that---

SPAROUTN DC V(LPROUTN) 

was coded in the User Spa. None is required for SUBSYST, since it is a 
subsystem. 

In the LPINTFC, for example---

LPVCON LPROUTN, SPA, ROUTN 

would be coded to create a pseudo entry point for LPROUTN in the 
LPINTFC CSECT. No LPVCON macro is required for the subsystem. 

In the LPSPA---

LPENTRY LPROUTN, SPA, ROUTN 

would be coded for LPROUTN, and the following would be coded for the 
subsystem: 

LPENTRY SUBSYST,SCT,SSC=X 

This would make it possible for these modules to be linkedited 
into the LPM and receive control from an Intercomm region. Should they 
have any unresol vable external references, additional entries might be 
needed in the User Spa. 

Accessing LPM Modules in Batch Mode 

If a batch program (not Test Mode or simulated Intercomm) needs 
to access the Intercomm File Handler (for example) in the LPM, an 
interface program has to be coded as described in the chapter on the 
File Handler. Additionally, the modules LPSTART, MULTISPA, and LPINTFC 
must be included in the linkedit. For Store/Fetch, see Store/Fetch 
Facility for additional linkedit requirements for a batch program. 

7-38 

J 

J 



Chapter 8 

INTERCOMM FACILITIES 

8.1 INTRODUCTION 

This chapter provides general descriptions and implementation 
procedures for several testing, debugging and tuning facilities 
available to the Intercomm user. Where necessary, references are made 
to related Intercomm manuals. The following facilities are defined: 

• Terminal Simulator (BTAMSIM) 

• Abend Intercept Routines (SPIEEXIT,STAEEXIT) 

• Indicative dumps 

• System DCBs 

• Spinoff snaps 

• Fast Snap Facility 

• System Accounting and Measurement Reports 

• System Tuning Statistics 

• Log Input Facility 

• Test Mode operation 

8.2 TERMINAL SIMULATOR FACILITY 

The Intercomm terminal simulator module (BTAMSIM) allows the 
entire Intercomm system, Back End, BTAM Front End, and application 
programs to be executed as if it were receiving input and sending 
out put to terminals, wi thout actually having those terminals. The 
terminal simulator allows the testing and debugging of the system in a 
manner which closely approximates alive environment. It also allows 
an early evaluation of system performance and an indication of the 
response time when the system goes live. 

The simulator permits a combination of a real BTAM, TCAM and/or 
VTAM Front End, and BTAM line groups with only simulated terminals of 
the following types: 

• IBM 3270 Locals (Models 1 and 2) • IBM 2741 

• IBM 2740 (Models 1 and 2) • IBM 2260 (remote) 

• IBM 2780 (output only) 

8-1 



Chapter 8 Intercomm Facilities 

To use the simulator, the user must perform the following steps: 

1. Include BTAMSIM as resident in the Intercomm linked it 

2. Create an input data set for each terminal to be simulated 

3. Supply a DD statement for each input data set, using the name 
of the terminal as the name of the DD statement 

4. Create a SIMCARDS input parameter card data set 

5. Supply a DD statement for the SIMCARDS data set 

The following subsections contain detailed discussions of each of 
these steps. In addition, the BTAM Front End must be installed, and 
the simulated terminals must be completely defined in the BTAM Front 
End tables, as described in the BTAM Terminal Support Guide. Also, the 
terminals must be properly defined in the Intercomm Back End Station 
and Device Tables. A BLINE and BTERM for the CPU console as a live 
terminal is optional. A control terminal (live or simulated) is 
required (same TID as SPALIST--CCNID parameter). Under Mul tiregion, 
the simulator may not be used in a satellite region. 

8.2.1 Terminal Input Data Set(s) 

A data set must be created for each terminal to be simulated 
containing the pseudo-input from that terminal. Each of these data 
sets must be variable-format sequential files and is created using the 
CREATSIM utility program. This program is described in Chapter 12, 
"Off-Line Utilities." 

The DD statement for each data set must have as its ddname the 
name of the terminal. For example, the simulated input data set for a 
terminal named CNT01 would have a ddname of CNT01. 

The input data set(s) will be accessed using the File Handler; 
therefore, the DD statement must specify DCB=DSORG=PS. Input records 
on the simulator data set must be variable length and must follow (in 
EBCDIC) the exact format of what would normally be received from the 
terminal. All control characters, EOBs, ETXs, etc., must be contained 
in the record. 

NOTE : When simulating CRTs, if an input message causes multiple 
output messages to be sent back to the terminal, it 
should be followed on the input data set by a RLSE system 
control command for each expected output message after 
the first. There is no physical output from the 
simulator. 

8-2 



Chapter 8 Intercomm Facilities 

8.2.2 Input Parameter Data Set 

The simulator expects an input parameter data set with the ddname 
SIMCARDS containing one parameter card for each terminal with an input 
data set. Each card has the following format, starting in column one: 

where: 

8.2.3 

ttttt,iii,pp,ss 

• ttttt represents the terminal name, for example, CNT01 
(ddname of input data set). 

• iii represents the interval in seconds between input 
messages, left-padded with zeros to three positions. 

• pp represents the number of passes to be made through the 
data set. The field is optional and has a default of 1. 

• ss represents the number of initial records to skip on 
through the data set subsequent to the first pass. 
field is optional and has a default of zero. If 
specified, pp must also be specified. 

Input Operations 

passes 
This 

it is 

At startup, the Front End attempts to open every TP line. If the 
line DD statement is missing (as specified via the LINEGRP macro), the 
line cannot be opened. This is a likely indication that some or all 
terminals on that line group are to be simulated. If some terminals in 
the line group are to be simulated, the terminals which are not to be 
simulated cannot be live (no DD statement for the lines or local 
units) • Also, the BTERMs for nonsimulated terminals on those lines 
must specify TPUP=NO, while those for simulated terminals must specify 
TPUP=YES. The control terminal may not be simulated in a mixed 
environment with live terminals. 

The terminals to be simulated are identified by checking which DD 
statements are supplied with the terminal name ttttt for the ddname. 
If a terminal is to be simulated, there must be an input data set and a 
SIMCARDS input statement for that terminal. 

Assume that SIMCARDS has the following parameter card: 

CNT01,030,03 

In this example, any time the Intercomm Front End encounters the 
terminal name CNT01 for processing, the simulator tests to see if there 
should be a simulated read from the terminal (or a simulated write to 
the terminal). If a simulated read is required, a record is read from 
the data set represented by the CNT01 DD statement and is passed back 
to the Front End. 

8-3 



Chapter 8 Intercomm Facilities 

The Front End conversational facility is supported because an 
interval is started only at the time a message is read from a terminal. 

The simulator program operates by changing the READ/WRITE routine 
address in the DCB of the LINEGRP macro expansion for the terminals to 
be simulated to point to an entry point in BTAMSIM instead of to the 
normal BTAM READ/WRITE routine. Therefore, whenever the Intercomm 
Front End issues a read or a write, the simulator acquires control. 
For read operations, the simulator determines which terminals are being 
simulated. For each terminal provided with a da~a set and defined to 
the simulator by a parameter card on the SIMCARDS data set, records 
representing a message are read in from the terminal's data set and 
passed back to the BTAM Front End at the interval specified in the iii 
field of the parameter card. 

If the end of the data set is reached, and if the pp field of the 
parameter card is greater than 1, the simulator will start over again 
at the beginning of the data set. It will perform as many passes as 
prescribed in the pp field. On these additional passes, it will bypass 
the first ss records of the data set, if requested. 

8.2.4 Output Operations 

Whenever the Front End issues a write to a terminal, the 
simulator acquires control in the same manner as for a read. For write 
operations, there is very little to be done. The simulator delays 
returning control to the Front End for an interval that it calculates 
to be the approximate line-time required to send the message to the 
terminal as if the terminal were really there. The simulator then 
returns to the Front End with a successful completion code. An 
exception to this is for buffered hard copy devices, where the 
simulator will return to the Front End a buffer-busy code, if the 
current message is being written to the terminal before the terminal's 
buffer could have dumped a prior message. The Front End then retries 
at a later time, as it would in a live environment. 

Output messages to simulated terminals are ignored (and freed) by 
the simulator. However, they can be examined on the INTERLOG data set 
which contains all output queued for the Front End (F2 and F3 log 
codes) • 

8.2.5 Local 3270 Message Preparation and Processing 

To simulate formatted screen input messages for a 3270, use the 
CREATSIM utility to create the input message file with SBA sequence 
cards defined for each input field. CREATSIM can also process 
positional input messages interspersed with formatted input messages. 

8-4 



L 

Chapter 8 Intercomm Facilities 

To produce a printed listing of all input and output 3270 
messages, also include SIM3270 as resident in the Intercomm linked it 
and define a SYSOUT DD statement for each local 3270 terminal (CRT or 
printer) to be simulated, as follows: 

//SCRxxxxx DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=121,RECFM=FA) 

where xxxxx is the terminal-ID of the terminal being simulated. 

The printed listing provides a display (with attribute 
indicators, where applicable) and also the message data in EBCDIC'as it 
would be sent to, or received from, the terminal. Appropriate error 
messages for invalid 3270 orders, etc., are also printed. A CRT 
display is updated for each message to illustrate how it would look had 
the actual terminal I/O been performed. . SIM3270 expects each input 
message to start with a one-byte hex AID key value, followed by a 
two-byte physical cursor address, then an SBA sequence for the first 
field if formatted input, or a message text string if unformatted. 

Use of SIM3270 requires that the Intercomm Store/Fetch Facility 
be installed. Transient strings are created in core for the area of 
each simulated terminal and updated for each input and output message. 
These strings require definition of a Store/Fetch data set in case a 
flush is necessary. The default used is INTSTOR9j however, this may be 
changed to an existing Store/Fetch work data set ddname by modifying 
the global &SDD at sequence number 01760000 in SIM3270. (See 
Store/Fetch Facility for further details.) 

8.2.6 Simulator Closedown 

The simulator maintains a record of the number of terminals that 
have active simulated input files. If end-of -file has been reached on 
all of these files (or if the specified number of passes has been made 
through all of them), and if there are no live terminals operating, 
then the simulator will internally generate a NRCD closedown message to 
terminate the simulation. If some live terminals are also operating, 
however, this will not be donej the system will close down when the 
NRCD or IMCD transaction is entered from the control terminal, which 
must be a live terminal. 

8.3 ABEND INTERCEPT ROUTINES--SPIEEXIT,STAEEXIT 

Two system routines are provided with Intercomm to intercept 
abends and prevent the termination of task execution. These programs, 
SPIEEXIT and STAEEXIT, are referenced in the SPIE and STAE (ESTAE, if 
MVS) macros, issued at system startup. SPIE and STAE will not be 
issued if the modules are not included in the Intercomm linkedit. 

8-5 



Chapter 8 Intercomm Facilities 

8.3.1 SPIEEXIT 

SPIEEXIT receives control in the event of any program check (OCx) 
condition, and then calls SPIESNAP to issue a Snap 126 and return 
control to the Dispatcher (thread zero) or Subsystem Controller 
(nonzero thread). Recovery mayor may not proceed successfully based 
upon the cause of the program check. Many Intercomm service routines 
force an OC2 program check intentionally (via ISK instruction) when 
called with an invalid parameter list; in this case the associated 
message processing thread is terminated, and the system continues 
execution. If the program check occurs because of' invalid table 
entries, or because a system routine is inadvertently destroyed by 
invalid program logic, recovery may not be successful. See also 
Section 7.9.9 for assembly considerations for modules containing the 
SPIE macro. SPIESNAP and PMISNAP1 must also be in the linkedit. The 
program check codes trapped via SPIEEXIT are controlled by the STUSPIE 
parameter of the SPALIST macro. 

8.3.2 User SPIESNAP Exit--SPSNEXIT 

A user exit routine is conditionally called by SPIESNAP to 
determine whether or not a snap 126 should be taken. This exit can be 
used to prevent a buildup of the snap data set by repetitive snap 126 
calls. This exit will not suppress any other snap (see also Section 
8.4.1, "User Snap Exit," below). 

When control is passed to SPSNEXIT, R1 contains the address of 
the SPIEEXIT save area (formatted SPIE SAVE AREA described in Messages 
and Codes), and RO points to the initialized text of the program check 
MPOOlI in standard WTO format (4-byte prefix); see the description for 
the USERWTO exit in Messages and Codes. Standard linkage conventions 
apply. 

Upon return from the SPSNEXIT routine, if register 15 contains 
zero, the snap 126 will be taken. Any other value in register 15 
indicates that the snap should be suppressed. 

The routine must be closed; that is, it may not relinquish 
control to the Dispatcher. The routine must be resident. 

8.3.3 STAEEXIT 

STAEEXIT receives control in the event of any abend conditions 
other than program checks. The only valid situations for attempted 
recovery are that of the Dispatcher abend 909 indicating detection of a 
closed program loop by the routine IJKTLOOP, or a Multiregion 
cross-memory post failure (abend 557), if executing under MVS. 

8-6 

J 



Chapter 8 Intercomm Facilities 

Recovery will be attempted only if the module STAERTRY is included in 
the linkedit (this module contains the IBM SPIE macro; if not executing 
under MVS, reassemble STAERTRY to ensure that the correct version of 
the macro is used for abend 909 recovery). Otherwise, STAEEXIT effects 
job termination via the same abend code, after issuing an informational 
WTO, capturing the current environment via a snap 122, closing files 
and flushing the log buffers. A SNAPDD DD statement must be present 
(not DUMMY) for the snap 122 to be issued; otherwise, an OS system dump 
will be written to SYSUDUMP, or SYSABEND, if present. If neither 
SNAPDD nor SYSUDUMP/SYSABEND are DUMMY, two full region snaps are 
produced. See Messages and Codes for a description of Snap 122, which 
is easier to debug. 

8.4 INDICATIVE DUMP OPTION 

When a program check or a time-out occurs, a full 
region/partition snap is produced by default. It is usually the case 
that only certain items in the snap are needed for debugging purposes. 
In order to reduce the size of the snap produced, Intercomm provides an 
option to produce a smaller indicative dump, which includes only those 
areas most likely to be needed for debugging. The user selects this 
option (for snaps issued by Intercomm) by specifying INDUMP=YES as a 
parameter on the SPALIST macro. When choosing this option, be aware 
that certain problems (for example, storage destruction) may only be 
solved from a full snap before the cause of the problem can be 
determined. 

On a user-coded PMISNAP macro, the parameter INDUMP= YES may be 
coded to request an indicative dump, rather than a full snap. For a 
user-issued PMISNAP, this option applies to all snap-IDs. If 
INDUMP=YES was coded for the SPALIST macro, the user-issued PMISNAP 
option will be honored. Thus, this option can serve as a useful 
debugging tool, particularly for dynamically loadable subsystems and 
subroutines, by the insertion of the statement: 

PMISNAP ID=n,INDUMP=YES 

in an Assembler Language program. 

Indicative dump proceSSing may be activated and deactivated by 
the INDUMP parameter of the STRT/STOP system control commands. This 
command option can be used to dynamically override the SPALIST macro 
specification. However, this option requires all user-coded PMISNAP 
macros to additionally contain operands for a normal snap, if INDUMP is 
turned off. 

The indicative dump option is applied to Intercomm-generated 
snaps 126, 118 and 114. It is not applied to thread O. 

The storage areas printed in an indicative dump are described in 
Figure 8-1, in the order of their appearance. Other resource types 
owned by the thread are adequately identified in the associated thread 
resource dump. 

8-7 



Chapter 8 Intercomm Facilities 

==================================================================-===== 
Areas Length Note 

======================================================= ==========F===== 
SPIE SAVE AREA 136 1 

------------------------------------------------------- ----------r-----
Text of PROGRAM CHECK/TIMEOUT Message (MP001I/MS009I) 84 7 

Vicinity (-16 thru +16) of Failing Instruction 32 7 

Resource Manager Save Area (RMSAVE) 100 2 

------------------------------------------------------- ----------------
System Parameter Area and USERSPA (if any) 500+ 6 

------------------------------------------------------- ----------------
SPA Extension 1500 7 

!TCB (Intercomm Thread Control Block) for subsystem 

SCT (of the associated subsystem) 

Subsystem Controller Save Area for subsystem 

40 

100 

200 

7 

7 

3,7 
------------------------------------------------------- -----------------

Subsystem Input Parameter List 20 7 
------------------------------------------------------- ----------------

Subsystem Input Message Variable 7 

Subsystem, if COBOL, or nonreentrant Assembler or PL/1 Variable 4,7 
------------------------------------------------------- -----------------

SCT Extension, if dynamically loaded subsystem 100 
------------------------------------------------------- -----------------

Loaded Subroutine (if any) Variable 4 

Resources owned by thread Variable 5 

STORAGE/LIST parameter storage areas (if any) Variable 

Notes 

Meaningful for snap 126 only (see Messages and Codes). 

2 Meaningful for OC2 in Manager only. 

3 May be chained down to thread-owned save areas which will 
appear in the snap as resources obtained dynamically. 

4 The SPALIST macro, INDUMP parameter, specifies the length for 
snapping a nonreentrant subsystem; except that for a 
dynamically loaded nonreentrant subsystem, the entire load 
module is produced. The INDUMP parameter length value is 
also used for user-requested dynamically loaded subroutines, 
which are snapped with thread-owned resources. 

Figure 8-1. Areas Displayed by Indicative Dump (Page 1 of 2) 
8-8 

J 

J 



Chapter 8 Intercomm Facilities 

Notes: 

5 Up to 100 areas representing thread-owned resources appear i 
the snap (in the order acquired) as follows: 

Resource Type 

Core 
Dynl 
File 

Area 

Areas acquired 
Dynamic loaded subroutine 
Internal DSCT 
External DSCT 
DCB/ACB, if present 
DECB/RPL, if present 

Length 

Area Lengths 
Variable 

56 
48 

256 
100 

6 If no USER SPA , then only the 500-byte SPA Csect is snapped. 

7 If this area is not available (address is zero), the constant 
THIS AREA IS NOT APPLICABLE TO THIS SNAP will be snappe 
instead of the control block area. The literal can be easil 
identified in the EBCDIC representation of the snapped are 
on the right side of the dump. 

Figure 8-1. Areas Displayed by Indicative Dump (Page 2 of 2) 

8.4.1 User Snap Exit--SNAPEXIT 

A user exit routine is conditionally called by the Csect ICOMSNAP 
within the module PMISNAP1 to determine whether or not a snap should be 
taken. This exit routine could be used to prevent buildup of the snap 
data set by recursive snap calls. The entry point of the exit routine 
must be SNAPEXIT. 

When control is passed to SNAPEXIT, register 
parameter list, as follows: 

points to a 

1. Address of the one-byte snap-ID in the snap parameter list. 

2. Address of the SP IE EXIT save area (See Messages and Codes). 
This parameter is only meaningful for snap 126. 

Upon ret urn from the 
zero, the snap should be 
indicates that the snap 
conventions apply. 

SNAPEXIT routine, if register 15 contains 
taken. Any other value in register 15 

should be suppressed. Standard linkage 

The routine must be closed; that is, it may not relinquish 
control to the Dispatcher or call any routine which gives up control to 
the Dispatcher. The routine must be in the same overlay segment as the 
Csect ICOMSNAP or must be resident. 

8-9 



Chapter 8 Intercomm Facilities 

8.5 SYSTEM DCBs 

The member named PMIDCB contains all of the Intercomm system 
DCBs. The one DCB that is required in all Intercomm systems is labeled 
PMISNAP, which references the DD statement named SNAPDD. It is used to 
define output of snap dumps, and may be referenced by any program 
requiring this facility. (See Figure 8-2). 

The QTAMDCB entry illustrated in this figure is required only for 
the Basic TCAM destination queue DCB as described in the TCAM Support 
Users Guide. 

PMIDCB CSECT 

* 
* 

ENTRY PMISNAP 
ENTRY FASTSNAP 
ENTR Y QTAMDCB 
USING *,3 
DC C'PMIDCB09' 
DS CL20 PROVIDE BUFFER FOR DCB *-20 

PMISNAP DCB 

FASTSNAP DCB 
QTAMDCB DCB 

END 

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=882,LRECL=125, 
DDNAME=SNAPDD 
DDNAME=FASTSNAP,DSORG=PS,MACRF=W,RECFM=F 
DSORG=PS,RECFM=VBA,MACRF=(W),DDNAME=DUMMY 

Figure 8-2. Listing of PMIDCB (as released) 

8.6 SPINOFF SNAPS 

This facility allows the snap data set defined by the SNAPDD DD 
statement to be renamed dynamically when a user-specified threshold of 
total output has been reached. The renamed SNAPDD data set may then be 
printed by a batch program while Intercomm continues to execute. This 
feature is particularly useful for installations using dynamic program 
loading. An error condition causing a snap can be analyzed, corrected, 
and a new version of the program implemented quickly. 

The SPINOFF module is called every time a PMISNAP macro is 
issued, if the DCB parameter is specified as PMISNAP (SEXSNAP in SPA), 
or omitted. The PMISNAP DCB is defined in the Intercomm member PMIDCB, 
and specifies the ddname SNAPDD. If SNAPDD is a tape-resident or 
SYSOUT data set, the SPINOFF facility is meaningless and inoperati va, 
except if SYSOUT spooling is used under MVS, and FREE=CLOSE is 
specified. If the SNAPDD data set is a disk file, the module checks to 
see if the total accumulated snap output equals the number of pages 
specified by the SNAPPGS parameter of the SPALIST macro. If this 

8-10 

J 



Chapter 8 Intercomm Facilities 

threshold has been reached, the snap DCB is closed, the data set is 
renamed, and the message MPO 1 OI is issued giving the new dataset name 
to allow it to be printed. If the threshold is set at fifty pages, for 
instance, every time fifty pages or more of snaps have been produced 
(this could be one full snap 126 or snap 118, or many small (indicative 
dump) snaps), the data set will be spun-off. A new data set is 
allocated on the same disk pack using the OS/VS allocate SVC and the 
DCB is then reopened to allow additional snaps. 

Under MVS, if the SNAPDD data set is SYSOUT and FREE=CLOSE is 
specified on the DD statement, the DCB is closed after the SNAPPGS 
threshold is reached in order to allow immediate printing. Then, a new 
SYSOUT area is allocated. Also code a space allocation (in cylinders); 
SPACE=(CYL,20) is recommended. Place the DD statement after the 
IIPMISTOP DD DUMMY statement, as it is not processed by the File 
Handler. 

If allocation of a new SNAPDD data set fails, an informational 
message is issued and the next snap will be attempted to the file with 
ddname NEWSNAP. If this fails, a message is issued to inform that 
future snaps will be lost. If the auxiliary data set (NEWSNAP) is 
desired, the following DD statement must be added to the execution JCL: 

8.6.1 

IINEWSNAP DD SYSOUT=A 

Implementation 

To implement this facility, the following steps must be performed: 

1. The module SPINOFF must be included in the Intercomm linkedit. 

2. The SNAPPGS parameter must be defined for the SPALIST macro, 
and then the member INTSPA must be reassembled and 
linkedited, and a linkedit of Intercomm must be executed. 

3. The Intercomm execu tion JCL must de fine a disk data set, 
DISP=(NEW,KEEP), for the SNAPDD DD statement except if SYSOUT 
under MVS. The space allocation must be large enough to hold 
a full region dump. If the allocation is too small, an x37 
system abend may occur. The SNAPDD data set is referenced by 
the system DCB labeled PMISNAP in the member PMIDCB. If not 
SYSOUT, DCB=DSORG=PS must be defined on the SNAPDD statement; 
other subparameters are already defined on the DCB macro in 
PMIDCB and may not be changed. For a disk data set, space 
allocation may be in cylinders or tracks (with primary and 
secondary extents), and a specific volser may be requested; 
also a data set name is required. Under MVS, FREE=CLOSE (and 
a SPACE allocation) must be specified if SYSOUT. 

8-11 



Chapter 8 Intercomm Facilities 

4. The disk pack to which the SNAPDD data set is assigned must 
have room for subsequent snap data sets to be allocated, once 
the SPINOFF facility is activated. When a SPINOFF data set 
is printed or no longer needed, it should be deleted 
(DISP=(OLD,DELETE)) so as not to waste system resources. 

5. Add the NEWSNAP DD statement described above to the Intercomm 
execution JCL, if desired. 

Sample JCL for printing SPINOFF snaps is illustrated in Figure 
8-3. This example illustrates the concatenation of two renamed snap 
data sets produced by SPINOFF. 

Iistepname 
IISYSUT1 
II 
II 
II 
IISYSPRINT 
IISYSUT2 
IISYSIN 

EXEC 
DD 

DD 

DD 
DD 
DD 

PGM=IEBGENER,COND=EVEN 
UNIT=3330,VOL=SER=WORK14,DISP=(OLD,DELETE), 
DSN=INTERCOM.SLOWSNAP.D83101.T122605 
UNIT=3330,VOL=SER=WORK14,DISP=(OLD,DELETE), 
DSN=INTERCOM.SLOWSNAP.D83101.T123819 
SYSOUT=A 
SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=882) 
DUMMY 

Figure 8-3. Sample JCL for Spinoff Snaps 

8.6.2 User SPINOFF Snap Exit--SPINEXIT 

SPINOFF conditionally calls a user exit routine which may be coded 
to determine whether to dispose of the snap data set automatically by 
generating an internal job to print the data set. This exit may be used 
to eliminate the need for an external action to print a data set created 
by SPINOFF. The entry point of the exit routine must be SPINEXIT. 

When control is passed to SPINEXIT, register points to a 
parameter list describing the snap data set just created by the SPINOFF 
routine, as follows: 

1. UCB address 

2. Address of the SNAP data set name, a thirty-two-byte 
character string for slow snaps, 38 bytes for fast snaps. 

3. Address of the volume serial number, a six-byte character 
string. 

The exit routine must be ser-ially reusable and may not relinquish 
control to the Dispatcher, either directly or indirectly. Standard 
linkage conventions apply. The exit routine must be resident. 

8-12 

J 



Chapter 8 Intercomm Facilities 

8.7 FAST SNAP FACILITY 

An optional high-speed Fast Snap facility is available with 
Intercomm. This is used only to snap the entire Intercomm region. If 
the issuer of the PMISNAP requests an indicative dump, and indicative 
dump processing is activated, Fast Snap processing is bypassed. 
Dramatic improvements in elapsed time (up to 90 percent) have been 
realized through the use of this facility. The actual improvement 
depends on the operating system in use and the region size. Intercomm 
snaps 126, 118 and 114 are issued requesting a Fast Snap. If the 
facilit y is not implemented, a normal snap will be taken. Users may 
request Fast Snaps with a PMISNAP macro. (See Basic System Macros for 
coding details.) Also code the normal snap parameters, so that a snap 
will be taken even if any errors occur on the Fast Snap data set. 

8.7.1 Restrictions 

The implementation of the Fast Snap facility relies upon an 
operating system capability which is normally for internal use only and 
is officially supported by IBM only for MVS. This facility may not 
function properly in some previous (non-MVS) releases of the operating 
system. 

8.7.2 Prerequisites 

In order to implement the Fast Snap facility, the following 
Intercomm components are required: 

• Fast Snap SVC defined in SETGLOBE: &FASTSVC SETA svc-number 

• Load IGCFAST to SYS1.SVCLIB under SVC number coded above; 
define as type 2, 3 or 4 (type 3 recommended), not as type 1. 

• Reassemble PMISNAP1 and STARTUP3 

• Install SPINOFF Snap facility 

At execution time, a DD statement is required defining disk space 
to contain the Fast Snap output. The format of the DD statement is: 

IIFASTSNAP DD UNIT:disk,SPACE:(CYL,nn,RLSE,CONTIG) 

SPACE must 
Intercomm Region, 
system nucleus. 

be contiguous 
Link Pack Area 

and large enough to contain the 
(if applicable) and the operating 

8-13 



Chapter 8 Intercomm Facilities 

Operation 

Each Fast Snap taken will allocate and name a new data set on the 
volume allocated by the system for the FASTS NAP DD statement. A 
message will be issued providing the data set name and volume serial 
number. If, for any reason, the Fast Snap operation fails, a message 
is issued containing a code identifying the reason for the failure. 
These codes are described in Messages and Codes under the MP011I 
message. 

After a nonzero code, corrective action within SPINOFF may result 
in the message MP014I or MP013I being issued and then the current snap 
is processed normally by the Spinoff facility. Allocation will be 
attempted again on the next Fast Snap. A count of consecutive 
allocation failures is maintained. When it exceeds three, 
informational messages are suppressed; however, any successful 
allocation resets the count. 

8.7.4 Printing the Fast Snap--IMDPRDMP 

The IBM service aid, IMDPRDMP, may be used to print the data 
set. The IMDPRDMP service aid may be named differently among operating 
system versions or releases. JCL required to print the data set is 
illustrated below. 

II 
IISYSPRINT 
IIPRINTER 
IISYSUT1 
IITAPE 
II 
IISYSIN 

EXEC 
DD 
DD 
DD 
DD 

DD 
LPAMAP 
QCBTRACE 

PGM=IMDPRDMP,PARM='2' 
SYSOUT=A message data set 
SYSOUT=A primary output 
UNIT=SYSDA,SPACE=(2052,(n,10)"CONTIG) (see NOTE) 
DISP=(OLD,DELETE,KEEP),UNIT=disk,VOL=SER=vvvvvv, 
DSN=INTERCOM.FASTSNAP.Dyyddd.Thhmmss.IDnnn 
* IMDPRDMP CONTROL CARDS 

PRINT NUCLEUS,JOBNAME=INTERCOMM-jobname 
END 

1* 

where n is the number of blocks calculated as: (core size/2048) + 1, 
and DSN and VOL are those described by message MP010I at executio 
time when the Fast Snap data set was created. 

NOTE: Consult Service Aids manual relevant to your operating syste 
for appropriate SYSUT1 block sizes and other requirements. 

8-14 

J 



Chapter 8 Intercomm Facilities 

8.8 SYSTEM ACCOUNTING AND MEASUREMENT (SAM) FACILITY 

The optional Intercomm System Accounting and Measurement 
facility is used to accumulate resource usage information for 
message processed by subsystems operating under Intercomm. 
captured resource usage information can be used, for example: 

(SAM) 
each 

The 

• For report generation purposes to allocate charges for use of 
a resource 

• To fine tune the Intercomm System 

The information from SAM is written to INTERLOG in conjunction with the 
logging of the X'FA' completion record at the time subsystem processing 
completes for each message. An off-line utility program is provided to 
extract the data from the sorted log and print it. If LOG=NO is coded 
on a SYCTTBL macro, SAM information will be unavailable for that 
subsystem. If message restart is not applicable for the subsystem, 
RESTART=NO should be coded on the associated SYCTTBL macro. 

8.8.1 Specifying System Resource Usage Categories 

The SAM facility is capable of capturing information on up to 
fifty-three system categories, as specified via the MAPACCT macro. The 
MAPACCT macro is used to specify the following: 

• The name (keywords) of the system resource usage categories 
to be co Hected 

o The grouping of certain categories for reporting purposes 

• The title to be used in the report to describe each group 

The MAPACCT macro is coded as follows: 

MAPA CCT (' b 1 ' ,I", I" .•• ) , ( 'b2' ,I", r ••• ) , ••• ( , bn ' ,I", r, ••• ) 

Only one MAPACCT macro is coded; all statistics categories to be 
accumulated systemwide for each processing thread must be specified on 
that macro. Each group of parameters wi thin parentheses defines a 
single accounting group or "bucket." The value coded for "bn" must be 
a character string of one to ten characters and represent the title to 
be used for that bucket in the final report. Each "I"" parameter must 
be a SAM keyword representing a category of resource usage to be 
included in that bucket. Any number of buckets may be specified, but 
no resource usage category may appear in more than one bucket. The 
system resource usage categories and their keywords are listed in 
Figure 8-4. It should be noted that no count of WAIT time is kept. 

8-15 



Chapter 8 Intercomm Facilities 

===============-========================================================= 
Keyword Resource--Usage Type 

=============== ========================================================= 
CPUTIME Total thread CPU time in units of 1/1000 second 

--------------- ---------------------------------------------------------
HIGHSTOR Thread high water mark of core usage. If specified, the 

STORAGES keyword must also be specified. 

STORAGES Total number of storage requests 

MESSAGES Total number of messages generated by the thread 

PFAULTS Total number of page faults (VS only) 

OLOADS Total overlay loads through use of CALLOVLY 

Total module loads via the PMIDLOAD module 

Total ENQS through use of the INTENQ macro (routine) 

OPENS Total of File OPENs 

CLOSES Total of File CLOSEs 

SETLS Total QISAM SETLs 

QISAMG Total QISAM GETs 

QISAMP Total QISAM PUTs 

BISAMR Total BISAM READs 

BISAMW Total BISAM WRITE Updates 

BISAMWKN Total BISAM WRITE Adds 

BDAMR Total BDAM READs 

BDAMW Total BDAM WRITEs 

BSAMR Total BSAM READs 

BSAMW Total BSAM WRITEs 

QSAMG Total QSAM GETs 

QSAMP Total QSAM PUTs 

VSAMG Total VSAM GETs 

Figure 8-4. Resource Usage Categories (Page 1 of 3) 

8-16 



Chapter 8 Intercomm Facilities 

------------- ---------------------------------------------------------------------- ----------------------------------------------------------
Keyword Resource--Usage Type 

------------ ---------------------------------------------------------------------- ----------------------------------------------------------
VSAMP Total VSAM PUTs 

VSAMPT Total VSAM POINTs 

VSAME Total VSAM ERASEs 

SELECTS Total File SELECTs 

Total File RELEASEs 

ALLOCS Total calls to ALLOCATE 

ACCESSES Total calls to ACCESS 

FETCORE Total FETCHs from core 

FETDISK Total FETCHs from disk 

ST OR CORE Total STOREs to core 

STORDISK Total STOREs to disk 

STORUPD Total STORE UPDATES with length change 

UNSTCORE 

UNSTDISK 

Total UNSTOREs of transient strings (core and disk) 

Total UNSTOREs from disk (semipermanent and permanent 
strings) 

MAP INS Total calls to MAPIN 

MAPOTS Total calls to MAP OUT 

MAPENS Total calls to MAPEND 

MAPPRS Total calls to MAPURGE 

MAPCLS Total calls to MAPCLR 

MAPFRS Total calls to MAPFREE 

MPPAGES Total pages created via MMU 

QBLDS Total number of DDQ QBUILDs 

QOPNS Total number of DDQ QOPENs 

QRDS Total number of DDQ QREADs 

Figure 8-4. Resource Usage Categories (Page 2 of 3) 

8-17 



Chapter 8 Intercomm Facilities 

------------------------ ===========================================================-
Keyword Resource--Usage Type 

------------ ----------------------------------------------------------------------- -----------------------------------------------------------
QRDXS Total number of DDQ QREADXs (for update) 

QWRS Total number of DDQ QWRITEs 

QWRXS Total number of DDQ QWRITEXs (for update) 

QCLSS Total number of DDQ QCLOSEs 

FESCLS Total calls to FE SEND 

FEOTPUT Total calls to PMIOTPUT (entry in FESEND) 

Figure 8-4. Resource Usage Categories (Page 3 of 3) 

Any resource usage types not referred to by keywords in the 
MAPA OCT macro are not considered for statistics. All specified 
categories are collected for all active subsystems. 

Resource usage accumulations can be dynamically stopped or started 
wh iie Intercomm is processing, via the STOP and STRT system control 
commands. 

8.8.2 Specifying User Accumulators 

In addition to the fifty-three system-defined resource usage 
accumulators represented by the keywords in Figure 8-4, up to ten user 
accumulators can be specified. The MAPACCT macro is also used to 
specify the user accumulators; coding conventions for system resource 
usage categories also apply to user-specified accumulators. The user 
accumulator keywords must have the following format: 

USRBKnn 

where nn is coded in the range of 01 to 10, inclusive. 

The USRTRACK macro with the BUCKTNO parameter is issued by the 
user, when appropriate, to increment by one a user accumulator defined 
via the MAPACCT macro. (See Basic System Macros.) 

8.8.3 SAM User Exit Routines--USRSAMnn 

Optionally, up to ten user-coded exit routines are permitted with 
the SAM facility for use with USRBKnn accumulators. A SAM user exit 
routine is specified to the SAM facility as a keyword on the MAPACCT 
macro, as follows: 

USRFNnn 

8-18 



Chapter 8 Intercomm Facilities 

where nn is coded in the range of 01 to 10, inclusive, which 
corres ponds to a user accumulator USRBKnn. The user exit is invoked 
via the FUNCNO parameter of the user-coded USRTRACK macro. (See Basic 
System Macros.) 

The user-written exit routines are coded with a Csect name as 
follows: 

USRSAMnn 

where nn corresponds to the value specified in the USRFNnn keyword. 

The following are conventions for user-written exit routines: 

• Can be resident modules or reside in the uncontrolled overlay 
region 

• Must follow standard linkage conventions 

• Are passed the address in register of the bucket 
(accumulator) with which the corresponding USRFNnn has been 
associated (USRBKnn) 

• May not give up control to the Dispatcher, whether directly 
or indirectly. 

8.8.4 Implementation 

The MAPACCT macro is coded in a member named SAMTABLE with a 
Csect name of SAMTABLE. This member, along with the processing modules 
SAMSECT and TRACKMOD must be inc luded in the Intercomm linked it • The 
INCLUDE cards for these SAM modules are automatically produced if 
SAM=YES is specified on the ICOMLINK macro. A typical SAMTABLE is 
illustrated below: 

II EXEC 
.1 ADD 
SAMTABLE CSECT 

LIBELINK,Q=LIB,NAME=SAMTABLE,LMOD=SAMTABLE 
NAME=SAMTABLE,LIST=ALL 

MAPACCT ('BDAM READS',BDAMR), 
('CPUTIME',CPUTlME), 

END 
1* 

('ALL WRITES',BlSAMW,BlSAMWKN,BDAMW,BSAMW), 
( 'HIGH CORE', HIGHSTOR) , 
('STORAGES' ,STORAGES), 
('MY BUCKET',USRBK01), 
('MY ROUTINE',USRFN01) 

8-19 

x 
X 
X 
X 
X 
X 



Chapter 8 Intercomm Facilities 

The USRTRACK macro may be coded in a user-written Assembler 
Language subroutine called by a high-level language subsubsystem 
(COBOL, PL/1) or issued directly in an Assembler Language subsystem. 
When the BUCKTNO=nn parameter is specified, the corresponding bucket 
(in the SAMTABLE) to which the keyword USRBKnn was assigned (via the 
MAPACCT macro) is incremented by one by Intercomm. However, if the 
FUNCNO=nn parameter is used, the--Corresponding USRSAMnn user exit 
subroutine is invoked, with the address of the corresponding bucket (in 
the SAMTABLE) to which the keyword USRFNnn was assigned (via the 
MAPACCT macro). The user exit may examine the contents of the bucket 
(a fullword) and increment or decrement it by any desired value. Also, 
the user exit could indicate, via a return code to the user's calling 
routine, the results of examination/manipulation of the bucket. Thus, 
the next processing step to be taken wi thin the user routine issuing 
the USRTRACK macro can depend on that return code, if desired. For 
example, processing action may be different, depending on whether the 
bucket is or becomes zero or not. 

8.8.5 Reports from System Accounting and Measurement 

Two main types of reports may be produced from the data captured 
on the log. The major control can be on the subsystem codes or the 
terminal-IDs. Totals for accumulated data will be printed either by 
subsystem or by terminal. For each of these two main report types the 
user may also request that detail information be printed as well as 
totals. If detail information is requested, the resource usage 
information will be printed for every individual message in addition to 
the totals. 

Before executing the report program, INTERLOG must be sorted to 
produce the input to the report program; DCB= (RECFM= VB, BLKSIZE=nnnnn, 
LRECL=nnnnn-4,DSORG=PS) must be specified. The SORTOUT data set should 
be defined as a variable-length blocked file (maximum LRECL is 42 plus 
the number of accounting buckets (times 4) rounded up to the next 
doubleword). A sort E15-exit must be used to delete extraneous records 
from the sort. This exit routine is named SAME 15 and is supplied on 
MODREL. The control cards for the sort to produce a sorted output file 
to be used for a report whose major control is on the subsystem codes, 
are as follows: 

SORT FIELDS=(29,1,BI,A,5,1,BI,A,24,5,CH,A,7,3,BI,A),SIZE=E9000 
MODS E15=(SAME15,500,MODREL,N) 

The following control statements will produce a sorted output 
file with a major c0ntrol on terminal-IDs: 

SORT FIELDS=(24,5,CH,A,29,1,BI,A,5,1,BI,A,7,3,BI,A),SIZE=E9000 
MODS E15=(SAME15,500,MODREL,N) 

In both of the above cases, a DD statement named MODREL must 
define the Intercomm MODREL library in the sort JCL. 

8-20 

J 



Chapter 8 Intercomm Facilities 

The report program must be linkedited as follows: 

INCLUDE SYSLIB(SAMREPT,SAMRPTIO,SAMTABLE) 
ENTR Y SAMREPT 

(The SAMTABLE member is the same member used in the Intercomm linkedit.) 

The report is produced using the following JCL: 

II 
IISfEPLIB 
IISYSUDUMP 
llSAMPRNT 
IISAMFlLE 

EXEC 
DD 
DD 
DD 
DD 

PGM=SAMREPT,PARM=pppp 
DISP=SHR,DSN=library-with-SAMREPT 
SYSOUT=A 
SYSOUT=A, DCB= (RECFM=FA,LRECL=133) 
(Output from the Sort) 

The PARM field controls the type of report to be produced. The 
PARM values are detailed in Figure 8-5. 

======== ==============-==========================================-===== 
Parm Value Type of Report Notes 

---------------- ---------------------------- ========================================== -----
PARM= 'SUBO' Totals by subsystem code 1,3 

'SUBO,DTL' As above with detail information 1,3 

'SUBT' Totals by terminal within subsystem code 

'SUBT,DTL' As above with detail information 

'TRMO' Totals by terminal 2,3 

'TRMO,DTL' As above with detail information 2,3 

'TRMS' Totals by subsystem within terminal 2 

'TRMS,DTL ' As above with detail information 2 
--------- ------------- ---------------------------------------- ------

1: File was sorted with major control on subsystem code. 

2: File was sorted with major control on terminal. 

3: The last character of SUBO or TRMO is the letter '0', not zero. 

Figure 8-5. SAM Report Execution PARM Values 

Sample output from a System Accounting and Measurement Report is 
illustrated in Figure 8-6, and illustrates statistics for multiple 
terminals accessing subsystem 'C7D7', via a PARM of 'SUBT,DTL'. 

8-21 



• 
O

T
l 

S
II

"'
>

Y
S

lf
M

 
0

0
0

"
 

T
E

R
M

U
IA

L
 

1
0

 
P

A
IJ

I.
1

 
I1

S
N

= 
O

O
f'l

O
O

1
'l7

 
T

I"
Ir

::
 

I 
P

.H
.H

II
7

 

rO
A

M
 

P
I'

A
!'

lS
 

C
P

U
T

'''
'I

' 
H

I 
G

il
 

C
fl

ll
r 

S
T
r
.
R
~
r
.
r
c
:
:
 

OA
r ~

S
'
d
;
F
:
 S

 
[N

O
U

E
U

rS
 

O
P

E
N

S
 

A
L

L
 

O
IS

A
H

 
0 

~
O
 

1 
f,

;>
" 

n 
0 

0 
A

I«
:A

IO
R

 
P

1
S

A
"W

 
f
\
O
A
"
~
1
 

0 
(I

 
" 

n 0
" 

I»
 

• 
O

ll
 

S
li

O
S

Y
S

H
H

 
o

n
o

"
 

T
[
R
~
I
N
A
l
 

1
0

 
rA

U
ll

 
~
;
S
N
:
:
 

O
O

O
O

O
?
H

 
T

l'
1

r:
: 

11
1:

'1
50

2 
'i
f,

 
'0

 
~
 

CD
 

nU
A

M
 

R
E

A
D

S 
C

P
U

T
IM

E
 

H
IG

II
 

C
nR

E
 

S
T

[)
R

A
('

[$
 

H
I'

c:
S

A
G

fS
 

EN
O

 U
E

U
E

S
 

O
P

P
.I

S
 

A
L

L
 

O
IS

A
M

 
'"S

 

0 
0 

1
~
1
2
 

(,
 

(I 
0 

0 
C

D
 

"Z
J 

fl
lS

A
M

R
 

H
I 

SA
 "1

0/
 

tW
A

"'
..,

 
..,. (J
q 

0 
0 

n 

~ CD
 

• 
IH

L
 

SU
I1

SY
ST

Fe
M

 
O

O
U

9 
T

E
R

H
IN

A
L

 
1

0
 

P
A

U
ll

 
I1

SN
= 

0
0

0
0

0
5

2
1

 
T

IM
E

: 
1

1
'3

1
0

6
0

3
 

C
D

 
I 

flO
A

M
 

R
[A

n
S

 
C

P
U

T
lM

f"
 

H
IG

H
 

c
rR

r 
S

T
O

R
A

G
E

" 
"E

S
S

A
G

E
S

 
[N

O
U

rU
E

S
 

n
rr

 N
S 

A
L

L
 

O
IS

A
" 

0
\
 

0 
21

 
16

21
1 

1;
> 

r, 
0 

R
IS

A
I1

R
 

E
ll

 S
A

'1
" 

n
O

A
"'

" 
0 

0 
0 

~
 

• 
O

T
l 

S
U

A
S

Y
S

 '
-:

H
 

0
(1

0
9

 
T

[R
H

IN
_

l 
1

0
 

P
A

U
ll

 
M

SN
= 

0
0

0
0

0
7

1
" 

T
lM

E
=

 
1

1
'3

"1
5

4
(,

 
to

 
~
 

CD
 

B
O

A
H

 
R

rA
O

S
 

C
P

U
ll

 M
E 

H
IG

lt
 

C
O

R
E

 
S

T
O

R
A

G
[S

 
M

E
S

S
A

G
E

S
 

fN
O

U
[U

E
S

 
o

p
rN

S
 

A
ll

 
o

IS
A

'"
 

8 
0 

1
1

7
 

91
\0

;6
 

;>
51

 
5 

0 
0 

>
 

A
T

SA
"I

R
 

B
IS

A
M

" 
R

(l
A

"1
J 

Q
 

Q
 

0 
0 

0 
0 s::

 
• 

O
T

l 
S

U
R

S
Y

S
 n

:M
 

0
0

0
 q

 
T

E
R

M
IN

A
L

 
1

0
 

P
A

li
lI

 
M

S
N

=
 

00
(1

00
11

;>
(,

 
T

lM
r=

 
If

I!
41

J3
01

14
 

::s ~
 

C
D

 
..,. 

A
D

A
M

 
R

rA
O

S
 

C
P

U
T

 I
M

E 
H

IG
H

 
C

O
fI

E
 

S
T

O
R

A
G

E
S

 
M

E
S

S
A

G
E

S
 

E
N

Q
U

[U
E

S
 

O
P

E
N

S
 

A
ll

 
O

IS
A

'"
 

I 
::s 

N
 

(J
q 

0 
11

41
 

;>
5q

;>
 

;>
34

 
1 

" 
1 

0 

N
 

~ 
B

IS
A

H
R

 
B

IS
A

H
" 

B
O

A
t'

" 

0
. 

0 
0 

0 

:x
 

••
 

T
O

T
A

L
S

 
CD

 
S

U
B

S
Y

S
T

E
M

 
0

0
0

9
 

T
E

R
I1

JN
A

L
 

1
0

 
P

A
U

ll
 

I»
 

to
 

PO
A

M
 

H
A

O
S

 
C

rU
T

lM
[ 

H
IG

H
 

c
n

p
r 

S
T

n
R

 A
G

[S
 

1
1

(!
;S

A
G

fS
 

E
N

Q
U

fU
[S

 
O

"F
eN

S 
A

lL
 

Q
IS

A
M

 
s:: 

0 
3

4
2

 
1

7
2

0
8

 
0

;7
5

 
q 

f1 
4 

0 
'"S

 
CD

 
A

IS
A

I1
R

 
B

IS
A

-"
 

B
 n

 ,a
r.' 

IJ 
9 

0 
0 

0 
1-

1 
CD

 
::s 

::s 
~
 

~
 

CD
 

'"S
 

::t
I 

Q
 

CD
 

0 
'0

 
~ 

0 
••

••
 

T
O

T
A

L
S

 
!C

;U
B

SY
ST

E
H

 
"
~
n
9
 

'"S
 
~
 

o
rr

 N
S 

A
L

L
 

O
IS

A
M

 
"Z

J 
R

O
A

H
 

R
" 
/
I
~
S
 

C
P

U
T

IM
r 

H
IG

H
 

C
oR

E
 

S
T

O
R

A
G

E
S

 
M

fS
S

A
G

E
S

 
E

N
O

U
E

U
fS

 
I»

 

~
 

0 
3

4
2

 
17

21
lP

. 
5

7
'>

 
n 

0 
.. 

0 
Q

 .... 
8 

(l 
J 

S 
AM

R 
B

IS
A

"I
" 

B
O

A
I.I

IJ
 

f-
' 

'0
 

n 
0 

" 
..,. 

f-
' 

~
 

CD
 

" ...
. 

A
V

fR
A

G
rS

 
S

U
B

S
 Y

 ST
f.:

M
 

"O
O

'! 
.... 

M
rS

S
A

G
[ 

C
nU

N
T

::
 

n
o
o
o
~
 

CD
 

to
 

(lO
A

M
 

R
rA

O
S

 
C

P
U

lI
 H

E 
H

IG
H

 
C

O
R

E
 

ST
 O

R
A

G
[S

 
M

B
S

_
r.

E
S

 
rN

Q
 U

[U
l 

S 
O

P
fN

<
; 

0 
(,

9
 

3
"
"
2

 
1

1
5

 
A

ll
 

Q
IS

A
I1

 
;> 

0 
n 

PI
<;

A
M

R
 

ft·
1 

S
A

""
 

R
O

A
M

\I 
n 

n 
0 

~,
 

lv,
 

l,
 



Chapter 8 Intercomm Facilities 

8.9 SYSTEM TUNING STATISTICS 

The System Tuning Statistics facility, using minimal overhead, is 
optionally available to users of Intercomm. The statistics are 
accumulated and written to a statistics data set at time intervals 
specified by the SPALIST macro, STSTIME parameter. The information 
obtained can be used to tune and optimize the Intercomm system. (System 
Tuning is also described in Chapter 11.) 

8.9.1 Reports from System Tuning Statistics 

System Tuning Statistics are accumulated in a report issued at 
user-specified interva Is, and at closedown (also at abend - if STAEEXIT 
in Intercomm linkedit). The report includes statistics on: 

o Message processing and overflow disk queuing 

• INTERLOG log records processing 

• Dynamic/Overlay subsystem/subroutine loading 

• Store/Fetch activity 

Figure 8-7 illustrates a sample report produced by System Tuning 
Statistics routines. Each printed report displays cumulative totals. 
Hence, reports produced over a given time span can be used independently, 
or with the SAM Facility or Log Analysis on a comparative basis to 
determine bottlenecks, activity cycles and tuning possibilities (see 
Chapter 11). 

8.9.2 Implementation 

Implementation of the System Tuning Statistics facility requires 
the following: 

1. The member INTSTS must be included in the linked it of Intercomm 
(automatic if ICOMLINK used to generate Intercomm linkedit). 
INTSTS consists of two Csects--INTSTS and INTSTSPR. INTSTS 
must be resident, while INTSTSPR may be placed in a transient 
over lay area. 

2. The STSTIME parameter in the SPALIST macro must be set to the 
time interval (in seconds) for which the System Tuning 
Statistics are to be printed. If this is not set, the default 
value of 120 seconds is used. 

8-23 



Chapter 8 

NUMBER OF BACK END MESSAGES PROCESSED = 1,417 
NUMBER OF FRONT END MESSAGES PROCESSED = 639 

Intercomm Facilities 

NUMBER OF BACK END BLOCKS WRITTEN TO DISK-QUEUES = 15 
NUMBER OF FRONT END BLOCKS WRITTEN TO DISK-QUEUES = 475 
NUMBER OF MESSAGES PASSED TO SATELLITE-REGIONS = 0 
TOTAL NUMBER OF PHYSICAL RECORDS WRITTEN TO INTERLOG = 1,578 
TOTAL NUMBER OF SYNCHRONOUS LOGICAL-RECORDS WRITTEN TO INTERLOG = 287 
TOTAL NUMBER OF ASYNCHRONOUS LOGICAL-RECORDS WRITTEN TO INTER LOG = 5,676 
TOTAL NUMBER OF LOGICAL-RECORDS (BOTH TYPES) WRITTEN = 5,963 
TOTAL NUMBER OF BYTES WRITTEN TO INTERLOG = 533,764 
AVERAGE NUMBER OF BYTES PER PHYSICAL RECORD = 338 
NUMBER OF BUFFER-WAIT CONDITIONS = 3 
PERCENTAGE OF BUFFER-WAITS TO BUFFERS WRITTEN = 0 
NUMBER OF OVERLAY-SUBSYSTEM SEGLDS = 150 
NUMBER OF NON-SUBSYSTEM SEGLDS = 291 
NUMBER OF SUBSYSTEM DYNAMIC-LOADS = 20 
NUMBER OF SUBROUTINE DYNAMIC LOADS = 1 
NUMBER OF STORE/FETCH RECORDS THAT SPANNED BLOCKS = 22 
NUMBER OF STORE/FETCH FLUSHES = 35 
MAXIMUM AMOUNT OF STORAGE USED FOR IN-CORE STRINGS = 4,808 
AVERAGE STORE/FETCH STRINGS SIZE = 237 
AVERAGE NUMBER OF DISK BLOCKS SEARCHED(S/F) = 3 

Figure 8-7. Sample Report from System Tuning Statistics 

3. The data set for the statistics reports must be a sequential 
output data set. SYSOUT may be used for this purpose. A DD 
statement must be included for the data set with the 
following specifications: 

• STSLOG must be the ddname. 

• DCB information on the DD statement should be as follows: 

DCB=(DSaRG=PS,LRECL=120,BLKSIZE=multiple-of-120,RECFM=FBA) 

8.10 LOG INPUT FACILITY 

The Log Input Facility (LOGINPUT) allows an Intercomm system log 
(INTERLOG) created in a previous execution of Intercomm to be used as 
input to a subsequent execution. LOGINPUT reads the sequential data 
set (ddname LOGINPUT), extracting all messages queued by the Front End 
for a subsystem: 01 log records (and C1 log records if Multiregion 
control region). (Messages queued for the closedown and checkpoint 
subsystems are ignored.) Input messages are then queued for the 
appropriate user subsystem as if they had come in from the Front End 
during this execution of Intercomm. The time interval between 
executions of LOGINPUT to search for the next message to input to the 
system is specified by the &LOGINTM or &LGINRTD globals in SETGLOBE. 

8-24 

J 



Chapter 8 Intercomm Facilities 

Normally, any terminal output generated by LOGINPUT is sent in 
the usual manner. However, the terminal output may be optionally 
discarded by appropriate SPALIST and SETGLOBE specifications. 

The proper function of this facility necessitates that all 
application subsystems place the sending subsystem code in all messages 
queued for another subsystem. Otherwise, messages may be found on the 
LOG INPUT dataset (and reprocessed) that were not messages originally 
input to the Front End (characterized by sending subsystem code of 
binary, zeros). 

In the case of errors of a noncritical nature, namely inability 
to queue a message due to invalid subsystem code, no room on queue, 
etc., the message will be bypassed. For errors of a critical nature, 
such as a no storage condition, 1/0 errors on LOGINPUT, etc., a message 
will be issued and the Log Input Facility terminated. 

When the LOGINPUT data set is completely processed, the facility 
issues a message and terminates itself. 

The Log Input facility is implemented in the following manner: 

1. Update SETGLOBE to use one of the two globals &LGINRTD and 
&LOGINI'M in order to control the time interval between input 
messages from the LOGIN PUT data set. &LGINRTD specifies a 
real time divisor, that is, the actual time interval between 
input messages (calculated from the log) is divided by 
&LGINRTD to compute the interval between LOGINPUT's generated 
messages. If this method is desired, specify: 

&LGINRTD SETA n 

If &LGINRTD is set to zero (0), then &LOGINTM is used. This 
specifies a constant time interval in tenths of a second. To 
request this method of interval calculation, code: 

&LOGINI'M SETA n 

2. To discard the terminal output, specify on the SPALIST macro: 

3. 

LOGINDO=YES. 

This indicates that the message output should be discarded 
(not queued for the Front End). In this case, the output 
message will be logged with a log code of X'40', as though it 
were Test Mode output. LOGINPUT substitutes the dummy 
terminal-ID coded for the SET GLOBE global &GENTERM for the 
actual terminal name in the requeued input. 

Reassemble and linked it 
revised SETGLOBE is in 
concatenation stream. 

INTSPA and LOGINPUT: ensure the 
the first library in the STEPLIB 

4. Include LOGIN PUT as resident in the Intercomm linkedit. 

8-25 



Chapter 8 Intercomm Facilities 

5. Define Back End Station and Device Table entries for the 
dummy terminal name defined by &GENTERM in SETGLOBE (default 
is $$$$$); device type should be that of the majority of the 
input terminals. 

6. Execution JCL must contain a DD statement for LOGINPUT, as 
follows: 

IILOGINPUT DD DSN=INTERLOG-name, 
II DCB=(DSORG=PS,RECFM=VB,BLKSIZE=mmmm,LRECL=blksize-4), 
II additional operands as required 

7. Execution may be in Test Mode, startup or restart. To 
execute in Test Mode, at least one input message must be 
coded for the SYSIN data set (see Figure 8-9). 

8.11 TEST MODE OPERATION 

Intercomm allows the complete testing of application programs 
without using terminals at all. The input messages are read in at 
startup time from a sequential data set with a ddname of SYSIN. All 
messages are snapped onto a sequential output data set with a ddname of 
SYSSNAP after they have been read from SYSIN. 

All output from Intercomm is similarly snapped onto a sequential 
output data set with ddname of SYSSNAP2, rather than being passed to 
the Front End. The snaps issued have a snap-ID to identify them as 
follows: 

~ 15--Snap of a complete input message 

o 20--Snap of a complete output message 

The Test Monitor (PMITEST) effectively replaces the Intercomm 
Front End. The Test Mode input card MSG contains all the message 
header fields normally supplied by Front End Table information. In 
particular, the Receiving Subsystem Codes (MSGHRSCH,MSGHRSC), Terminal 
Identification (MSGHTID), and VerblMessage Identifier (MSGHVMI) are 
critical for proper message routing. 

All input messages are read as BO-byte logical records. Each 
message is preceded by a header record defining the start of the 
message and is terminated by a trailer record defining the end of the 
message. Detail lines of the input message are read in as separate 80-
byte records between the header ar.d trailer records for the message. 
The format of the various input records is illustrated in Figure 8-8. 

8-26 

J 

J 



Chapter 8 

------------------
Card 

------------------
HEADER 

Intercomm Facilities 

------------------------------------------------------------------------------------------------------
Contents 

------------------------------------------------------------------------------------------------------
1-3 MSG 

*6-8 Lo-order byte of SIS code (MSGHRSC) (or 8) 

*9-11 Hi-order byte of SIS code (MSGHRSCH) (or 11) 

20-24 Sending terminal-ID (MSGHTID) 

50-53 Front End Serial Number (MSGHBMN)--leading zeros 

*55-57 VMI value (MSGHVMI): leave blank if editing 
required by the Edit Utility; code 255 if using 
MMU or if no editing is desired (or 57) 

*three-digit integer values from 000 to 255 or a corresponding 
single alphanumeric character in the column indicated in 
parentheses (8,11,57). 

DETAIL(s 1-64 Data for one line of input message. If VMI in 
header card is left blank, a New Line 
character is inserted at the end of text on 
every card, except the last one. If the last 
nonblank character is a $ sign (X'5B'), it 
will be replaced by a NL; the preceding 
character (usually a blank) is kept as part of 
the input. All NLs are suppressed if editing 
is not required. If editing is required, the 
system separator character used between 
positional fields must be the same as that 
coded for the SPALIST macro, SEP parameter. 

TRAILER 1-3 Generates End-of-Transmission character fol
lowing the last non blank character of the 
previous detail card. 

Figure 8-8. 

Contents of Card 

EMS 

EOT 

ETX 

ETB 

Ending Character 

EOT (X' 37') 

EOT (X'37') 

ETX (X'03') 

ETB (X' 26') 

Test Mode Input Card Formats 

8-27 



Chapter 8 

NOTE: 

where: 

Intercomm Facilities 

The user may define new ending characters by inserting DC 
instructions in PMITEST, as follows: 

.1 NUMBER INSERT=YES,SEQ1=67050,NEW1=67051,INCR=1 
DC CL4'eee',X'nn' 

eee is the three-character trailer card value and nn is 
the hexadecimal code equivalent of the named ending 
character. Note that a blank will be generated between 
the eee and nn values at assembly time. 

The maximum total message size and the maximum number of text 
columns per detail card are determined by the global variables &MAXMSG 
and &MAXCRD, which default to 1000 and 64, respectively. The user may 
change these values (for example, &MAXMSG SETA 2000 would increase the 
maximum message size to 2000) by insertion of the appropriate SETA 
instructions in the PMITEST module at sequence numbers 00002030 and 
00002040. 

The system log INTERLOG is maintained during Test Mode execution, 
as in 1i ve mode, and provides further information for analyzing the 
results of Test Mode operation. Output messages passed to FESEND (by 
the subsystem, the Output Utility, or MMU) are logged with a log code 
of X'40' so they may be examined for valid data. 

After all Test Mode messages have completed processing, the 
method of step termination depends on the value of the TSTEND operand 
of the SPALIST macro. The default is TSTEND=NRCDj proceed with normal 
system closedown with no dump. Other options available are: 
TSTEND=NODUMP, which causes abend 999 without a dump; and TSTEND=DUMP, 
which causes an abend 999 with a dump. The Test Mode closedown logic 
is in PMITEST. It remains the responsibility of the user to determine 
whether or not the messages· were processed successfully by examining 
SYSSNAP2 and INTERLOG records. 

One or more Test Mode jobs may execute concurrently (with or 
without concurrent execution of a 1i ve system), as long as there is no 
conflict with respect to OS allocation and disposition of data sets, or 
the dynamic load library. Figure 8-9 illustrates typical Test Mode 
JCL, including a step to print the system log via the Intercomm 
LOGPRINT utility (see Chapter 12). User data set DD statements must be 
inserted before the IIPMISTOP DD statement. 

The Intercomm linked it for Test Mode may be generated via the 
ICOMLINK macro (see Basic System Macros); code TEST=YES and all other 
parameters applicable to the on-line s~rstem (except Front End, security 
and Multiregion parameters). The Link Pack Facility may be used with a 
Test Mode system. 

8-28 

J 



Chapter 8 Intercomm Facilities 

IIEXECTEST EXEC PGM=INTCOMM,PARM='TEST',REGION=500K 
IISTEPLIB DD DSN=INT.MODUSR,DISP=SHR 
II DD DSN=INT.MODLIB,DISP=SHR 
II DD DSN=INT.MODREL,DISP=SHR 
IISMLOG DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=120,RECFM=FA) 
IISTSLOG DD SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=120,RECFM=FA) 
IISYSPRINT DD SYSOUT=A, 
II DCB=(DSORG=PS,RECFM=VA,BLKSIZE=141,LRECL=137) 
IIINTERLOG DD DSN=&&INTLOG,VOL=REF=INT.SYMREL, 
II DISP=(,PASS),SPACE=(TRK,(2,2)), 
II DCB=(DSORG=PS,RECFM=VB,BLKSIZE=3200,LRECL=3196, 
II NCP=2,OPTCD=C) 
IIPMIQUE DD DSN=INT.PMIQUE, DISP=OLD, DCB=(DSORG=DA,OPTCD=RF) 
IIRCTOOO DD DSN=INT.RCTOOO,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF) 
IIINTSTORO DD DSN=INT.INTSTORO,DISP=OLD, 
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3) 
IIINTSTOR2 DD DSN=INT.INTSTOR2,DISP=OLD, 
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3) 
IIINTSTOR3 DD DSN=INT.INTSTOR3,DISP=OLD, 
II DCB=(DSORG=DA,OPTCD=EF,LIMCT=3) 
IISYSIN DD * 
MSG WOOO CNT01 0001 255 
SNBK, 
EMS 

SEND THIS MESSAGE BACK TO SENDER 

MSG BOOO 
SWCH,(NYC01) 
EMS 

CRT01 0002 255 
SEND THIS MESSAGE TO ONE OTHER TERMINAL 

MSG BOOO NYC01 
SWCH,(CRT01,CNT01,NYC01) 
EMS 

0003 255 
SEND MESSAGE THREE TO THREE TERMINALS 

IIPMISTOP DD 
IISNAPDD DD 
IISYSSNAP DD 
IISYSSNAP2 DD 
IIDYNLLIB DD 
lroY~WORK DD 
IID~PRNT DD 
11* 
IIPRINTLOG EXEC 
IISTEPLIB DD 
IIINTERLOG DD 
11* 

DUMMY DELIMITS FILE HANDLER ACCESS 
SYSOUT=A STANDARD SNAPS 
SYSOUT=A TEST MODE ONLY INPUT ID=015 
SYSOUT=A TEST MODE ONLY OUTPUT ID=020 
DSN=INT.MODUSR,DISP=SHR 
UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,1» 
SYSOUT=A 

PGM=LOGPRINT,COND=EVEN 
DSN=INT.MODREL,DISP=SHR 
DSN=&&INTLOG,DISP=OLD,DCB=BLKSIZE=3200 

II· 
11* 
11* 

NOTE THAT INTERLOG BLOCK SIZE MAY BE ANY VALUE THAT 
EQUALS OR EXCEEDS THE MAXIMUM DATA SET BLOCK SIZE. 

IISYSPRINT DD 
II 

SYSOUT=A,DCB=(DSORG=PS,BLKSIZE=121) 

Figure 8-9. Sample Test Mode JCL 

8-29 





Chapter 9 

LOGGING, SYSTEM RESTART, MESSAGE RECOVERY 

9.1 INTRODUCTION 

Intercomm provides message restart as a standard option; file 
recovery is a special feature (see the file Recovery Users Guide). 
This chapter describes only message restart without file or data base 
recovery considerations. It documents the following subjects: 

0 System failure and recovery 

• Message restart concepts 

(I System logging 

• System checkpoints 

• Restart/recovery 

• Implementation 

• Serial restart 

9.2 SYSTEM FAILURE AND RECOVERY 

Intercomm is designed to anticipate, detect and recover from most 
error situations without bringing down the entire teleprocessing system. 
In most instances following failures, Intercomm can continue to run in 
a degraded mode without the failing components. Alternati vely, 
Intercomm can come down gracefully after failure by completing all work 
that is in process at time of failure. Certain conditions, however, may 
occur that cause immediate termination of all processing in Intercomm; 
for example, power failures, machine failures, data base destruction or 
operating system failure. In these and other total failure cases, 
Intercomm automatically provides for the complete recovery of the 
teleprocessing environment. This recovery includes the restarting of 
all messages in progress at the time of failure, the recovery of message 
queues and the coordinated recovery of files and data bases, the last 
being a special feature. 

Recovery from failure situations is based upon the system log, a 
sequential data set (INTERLOG) providing a historical record of all 
message processing, and a checkpoint file, a BDAM data set providing a 
record of critical tables. 

9-1 



Chapter 9 Logging, System Restart, 
Message Recovery 

Message recovery in Intercomm is a rapid warm restart. No 
off-line program need be run following a failure; live Intercomm is 
merely restarted. IntercoUID first reads the INTERLOG file backwards 
from the point of failure as far back as necessary for recovery. With 
the necessary items recovered, live Intercomm starts up and all messages 
and queues are restarted and recovered as appropriate. 

In certain cases, previously completed subsystem messages must be 
restarted to effect necessary interaction with files or data bases to 
ensure data integrity. Duplicate output to terminals may be controlled 
by subsystem processing and/or table definitions. (For a description of 
INTERLOG entries, see Figure 9-1.) 

9.3 MESSAGE RESTART CONCEPTS 

9.3.1 Mandatory and Desirable Conditions 

Users can specify the extent of restart on a termina1-by-termina1 
and program-by-program basis. In addition to the restart "always" or 
"never" specifications, a third condition is a restart "desirable" 
condition. If restart is desirable for a particular program or 
terminal, then, in the course of restart for mandatory programs and 
terminals, restart will also be performed for desirable components. 
However, once restart has completed for all mandatory items, the restart 
is deemed complete, regardless of whether desirable components have been 
fully restarted. Thus, restart will proceed as far backwards through 
the log file as is necessary to retrieve all messages for mandatory 
restarted components. During this read back process, messages 
encountered for desirable restart components will be retrieved as 
appropriate. 

For those terminals or subsystems where restart is neither 
desirable nor mandatory, the logging itself becomes a user option, again 
on an individual program and terminal basis. This selective logging can 
reduce system overhead in logging that would otherwise be wasted on 
noncritical components such as inquiry programs. 

9.3.2 User Responsibility in Restart 

The mechanics of implementing message recovery are supported by 
IntercoIllD-supplied software. User application programs that are to be 
restarted are no different in format or content, than non-restarted 
programs. The restart facility is transparent to the application 
programmer. User responsibility in restart is limited to table entries 
(RESTART parameter on SYCTTBL and BTERM/LUNIT macros) that delineate 
those programs and terminals for which restart is to be performed. 
Other table entries specify those programs that may update data bases. 
These table entries are generally the extent of user responsibility in 
restart provisions. 

9-2 

J 



Chapter 9 

9.4 SYSTEM LOGGING 

Logging, System Restart, 
Message Recovery 

The logging facility of Intercomm maintains a sequential data set 
of all traffic within the system and provides control and documentation 
of system performance in several areas: 

• Message traffic is recorded at the time of entry on a 
subsystem queue and at the time message processing begins and 
ends within each subsystem. 

• Output message traffic is recorded by the Intercomm Front End 
as it arrives from the Back End, and as message transmission 
is completed. 

• Input message traffic is logged only if the supplied version 
of USRBTLOG is assembled and linked with the Intercomm load 
module (see BTAM Terminal Support Guide). 

Complete documentation of the progress of a message through the system 
is thus provided. 

The Intercomm log facility utilizes a single data set whose 
ddname is INTERLOG. On this log data set will be entries reflecting 
the status of messages queued for subsystems and terminals, and of 
before- and after-images of file data for selected files being 
updated. Also included on INTERLOG are user log entries, checkpoint 
time records, message accounting records and Multiregion interface 
queuing records. 

INTERLOG may be specified on its DD statement as residing on tape 
or disk. If the DD statement for INTERLOG is omitted, then no logging 
will be performed and no restart is possible. The computer operator is 
notified at startup time if INTERLOG is not specified by a DD statement 
or the fil e cannot be opened. I f res tart is intended, the computer 
operator's response to this message should be to cancel Intercomm and 
request programming assistance before proceeding. 

Blocked INTERLOG records appear on the file as standard OS 
undefined record blocks and can be read using QSAM without deblocking 
(if RECFM=VB is specified). A special technique is utilized in 
creating this log; BSAM rather than QSAM is employed, and average 
length buffers (specified by the SPALIST parameter LGBLK) are used. 
This means that, where possible, log records are blocked to form a 
buffer whose size approximates LGBLK. However, a record will be logged 
even if its size exceeds LGBLK. Thus any size record (up to the 
BLKSIZE (-4) specified on the DCB parameter of the JCL for INTERLOG) 
can be logged. BLKSIZE must be a multiple of 4. 

Should the user desire to use IEBGENER to copy INTERLOG, it is 
important to specify RECFM=U, not RECFM=VB. RECFM=U will prevent 
fields in the Intercomm message header from being overlaid by QSAM or 
BSAM when copying. Each block starts with a Block Descriptor Word 
providing the block length. IEBGENER may not be used to reblock 
INTERLOG data sets. 

9-3 



Chapter 9 Logging, System Restart, 
Message Recovery 

Certain log records may be written immediately. For example, log 
entries for an important subsystem are made immediately by adding the 
entry to the current buffer and then writing out that buffer. Users 
specify critical subsystems by the SYCTTBL parameter LSYNCH=YES and 
critical terminals by the BTERM/LUNIT parameter LSYNCH=YES. 

The user has the option of entirely suppressing log entries for a 
particular terminal or subsystem via the LOG parameter of the 
BTERM/LUNIT and SYCTTBL macros. This applies to both Intercomm and 
user log entries. 

Log entries are identified by a code in the MSGHLOG field of the 
message header. The time and date stamps (MSGHTIM and MSGHDAT) in the 
message header are updated for each log entry. Log entries take two 
formats: 

~ 42-byte message header and full text when the message arrives 
from a terminal or is queued for a subsystem, terminal or 
satellite region 

• Header-only entries to mark progress through the system or 
error conditions. 

A Log Analysis utility, supplied with Intercomm, may be used 
off-line to produce a report of message queuing and processing time. 
Statistics for messages by terminal, verb, subsystem, and system totals 
are provided. (See Chapter 12.) 

Entries are made on the log by calling the service routine 
LOGPUT. LOGPUT can be called from any application program with one 
parameter, the address of the message to be logged. If the length 
field in the message header contains a number lower than 42, LOGPUT 
will cause an OC2 program check, resulting in a snap 126 and 
termination of the current message processing thread. 

LOGPUT uses a translate table to effect internal to external 
translation of the log code via the table LOGTROUT. Any code that is 
translated into X'FF' in this table will not be written to the log. 
This feature can be used to eliminate user log entries without modifying 
the application program. 

Figure 9-1 illustrates INTERLOG entries and their use at restart 
time. User log entries are ignored at restart time; hence they should 
be utilized only for user accounting and performance analYSis purposes. 

9-4 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

==========-========-====== ===============================-===========-======== 
Internal 

Code 
1=-----------------

X'OO' 
r----------

C'2' 

C'S' 

C 'P' 

External 
Code Format Description 

-------- ------ --------------------------------------- ------ -------------------------------
00 HT Checkpoint Record 

01 

02 

03 

HT Message queued for subsystem 
by Front End or a subsystem 

HT Message restarted through 
the system 

HT Message restarted--related 
to Data Base Recovery 

----------r--------------- -------------------------------
C'T' 30 HO Message passed to subsystem 

for processing 

C'Z' 40 HT Message passed to Front End 
(test mode only) 

Restart 
Origin Use 
===================== 
Checkpoint Yes 

Message 
Collection User 
--------------------
LOGPROC User 

-------------------_. 
LOGPROC User 

--------------------
Subsystem User 
Controller 
--------------------
FESEND No 

----------r--------~------ -------------------------------r--------------------
X'41'- 41- HT User called LOGPUT Any No 
X'6F' 6F Subsystem 

----------r-------- ------ ------------------------------- -----------r----------
X'80'- 80- HT File Recovery before-images IXFLOG User 
X'8E' 8E 

----------r-------- ------ -------------------------------r-----------r---------
X'8F 8F HO Checkpoint Records indicator IXFCHKPT Yes 

X'90'- 90- HT 
------------------------------- -----------r--------
File Recovery after-images IXFLOG User 

X'9E' 9E 
----------r-------- ------ ------------------------------- -----------r---------

X'9F' 9F HT Intercomm Startup LOGPUT Yes 
------ ------------------------------- ----------- ---------

X'AO' AO HO Message restart begun LOGPROC Yes 
------ ------------------------------- -----------r----------

X'A1' A1 HO Message restart finished: LOGPROC Yes 
all subsequent log entries 
produced by live Intercomm 

---------- -------- ------ ----------- ---------X'AA' AA HT Intercomm Closedown LOGPUT No 
---------- -------- ------ ---------------------X'CO' CO HT Region started (Multiregion 

only) (Text=Region-id(s» 
MRIN'rnR No 

---------- -------- ------ ---------------------C'A' C1 

Internal Code: 
External Code: 
Format: 
Restart Use: 

HT Message successfully queued 
for Satellite Region 

MRQMNGR User 
CR only 

Log code in core during processing (snaps and dumps) 
Log code after translation by LOGPUT (INTERLOG printout) 
HT for header and text, HO for header only 
Yes, No, User (specified via user-coded system macros) 

Figure 9-1. INTERLOG Entries (Page 1 of 2) 

9-5 



Chapter 9 Logging, System Restart, 
Message Recovery 

=========-================ ===============================-===================== 
Internal External Restart 

Code Code Format Description Origin Use 
=========F================ =============================== ===================== 

C'B' C2 HO Message successfully passed MRQMNGR User 
to Satellite Region CR only 

---------~---------------- -----------~--------C'C' C3 HO Message lost (Region/Hold Q 
full) or flushed (SR/SS down) 

MRQMNGR User 
CR only 

-------------------------- ---------------------
C 'I' C9 HT Sign on/off processing, 

security violation messages 
ESS No 

--------- -------- ------- ------------------------------- ----------- --------
C'3' FA HO Normal message complete Subsystem User 

Controller 
---------~--------

C '5' FB HO Unprocessed message--invalid 
subsystem/QPR code 

Message 
Collection 

User 

---------~-------- ------- ------------------------------- ----------- --------
C'6' FC HO Unprocessed message--core and Message User 

disk queue full Collection 
------------------ ---------------------------------------~----------- ---------

C'8' FD HO Message cancelled--program Subsystem User 

C'9' FE HO 

error or time-out, I/O error Controller 

Message flushed by Retriever, Retriever 
used when application program 
does not obtain (via GETSEG) 
all parts of a segmented 
message; or message failed 
security check SYCT400 

No 

--------- ---------------- ------------------------------- ------------ -- .. -----
C'1' F1 HT Message after verb USRBTLOG No 

verification (optional) 

C'2' F2 HT Message queued for FESEND User 
transmission 

--------- -------- ------- ------------------------------- --------------------
C'3' F3 HO Message transmitted Front User 

End 

--------- ---------------- ------------------------------- ----------- ---------
C'4' F4 HO 3270 output message content BLHOT No 

invalid--message dropped. 
-------------------------- ------------------------------- ----------- --------

X'FF' FF HT Intercomm Restart Accounting MSGAC Yes 

Internal ~ode: 
External Code: 
Format: 
Restart Use: 

Log code in core during processing (snaps and dumps) 
Log code after translation by LOGPUT (INTERLOG printout) 
HT for header and text, HO for header only 
Yes, No, User (specified via user-coded system macros) 

Figure 9-1. INTERLOG Entries (Page 2 of 2) 
9-6 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

9.4.1 Logging User Exit--USERLOGE 

An optional user exit, USERLOGE, is called from LOGPUT after 
message logging processing is performed. It may be used to dynamically 
gather response time statistics or to duplex (write to a user data set) 
certain log records used for installation-specific statistics gathering. 
For example, the user might wish to write all FA (internal log code F3) 
records to a separate file to reduce the processing needed for SAM 
statistics reporting. The log code in the header is the internal code, 
not the external code, as translation is performed only in the log 
buffer written to INTERLOG. To distinguish the internal log codes F2 
and F3, note the following: 

============== ========================================================== 
Internal External 

Code Code Differences 
-------------- --------------- ------------------------------------------------------- --------------- -----------------------------------------

F2 
F2 
F3 
F3 

01 
F2 
FA 
F3 

MSGHRSCH and MSGHRSC not binary zeros. 
MSGHRSCH and MSGHRSC are binary zeros. 
MSGHRSCH and MSGHRSC not binary zeros. 
MSGHRSCH and MSGHRSC are binary zeros. 

All log records are passed to the user exit (whether or not 
written to INTERLOG) except the following: 

• Startup record (log code 9F) 

• Message Accounting record (log code FF) 

• File Recovery records (log codes BO-BF and 90-9E) 

The exit must be resident and reentrant and use standard linkage 
conventions. At entry, register 13 points to a dynamic save area 
chained back to the caller of LOGPUT and register 1 points to the 
address of the message passed to LOGPUT; the time, date and thread 
number fields in the header have been updated. The exit may examine or 
copy the message header (and text), but may not free or modify the area 
or address in any way. Any processing by the exit which gives up 
control to the Dispatcher (I/O etc.) will increase response time and 
may increase subsystem processing time (if exit processes external log 
code 30 (internal = C'T') or user logging messages). 

9-7 



Chapter 9 Logging, System Restart, 
. Message Recovery 

9.5 SYSTEM CHECKPOINTS 

During startup, the CHECKPT3 program is dispatched, via the 
Dispatcher timer queue, for an interval of Ume equal to that value 
specified in the System Parameter List (SPALIST macro parameter TCHP). 
When the CHECKPT entry in CHECKPT3 is activated (the time has expired), 
CHECKPT3 will generate checkpoint records for the checkpoint file, 
organized as a direct access (BDAM) Data Set with ddname CHEKPTFL. 
When processing is complete, the checkpoint program again dispatches 
itself and subsequently idles. The cycle will repeat itself when the 
new time value expires. . 

The SPALIST operand GENSW defines the number (maximum is 5) of 
logical checkpoint areas to be utilized on CHEKPTFL. One checkpoint 
area usually consists of several physical blocks on the BDAM data set. 
Bits 1-5 of the byte associated with GENSW indicate usability of 
checkpoint areas. The default value X'1C' indicates no useable areas. 
A minimum of three checkpoint areas is required. 

The records associated with each checkpoint are constructed in a 
wraparound or flip-flop manner; that is, if the system fails during the 
checkpoint processing, the previous checkpoint area remains intact. At 
restart time, the data is restored exactly as it was when the last 
complete checkpoint was taken. 

The checkpoint routine writes certain fields from system tables 
onto the checkpoint file. If any table is not present in the system, 
the Checkpoint Program will bypass processing for that table. 

Intercomm allows the user to request data to be checkpointed, in 
addition to the information Intercomm checkpoints in its own tables. 
To utilize user checkpointing the user must: 

~ Indicate the label of the starting point of data to be 
checkpointed in the CKUSR parameter of SPALIST 

• Indicate the length in bytes of the user area to be 
checkpointed in the CKUSL parameter of SPALIST. 

In order to take full advantage of this facility, it is necessary 
to centralize, in a contiguous area, all the data which is to be 
retained across restart. (Such a contiguous area could be USERSPA.) 
The area to be checkpointed should contain only data which would not 
change if it were loaded into another location. Address constants 
should not be checkpointed, for example. 

The CHEKPTFL data set must be formatted in advance ty the off-line 
utility CREATEGF. (See Chapter 12.) An installation may create 
minimally 40 blocks, each containing all checkpoint data described in 
Figure 9-2. Or, gi ven that the amount of data to checkpoint exceeds 
the physical block capacity of the direct access device, some multiple 
of 40 blocks must be created. Again, the checkpoint/restore routines 
function with logical checkpoint areas on the CHEKPTFL data set. 

9-8 

J 



L 

Chapter 9 Logging, System Restart, 
Message Recovery 

The following fOr'1llula should be used to calculate the minimum 
number of blocks which must be formatted by CREATEGF: 

where: 

N=5( 13S 
B-8 

+ 13F 
"""B:8 

+ 8C + 
B:8" 

12T 
B:8" 

+ U+2+23)+5 
B-8 

B = block size (minimum allowed is 64 bytes) 
S = # of Station Table entries (STATION macros) 
F = # of File Table (PMIFILET) entries 
C = # of Subsystem Control Table entries (SYCTTBL 
T = # of Time Table entries 
U = Length of User Area 

macros) 

All divisions must be rounded up to the nearest integer before summing 
and multiplication by five. 

For' implementation of message restart/recovery with 
checkpointing, see Section 9.7. To synchronize Intercomm checkpoints 
and file recovery and/or data base checkpointing, there is also a 
checkpoint subsystem (CHCKPTSS) and other required modules, as 
described in the File Recovery Users Guide 01" DBMS Users Guid~, as 
applicable. 

9.5.1 Checkpointing User Exit--USRCHKPT 

After the checkpoint records are written and the checkpoint time 
message is issued (RR013I), a user checkpointing exit is called if 
coded and included as resident in the Intercomm linkedit. At entry, 
register 1 points to the checkpoint time message (two-byte length 
field, followed by two-byte MCS flags field, followed by message 
text). Standard linkage conventions must be used. 

This user exit could be used for data base checkpointing 
coordination (when not prov ided by Intercomm - see DBMS Users Guide), 
01" to record the checkpoint time for internal reporting purposes. 
There is no return code processing. 

9-9 



Chapter 9 

Station Table 

Company Number 
Use Code (up/down) 
Terminal.-ID 
Alternate Terminal-ID 

Change/Display Utility File Table 

File Name 
Last Number Generated 
File Table Switches 

Time Table 

Scheduled time 
Time Control Value 
Time Zone Code 
Message Sent Indicator 
Processed Indicator 
Program Identification Code 
Program Message Identifier 

System Parameter List Data 

Total Messages processed 
Unused 
Monitor Sequence Number 
Number of Messages Cancelled 
Number of Messages Cancelled by Editing 

Logging, System Restart, 
Message Recovery 

(one entry per terminal) 

~ :~~:s } 13 bytes 
5 Bytes per terminal 
5 Bytes 

(one entry per File) 

8 Bytes} 
4 bytes 13 bytes 
1 Byte per file 

(per entry) 

4 Bytes (Packed) 
2 Bytes 
1 Byte 
1 Byte 
1 Byte 
2 Bytes 
1 Byte 

4 Bytes 
4 Bytes 
4 Bytes 
2 Bytes 
2 Bytes 23 

12 bytes 
per 
entry 

bytes 
Number of Messages Cancelled (Invalid Subcode) 2 Bytes in total 
Number of Messages Cancelled (I/O Errors) 
Number of Messages Cancelled (No Queue Space) 
Checkpoint File Area Check and Midnight Switch 

User Area (if specified) 

Length of area 
User-specified area 

2 Bytes 
2 Bytes 
1 Byte 

2 Bytes 
user-dependent 

Subsystem Control Table 

Subcode of subsystem 
Total cancelled for subsystem 
Total processed for subsystem 

(one entry per subsystem) 

2 Bytes} 8 bytes 
2 Bytes per 
4 Bytes subsystem 

Figure 9-2. Checkpoint Data 

9-10 

J 

J 



Chapter 9 

9.6 RESTART/RECOVERY 

9.6.1 The Restart Process 

Logging, System Restart, 
Message Recovery 

Intercomm is an event-driven system whereby acti vi tes are 
initiated in response to a message. Therefore, the heart of recovery 
involves the recovery and/or restarting of appropriate messages. The 
basis for determining what is required for a particular 
restart/recovery operation is the Intercomm log. This log consists of 
entries for. all messages that are subject to recovery. The log entries 
allow determination of message status at the time of failure. Every 
terminal and subystem message will fall into one of these message 
status categories: 

1. Queued and completely processed prior to the last checkpoint 

2. Queued and completely processed subsequent to the last 
checkpoint 

3. Queued but not started processing (transmission) 

4. Queued and processing/transmitting at failure 

The analysis of the message data in the log is performed during restart 
by reading the log file backwards from the point of failure. A 
technique of message accounting has been developed that permits this 
read back to proceed only as far as is necessary to retrieve those 
messages needed for restart, as described below. 

After messages to be restarted are recovered from the log, they 
are placed on the queues for their destined subsystems or terminals as 
the last phase of restart processing. 

The restart process is initiated when the word RESTART is found 
in the PARM field of the Intercomm execution (EXEC) JCL statement. 
This is the only change whatsoever that distinguishes a restarted 
Intercomm run. When RESTART is recognized, the restart phase of 
Intercomm analyzes the log and rebuilds the queues. At that time 
Intercomm starts reprocessing messages placed in the queues by restart 
while at the same time receiving and processing messages from the 11 ve 
terminal network (the specification of FIFO queues insures that restart 
messages are processed prior to live messages). 

Checkpoint data is automatically restored at restart time. 

9-11 



Chapter 9 Logging, System Restart, 
Message Recovery 

9.6.2 Message Accounting 

To make the warm restart function as rapid as possible, restart 
invol ves a reading backward of the log file only as far as required to 
recover all necessary messages. This information is developed by the 
Message Accounting routine, MSGAC, a subprogram of LOGPUT. MSGAC 
examines log entries as they are made by LOGPUT and determines the 
"read back point" of the log data set. Periodically, MSGAC will insert 
message accounting records onto INTERLOG. These records reflect a 
current read back point. Thus, when restart starts reading INTERLOG 
backwards, the first message accounting record encountered will 
instruct restart as to the actual read-back point. 

Message accounting records are written at the time Front End, 
Back End and Mul tiregion "message complete" status occurs for the last 
message within a group of messages with monitor sequence numbers (MMN) 
ranging within a multiple of 255 (that is, when message numbers 1-255 
complete, when 256-510 complete, etc.). 

9.6.3 Message Restart Logic 

The Intercomm message restart procedure is straightforward when 
no file recovery is considered. When reading the log data set 
backwards, information from certain message headers is temporarily 
stored. This stored information is the basis for determining what to 
do with the header/text log entries as they are encountered. The 
information from the header is such that it can uniquely identify a 
message within a subsystem (including recursive entries to a 
subsystem). Since the log data set is read backwards, message log 
entries will be encountered in this order: 

1. Subsystem completed (normally or abnormally) 

2. Subsystem started 

3. Message queued for a subsystem 

When the "message queued for a subsystem" log entry (header/text) 
is encountered, the information stored from the previously encountered 
log entries for this message is examined and the following rules apply 
to the restart analysis: 

• If the message successfully completed (a log code FA was 
encountered), the message is not restarted. 

• If the message failed in processing by a subsystem (time-out, 
program check, failure to acquire all segments, etc. ), then 
the message is restarted, if its monitor message number, 
MSGHMMN, is greater than the latest message accounting 
read-back point. 

9-12 



Chapter 9 Logging, System Restart, 
Message Recovery 

• If the message had started processing, but not completed at 
the time of failure (a log code entry 30, but no FA, FB, FC 
or FD was encountered), then the message is restarted, and 
its log code is set to "R" indicating that it is an 
in-process message being restarted. 

o If an 01 log entry is encountered without any prior entries 
(it was on the queue at the time of failure), then it is 
requeued. 

These are the criteria applied to a single message out of context; they 
may be overridden by other considerations: 

• If any "ancestor" of a message is restarted for any reason, 
the message is discarded. This rule requires some 
clarification: if during the processing of Message A, 
Message B is generated, Message A is the mother of Message 
B. Starting at any message, restart logic can work back to 
the original terminal input, going from the current message 
to its mother, the mother's mother, and so on. A daughter 
message is restarted only if all its ancestors are discarded 
(not logged or not to be restarted). This applies to Front 
End as well as Back End messages. 

• If the message is part of a conversation (subsystem logic 
uses the CONVERSE facility) and CNVREST=YES is coded in the 
subsystem's SYCTTBL macro, the message will be restarted if 
it is the first message in the conversation (even if it 
completed) and discarded if it is not the first (even if it 
didn I t complete) • Note that in order to insure file 
integrity, conversational subsystems performing data base 
updates should be designed so that either a message is 
switched to a nonconversational subsystem to perform the 
update(s), or the update(s) are performed as processing logic 
for the last message in the conversation. 

• If a message is part of a segmented message sent to OUTPUT or 
CHANGE IDI SPLAY and SEGREST=YES is coded in the sending 
subsystem's SYCTTBL macro, then the disposition of the 
trailer (final) segment determines what happens to the other 
segments. They will be restarted if the trailer was 
restarted, discarded if the trailer was discarded. 

Whether message restart is actually performed depends on the user 
RESTART speCification on each SYCTTBL or BTERMILUNIT macro. If 
RESTART=NO was coded, then no messages will be restarted regardless of 
the circumstances. RESTART=IFPOSBL affects message accounting so that 
the read-back point for restart analysis mayor may not include all 
those IFPOSBL messages. The read-back point will definitely include 
all RESTART=YES messages. For Mul tiregion messages, see Multiregion 
Support Facility. 

9-13 



Chapter 9 Logging, System Restart, 
Message Recovery 

The closedown subsystem must have the SCT specification 
RESTART=NO. Otherwise, system failures during closedown and subsequent 
message restart would cause the closedown subsystem to be activated 
immediately. RESTART=NO should also be coded for the GPSS subsystem in 
case the SNAP or ABND commands are used. 

In all those cases where file or data base recovery is not 
included, the only integrity problem concerning a restart involves 
those messages that were in process at time of failure. Thus, if a 
message was being transmitted when a power failure occurred, the 
restarted Intercorom would retransmit that entire message. 

In a complete system failure (example, machine or power failure), 
Intercorom cannot determine the status of terminal transmissions in 
process at the time of failure. Therefore, following complete failure, 
the remote terminal operator must verify the conclusion of his last 
operation if it was an update operation and if he had not received 
completely all results from that operation. This is the only terminal 
operator interaction relevant to restarted Intercomm. 

The user can optionally suppress Front End or terminal restart 
completely. That is, all messages which were queued for terminal 
output at the time of Intercorom termination will be discarded during 
restart mode, regardless of terminal restart parameters. This is done 
by setting location LOGTRT plus displacements hex 'F2' and 'F3' to 
X'OO' in the restart module LOGPROC. 

9.6.4 Message Restart User Exit--USRESTRT 

This user exit is called by LOGPROC to allow the user to 
determine disposition of a message eligible for restart. The exit must 
be serially reusable; standard linkage conventions are used. At entry, 
register 1 points to the message to be requeued (restarted). The exit 
may examine the log code (MSGHLOG) to test the message type, as follows: 

C'2' or X'F2' Front End output--check MSGHTID 

C ' A' or X' C 1 ' Input to be requeued for a satellite region: 
MSGHMRDX contains the region id number 

C'P' or X'D7' -- Data Base update subsystem message to be 
reprocessed 

C'R' or X'D9' 

X'01' 

Non-DB update subsystem message to be reprocessed 

Unprocesssed (never started) or failing 
subsystem message 

For the last three message types, check the receiving subsystem 
codes (MSGHRSCH,MSGHRSC). Multiregion messages can exist only in the 
control region and are used to recreate the satellite region queues 
(see Multiregion Support Facility). 

9-14 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

Because it is called during initial Intercomm startup, the user 
exit may not give up control to the dispatcher nor call the File 
Handler. At exit it must tell LOGPROC whether to restart the message 
via the value returned in register 15: 

• binary zeros = requeue the message 

• nonzero = discard the message 

The user exit may wish to discard a message if the subsystem no 
longer exists or will program check, or if the terminal (see MSGHTID) 
no longer exists or is out of service. The user may alter message 
header or text fields. Data Base subsystem messages should not be 
altered or discarded if coordinated checkpointing and backout of DB 
updates is used. 

9.7 IMPLEMENTATION 

The follOWing load modules are required for message 
restart/recovery functions: 

--------------------------------------
Module 

--------------------------------------
STAEEXIT 

LOGPUT,MSGAC 

CHECKPT3,RESTORE3 

LOGPROC,INTDBLOK, 
READBACK 

====================~============================= 
Functions 

================================================== 
Abend Intercept Routine--assures data sets are 
closed at abend time; in particular required to 
ensure log buffers are flushed to INTERLOG. 

System logging and message accounting 

Checkpoint processing, restore checkpointed value 

Analysis of Restart log; deblocking, read 
backward modules. 

Coding CHKRES=YES on the IOOMLINK macro will generate the applicable 
INCLUDE statements. 

There are two SPALIST parameters specifying the number of log 
buffers to get (LGNUM) and the average buffer length (LGBLK). These 
numbers should be chosen with care, because if logging requests 
accumulate faster than LOGPUT can handle them, the performance of the 
whole system degrades. LGBLK should be big enough so that every 
frequently generated log entry (message or file recovery record) will 
fit in a buffer. Logging an entry bigger than LGBLK effective 1y ti es 
up two of LOGPUT' s buffers: the active, partially filled buffer is 
queued to be written, storage is gotten for a temporary buffer to hold 
the log entry, and then another one of LOGPUT's own buffers is marked 
as full so the buffer WRITEs can be chained. 

9-15 



--------------------

Chapter 9 Logging, System Restart, 
Message Recovery 

The more synchronous logging performed, the smaller and more 
numerous your buffers should be (recall that synchronous logging, 
requested by coding LSYNCH=YES, means LOGPUT doesn't return to its 
caller until the log entry is written). A synchronous logging request 
causes the buffer containing the entry to be queued immediately for 
writing, whether or not the buffer is full. Any leftover space is 
wasted. Thus, there is no point in making buffers big enough to hold 
ten messages, say, if one log request in five is synchronous. 

Aside from RESTART as an EXEC card parameter, JCL requirements 
for restart/recovery functions are identical to STARTUP mode plus the 
following DD statements: 

• INTERLOG--DD statement for the system log data set to be 
created in the current run 

• CHEKPTFL--DD statement for the BDAM data set containing 
checkpoint records (if created in the previous execution) 

• LOGDISK--DD statement for a BDAM data set used at restart 
time to hold all messages to be restarted. The maximum 
message length is thus restricted to the track capacity of 
the direct access device used. No preformatting is required. 

• RESTRTLG--DD statement for the system log to be restarted. 

Code the following on the INTERLOG DD Statement: 

1. DCB=( ••• ,NCP=number-equal-to-LGNUM •••• ) 

Recall that LOGPUT writes the log using BSAM, from buffers 
acquired by the startup routine; this DCB parameter allows 
LOGPUT to start writes on subsequent buffers before waiting 
for the first write to complete. If NCP is allowed to 
default to 1 and LOGPUT issues two writes in a row, the 
second buffer may be los t for the rest of the run, because 
BSAM ignores I/O requests once it has NCP operations in 
progress. It never posts the DECB. Unless volume is very 
low, this kind of attrition will eventually reduce the number 
of live buffers to NCP. Therefore, code the NCP parameter to 
match the LGNUM parameter on the SPALIST macro. 

2. DCB=( ••• ,OPTCD=C, ••• ) 

Requests chained scheduling, that is, consolidation of 
channel programs when more than one write request is queued 
up. 

3. Verify that BUFNO is not specified in the DCB parameter 
sublist. LOGPUT doesn't use OS buffers. 

9-16 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

4. BLKSIZE specifies the actual maximum length block that LOGPUT 
may use. You can specify BLKSIZE=32760 or maximum track size 
to make sure everything gets logged, but if the log file is 
ever used in a restart run you must specify what its real 
block size is (unless you can spare 32K for a buffer), and 
it's probably better to settle on one figure for both STARTUP 
and RESTART modes. The minimum block size is LGBLK+4. The 
extra four bytes are for the block descriptor word. BLKSIZE 
must be a multiple of 4. A multiple of 2K (MFT/VS1) or 4K 
(MVTIMVS) is recommended. For MVS, an NCP of at least 10 and 
LGBLK of 4K or 8K is recommended, as using many small buffers 
is more efficient (less paging, etc.) than using a few large 
ones. 

Sample JCL: 

IIINTERLOG 
II 

DD DSN=INTERLOG,DISP=(NEW,KEEP) , 
UNIT=unit,VOL=SER=volser,LABEL=(,BLP), 
DCB=(DSORG=PS,RECFM=VB,BLKSIZE=blksize,LRECL=blksize-4, 
OPTCD=C,NCP=lgnum) 

II 
II 

NOTE: In order to correctly reposition an INTERLOG tape following a 
loss of power or operating system failure, the tape must be 
preformatted with tape marks. For restart from a disk data set 
which was not closed (that is, after a system crash) at the end 
of a previous Intercomm execution, see the description of 
ICOMFEOF in Chapter 12. If disk logging is used, omit the LABEL 
parameter and add a SPACE parameter; SPACE=(CYL,(primary» is 
recommended. Do not specify secondary extents if recovery via 
ICOMFEOF might be executed. In order to reduce disk space 
utilization, the Intercomm se~uential output disk file fliplflop 
facility described in Chapter should be implemented. 

For checkpointing, include a DD statement for CHEKPTFL. This 
direct access file is used by CHECKPT3 to store checkpoint 
information. It must be preformatted by CREATEGF (see Chapter 12) 
before the first execution with checkpointing. The file must have a 
block size of at least 64, and at least 40 blocks. 

Sample JCL: 

IICHEKPTFL 
II 
II 

DD UNIT=direct-access-device,VOL=SER=volser, 
DSN=INT.CKPOINT,DISP=OLD, 
DCB=(DSORG=DA,OPTCD=RF) 

9-17 



Chapter 9 Logging, System Restart, 
Message Recovery 

For message restart, LOGPROC uses a temporary disk data set that 
holds messages to be restarted. The data set is variable-format with 
one message per block, so its block size must be equal to the length of 
the longest message that can be produced for a restartable subsystem or 
terminal. The data set is created by LOGPROC, so preformatting is 
unnecessary. In the following, 'm' stands for the maximum message size. 

IILOGDISK 
II 

DD UNIT=direct-access-work-unit, 
SPACE={m,{primary,secondary),RLSE), 
DCB={DSORG=DA,BLKSIZE=m,RECFM=F) II 

Figure 9-3 illustrates JCL for Intercomm log files for restart. 
Note that RECFM=U for the restart log data set. 

Both INTERLOG and RESTRTLG may be defined as the same tape unit. 
In this case, logging is suppressed while readingRESTRTLG and 
performing the restart function. Logging begins when restart functions 
are complete. For one-tape-dri ve mode, either make the volume-serial 
numbers identical so that both data sets are assigned to the same 
drive, or code UNIT=AFF=RESTRTLG on the INTERLOG DD statement. 

The LABEL parameters assume standard labels. If you are using 
unlabeled tapes, code LABEL = { ,BLP) or LABEL = { ,NL) in both DD 
statements. LABEL = { ,SUL) is recommended for INTERLOGj this will cause 
the user label exit to be taken in the File Handler and will prevent 
time-outs that occur during the mounting of a new tape volume. If 
restart is from disk, omit the LABEL parameter. 

Input Log 
IIRESTRTLG 
II 
II 

Output Log 
IIINTERLOG 
II 
II 
II 

DD DSN=anyname,DISP={OLD,PASS), 
UNIT=unit,VOL=SER=volser,LABEL=(,BLP), 
DCB=(DSORG=PS,RECFM=U,BLKSIZE=blksize) 

{NEW} 
DD DSN=anyname,DISP=({MOD} ,KEEP), 

UNIT=unit,VOL=SER=volser,LABEL={,SUL), 
DCB=(DSORG=PS,RECFM=VB, BLKSIZE=blksize, 
LRECL=blksize-4,OPTCD=C,NCP=lgnum) 

Figure 9-3. RESTRTLG and INTERLOG DD Statement Examples 

For restart, 
execution is reused. 

the same checkpoint file used 
The JCL also remains the same. 

9-18 

in the previous 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

9.7.1 Concatenation .of Disk Log Files for Restart 

If disk logging is used with the fliplflop facility, the user 
should off-load each log file as it becomes filled so it will be 
available for reuse at a later time. To unload the disk log, copy the 
file to another disk file or to tape using IEBGENERj RECFM=U must be 
specified for both input and output files j do not use RECFM=VB or try 
to reblock the file. 

If Intercomm goes down, all of the disk log files can be 
concatenated and used for Intercomm restart. If the operating system 
crashes (IPL required) while Intercomm is executing, use IEBGENER as 
described above to copy the file to set an EOF at the end of the extent 
(occurs even if IEBGENER abends due to garbage data). Then execute the 
Intercomm utility ICOMFEOF to set the true end-of-file. Intercomm will 
read backwards through as many files as necessary in order to restart. 
In the JCL, the order of concatenation for the log files should be from 
the newest to oldest. For example, suppose that 'INT.NEWEST' is the 
most recent disk log file (the one being used when the system went 
down), and 'INT. OLDEST' is the oldest (the first log file used or 
off-loaded). Then, the RESTRTLG DD statements would look as follows: 

I IRESTRTLG 
II 

DD DSN=INT.NEWEST, •••• 
DD DSN=INT.OLDEST, •••• 

If there were other disk data sets filled during the run, they 
would be inserted in the same reverse chronological order between 
tINT.NEWEST' and 'INT.OLDEST'. 

Note that if any log files are on tape, the tape files may not be 
concatenated to (nor mixed with) the disk files nor may the tape data 
sets be concatenated by themselves and be restarted. This is due to an 
IBM restriction that concatenated tape data sets may not be read 
backwards. Intercomm handles tape data sets as multivolume data sets -
when it reaches the end of one tape, it will request another volume. 
When a disk log concatenation is used, data set switching is executed 
internally by READBACK. LOGPROC continues to request a previous log 
block to be read until it finds a message accounting record (log code 
XtFF') or until the beginning of the last tape volume or disk data set 
is reached. Then the RESTRTLG file is closed. It is important to 
remember the difference between restarting tape logs and disk logs, as 
summarized in the following table: 

9-19 



-------------------

Chapter 9 

------------------------

------------------------
~CL 

~ction at 
End of Data 

~ethod of 
Operation 

Logging, System Restart, 
Message Recovery 

================================~========================== 
TAPE DISK 

================================F========================== 
No concatenation. Code Concatenate log files 
last tape VOLSER used in via JCL. Data set 
JCL (LABEL = NLor BLP) , switching executed 
followed by previous VOLSERs internally. 
used (in reverse order). 

----------------------------------------------------------
Requests another volume via Closes RESTRTLG. Does 
WTO, until last tape read not request another 
backwards (if necessary); volume or DSN to be 
closes RESTRTLG. read. 

Reads Backward via BSAM 
(READ SB) 

Uses BDAM and EXCP to 
read backwards using 
actual track addresses 
for each block. 

9.8 SERIAL RESTART 

Normally, restarted messages are multithreaded. That is, all 
restarted messages will be requeued for their respective subsystems 
immediately and each subsystem will process as many messages as it can 
concurrently, up to its maximum. This scheme is undesirable in some 
circumstances; for example, systems using a data base management system 
may want updates to take place in the same order as they were 
originally entered. A multithread environment cannot guarantee this 
will be accomplished if more than one subsystem updates the same data 
base or the update subsystem has a MNCL (concurrency) greater than one. 

To solve this problem, a serial (single-thread) restart 
capability is provided with Intercomm which employs the Intercomm 
Dynamic Data Queuing facility. With the serial restart feature, Back 
End messages are restarted one at a time and the next message to be 
restarted for any subsyst~m is not queued until the previous one is 
completed. Thus, use of the serial restart feature will ensure that 
only one restarted message will start processing at any given time. 

While processing a restarted message, if a subsystem queues a 
message for another subsystem, that "daughter" message will be 
processed on a multi thread basis concurrently with the next restarted 
message. Messages queued for the Output Utility will also be 
multithreaded. New messages from the Front End which must be processed 
by a subsystem will be rejected unless a user exit (USRSEREX) is coded 
to permit the processing of selected input messages (such as sign-on 
security or inquiry messages unrelated to the serially restarted update 
subsystem) • Front End commands which are not processed by a subsystem 
(see System Control Commands), and out put terminal messages will be 

9-20 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

processed normally during serial restart. Message Collection 
determines that a message is from the Front End by examining the 
sending subsystem codes (MSGHSSCH, MSGHSSC); if both are binary zeros, 
the message is assumed to be a' new input message. Both message restart 
and Log Analysis require the coding of the sending subsystem codes for 
all "daughter" messages (including those passed to the Output 
Utility). If a "daughter" subsystem performs the critical update, the 
user may force serial restart on the "daughter" subsystem by coding 
RESTART=NO on the SYCTTBL for the "mother" subsystem. 

In a Multiregion Intercomm using serial restart, each satellite 
region must have its own log and each region must be restarted using 
its own log. All data base update subsystems should be placed in the 
same satellite region if it is desired that data base updates take 
place in the same order on restart as they did originally. In the 
Multiregion control region, messages to be passed to a satellite region 
and messages received from a satellite region will be processed 
normally. Serial restart should be employed only in those regions 
containing critical update SUbsystems. The other regions may use 
multithread restart or can omit restart processing entirely. 

To install serial restart, follow the instructions for installing 
normal restart with the following additions: 

• The. Intercomm DDQ special feature must be installed in the 
system and the default DDQ data set must be defined. (See 
Dynamic Data Queuing for details.) A transient DDQ is used 
to hold the restarted messages in the order in which they 
were originally logged. The block size of the DDQ data set 
must be at least as large as the longest possible requeued 
message (including header). 

• The module REQONDDQ must be included as resident in the 
Intercomm region linked it . For multiregion systems, it must 
be linked into each region using serial restart. 

• If coded, the user exit USRSEREX must also be inc luded as 
resident in the Intercomm linked it (sample exit routine 
provided on SYMREL). 

9.8.1 Serial Restart User Exit--USRSEREX 

This exit routine is called by BLMSGCOL when message collection 
is called to queue a message to a subsystem from the Front End while 
single thread restart is in progress. That is, when serial restart is 
in progress, BLMSGCOL will call USRSEREX before queuing a Front End 
message for a subsystem. The exit is never called when queuing a 
restarted message, or a message from a subsystem to another subsystem 
or to a terminal, nor is it called after serial restart has completed. 

9-21 



Chapter 9 Logging, System Restart, 
Message Recovery 

Upon entry to the USRSEREX routine, register 1 contains the 
address of a two-fullword parameter list. These fullwords point to the 
input message and the region SPA respectively. USRSEREX can examine 
the message and must pass a return code in register 15 which tells 
message collection what action to take; a return code of zero tells 
message collection to free the message and return to the caller; that 
is, if USRSEREX returns a return code of 0, BLMSGCOL does not queue the 
message for the subsystem. Instead, the message is freed and the 
following message is returned to the originating terminal: 

PREVIOUS MESSAGE REJECTED, SERIAL RESTART IN PROGRESS 

If USRSEREX returns any nonzero return code in register 15, message 
collection will queue the message for the subsystem as it normally does 
and the message may be processed while serial restart is still in 
progress. USRSEREX may not free the message as that will be done by 
the system when required. H'owever, USRSEREX may issue STORAGE and 
STORFREE macros for any storage area the routine requires. 

Because BLMSGCOL is Link Pack eligible, a pointer to USRSEREX is 
kept in the SPA extension for each region (control and satellite) in a 
Multiregion environment. Implementation of this feature thus becomes a 
matter of linking or not linking USRSEREX as resident within the region 
load module. If USRSEREX is not linked in, the call is skipped by 
Message Collection and the Front End message is rejected. An 
installation may provide different exit routines for each region or no 
exit routine for some regions, depending on requirements. For example, 
the user exit can be omitted for any regions that do data base updates 
or file recovery to force Front End messages to be rejected until 
single-thread restart is complete. A region doing mostly inquiry 
processing may need the user exit to allow most input messages to be 
processed. 

The USRSEREX module must have a Csect name of USRSEREX and should 
be reentrant, especially if any Intercomm facility, such as the 
Dispatcher or File Handler, may be used. It is recommended that the 
user exit avoid admitting messages that will be in the system for a 
long duration. That is, messages for subsystems that do multiple file 
I/O's or generate numerous output screens, for example, may remain in 
the system for a relatively long time, thus slowing down serial restart 
considerably. Discretion must be used when choosing the number and 
types of messages that the exit allows to be processed during serial 
restart. 

A message queued by a subsystem for another subsystem will be 
intercepted by USRSEREX if the subsystem fails to set the sending 
subsystem codes (MSGHSSC, MSGHSSCH) correctly. The Intercomm 
Programmers Guides state that a subsystem which queues a message for 
another subsystem must set the fields if Intercomm restart/recovery is 
to be used. USRSEREX will not be called to process a message whose 
sending subsystem code bytes are not binary zeros (binary zero 
indicates the message originated in the Front End). This allows any 
messages which result from a message already passed by USRSEREX to be 
queued without further checks. 

9-22 

J 

J 



Chapter 9 Logging, System Restart, 
Message Recovery 

One final consideration in designing the USRSEREX module is the 
processing of Intercomm control commands. Some control commands, such 
as FILE, LOAD, and TALY, are processed by Back End subsystems under 
Intercomm and hence must have messages queued for them via message 
collection (other commands, such as FLSH and RLSE, are processed by 
the Front End and this discussion does not apply to them). Consult 
System Control Commands for information on which commands are Front End 
or Back End commands. The commands processed by the Back End will 
usually originate in the Front End and so will be passed to USRSEREX 
for processing before being queued for the processing subsystem when 
serial restart is in progress. The user, when coding USRSEREX, must 
decide which, if any, Back End control commands shall be allowed during 
serial restart. This decision should be based on the command function 
and the logic of the applications running under serial restart mode. 
For example, it does not make sense to allow a FILE command to LOCK a 
data set that may be required by a subsystem which will process a 
restarted message, but it may be valuable to use the TALY command. The 
user must decide which control commands to allow in the USRSEREX. 

When designing the exit routine, the user must also be aware that 
some subsystems may process a number of commands. For example, the 
GPSS subsystem processes FILE, TALY, STRT and STOP commands, among 
others, and so the exit routine may have to check the message verb as 
well as the receiving subsystem codes when checking for control 
commands or user verbs that it wishes to allow to be queued. 

The sample USRSEREX released with the system allows only selected 
Intercomm Back End commands to be processed. This routine may be 
modified by the user to allow some user functions if desired. If using 
the Intercomm Extended Security System, SECU commands must be allowed 
to be processed, so that sign-on prompt screens may be transmitted and 
terminal operators may sign on to Intercomm while serial restart is in 
progress. This also applies to any other security scheme employed 
(Intercomm's Basic Security, etc.). 

Note: If EDIT=BQ is specified for the input verb (on BTVERB macro), the 
input message will be edited before being passed to the user 
exit. Therefore, the user exit should employ testing of the 
receiving subsystem codes (MSGHRSCH, MSGHRSC), rather than the 
verb, except as noted above for multipurpose verbs which are not 
edited before queuing is attempted. 

9-23 



J 

J 

J 



Chapter 10 

SYSTEM SECURITY IMPLEMENTATION 

10.1 INTRODUCTION 

Under Intercomm, two security systems are provided: 

• Extended Security - a special feature is dynamically 
created and controlled on-line via commands and provides a 
full range of security control over all major system 
resources such as terminals, verbs, subsystems, files, 
regions, and user-specified functions (such as data base 
access). Secured terminals require operator sign-on with an 
ID and, optionally, a password. The ranges of resource 
accessibility are defined for each operator. Extended 
Security is fully described in Extended Security System. 

• Basic Security - a table-driven system available to all 
Intercomm installations provides sign-on security at 
specified terminals, transaction (verb) security at specified 
terminals, and optionally, user-coded exits for additional 
security processing at Sign-on, sign-off, and subsystem 
access time. 

This chapter describes Basic Security implementation within the 
Intercomm system and covers the following subjects: 

• Basic Security proceSSing options 

• Implementation of sign-on/sign-off security and user exits 
for additional processing 

• Implementation of transaction security 

• Coding the Station Table for security installation 

• Implementation of user-written 
subsystem access control 

security routines for 

In this chapter, the conventions for input message formats are 
denoted by the following: 

$ indicates the system separator character defined in the 
installation's system parameter area (SPA). 

@ indicates the end-of-message sequence of the terminal (EOT, 
EOB, ETX, etc). 

Responses to sign-on/sign-off and system security control 
commands are described in System Control Commands. 

10-1 



Chapter 10 System Security Implementation 

10.2 BASIC SECURITY PROCESSING OPTIONS 

Under Basic Security, Intercomm provides the user with three 
types of system security options: 

• Station Sign-on/Sign-off Security 

Station sign-on/sign-off security checking allows the 
installation to limit the use of a specified set of terminals 
to only those operators who sign on using pre-assigned 
numerical operator security codes. Not all stations need be 
under the sign-on/sign-off facility. 

• Transaction Sign-On/Sign-Off Security 

Transaction security checking allows the installation to 
specify which transaction codes (verbs) are allowed entry 
from a particular station. Not all verbs need be under 
transaction security. 

• User-Written Security 

User-written security allows the user to insert other types 
of security which may be desired. 

Control commands affecting system security are also described. 
Installation and use of the commands are defined in System Control 
Commands. 

Anyone of the above types of security checking or any 
combination of these types is available to the user under Basic 
Security. Requirements for security options are specified in system 
tables by subsystem (SYCTTBL macro), terminal (STATION macro) and in 
the System Parameter Area (SPALIST macro). 

10.2.1 Security Processing Logic 

The following examples describe Intercomm Basic Security 
processing logic as illustrated in Figure 10-1. Assume the following 
list of terminals are under security check with the associated operator 
codes: 

NYC01 allows only operator codes 1, 5, 7, 10 

CHI01 allows only operator codes 2, 3, 4, 8 

SFI01 allows only operator codes 1, 6, 7, 9 

AET01 allows only operator codes 1, 5, 7, 9 

10-2 

J 

J 



Chapter 10 System Security Implementation 

Assume the following list of verbs are under security check with 
the associated terminals: 

SEND allowed only through NYC01, CHI01 

SHIP allowed only through SFI01 

DELI allowed only through NYC01 

MAIL allowed only through ABT01, CHI01 

TRUC allowed only through NYC01 

1. Operator 1 attempts to sign on at the NYC01 terminal. He is 
allowed on. He then enters the verb SEND. The message is 
processed. He signs 0 ff • 

2. Operator 6 attempts to Sign on at SFI01. He is allowed on. 
He then enters the verb SHIP. The message is processed. He 
may enter additional transactions using SHIP. 

3. Operator 5 attempts to sign on at NYC01. He is allowed on. 
He then enters the verb THIP. An unknown verb error message 
is sent to the terminal. He signs off. 

4. Operator 5 attempts to sign on at CHI01. 
an error message; sign-on is cancelled. 

He receives 

5. Operator 4 attempts to sign on at CHI01. He is allowed on. 

6. 

He then enters the verb DELI. The incoming message is 
cancelled; the operator receives an unauthorized verb error 
message. 

Operator 4 is still on CHI01. He has read his error 
message. He then enters the verb SEND. The message is 
processed. He may enter other transactions using SEND or 
MAIL. 

10-3 



Chapter 10 

Error 
Message 

YES 

System checks 
to see if 
operator code 

System Security Implementation 

Operator 
attempts to 
sign on at a 
terminal 

System checks 
to see if 
terminal is 
listed under 
security 

NO 

NO is allowed for 
--------~ this terminal. 

Error 
Message 

NO 

YES " 
~ __________ ~~ Operator Can Enter 

~ Transaction 

YES 

" 
System checks 
to see whether 

System checks to see if the 
transaction is on a list of 
transactions under security 
check. 

NO 

transaction is YES ..... Transaction 
I...-----~ allowed ~------------I~" is processed 

through this 
terminal 

Figure 10-1. Security Processing Logic 

10-4 

J 



Chapter 10 System Security Implementation 

10.3 SIGN-ON/SIGN-OFF SECURITY 

This section describes implementation of operator 
security which involves three interrelated system areas: 
operator codes for secured terminals, activating systemwide 
security via the SPALIST, and optionally requiring sign-on 
before certain subsystems may process an input transaction. 

10.3.1 Using a Sign-on/Sign-off Terminal 

sign-on 
defining 
terminal 
security 

Before using a station that requires a sign-on/sign-off security 
check, a terminal operator signs on by entering the following message: 

SIGN$ON$operator-code@ 

. The operator code must be numeric and may be any number from 1 to 
2147483647. If the operator code is not defined via the STATION macro, 
OPER parameter, for that terminal, an error message will be sent to the 
originating and control terminal. The operator is allowed "n" attempts 
to sign on before access is terminated for that station. The "n" is 
set in the STATION macro via the MAXSIGN parameter. 

The sign-off command format is: 

SIGN$OFF@ 

An operator is not allowed to sign on at the same time at more 
than one terminal under security check, and only one operator at a time 
is allowed to sign on at a secured terminal. If an operator signs on 
to a terminal and is already signed on at another terminal, an error 
message will be received. If an operator signs on at a terminal and 
another operator has already signed on to that terminal, the first 
operator will be signed off. For instance, operator 111 signs on to 
terminal NYC01 and does not sign off, and then operator 222 signs on to 
terminal NYC01. Terminal NYC01 will first sign off operator 111 and 
then Sign on Operator 222. 

If an operator at tempts to enter a verb at a secured terminal 
without signing on, an error message will be received. An operator 
must remember to sign off from a terminal under security check to which 
he has signed on; otherwise the terminal may be used by other operators 
without signing on, thereby compromising security. 

An automatic sign-off feature is included if certain 
specifications exist in the SPALIST and the terminal's STATION macro. 
It is important that the operator be aware of whether or not the 
automatic sign-off is in effect. If it is, the terminal will be signed 
off automatically after the prespecified elapsed time expires, whether 
the operator is ready to be signed off or not. 

10-5 



Chapter 10 System Security Implementation 

10.3.2 Sign-on/Sign-off Processing 

Sign-on/sign-off (SIGN command) is processed by a subsystem which 
must be represented by a Subsystem Control Table entry (SYCTTBL macro) 
for the PMISIGN subsystem as follows: 

SYCTTBL SUBC=S,SBSP=PMISIGN,OVLY=O,LANG=RBAL,SECU=OO, 
TISE=YES,SOSO=NO,NUMCL=4,BLRI=F,ECB=YES,SPAC=1000, 
MNCL=5,PRTY=0,RESTART=NO,LOG=NO, ••• 

10.3.3 SPALIST Macro Parameter 

x 
X 

To use the sign-on/sign-off 
SONOFF=YES must be coded on the 
priority over all SYCTTBL entries 
security. 

option, 
SPALIST 

which 

the security parameter 
macro. SONOFF=NO takes 
request sign-on/sign-off 

There are two transactions which can be entered from a terminal 
and which affect the SONOFF parameter in SPALIST. The verb ASGN 
activates the sign-on/off feature for the entire system even if 
SONOFF=YES has not been specified in the SPALIST macro; that is, ASGN 
acti vates, or turns on, SCNOFF=YES. The verb DSGN deactivates the 
sign-on/off feature for the entire system, even if SONOFF=YES was 
specified in the SPALIST macro. DSGN turns off the SONOFF parameter'; 
by changing SONOFF=YES to SONOFF=NO. These special tr'ansactions are 
also processed by the PMISIGN subsystem. Their formats are descr'ibed 
in System Control Commands. It is recommended that ASGN and DSGN be 
restricted to the control terminal via the BTVERB macr'o SECUR par'ameter' 
(SECUR=YES) • 

The SPALIST macr'o SGNTlME parameter specifies, in minutes, the 
default time interval to be used to automatically sign off a terminal 
after an operator has signed on at that terminal; that is, the default 
duration a terminal may retain a signed-on security clearance before 
that clearance is to be automatically revoked (code as a decimal from 
0-466). This time interval will be used only when the following 
conditions exist: 

• the sign-on/sign-off feature is active 

• the terminal's STATION macro specifies AUTOFF=YES 

• the terminal's STATION macr'o specifies TIME=O 

• a sign-off transaction has not already been entered 

10-6 



Chapter 10 System Security Implementation 

10.3.4 SYCTTBL Macro Parameter 

For each subsystem which may only process input from a secured 
terminal, the SOSO parameter in the SYCTTBL macro defining that 
subsystem must be coded SOSO=YES. If in the SPALIST macro the SONOFF 
parameter is coded SONOFF=NO, then that will take priority; that is, 
SONOFF=NO turns off the sign-on/sign-off security option for the entire 
system, even if some subsystem SYCTTBL macros have SOSO=YES. If 
SONOFF=YES, and a subsystem SYCTTBL has SOSO=NO, then the sign-on 
requirement does not hold (or the subsystem. 

The relationship of the SPALIST SONOFF parameter and the SYCTTBL 
SOSO parameter is summarized as follows: 

==================F==================================================== 
SONOFF SOSO Resul t 

==================F==================================================== 
YES NO Sign-on/sign-off security option does not hold for 

subsystem 
-------- ---------~----------------------------------------------------

NO YES Sign-on/sign-off security option does not hold for 
subsystem 

-------~----------~----------------------------------------------------
YES YES Sign-on/sign-off security in effect for subsystem 

10.3.5 User Exits for Sign-on/Sign-off Security 

An installation may add user-coded exit routines which can be 
designed to accumulate statistical information and to perform 
additional sign-on or sign-off processing. The two exit routines the 
user is allowed are USRSGNON and USRSGNOF. The exit routines must be 
coded using standard linkage conventions and must be linkedited as 
resident in Intercomm. 

The user sign-on exit routine is called before the station is 
actually signed on, and after the Intercorrm checks have been 
performed. The entry point for user sign-on is USRSGNON. 

The parameter list passed via register 1 is as follows: 

1. The address of the station's entry in the Station Table(-6). 
Use the STALIST macro to generate the Dsect for the Station 
Table entry. The Dsect includes six bytes of header 
information which appears prior to the first entry in the 
table only. Thus the address passed is "table-entry minus 
six" to allow proper reference to the exact table entry. 

10-7 



Chapter 10 System Security Implementation 

2. The address of the SPA. 

3. The address of the sign-on message. Define a labeled Dsect 
statement and COPY MSGHDRC to form the message header Dsect. 
If the field MSGHVMI is X'FF' or X'OO', then a normal sign-on 
is indicated. If the field is X'FD', a sign-on message has 
been received for a terminal that is already signed on. 

4. The address of operator security information for the station 
in PMISTATB. Use the SECTB macro to define the Dsect. 

5. The address of the return code, which is a fullword. At 
exit, if the word is binary zero, then sign-on will be 
completed. If it is nonzero, sign-on will be terminated and 
error messages will be sent to the originating and control 
terminals. In the latter case, the user exit must free the 
input message areas using a STORFREE macro; the length is in 
the first two bytes of the message header. 

The user sign-off exit routine is called before the station is 
signed off. The entry point is USRSGNOF. The parameter list passed to 
USRSGNOF is similar to that for USRSGNON, as follows: 

1. The address of the entry for the station in the Station 
Table(-6). 

2. The address of the SPA. 

3. The address of the message. If the field MSGHVMI is X'FF' or 
X'OO', then a normal sign-off is indicated. If the field is 
X'FE', the message was generated by the automatic sign-off 
function. 

4. The same as for USRSGNON. 

NOTE: USRSGNOF cannot cancel the sign-off function. 

10.4 TRANSACTION SECURITY 

As with terminal security, transaction security involves three 
interrelated system areas: defining permitted transaction codes for 
each station, systemwide transaction security via the SPALIST, and 
optionally requiring transaction security before certain subsystems may 
process an input transaction. 

10-8 

J 



Chapter 10 System Security Implementation 

An additional form of transaction security, which operates 
independently of, and overrides, systemwide transaction checking 
options, is provided by the parameter SECUR=YES coded on a BTVERB macro 
in the Front End Verb Table. Such a verb may be entered only from the 
control terminal (internally forced for the system commands NRCD and 
IMCD, used to close down Intercomm). The default is SECUR=NO. Control 
terminal transaction security may be dynamically controlled by the 
system commands SECN and SECF (control terminal security on/off for the 
specified verb). 

10.4.1 Using Transaction Security 

If the transaction security option is in effect for the system, 
each verb entered by an operator at a particular terminal is checked. 
If the transaction code is a secured verb, and if allowed from that 
terminal, the transaction is processed as usual. If not allowed, the 
incoming message is rejected and the operator receives an error message. 
A list of secured verbs is defined in the STATION table via a SECVERBS 
macro; the allowed verbs from that list which apply to a specific 
terminal are defined via the VERBS parameter of the STATION macro, as 
described in section 10.5. 

Transaction security checking is performed after message 
dequeuing by the Subsystem Controller. The option to edit (by the Edit 
Utility) an input message before queuing (BTVERB macro, EDIT=BQ) may 
not be used if transaction security is to be effected for that verb. 

For each station, the user has the option of adding or deleting 
allowable transactions from the SECVERBS list via the system commands 
SWaN or SWOF. 

10.4.2 SPALIST Macro Parameter 

If the user intends to employ the transaction security option, 
the security parameter TRANSEC=YES must be coded on the SPALIST macro. 

There are two system control commands that can be entered on-line 
which are able to activate or deactivate the transaction security 
option systemwide. The AVRB transaction activates the security by verb 
feature, even if TRANSEC=YES was not coded in the SPALIST macro. The 
DVRB transaction deactivates the security by verb feature even if 
TRANSEC=YES was specified in the SPALIST macro; that is, it sets 
TRANSEC=NO. 

10-9 



Chapter 10 System Security Implementation 

10.4.3 SYCTTBL Macro Parameter 

TISE=YES must appear in the subsystem SYCTTBL if the user 
requires transaction security for transactions going to that subsystem. 

If, in the SPALIST macro, TRANSEC=NO, then the transaction 
security option is turned off for the whole system, even if in a 
subsystem's SYCTTBL macro TISE=YES. If TRANSEC=YES, but TISE=NO is 
coded on a subsystem SYCTTBL macro, then transaction security is not in 
effect for that subsystem. The relationship of TRANSEC and TISE is as 
follows: 

==========F======= ===================================================== 
TRANSEC TISE Resul t 

========== ============================================================ 
NO YES Transaction security turned off systemwide 

---------- --------- --------------------------------------------------_.-
YES NO Transaction security turned off for that subsystem 

~---------r------------------------------------------------------------
YES YES Transaction security in effect for the subsystem 

10.5 CODING THE STATION TABLE 

This section describes the macros and parameters for the Station 
Table which are necessary to implement terminal and/or transaction 
security. 

10.5.1 Structure of the Station Table with Security Processing 

When sign-on/sign-off and/or transaction security is to be 
implemented, the Back End Station Table (PMISTATB Csect) must be 
expanded to identify security requirements. 

The structure of the Station Table when security processing is 
utilized, and the positioning of user-coded macros, is illustrated 
below: 

PMISTATB CSECT 
GENSEC OPER=CORE 
SECVERBS 
STATION 
STATION 

PMISTOP 
END 

10-10 



Chapter 10 System Security Implementation 

10.5.2 GENSEC Macro 

If any of the Intercomm Basic Security checking options are going 
to be used, the user must supply a GENSEC macro. Only one GENSEC macro 
is coded, and it must appear before all SECVERBS and STATION macros in 
PMISTATB. It notifies the macro processor that one or more security 
table entries are to be generated in a separate Csect PMISECTB. 

The OPER parameter of the GENSEC macro indicates whether all the 
operator security codes covered by the sign-on/sign-off option will 
reside in core or on disk. Further details on how the codes are made 
resident on disk (data set SECOOO) appear later; OPER=CORE must be used 
to indicate only core-resident entries. 

10.5.3 SECVERBS Macro and STATION Macro/VERBS Parameter 

If the transaction security option is used, one or more SECVERBS 
macros must be coded, and must precede all STATION macros. The 
SECVERBS macro has two parameters: VERBS and TABLE. 

All transactions to receive a transaction security check must be 
specified in the VERBS parameter of SECVERBS macros. The maximum total 
number of transaction-ids permissible within the parameter sub lists is 
2048. The STATION macros define, for each individual terminal, the 
subset of transaction-id's allowed entry from that terminal. The 
transaction-ids in the STATION macros must come from the list in the 
SECVERBS macro, VERBS parameter. 

The TABLE parameter specifies whether or not an in-line table 
conSisting solely of the transaction-ids supplied by the VERBS 
parameter is to be generated. If TABLE=YES, an in-line table is 
generated. If TABLE=NO, an in-line table is not generated. 

If a Front End does not exist (Test Mode or Basic TCAM 
interface), the parameter TABLE=YES must appear in the SECVERBS macro. 

If a BTAWTCAMlVTAM Front End does exist, and the user wishes to 
conserve main storage, then TABLE=NO is allowed. In this case, the 
transactions under security must be specified by a set of BTVERB 
macros, in the BTVRBTB table, in the identical order in which they 
appear in the VERBS parameter of the SECVERBS macro. In addition, they 
must precede all other BTVERB macro instructions defining 
transaction-id's that do not require security checking. 

The following examples illustrate these coding requirements. In 
this example, an in-line table of the transactions in the VERBS 
parameter will be generated (the order and placement of BTVERB macros 
in the BTVRBTB is irrelevant). Figure 10-2 sunmarizes use of the 
SECVERBS and BTVERB macros. 

10-11 



Chapter 10 System Security Implementation 

Example 1: SECVERBS macro where Front End does exist: 

SECVERBS VERBS=(MLER,DLVE,INVE,RPTE,RDEQ,LWRE,TFQZ, X 
GRTE,BRNI),TABLE=YES 

~-----------------------------------------------------------------------

BTVRBTB 

Example 2: 

CSECT 

BTVERB VERB=BRNI, ••• 
BTVERB VERB=DLVE, ••• 
BTVERB VERB=MLER, ••• 
BTVERB VERB=INVE, ••• 
BTVERB VERB=RPTE, ••• 

BTVERB VERB=RDEQ, ••• 
BTVERB VERB=LWRE, ••• 
BTVERB VERB=GRTE, ••• 
BTVERB VERB=TFQZ, ••• 

PMISTOP 
END 

SECVERBS macro where Front End does not exist: 

SECVERBS VERBS=(MLER,DLVE,INVE,RPTE,RDEQ,LWRE,TFQZ, 
GRTE,BRNI),TABLE=YES 

10-12 



Chapter 10 System Security Implementation 

F=============-==========================-=============================: 
SECVERBS BTVERB Result 

F============= ========================== ============================= 
VERBS=(list) Front End does not exist The list of transactions 
TABLE = YES (Test Mode). that will be in the VERBS 

parameter of subsequent 
STATION macros will be under 
transaction security check 
for the specified stations 
and will be generated in 
main storage. 

~---------------------------------------- ------------------------------
VERBS=(list) Front End exists. Order The list of transactions 
TABLE=YES of BTVERB macros does that will be in the VERBS 

~-------------
VERBS=(list) 
TABLE=NO 

not matter. 

Front End exists. Each 
transaction in the 
SECVERBS VERBS param
eter must have a BTVERB 
macro in the same order 
as the transactions 
appear in the SECVERBS 
macro, and preceding all 
other BTVERB macros in 
BTVRBTB. 

parameter of subsequent 
STATION macros will be under 
transaction security check 
for the specified stations 
and will be generated in 
main storage. 

The set of transaction-ids 
under security will be the 
set specified in the VERBS 
parameter of the SECVERBS 
macro, but will be listed in 
the BTVRBTB. 

Figure 10-2. Summary and Use of SECVERBS and BTVERB Macros 

10-13 



Chapter 10 System Security Implementation 

10.5.4 STATION Macro/UNIVER and OPER Parameters 

This is a STATION macro that, if used, has only two parameter 
entries, UNIvER and OPER. It is important to remember that not all 
stations need be under the sign-on/sign-off security option; for each 
station under terminal security, there is a set of operator codes 
associated with the station, which will be the only operator codes 
allowed to sign on at that station. However, if the user chooses, he 
may specify in the first STATION macro a set of universal operator 
codes which will be allowed to sign on to all terminals under the 
sign-on/sign-off option. If used, the macro appears as: 

STATION UNIVER=YES, x 
OPER=(all codes for universal entry) 

This STATION macro must precede all other STATION macros in 
PMISTATB, and only one STATION macro specifying UNIVER=YES is allowed 
to appear. It has no other parameters except UNIVER and OPERe 

10.5.5 Other STATION Macro Parameters in PMISTATB 

The STATION macro contains parameters for both the 
sign-on/sign-off security and transaction security options. Only one 
STATION macro per terminal is allowed, whether one or both types of 
security are in effect. Only those operands of the STATION macro 
pertaining to security are described here; consult Basic System Macros 
for coding details. 

The OPER parameter indicates whether or not sign-on/sign-off 
security is required at the terminal. An absence of assigned operator 
codes indicates sign-on/sign-off security is not required. OPER 
specifies, in a sublist, the operator security codes to be considered 
as the only operator codes permitted entry at the terminal (unless 
overridden by a universal STATION macro as described above). 

The RBN parameter provides a pointer to the relative location on 
a SECOOO file at which the subject terminal's security codes can be 
located. If all the associated security codes are to be core-resident, 
this parameter is not meaningful. However, if all the codes are to be 
located within the SECOOO file, then the RBN value is the last five 
digi ts 0'; the member-name used to place the entry in the file (see 
Section 10.5.7). 

10-14 



L 

Chapter 10 System Security Implementation 

The MAXSIGN parameter specifies the maximum number of times an 
operator can reenter an Intercomm SIGN transaction after failing in the 
attempt to pass sign-on/sign-off security for the terminal. Failure to 
sign on will be recorded at the Intercomm control terminal, and failure 
to sign on within the specified number of attempts will result in an 
immediate terminal down condition, with notification again sent to the 
Intercomm control terminal. An Intercomm TPUP (or STLU) transaction 
will be required to place the terminal on-line again. 

The AUTOFF parameter specifies whether or not the terminal is to 
use the automatic sign-off feature of sign-on/sign-off. This parameter 
is meaningful only if security codes have been assigned to the OPER 
parameter. Code YES to use this feature, NO to bypass this feature. 
If YES is coded, the automatic sign-off duration interval is provided 
via either the TIME parameter of the STATION macro or the SPALIST 
macro, SGNTIME parameter. The default code is YES. 

The TIME parameter indicates whether or not the otherwise default 
Sign-off duration interval specified by the SPALIST macro, SGNTIME 
parameter, is to be overridden. This parameter is meaningful only if 
AUTOFF=YES has been specified. A zero code indicates that the SGNTIME 
interval is not to be overridden. A nonzero code indicates it is to be 
overridden and specifies, in minutes, the overriding sign-off interval, 
that is, the specific duration the subject terminal may retain a 
signed-on security clearance before that clearance is to be 
automatically revoked. 

The VERBS parameter indicates whether or not transaction-id 
security is required at the terminal. The transactions listed in this 
parameter must come from the VERBS parameter in SECVERBS in the same 
order as in the SECVERBS list. If more than one transaction-id is to 
be specified, they must be coded as a parameter sublist. An absence of 
VERBS indicates that transaction-id security is not required. 

10.5.6 Definition of Range of Verbs per Terminal for Transaction 
Security 

The SWON and SWOF transactions can be used only on the 
transactions within the transaction security range of a terminal, which 
is defined below. 

Consider the transactions in the VERBS list of the SECVERBS macro 
as being numbered sequentially, starting at 1. For a particular 
terminal, find the corresponding lowest number verb in the VERBS list 
of its STATION macro. Let the number of that verb be L. L is divided 
by 8, yielding a quotient (m) and remainder (q) (that is, q is less 
than 8): 

L=8m+q 

10-15 



Chapter 10 System Security Implementation 

However, if L is an exact multiple of 8, then q=8, and m=m-1 (m=O if 
L=8). The lowest number verb in the range for that terminal is then: 

r 1=L-q+1 (for the first through eighth verbs, r1=1) 

Now take the corresponding highest number verb in the VERBS list 
of the same terminal's STATION macro and call it H. H is divided by 8 
yielding a quotient (m) plus a remainder (q), that is, 

H=8m+q 

The highest number verb in the range for that terminal is then: 

r2=8(m+1) (if H is an exact multiple of 8, r2=H) 

In other words, all verbs from the SECVERBS list with numbers 
equal to or greater than r1, or less than or equal to r2, can be 
acted upon by the SWON and SWOF transactions, for that terminal. 
Furthermore, no other secured verbs outside the range may be entered at 
that terminal. 

The reason for all this is that a bit string is generated for the 
secured verbs list created by SECVERBS. The string consists of a bit 
for each verb, but the bits are grouped in units of 8. A corresponding 
bit string is also generated for each terminal, with a bit set on for 
each verb defined on the STATION macro. The bits are grouped in 
corresponding units of 8, so that even if a verb is in the middle of a 
SECVERBS verbs list unit, the whole unit from that list is included. 

If the user wishes to simplify operating instructions, he can 
pretend that the range for the station consists only of those verbs 
falling between and including the lowest number transaction listed in 
the STATION macro and the highest number listed in the STATION macro. 
But the user must be careful to remember that the actual range for the 
terminal may be larger. 

Following is an example of determining a range for a terminal: 

SECVERBS 

STATION 

VERBS=(TBYV,CLYE,NRMY,LYRE,JALY,ALLI,TPQR,LFTY, 
SNPQ,LLNO,FGRS,KDYO,LPQR,ATST,BSST,NYCE, 
PLAU,PTER,FLFS,JWSP,JQRL,JMNO,FLOP,RWYE), 

TABLE=YES 

TERM=(NYC01) , 

VERBS= (KDYO,ATST, PTER) 

10-16 

x 
X 
:x 

:x 
:x 
'X 
X 



Chapter 10 System Security Implementation 

The verbs in the SECVERBS list can be considered as consecutively 
numbered from 1-24, that is, TBYV is the first verb, RWYE is the 24th 
verb. The verbs in the VERBS parameter for the STATION macro for NYC01 
terminal are: 

12th 

KDYO - 12th verb 
ATST - 14th verb 
PTER - 18th verb 

Thus, the lowest number 
verb listed in SECVERBS, 

L = 12 
L = 8m+q 

12 = 8*1+4 

from 
from 
from 

verb 
KDYO: 

SECVERBS 
SECVERBS 
SECVERBS 

on the NYC01 STATION macro 

r1 = 12-q+1 
r1 = 12-4+1 
r1 = 9 

is the 

The lowest number verb from SECVERBS possible in the range of 
NYC01 is the ninth verb from SECVERBS, namely SNPQ. 

The highest number verb appearing in the STATION macro is the 
18th verb from SECVERBS, PTER: 

H = 8m+q r2 = 8(m+1 ) 
18 = 8*2+2 r2 = 8(2+1) =24 

The highest verb possible in the range of NYC01 is verb number 24 
fran SECVERBS, or RWYE. 

Thus, an operator from a terminal can use the SWON instruction to 
activate transaction security for NYC01 on the verbs SNPQ, LLNO, FGRS, 
LPQR, BSST, NYCE, PLAU, FLFS, JWSP, JQRL, JMNO, FLOP, RWYE, even though 
they are not in the VERBS parameter of the STATION macro for NYC01. 

10.5.7 Loading Operator Codes on Disk for Station Security Option 

To have operator codes on disk, the user must create a symbolic 
11 brary, that is, SYMSEC with members consisting of the operator codes 
under security for each terminal; each STATION macro is an entry in the 
library. 

Members of SYMSEC appear as: 

SECxxxxx CSECT 
GENSEC 
STATION 
END 

OPER=DISK 
OPER=(list) 

10-17 



Chapter 10 System Security Implementation 

The member names in SYMSEC must be SECxxxxx, where xxxxx is all 
numeric. All xxxxxs must begin at 00001 and be in sequential order 
with no five-digit omissions. 

The order in which each station appears in the library SYMSEC 
must correspond to its RBN number, that is, if the STATION macro for 
terminal NYC01 has RBN=00005, it must be the fifth entry in the library 
(member-name SEC00005). 

For each set of operator codes on disk listed in SYMSEC, it is 
necessary to assemble and linked it the member with the same name into a 
load module library, that is, MODSEC. Create the SECOOO file by 
executing the off-line File Load Utility PMIEXLD against MODSEC. (See 
Chapter 12.) 

10.6 IMPLEMENTATION OF USER-WRITTEN SECURITY ROUTINES 

Under Basic Security, the user can supply his own security checks 
at the subsystem level in addition to or instead of the sign-on/sign-off 
and transaction security checks supplied by Intercomm. If this option 
is chosen, he must perform the coding steps described below. 

10.6.1 Coding Security Subroutines 

Before the Subsystem Controller passes a message to a subsystem, 
it checks the Subsystem Control Table entry for the subsystem to 
determine whether incoming messages for this particular module are to 
be passed through a security subroutine. If a security routine has 
been provided for the subsystem, the message will be passed to this 
subroutine before being passed to the actual application program. When 
called, the security subroutine is passed, via register 1, the address 
of a parameter list consisting of: 

1. Address of message 

2. Address of System Parameter Area 

3. Address of Subsystem Control Table entry 

The user-coded security routine will determine whether this 
message is or is not to be passed on to the application program. If 
the message passes the security check, the security routine will return 
to the Subsystem Controller after placing a return code of 0 in 
register 15. 

If the message does not pass the security check, a return code of 
16 or greater should be placed in register 15. Under this condition, 
the user must provide coding within his security routine to generate 
and output any required error message. 

10-18 

J 



Chapter 10 System Security Implementation 

Also, in the case where the message does not pass the security 
check, the security routine must free the incoming message area if the 
subsystem was coded in Assembler Language. If the subsystem was coded 
in a high-level language, the Subsystem Controller will free the 
message when cancelled by the security routine. To determine language 
type, use the Dsect SCTLISTC (COPY member) for the subsystem SCT entry. 

The user-coded subroutines must be resident and use standard 
linkage conventions. 

10.6.2 SPALIST Macro Parameter 

USERSEC=YES must be coded on SPALIST to indicate user security 
routines are to be honored. 

10.6.3 SYCTTBL Macro Parameter 

If a security routine· is to be provided for a particular 
subsystem, the parameter SECU of the SYCTTBL macro must be coded~ 
Otherwise, the default value of 0 (no security routine) will be placed 
in the Subsystem Control Table entry. Any number from 1 to 63 may be 
coded in the SECU parameter. This number will be used as an index to 
access the actual address of the security routine, found in a table of 
user security routine VCONs coded in a Csect named SECURITY. 

10.6.4 Security Table 

The SECURITY Csect must contain address constants pointing to 
each user security routine. The first VCON in this table is the 
address of security routine number 1; the second VCON is the address of 
routine 2; etc. No PMISTOP macro is needed at the end of this table. 
User security routines may have any name which does not conflict with 
system module names (see operator disk member-names above, and linkedit 
below) • 

SECURITY CSECT 
DC 
DC 

END 

V(SEC01 ) 
V(SEC02) 

10-19 



Chapter 10 System Security Implementation 

10.6.5 Linkedit Requirements 

The propel" include cards for Basic Security logic modules are 
produced when the user specifies SECUR=YES when assembling the ICOMLINK 
macro to generate an Intercomm linkedit deck. The modules are 
PMIAUTOF, PMIHEADR, PMISIGN, SECUREOO, SECURE01 and SECURE02. 
User-supplied terminal security routines must have member and entry 
point names USR SG NON and USRSGNOF as previously discussed. 
User-supplied subsystem security routines must be specially included, 
using the names in the VCONs coded in the Security Table, which must 
also be included via a user-coded INCLUDE statement. 

10.7 Multiregion Intercomm Considerations 

If SOSO=YES is coded for any SYCTTBL in the Intercomm system, 
then, when executing under a Multiregion Intercomm system, terminal 
(sign-on/sign-off) security only applies to the single region where the 
PMISIGN subsystem is resident. This restriction may be overcome by 
using RAP processing (operator signs on only to the region to which the 
terminal is locked). Alternatively, all SYCTTBLs for which SOSO=YES is 
required can be grouped in one SCT in one region (the same region where 
PMISIGN processes the SIGN command). 

Transaction security and user-coded subsystem security exit 
routines are processed just before a message is passed to a subsystem 
and are therefore not affected by execution in a Multiregion system. 
Table coding and linked it requirements described in the above sections 
for these two security types must be present in each region for which 
either type of security is desired. 

10-20 



Chapter 11 

SYSTEM TUNING TECHNIQUES 

11.1 INTRODUCTION 

One of the major areas of concern in anyon-line system 
environment is that of system tuning: those procedures involved in 
optimizing system performance from the points of view of response time, 
throughput and resource utilization. 

This chapter presents techniques for system tuning from the 
following points of view: 

a System tuning and performance evaluation 

~ System statistics reports and display commands 

0 Tracing a message on the log 

• Factors affecting performance 

• The Fine Tuner commands 

• Response time considerations 

QI» MVS Tuning recommendations 

• Debugging and tracing facilities 

Debugging an on-line system is a task ranging in complexity from 
simple errors in application program code to virtually random errors in 
the interaction of program logic, due to time-dependent combinations of 
message processing. Debugging techniques are described in the 
Intercomm Messages and Codes manual. 

11.2 SYSTEM TUNING AND PERFORMANCE EVALUATION 

System tuning and subsequent performance evaluation in the 
on-line system environment involves consideration of the following: 

1. Transaction response time, typically measured as elapsed time 
from request for entry of a message from the terminal until 
the first character of response is received 

2. Message throughput, typically measured in terms of messages 
per hour 

3. CPU utilization, derived from operating system accounting 
statistics 

11-1 



• 

• 



Chapter 12 

OFF-LINE UTILITIES 

12.1 INTRODUCTION 

The utility programs discussed in this chapter are provided with 
the Intercomm system to assist the user with operations common to the 
on-line environment and/or to provide data set creation for Intercomm 
facilities. 

12.2 LOG PROCESSING PROGRAMS 

At the completion of execution of an Intercomm job, one of the 
following programs may be used to process the system log (INTERLOG) for 
further analysis of message processing: 

8 LOGPRINT--formatted printout of log 

• LOGANAL--log sort/analysis 

12.3 INTERCOMM LOG DISPLAY (LOGPRINT) 

An off-line utility program may be used to print the Intercomm 
system log when execution of Intercomm has terminated. LOGPRINT 
contains routines that select specified records for printing. 
Selection of records can be by date, time, terminal, subsystem code, 
log code, etc. Selection criteria are established by a SYSIN file. 
The default is to print all INTERLOG entries. The first page of the 
report contains only the title line and the parameter selection 
statements, or, if none, the legend NO CARDS FOUND. 

Figure 12-1 illustrates a sample output page from this program, 
where the circled notation indicates: 

o 
o 

Each page contains a title line defining the standard message 
header field names. 

Each message is printed in the following format: 

(i) message header, spaced as per the title line heading 

message text, 32 characters per line CD 
o offset (in decimal) relative to zero within text 

~ hexadecimal format 

~ EBCDIC format 

12-1 



.....
. 

N
 I N
 

'1
:j

 .... ~
 

t1
 

(1
) .....
. 

N
 I .....
. 

ti
l ! I-
' 

(1
) ~ r
t 

'd
 

~
 

r
t "t
I 

III
 

Q
Q

 
(1

) 

H
'l 

t1
 ~ b ~
 
~
 

H
 ~ c:
 

r
t .... I-
' .... r
t 

'<
 

O
A

T
f 

8
2

.2
q

3
 

T
IM

£ 
2

ft
.5

8
.!

>
';

 
•
•
•
•
 
I
N

T
l
H

C
U

M
M

 
L 

() 
Ii

 
O

I
S

P
L

A
y

 
•
•
•
•
 

P
A

G
[ 

.. 
I4

S 
G

lf
 N

 
T

H
R

( 
AO

 
Q

PR
 

R
sr

 
SS

C
 

M
M

N 
o 

A
 r

f 
T

I"
1"

 
"n

 
P

IO
 

(
0

 
U

SR
 

~
M
~
 

LO
G

 
~
l
K
 

V
~
I
 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

.2
 

0
2

 
•
•
 /0

0
0

0
 

.U
/9

0
f_

 
10

; 
8

2
.2

'H
 

2
0

.1
1

."
1

1
6

 
n

S
T

 1
 

n 
0

0
1

 
0

0
 

2 
f 

3 
0

0
 

5
0

 
.-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-.
 

5
b

 
0

0
0

0
0

0
 

o 
0

2
 

••
 /0

0
0

0
 

••
 /
0

0
0

0
 

C
6

C
II

[2
[3

 
~
R
C
q
0
5
[
3
 
C
5
0
9
0
3
0
~
 

C
1

2
6

 
II 

8
2
.
2
9
~
 

2
1

).
1

1
.4

6
1

0
 

T
[ 
S

, 
1 

0
0

0
0

 
0

0
 

.F
li

S
T

,I
N

T
(R

lO
G

. 
, 

f
l 

0
0

 
0

0
 
• 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

5
6

 
0

0
0

0
0

0
 

4
2

 

1
3

1
 

o
n

o
o

o
 

0
0

0
0

3
2

 
0

0
D

l6
. 

8
8

 
0

0
0

0
0

0
 

O
O

O
D

32
 

4
2

 

2
5

2
 

0
0

0
0

0
0

 
8

0
0

0
3

2
 

01
lO

0b
4 

0
0

0
0

9
6

 
11

00
12

11
 

0
0

0
1

6
0

 
0

0
0

1
9

2
 

tI
8 

0
0

0
0

0
0

 
0

0
0

0
3

2
 

4
2

 

4
7

 
O

O
O

O
!lO

 

If
1

 
0

0
0

0
0

0
 

"
l 

10
11

 
0

0
0

0
0

0
 

O
O
O
O
~
2
 

0
0

0
0

6
' 

R
II

 
O

O
uo

oo
 

o 
F

2
 

.R
/O

O
O

q
 

••
 /0

0
0

0
 

1
6

 
C

6
C

8
[l

ll
 

6
8

C
'0

5
£

3
 
(
5
D
~
D
3
0
b
 
C
1
2
~
 

F
2

 
.R

/O
O

Il
,)

 
••

 /0
0

0
0

 
1

6
 

0
2

 
.U

/0
0

[4
 

.R
/0

0
0

9
 

1
1

 
ff

0
2

0
0

2
f 

1
4

0
1

0
0

0
1

 
0

9
0

1
C

9
0

5
 

[3
C

5
0

9
0

3
 

4
0

4
0

4
0

4
0

 
4

0
4

0
4

0
F

4
 

0
'0

9
0

1
'0

 
~
0
4
0
"
O
"
0
 

0
1
~
0
4
0
.
0
 

4
0

.0
4

0
4

0
'.

0
0

1
0

9
0

1
 
4
0
4
0
"
8
~
O
 

F
2

 
.R

/0
0

D
9

 
•
•
 /0

0
0

0
 

t
~
 

0
0

0
0

0
0

0
0

 
0

0
0

0
0

0
0

0
 

00
11

0U
O

O
 

0
2

"0
0

0
0

0
 

0
0

0
0

0
0

0
0

 
0

0
0

0
0

0
0

0
 

0
0

0
0

0
0

0
0

 
0

0
0

0
 

0
2

 
.U

/0
0

[4
 

.R
/0

0
0

9
 

1
1

 

8
2

.2
')

'.
 

2
0

.1
1

.4
6

1
0

 
T

[S
T

I 
...

.. 
8

2
.2

9
3

 
2

0
.1

1
.4

1
6

1
 

T
£

S
T

l 

8
2

.2
'}

3
 

2
0

.1
1

.4
1

1
1

 
T

[S
T

I 
0

6
C

1
0

2
0

9
 

0
1

4
0

4
0

4
0

 
4

0
.0

4
0

fl
 

f2
0

3
0

9
0

1
 

4
0

4
0

4
0

0
5

 
0

9
0

1
.0

.0
 

4
0

4
0

4
0

4
0

 
.0

.0
0

6
0

9
 

4
0

4
0

.0
f4

 
0

8
0

9
0

1
 •
•
 

4
0

4
0

 ..
 0

f
l 

4
U

F
3

f3
 

1
1

2
.2

q
3 

2
0

.1
1

.4
1

1
5

 
T

(S
T

I 
0

0
0

8
0

0
0

0
 

0
0

0
1

0
0

0
0

 
0

0
0

0
.0

0
. 

0
0

0
1

0
0

0
0

 

8
2
.
2
9
~
 

2
0

.1
1

 •
• 

1
1

5
 

T
E

ST
 1

 

0
2

 
••

 /0
0

0
0

 
.U

/O
O

("
 

4
0

4
.'

0
.0

 
4

0
4

0
.0

.0
 

4
0

4
0

.0
4

0
 
4
0
~
0
4
0
4
0
 

4
0

£
2

[3
C

I 
[3

(9
[2

[3
 

C
9

C
3

E
2

,,
0

 
0

9
C

5
0

1
0

6
 

C
5

0
3

(5
C

3
 

[3
4

0
4

0
4

0
 

4
0

C
1

C
3

C
3

 
C

5
£

2
£

2
4

0
 

4
0
~
0
4
D
4
0
 

•
•
•
•
 4

0
4

0
 

4
0

4
0

4
0

4
0

 
4

0
4

0
4

0
4

0
 

C
IC

1
C

5
C

9
 

0
5

[\
C

5
0

9
 

0
3

D
6

C
1

4
0

 
.0

"
0

"
0

4
0

 
4

0
4

0
4

0
4

0
 

4
0

,,
0

4
0

.0
 

4
0

,,
0

4
0

 .. 
0 

.0
4

0
 .. 

0
,,

0
 

4
0

.0
4

0
4

0
 

4
0

"O
F

 •
•
 0

 
,,

0
.0

.0
4

0
 

.O
F

0
4

R
F

3 

1
8

 
8

2
.2

9
] 

2
8

.1
1

.,
,1

1
9

 
T

[S
T

I 
~
n
4
0
~
0
~
O
 

(6
C

9
0

3
C

5
 

41
C

W
C

10
5 

C
4

0
3

C
5

0
9

 
0

9
[3

1
5

C
6

 
C

'}
0

3
C

5
4

0
 

0
5

(1
0

4
C

5
 
"
0
~
0
4
0
r
2
 

~
o
~
o
"
n
~
o
 
"
0
4
0
~
O
~
O
 

.. 
0

4
0

4
0

.0
 

.0
4

0
4

0
"
0

 
4

0
4

0
f3

0
6

 
[
~
C
I
0
3
4
0
 

4
0

4
0

4
0

4
0

 
C

I[
5

(5
0

9
 

~
O
~
.
"
O
F
I
 

F
2

.0
4

0
4

0
 

4
0

4
0

4
0

.0
 

.0
4

0
f4

_
0

 
QO

 ..
 0

4
0

4
0

 
4
0
4
0
4
0
~
0
 

4
0

.0
4

0
4

0
 

.0
4

0
4

0
"
0

 
f3

3
7

 

0
2

 
.U

/O
O

£
. 

.R
/0

0
0

9
 

0
0

0
0

0
0

.0
 

0
0

0
1

0
0

0
0

 
0

0
0

6
0

0
0

0
 

IP
C

O
O

O
O

O
 

0
0

0
0

0
0

0
0

 
0

0
0

0
0

0
0

0
 

0
0

0
.0

0
0

0
 

0
0

0
0

 

1
1

 
8

2
.2

"
3

 
2

D
.l

1
.4

1
1

9
 

T
[S

'1
 

0
2

 
•
•
 /u

O
O

O
 

.U
/O

O
[4

 
1

8
 

o 
0

2
 

••
 /0

0
0

0
 

•
•
 /0

0
0

0
 

n 
0

5
D

9
0

C
. 

2
6

 

o 
r
~
 

.J
/O

o
O

I 
•
•
 /0

0
0

0
 

1
9

 
D

50
9C

 3
C

. 
2

6
 

F
2

 
.J

/O
U

O
I 

••
 /0

0
0

0
 

1
9

 

0
2

 
.1

1
/0

0
[4

 
•
•
 /o

o
n

O
 

2
0

 
F

F
o

2
0

0
2

0
 
0
1
3
C
5
C
~
C
 

5
C

.O
C

1
0

6
 

0
6

C
 ..

..
 O

C
5 

0
9

C
3

0
6

0
4

 
0
4
4
~
c
'
}
r
2
 

"O
C

3
0

j0
6

 
[?

C
5

C
4

1
A

 
F 

If
.,

 

00
1A

O
O

O
O

 
0

0
0

)0
0

0
0

 
0

0
0

1
0

0
0

0
 

0
0

0
0

0
0

0
0

 

8
;>

.2
9

] 
2

0
. 

1 
7

. ,
';)

 9
9

 
T

E
S

T
l 

A
2

.2
"3

 
2

0
.1

1
.5

6
9

1
 

C
N

T
O

I 

8
2

.2
"
3

 
2

0
.1

1
.5

1
0

0
 

C
N

T
O

I 

0
2

.2
9

' 
2

0
.1

1
.!

I1
0

0
 

C
N

T
O

I 

fl
2

.2
Q

3
 

2
0

.1
1

.!
I1

0
0

 
T

O
_L

L
 

[5
(5

0
5

(9
 
~
5
C
1
'
0
5
C
 

5
C

5
C

4
0

4
0

 
C

9
0

';
[]

C
5

 
~
D
4
0
~
O
f
l
 

f9
b

C
f2

fl
l 

6
0

F
8

f2
4

0
 

4
0

f2
f0

4
B

 

] 
F

2 
.J

/O
O

U
I 

••
 /
0

0
0

0
 

]
~
 

8
2
.
?
q
~
 

2
0

.1
7

.5
1

0
0

 
eN

T
D

l 
0

0
0

0
0

0
0

0
 

0
0

0
0

0
0

0
0

 
0

0
0

1
0

0
0

0
 

02
fO

O
O

O
O

 
0

0
0

6
0

0
0

0
 

0
0

0
1

0
0

0
0

 
0

0
0

0
0

0
0

0
 

0
0

0
0

0
0

0
0

 

M
SG

Lr
N

 
U

IR
E

A
O

 
U

PR
 

R
SC

 
c;

c;
c 

M
M

N 
01

. '
[
 

T
lM

f 
T

lO
 

P
IO

 

l.
, 

L 

0
0

0
1

 
00

 
·f

tI
S

T
,I

N
T

£
R

L
O

G
. 

0
0

0
0

 
0

0
 

0
0

0
1

 
0

0
 

3 
01

 
0

0
 

3 
1

0
 

0
8

 

3 
01

 
!t

o
 

•
•
•
•
•
•
•
•
•
•
•
 I

N
T

E
R

lO
G

 •
••

 
· 

, ..
. 

.. 
~
 ..

. 
0

0
4

[ 
0

0
 

3 
FA

 
0

0
 

F
F

 
• 

FF
 

5!
1 

12
 •

•
•
 * . .. 

0
.3

3
 

• 

H
 

-..
..•

••
..•

.•
•.

..•
..•

...
...

..•
•.

• 
....

..
..

..
..

..
..

 
• 

0
0

0
0

 
0

0
 

3 
3

0
 

0
0

 
5

0
 

0
0

0
1

 
8

0
 

] 
F

2 
0

0
 

5
0

 
• 

fl
L

[ 
H

A
N

O
L

fR
' 

• 
S

T
A

T
IS

T
IC

S
 

H
fP

O
R

T
.f

ll
( 

N
A

M
[ 

S
. 

·[
l[

C
T

 
A

C
C

E
SS

 
• 

• ·A
G

[I
N

T
E

R
lO

G
 

• • 
• 

0
0

0
0

 
0

0
 

0
.3

l 
• 

3 

TO
TA

L 
1

2
 FA

 
0

0
 

A
V

E
R

· 
'I 

* * 

~
O
 

•.
•.

...
•.

••
...

.•
.•

..•
..•

••
...

•.
••

• 
* 
•
•
•
•
•
•
•
•
•
•
•
•
•
•
 

!l
0

0
l 

0
0

0
0

 
·N

R
C

D
. 

11 
0

0
 1

 
·N

R
C

O
. 

ilO
ilO

 

!l
0

0
1

 

0
0

 

0
0

 

0
0

 

00
 

0
0

 

3 
f3

 
0

0
 

4 
f
l 

0
0

 

~
 

01
 

0
0

 

.. 
jO

 
0

0
 

II
 

01
 

0
0

 
•
•
•
•
•
•
•
•
•
•
 

G
O

O
D

 
[V

[N
IN

G
 

•
•
•
 

.
R
C
O
~
M
 

IS
 

(L
O

S
[O

: 
1

0
-2

0
-A

2
 

·1
1

 

1I
0C

O
 

0
0

 
4 

fl
o

 
0

0
 

5
0

 

0
0

 
• 

F
f 

* 

FF
 

5
0

 
I N

T 
[
. 

2
u

 •
• • 

FF
 

• 
•
•
•
•
•
•
•
•
•
•
•
•
•
 0

 •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
 • 

c
o

 
U

SR
 

kM
N

 
lO

G
 

R
lK

 
V

M
I L 

("
) i '0
 
~
 

(1
) '1
 

-
"
 

I\
)
 

o ..., ..., I t"
" .....
 

::s CD
 c ~
 

.....
 

I-
' .... ~ .... CD
 

rn
 



Chapter 12 Off-Line Utilities 

The JCL required for execution is shown in Figure 12-2. 

II 
IIJOBLIB 
II 
IIINTERLOG 
II 

JOB 
DD DSN=INT.MODxxx DISP=SHR 
EXEC PGM=LOGPRINTt,PARM=nnn,REGION=rrrK) 
DD DSN= ________ _ 

DISP=OLD, 
DCB=BLKSIZE=bbbbb II 

IISYSPRINT 
II 
IISYSUDUMP 
IISYSIN 

DD SYSOUT= , 
DCB=(DSORG=PS,BLKSIZE=(multiple of 121)) 

DD SYSOUT=A 
DD * or DUMMY,DCB=BLKSIZE=80 

xxx is the library containing the LOGPRINT load module. This 
will be REL, unless using File Selection in which case the 
LOGPRINT load module must be relinked and placed on MODLIB. 

nnn is the number of lines per page. The default is 58. 

rrrK is at least twice the block size plus 15. 

bbbbb 

12.3.1 

is the length of the largest block on the data set. (This 
parameter may be omitted when using standard label 
volumes. ) 

Figure 12-2. JCL for LOGPRINT Execution 

Description and Function of Control Records (SYSIN) 

All of the selection records are fixed-format, fixed-position. 
There is no validation of data. The control field begins in column 1 
and indicates the following selective options: 

• Date Selection 

Select records within a date range. 

cc cc cc 
1 6 12 

DATE~yyddd~yyddd t ~I---- ending year and date 

~---------beginning year and date 

L-----------specify date selection 

12-3 



Chapter 12 

• 

Off-Line Utilities 

Time Selection 

Select records within a time range. If both time and date 
are entered, the range is from the beginning time and date to 
the ending time and date. 

cc 
1 

cc 
6 

cc 
11 

TlME)5hhmm)5hhmm 

i • ..... _-- ending time 

.... ------ beginning time 

• Terminal Selection 

Select records for specified terminals. Records from several 
terminals can be selected, up to a maximum of 41 terminals. 

cc 
1 

cc 
6 

cc 
12 

TERM)5tid01,tid02, •.• i • ... ---terminal-ID 

'-------- terminal-ID 

• Subsystem Selection 

Select records with specified sending or receiving subsystem 
codes. Any number of subsystem codes can be entered on 
multiple entry records, up to a maximum total of 41 codes. 

cc 
1 

cc 
6 

cc 
11 

SSC)5)5xxxx,yyyy ••• i ~I----- subsystem codes 

'---------------entered in hex 

12-4 



L 

Chapter 12 Off-Line Utilities 

• Log Code Selection 

Select records with specified log codes (in hex). Any number 
of log codes can be entered on multiple entry records, up to 
a maximum total of 41. 

cc cc cc 
1 6 9 

LGID)sxx, yy, ••• 

• BMN Selection 

Select records within a BMN range. 

cc cc 
6 

cc 
13 

BMN)S)Snnnnnn,nnnnnn 

t • .... --ending BMN 

""------- starting BMN 

• MMN Selection 

Select records within an MMN range. 

cc 
1 

cc 
6 

cc 
13 

ending MHN 

starting MMN 

12-5 



Chapter 12 Off-Line Utilities 

• Print Selection 

Print only message header or message header and 1 line of 
text. 

cc cc 
1 6 

PRNT.sHEAD 

~ .. ------Header only 

cc cc 
1 6 

PRNT.sPART 

~ .. ------ Header and 1 text line 

• File Selection 

Select File Recovery log records. To use this option, the 
LOGPRINT module must first be linkedited as follows: 

II EXEC LKEDP,Q=LIB,LMOD=LOGPRINT 
IILKED.SYSIN DD * 

INCLUDE SYSLIB(LOGPRINT) 
INCLUDE SYSLIB(IXFSNAPL) 

Note that the execution JCL STEPLIB must specify INT.MODLIB. 

The format of the File Selection control record is as follows: 

cc cc 
1 6 

FILE~ddname~ddname ••• ddname 

where ddname is the ddname of a file which is to be 
selected. ddnames must be separated by one or more blanks. 
Any number of files may be se lected, up to a maximum of 41. 
If TIME and/or DATE selection is also specified (see above), 
then only File Recovery records within that TIME/DATE range 
will be printed. If no ddnames are specified on the FILE 
statement, then all File Recovery log records are printed. 

The format in which File Recovery records are printed differs 
from messages. An example of this format may be found in the 
File Recovery Users Guide, "Sample IXFSNAPL Output". 

12-6 



Chapter 12 Off-Line Utilities 

The following are examples of selective log printing. 

Example: Print only records from 12: 39 through 12: 45 with subsystem 
codes OOE4 or 00D3. 

//SYSIN DD * 
TIME~1239~1245 
SSC161600E4,00D3 
/* 

Example: Print only records from 82219 through 82221 for terminals 
CNT01 and CRT03 with subsystem codes 0805 or C912 and log 
code 01. 

/ /SYSIN DD * 
TERM~CNT01 
DATE~82219~82221 
SSC16160805,C912 
TERM16CRT03 
LGID1601 
/* 

Example: Print only File Recovery records for ddnames ISAMX and BDAMY 
from 15:21 on 82218 through 07:00 on 82219. 

/ /SYSIN DD * 
TlME161521 ,0700 
DATE~82218,82219 
FILE~ISAMX~BDAMY 

/* 

12-7 



Chapter 12 Off-Line Utilities 

12.4 LOG ANALYSIS PROGRAM (LOGANAL) 

The log analysis program operates on Intercomm log data sets from 
one or more successive executions of Intercomm to produce traffic 
histograms or response time reports. The PARM field on the EXEC 
statement invoking LOGANAL indicates reporting options. 

12.4.1 Traffic Histograms 

Traffic histograms portray the number of inputs during each 
half-hour interval. Depending upon the ANALYZE option specified at 
LOGANAL invocation, histograms are produced by terminal (TERM option), 
the entire run (TOTAL option) and the parent subsystem (SUBSYS option) 
or verb (VERB option). Note that, if the VERB option is specified, the 
SUBSYS option is ignored. 

The report for a terminal or the run consists of two parts: a 
summary of inputs for this terminal or the run for each subsystem 
(SUBSYS option) or verb (VERB option), and an input traffic histogram. 
The report for a parent subsystem or verb consists of a traffic 
histogram. (A parent subsystem is the subsystem that processes the 
input message from the outside world or from the control region if 
analyzing a satellite region log.) Figure 12-3 illustrates a sample 
output. 

12-8 

J 



r 

'>
:I .... O

Q
 c: 11
 

(l
) .... N
 I W
 

ti
l ~ 't
l I-
' 

(l
) ::r::

 .... ti
l 

r1
' 

0 O
Q

 
11

 
1\1

 a H
I 

0 
~
 

11
 

N
 I 

1\1
 

\0
 

H
 

(l
) 11
 

S .... ::l
 

1\1
 

I-
' 

.....
. 

"d
 

1\1
 

O
Q

 
(l

) .... 0 H
I 

N
 -

r 

• 
AN

AL
YS

IS
 O

F 
IN

TE
RC

OM
M

 l
OG

 S
TA

RT
IN

G 
M

ON
DA

Y,
 

1
2

/1
3

/.
2

, 
06

:1
.:

34
.3

1 
TH

RO
UG

H 
FR

ID
AY

, 
1

2
/1

7
/.

2
, 

17
:0

1:
'1

.4
4 

..
 

PA
GE

 
23

17
 

ST
AT

IS
TI

CS
 F

OR
 T

ER
M

IN
AL

 
RM

l03
 

..
 

TO
TA

L 
MA

S 
56

6 
EN

TR
IE

S 
..

 
PE

AK
 U

SA
GE

 M
AS

 
10

1 
EN

TR
IE

S 
AT

 
14

:0
0 

..
 

···
 ...

...
...

.. ·
· ..

...
. ··

 .. ·
·· .

. ··
···

·Q
"i

"O
O

···
···

··l
iO

O
···

 .. ·
 .. ,

.B
iQ

··· 
....

. '·i
·O

O
· ..

 ···
··l

rO
O

···
···

IO
i·O

O
···

 ...
 12

TO
O·

 ...
 ··U

B
K

r· 
.. ·

·U
TO

O
·· .

. ··1
(i"

OO
· .. 

· .. 
20

IO
O

 ...
. ··

U
TO

O
· ..

...
...

...
. ·

 .. ·
· ..

 · ..
 ·· .

. ··
· ..

 ·· 
.. ·

···
···

·· .
...

. 
2'

0 
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
2
~
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
 ...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.. . 

...
...

...
...

...
...

...
...

.. .
23

0 .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

..•
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. _
 .. 

22
0 

···
···

···
···

···
···

···
···

···
2I

C
,.·

···
···

···
···

···
···

···
-_

 ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

 . 

It
O

 

16
0 

13
0 

10
0 

• 
• 

• 
• 

...
...

..•
•..

•..
...

•.•
 D

 ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. :

...
. 

. ..
...

...
.•.

...
...

...
...

...
...

...
...

...
...

...
...

...
 : 

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.•.

...
 

70
 

• 
• 

• 
• 

···
···

···
···

·'0
···

···
···

···
···

···
···

···
···

···
· .

...
...

...
...

...
...

...
...

...
...

 ..
• 

• .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..•

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. 

•
•
 

• 
...

...
...

...
...

...
...

...
.•.

. .5
D .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. :
. 

. ..
...

...
 : .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. :
 ..

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

 . 
40

 
*
.
 

• 
• 

» 
•
•
 

•
•
 

···
···

···
···

···
···

···
···

···
 .. !

O
···

···
···

···
···

 ..
...

...
...

...
...

 . 
...

...
...

...
...

...
.. 

"
."

."
. 

iii 
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. . 

* 
•
•
 

•
•
 

• 
•
•
 

...
...

...
...

...
...

...
...

...
.. 2

0 .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. ~

 .
~ 

.•.
..•

.. 
!'! 

.. 
~ .

...
...

...
•.

.•
..•

...
•.

...
.. 

\I' 
..•

•..
 .'

L.
~ .

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. .

 
* 

• 
* 

• 
* 

•. 
• 

• 
*.

. .
 

1
0

 
• 

* 
• 

* 
* 

• 
•
•
 

• 
* 

* 
* 

* 
* 

• 
* 

* 
• 

~ 
• 

* 
* 
•
•
 

• 
* 

* 
* 

• 
* 

8 
* 

...
...

...
...

...
...

...
...

...
 

1:
00

 
J:

oo
 

15
:O

b 
I:O

e 
iJ

:o
t 

11
:0

0 
13

:0
0 

11
5:

00
 

11
:0

0 
li

J:
oo

 
21

:0
0 

23
:0

0·
 ...

 · .
...

...
...

 · ..
...

...
...

...
...

. ·
 ...

.. ·
 r 

o i '0
 

("
f

~
 

"1
 

~
 

N
 o ....,

 
....,

 
I t"
' 
~
 

::s ~ c:
 

("
f

l-
'.

 
I-

' 
1-

'. 
("

f
~
 

(l
) 

ti
l 



Chapter '2 Off-Line Utilities 

J 
... .. 
til ... 
... 
i 
I 

~ .. I 'r. .. , 
~ ~ i ,... :. .. .. I ... 
..; 0- ;. • c ..... ... ,... 

'" .. ... 1:) ..... ... :<C 
N III: 

i .. ~ z 
,: ... 
~ s ... ... 
III: 

~ ... 
'" 
~ 

c 

i z iD ... • 
~ ... 

! 1> 

j '" :..: I- ::I 
>C 

~ ... ... c r til ... 
Ii. .. 

'" .. I ;.... 

J ... .... 
*' C! on -... : . 

N ... 
III: ... • l- S ..... z ... 

'" ... ~ ... ..... ... ... 
N ... ... ... on C 

,: Z 
III 

~ .... 
III ~ 

Z c 
i z 

-' 
<C 
0- ... 0 

c.:> l- on 
Z ~ ... 
l- • II III: • C ... ~ 

'" '" s 
0 ... 

8 -' I-
~ I J 
I ... ~ ~ A.1ID 

C III 0 
tJ ,. .... U! 
III: i r ... ,.,jg I- III: ,. ... c:>cD ... ~ -... ! 1 0 ... 
'" ... '" '" u 
>- ... .; 

~ 
~ :. 
'" ... ... a:1Z 

C !C 0=) 

~ ~ • '" ... 

Figure 12-3. Sample Histogram for a Terminal (Page 2 of 2) 

'2-'0 



Chapter 12 Off-Line Utilities 

12.4.2 Response Time Reports 

Response Time Reports generate analysis of input message response 
times, and message queue and process times. Reports can be displayed 
for the entire run (TOTAL option), by region (REGION option), by 
terminal (TERM option), by parent subsystem (SUBSYS option), and by 
verb (VERB option), depending upon the ANALYZE options specified when 
LOGANAL is invoked. 

ANALYZE and OUTPUT options are used to control response time 
reporting. ANALYZE controls the breakdown level. OUTPUT is used to 
capture the input log record data used by LOGANAL. See Section 12.4.4 
for permissible values. 

All reports display hourly and 24-hour totals of response time. 
Response time is defined as the time elapsed between receipt of input 
message from the outside world (or from the control region for 
Mul tiregion Intercomm) and the transmission of the first message back 
to the input terminal (or control region). The report shows response 
time by interval with maximum and mean times and standard deviations, 
counts of messages with no response to the input terminal, and messages 
lost due to queue full, cancelled or flushed conditions; additionally, 
parent subsystem and verb reports display queue and process time 
statistics. A line-by-line explanation of a sample page of a report is 
described in the following subsections. 

Report Terminology 

Terms used in these reports are: 

fI) parent subsystem--the subsystem recelvlng the message from 
the outside world or from the control region. 

• child subsystem--a subsystem initiated by messages from a 
parent subsystem or other child subsystem, such that the 
parentage can be traced back to a message from the outside 
world. 

• Front End--the Intercomm Front End, which receives messages 
from a parent or child subsystem. 

Q) transaction--the collection of messages associated with the 
same input message. A transaction is created by a message to 
a parent subsystem, and includes that message, the messages 
to the parent subsystem's children, messages to its 
children's children, etc. 

12-11 



Chapter 12 Off-Line Utilities 

Line-by-Line Report Analysis 

Figure 12-4 is a sample page of a reponse time report. Numbered 
lines in the figure are explained below: 

Line 

Line 2 

Line 3 

Line 4 

This line gives the earliest and latest dates and times 
encountered on the log. 

This line indicates the breakdown level of the report. One 
response time report (hourly totals and 24-hour total) is 
produced for each breakdown level, as specified by the ANALYZE 
option. 

The rightmost legend indicates the breakdown level (VERB SIGN in 
this example). 

Region breakdown is displayed only for Multiregion log files. 
Control region log file reports will indicate REGION CONTROL for 
messages processed within the control region and REGION rrrrrrrr 
for messages sent to satellite region rrrrrrrr. Satellite region 
log file reports will indicate the satellite region. 

The parent subsystem is given in EBCDIC and hexadecimal. The 
verb is given in EBCDIC, except when it is not available. The 
verb may not be available if it specifies edit-before-queuing. 
The user may code a table (LOGVRBTB) to define subsystem/verb/VMI 
correspondence to LOGANAL. If an edit-before-queuing verb is in 
this table, the verb is displayed in EBCDIC. If this type of 
verb is not in the table, or no table is coded, the VERB legend 
gives the VMI in hexadecimal (VERB 'vv', where vv is the VMI). 

This line is the title of the report. 

This line displays the headings for the 
right-hand columns of the line specify the 
response time statistics available (TOTAL), 
TIME), mean (MEAN), and standard deviation 
res ponse times. 

next line. The 
total number of 

and maximum (MAX 
(STD DEV) of the 

Lines 5, 6 
These lines give the response times for a one-hour period. 

The HOUR STARTING column indicates the hour in which the 
transaction started. 

12-12 



r '"
Ij

 .... (J
Q

 
~
 

t1
 

In
 .....
. 

N
 I .f
:-

ti
l ~ '"

0 I-
' 

In
 

-
' 

I\
.)

 
~
 

I 
In

 
-
' 

C/
l 

w
 

'"
0 0 ::s C/
l 

In
 

t-
i 

~.
 

In
 ~ III
 

I-
' 

'<
 

C/
l .... C/
l 

r 
r 

n ! 
1 
t ANALYS

IS
 O

F 
IN

TE
RC

OM
H 

LO
G 

ST
AR

TI
NG

 
M

ON
DA

Y,
 

12
/1

3/
12

, 
06

:1
9:

34
.3

1 
TH

RO
UG

H 
FR

ID
AY

, 
12

/1
7/

12
, 

17
:0

1:
51

.4
4 

..
 

PA
GE

 
23

26
 

~ 
2 

RE
GI

OI
I 

CO
IIT

RO
L 

TE
RM

IN
AL

 
RM

l0
4 

PA
RE

NT
 

SU
I S

Y
ST

EM
 k

 I
D

20
D

 
VE

RB
 

'0
1'

 
-A

 

3 
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.. 

'R
ES

PO
II

U
'T

IM
E'

 ·I
N

 ··S
EC

O
IIl

.)"
$·

··F
RI

IM
··l

lfP
O

T·
·M

S(
j"·

TO
··n

RS
T·

O
O

TP
\Jt

 ·I
f!

:C
···

···
···

···
···

···
···

···
···

···
···

···
···

···
·· 

...
...

...
...

. .
...

...
...

...
...

...
...

...
...

...
...

...
...

.. 
I\

)
 

4 
·S~

INI
l"·

···
···

···
···

···
l):

:.1
···

···
···

·1.
:.2

···
···

···
·2.

::l
···

···
···

·F4
"··

···
···

··,
~··

···
···

··S
"~·

···
···

···
,:.

:."
8"·

···
···

·1:
.:.

lO·
···

··l
O:.

:.1
~··

···
·lF

3"O
··O

VER
··~

···
···

···
···

'fO
Tll

···
···

··,
.\'

Af·
···

··f
lAl

···
···

··A
IV·

 

~ 
.....

.....
.. ~

~
~
 ......

. ~~
J;
 

~~
00

6 
10

0.
0 

10
0.

0 
·~

~·
:~

··
·~

~~
·:

·~
··

··
··

~(
)(

).
O 

10
0.

0 
1o
o.

~·
~(

)(
)·

:·
~·

··
··

·~
~·

:·
~·

··
··

··
··

··
··

··
·:

r·
· 

··
IS

··
0

:r
··

··
·O

;·
5

 
7 

.,
 ...

...
...

. ·
·II

IM
·T

R
A

N
S

·· 
···

···
···

··2
·· 

. ··
···

·N
O

·It
£S

PO
 .. S

E 
...

...
...

...
. '1

)'.
 ···

···
··M

SG
S 

'IO
ST

'i"
 O

"F
U

n"
 ·

···
···

·0
 ···

··t
A

N
C

E
lL

E
D

···
···

··I
)··

···
··F

lU
S

H
E

D
 ..

...
...

. 1
) .

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 . 

~ 
...

...
...

...
...

. p
~H

··
1(

·7
D2

1"
,.

 .. 
.M

UH
 .. M

S~·
···

···
··M

A.>
r··

···
··0

:ll
·~~

Yfi
··I

J"'
~;·

CI·
···

S1R
···

···
···

Il·
:Il

···
···

··M
AX·

···
···

··o
;·S

P.l
l2l

Ifi
S ..

 IJg
~2·

···
STB

···
···

···
0·:

'··
···

···
···

···
···

···
···

···
···

···
···

···
···

·· 
l~
 

.....
.....

.....
. ~~

&i
f.

~I
=g

 .... ~
/.(

)Q~
~ ...

....
....

....
. ~ .

....
....

.. ~
~~
 ....

....
 8:

~ ....
 ~~

~=
 ........ g:

~ ...
. ~t

D ..
....

.. 8
:~

 ......
... ~

~~
 .....

.... ~
~.~

 .... ~
.E.

~~ .
...

...
. ~.:

.a. ..
.. ~~

 .....
.....

. ~ ...
 ~ ..

.....
.....

.....
.....

.....
.....

.....
.....

 . 
...

...
 U·

··
··

·P
~M

··
··

··
lO

O;
t·

··
··

·l
ll

O;
()

··
··

··
II

IO
;O

··
··

··
lO

O·
.(

)·
··

··
·l

OO
·;

O·
··

··
·l

ll
O·

;O
··

··
··

ll
lO

·;
O·

··
··

·l
OO

·;
O·

··
··

·l
1I

O;
·(

)·
··

··
·l

OO
·;

()
··

··
··

ll
lO

·;
·C

S·
··

··
··

··
··

··
··

··
··

··
Z 

...
...

...
. ~
.a

 ...
...

...
 O

 • .1
 ...

...
.. g

 • .
5 ..

 

...
...

...
...

...
 H

IM
 .. t

R
AH

S 
...

...
...

...
...

 2
 ...

...
...

...
. H

O .
. Il

ES
PO

H
SE

 ...
...

...
...

...
 O

 ...
...

...
.. H

SG
.5 .

. .1
.Q

SI
L

. . .
Q

 . .F
.U

LL
 ...

...
...

.. o
 ....

.. t
A

IIC
EL

LE
D

 ...
...

...
.. O

 ...
...

. F
.1.

US
HE

D .
...

...
...

. 0
 ...

...
...

...
...

...
...

...
...

...
...

...
...

...
. .

 

···
···

···
···

···
·la

iC·
·KW

~e2
···

··~
··~

~~·
···

···
··a

u··
···

···
8:8

·'(
tl·

·~·
~~1

:8·
···

ng·
···

···
·8:

8··
···

··a
u ··

····
·8:{

~lla
~··~

·~i~
!···

·IJB
····

····
·8:A

····
····

····
·· ..

.....
.....

.....
.....

.....
. . 

F"
II

T
 

EN
D 

2 
MA

X 
0.

1 
Mh

N 
0.

6 
ST

D 
0.

4 
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.. -
...

...
...

...
...

 . 

...
...

 1.~~
 ... J

};L
 .....

... 5
0

J
 ...

...
 lo

o.
 6

 ......
 100

 .•.
 0 

...
...

 1
00

 .•.
 0 

...
...

 10
0 .

•. 0
 ...

...
 10

0 .
. .0

 ...
...

. 1
00

 .• .
0 ..

...
.. 1

00
 .• 0

 ...
...

 10
0 .

• 0
 ...

...
 1

00
 .• 0

. ..
...

. 1
00

 .. 0
. ..

..•
...

...
...

...
...

. ~ .
...

...
...

. ~:
.~ .

...
...

. ~.
:.?

 .....
... ~.

:.~
. 

IIU
M 

TR
AN

S 
2 

NO
 R

ES
PO

NS
E 

0 
M

SG
S 

LO
ST

: 
0 

FU
LL

 
0 

CA
NC

EL
LE

D 
0 

FL
US

HE
D 

0 
···

···
···

···
···

·lI
l1

EI
lC

D
O

M
lI·

···
···

···
· 

···
···

··l
I\J

H
··M

St
i 

,··
···

···
···

···
···

···
···

···
···

00
£U

["·
T1

M
£·

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···
·P

Jm
t£

S
S

··T
1M

£·
· ..

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

 . 

···
···

···
···

···
pi&

n~l
afi

··~
uig

~~~
 ....

......
..... 

j ..
......

 nn
···

···
·8J

··a
lia

···
···

··§
J··

·nB
···

··8
J··

···
=~~

···
···

·8:
3 .... l

1
t ...

 J.
:lJ

IB
 .....

.. .8
:t .

......
......

......
......

......
......

... .
 

12
 

·
·
·
r
o
r
A
l
·
·
M
I
M
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
4
"
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
~
·
·
·
·
·
·
·
·
 ...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. 

···
···

···
·,·

···
···

···
1:

·1
···

···
··0

:..
,··

···
···

0·
;4

"·
 

13
 

PC
EN

 
66

.7
 

10
0.

0 
10

0.
0 

10
0.

0 
10

0.
0 

10
0.

0 
10

0.
0 

10
0.

0 
10

0.
0 

10
0.

0 
10

0.
0 

14
 

··
··
··
··
··
··
··
··
NI
M·
TR
lI
IS
··
··
··
··
··
··
··
·,
··
··
··
··
··
··
·M
O·
·R
£~
PO
NS
E·
··
··
··
··
··
··
·O
··
··
··
··
··
MS
GS
··
Uj
SH
··
·O
··
FU
I:
l"
··
··
··
··
··
(I
··
··
··
t"
~N
CE
ll
EI
)"
··
··
··
··
··
Il
··
··
··
·F
lU
sH
m·
··
··
··
··
·0
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
 

15
 
····

····
····

····
P2

firN
··'

C
/D

2l
lD

···
.M

U
M

 .. H
S 2

···
···

···
·MA

X··
···

··C
I·;

Il·
·aw

f~I
··I

JH&
;·C

I··
··S

lR"
···

···
··D

·.t
···

···
··H

AX·
···

···
·CI

~l'
nS 

.. I
Ig~

2··
·rg

···
···

··0
:-r

···
···

···
···

···
···

· ..
...

...
...

...
...

...
. . 

Jj 
.....

.....
.....

. ~~&
if.

~1=
8 ....

. ~~.
~~~

 ......
.....

.....
. : .

.....
... ~
 ......

.. g:
g ..

. =(
~= ...

...... 8
:2 .

... h
iL

 ... ..
.8:J

. ....
.... ~

~ ...
......

 ~~.~
 .... ~

 .... ~
 ......

.. ~.
:~ ..

.... ~
 ......

.....
 ~ ....

.....
.....

.....
.....

.....
.....

.....
.....

.... .
 

...
...

...
...

...
...

...
.. 
_ ..

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . 

o 1-
1)

 ? t"
' .. ::s (I

I d ct
" 

1-"
 

I-
' .. ct
" .. (I
I 

ti
l 



Chapter 12 Off-Line Utilities 

The columns headed 0-1, 1-2, ••• head statistics about transac
tions with response times in the interval. For example, f<;>r 
interval 1-2, the response time is from 1 to 2 seconds, inclu
sive. 

NUM gives the number of transactions that responded in the 
interval. 

The second line (PCEN) indicates the cumulative percentage of 
responded transactions. For example, for interval 1-2, the 
percentage of transactions with res ponse time 0 to 2 seconds, 
inclusive. 

The response time is defined differently for single or control 
region Intercomm and for satellite region Intercomm. 

~ For single region and control region Intercomm, response time 
is the elapsed time between receipt on an input message from 
the outside world (log record with log code X'01' or X'C1') 
and the transmission of the first output message back to the 
input terminal (log record with log code X'F3'). 

• For satellite region Intercomm, response time is the elapsed 
time between receipt of a message from the control region 
(log record with log code X' 01 ') and the transmission of the 
first message back to the control region by the Multiregion 
output subsystem (log record with log code X'FA'). 

Line 7 

NOTE: Response time is defined only for output messages back to 
the original input terminal. If there is no out put, or 
if it is associated with a terminal other than the 
original input terminal, the transaction will be 
considered "no response." 

This line shows other transaction-related statistics. 

NUM TRANS is the total number of transactions within the period, 
including those that have no response time due to design or error 
conditions. 

NO RESPONSE counts are totals of logged error conditions that may 
have occurred to any of the messages of a transaction. Possible 
error conditions are: 

• Q FULL--the number of subsystem messages lost due to a queue 
full condition (log ~ecord with log code X'FC'). 

• CANCELLED--the number of messages lost due to a program error 
or time-out (log record with log code X'FD'). 

12-14 



Chapter 12 Off-Line Utilities 

• FLUSHED--the number of messages flushed by: 

Lines 8-11 

The Retriever (segment input retrieved by the GETSEG 
service routine--log record with log code X'FE') 

Message Collection for an invalid destination 
subsystem code (log record with log code X'FB'). 

Multiregion Queue Manager, because a stopped or 
inacti ve satellite region specified the flush option 
(log record with log code X'C3').' 

These lines are present only on parent subsystem and verb 
response time reports. They give statistics about the subsystems 
used in processing a particular transaction. 

The (subsystem) BREAKDOWN entries are PARENT, OFFSPRING and FRONT 
END. Each breakdown entry (lines 9, 10, 11) gives the number of 
messages for the subsystem and queue and process times. 

PARENT is always present. 

OFFSPRING--one or more OFFSPRING, that is, child subsystem, 
entries may be present. 

FRONT END will always be present in single region or control 
region Intercomm when response times are available. In satellite 
regions, an OFFSPRING entry for the Multiregion output subsystem 
will be present instead of FRONT END when response times are 
available. This offspring will show the subsystem code of the 
destination subsystem in the control region or other satellite 
region. If the destination is the Front End queueing routine, 
FESEND, the subsystem code will be X'00E9' (Z). 

QUEUE TIME is the time elapsed between queuing of a message (log 
record with log code X'01', X'C1' or X'F2') and subsystem 
processing (log record with log code X' 30 ') or transmission (log 
record with log codes X'C2' or X'F3'). 

PROCESS TIME, available only for subsystems executed within the 
region, is the time elapsed between start of processing (log 
record with log code X' 30') and end of processing (log record 
with log code X 'FA'). For queue and process times, maximum 
(MAX), mean (MEAN), and standard deviation (STD) times are 
given. This example illustrates the breakdown of a simple 
transaction. The parent subsystem X'00E2' (S) creates a message 
for the child (offspring) subsystem X'00D5'(N), which in turn 
creates a message to the Front End. 

12-15 



Chapter 12 Off-Line Utilities 

Lines 12-18 
These lines are similar to lines 5-11. They detail response time 
and breakdown statistics for the hour 14:00 (2:00 PM). 

Lines 19-25 
These lines are similar in format to lines 5-11. They detail the 
24-hour total statistics. 

All times are in seconds and tenths of seconds. The standard 
deviation reflects the distribution of times about the mean. When it 
is too large or otherwise unable to be computed, a value of 9999.9 is 
displayed. 

12.4.3 Installation of LOGANAL 

Installation of LOGANAL requires the following steps: 

1. Examine the LOGANAL generation parameters in the member 
LOGSETGB. 

2. Optionally change LOGSETGB values, if necessary. 

3. Optionally generate the LOGVRBTB, using the LOGVERB macro. 

4. Create the LOGANAL Load Module. 

12.4.3.1 LOGANAL Generation Parameters 

The LOGANAL generation parameters are in the member LOGSETGB. 
Examine the parameters and determine the settings suitable to your 
installation I s needs. The default values of these parameters were 
chosen to accommodate common requirements. The parameters described 
below are defined as globals in the member LOGDCLGB. The global 
settings are in the member LOGSETGB. The &MXSS, &MXMIPFT, &MXMIFAM and 
&MXDIFSS parameters control table capacities. 

12-16 



Chapter 12 Off-Line Utilities 

LOGSETGB settings are illustrated below: 

COpy 
GBLA 
GBLA 
GBLA 
GBLA 

GBLA 

LOGDCLGB 
&NBRETRN 
&MXMIPFT 
&MXSS 
&MXMIFAM 

&MXDIFSS 

NUM OF BYTES RETURNED TO OS BY LOGANE15 
MAX NUM OF MSGS IN PROG FOR A TRANSACTIO~ 
MAX NUM OF SUBSYS OR VERBS FOR LOGHIST 
MAX NUM OF MSG IN 'FAMILY'=PARENT & 
CHILDREN FROM ONE INPUT MSG 
MAX NUM OF DIFFERENT SUBSYS USED IN PROe 
ALL TYPE OF INPUT TO ONE PARENT SUBSYS 

COPY 
~NBRETRN SETA 
~MIPFT SETA 
~MXSS SETA 

LOGSETGB 
64*1024 
16 
100 

SYNCSORT NEEDS 64K, SM1 NEEDS 4K 
MSGS IN PROGRESS 
MAX NUM OF SUBSYS (MULTIPLE OF 20) 

&MXMIFAM SETA 
~MXDIFSS SETA 

16 
10 

MAX MSGS IN A 'FAMILY' 
MAX NM OF DIF SUBSYS 

&MXDIFSS 
specifies the maximum number of different subsystems used in 
processing all types of input to one parent subsystem. The value 
is set at 10. The parent subsystem and the Front End count as 
two toward that limit. If the error message LA035I is issued, 
increase the value and reassemble LOGRESP and LOGRSRPT. Refer to 
LA035I for further information. 

&MXMIFAM 
specifies the maximum number of messages generated in a family 
(that is, parent and children) from one input message. The value 
is set at 16. If error message LA036I is issued, then increase 
the value and reassemble LOGRESP. This value should never be set 
higher than 254. 

&MXMIPFT 

&MXSS 

specifies the maximum number of messages in progress for a 
transaction. A message in progress is one that has not been 
processed to completion; that is, LOGANAL encountered its first 
log entry but not its final log entry. The maximum value is set 
at 16. If error message LA046I is issued, increase the value and 
reassemble LOGANE15. This value should never be set higher than 
76. 

specifies the maximum number of subsystems or verbs for LOGHIST. 
There is one entry in the table for each verb in the input file 
(if the verb option of ANALYZE is used), or for each parent 
subsystem (if only the SUBSYS option of ANALYZE is used). The 
value is set at 100 (multiples of 20). If error message LA051I 
is issued, increase the value and reassemble LOGSSTAB and LOGHIST. 

12-17 



Chapter 12 Off-Line Utilities 

&NBRETRN 
specifies the number of bytes returned to OS by LOGANE15. This 
parameter controls table allocation in the E15 exit routine 
invoked by the SOOT program. It is set to handle the 
requirements of SYNCSORT, which is 64K. The IBM sort can use a 
smaller value of 4K; this reduces the minimum region size of 
LOG ANAL to 160K. &NBRETRN is set at 64*1024. If there is a 
problem with the SORT program, or if a S804 abend occurs, 
increase the size and reassemble LOGANE15. 

12.4.3.2 Changing LOGANAL Generation Parameters 

To change LOGSETGB values, use the following JCL: 

11* CHANGE PARAMETERS IN LOGSETGB 
II EXEC LIBE,Q=LIB 
.1 CHANGE NAME=LOGSETGB,LIST=ALL 
******** PLACE REVISED PARAMETERS HERE ******** 
11* REASSEMBLE MODULES INDICATED IN DESCRIPTION OF PARAMETERS 
II EXEC ASMPCL,Q=LIB,NAME=module1,LMOD=module1 
IIASM.SYSIN DD INT.SYMREL(module1),DISP=SHR 
11* IF module1 NOT IN INT.SYMLIB ADD ABOVE STATEMENT 

reassemble other modules as required 

12.4.3.3 Generating the LOGVRBTB 

If edit-before-queuing is used, the verb is not in the initial 
log record for a transaction. The user may code a table of subsystem 
code/VMI/verb combinations. This table is the member LOGVRBTB, which 
is coded using the LOGVERB macro. The macro format is: 

(blank) LOGVERB SUBSYS=subsystem-code, 
VMI=verb-message-identifier, 
VERB=transaction-ID 

12-18 

J 

J 



L 

Chapter 1.2 Off-Line Utilities 

The following JCL creates a sample LOGVRBTB: 

11* REPLACE DUMMY LOGVRBTB IN INT.SYMREL WITH USER-CODED TABLE 
II EXEC LIBE,Q=LIB 
.1 REPL NAME=LOGVRBTB,LIST=ALL 
.f NUMBER INCR=1000,NEW1=1000 
* CODE LOGVERB MACROS TO RELATE SUBSYSTEM AND VMI COMBINATIONS 
* TO VERBS IF EDIT-BEFORE-QUEUING IS USED. 

LOGVERB SUBSYS=X'0102',VMI=X'01',VERB='VRB1' 
LOGVERB SUBSYS=X'0103',VMI=X'02',VERB='VRB2' 

11* REASSEMBLE AND LINK LOGSSTAB WHICH COPIES NEW LOGVRBTB 
II EXEC ASMPCL,Q=LIB,LMOD=LOGSSTAB 
IIASM.SYSIN DD DSN=INT.SYMREL(LOGSSTAB),DISP=SHR 

12.4.3.4 Creating the LOGANAL Load Module 

If executing under an operating system other than MVS, reassemble 
LOGANAL to ensure that the correct version of the SPIE macro is used. 
The LOG ANAL load module is created by executing the following JCL: 

IILK EXEC LKEDP,Q=LIB,LMOD=LOGANAL 
IILKED.SYSIN DD * 

1* 

INCLUDE SYSLIB(LOGANE15,LOGRESP,LOGRSRPT) 
INCLUDE SYSLIB(LOGHIST, LOGSSTAB, JULIAND) 
INCLUDE SYSLIB(LOGANAL) 
ENTRY LOG ANAL 

12.4.4 Execution of LOGANAL 

Execution of LOGANAL is controlled by the EXEC statement PARM 
option coded as follows: 

II EXEC PGM=LOGANAL,PARM='parm-options' 

12-19 



Chapter 12 Off-Line Utilities 

The 'parm-options' are coded within a set of single quotation marks as 
keyword parameters, each separated by a comma. The names of the 
execution parameters may be shortened. For example, M=yyddd is 
interpreted as MAXDATE=yyddd. Refer to parameter descriptions for 
specific abbreviations. 

If no PARM field is specified, the parameter defaults used are 
equivalent to specifying the following: 

PARM='HISTOGRAM=YES,RESPONSE=YES, 
ANALYZE=(TOTAL ,REGION ,SUBSYS, TERM, VERB) , 
OUTPUT=NO,SCALE=1,MAXPAGE=2' 

LOGANAL can be invoked to obtain LOGOUT output only, with no 
reports, by using the following parameters: 

PARM='HISTOGRAM=NO,RESPONSE=NO,OUTPUT=YES' 

These parameters will bypass sorting and all reports (sort program JCL 
is not required). Parameters are summarized below; detailed 
descriptions follow on the next page. 

========================== 
Parameter/Value(s) 

----------------------------------------------------
ANALYZE={opt } 

{(opt,opt, .•• )} 
HISTOGRAM={NO } 
- {YES} 
MAXDATE=date 
MAXPAGE={nnn} 
- {~} 

MAXTlME=time 
MINDATE=date 
MINTlME=time 
OUTPUT={YES } 
- {ddname} 

{NO } 
RESPONSE;-{NO } 
- {YES} 
SCALE= {nnn-} -
- {l} 

------------------------------------------------------------------------------------------
Description Summary 

------------------------------------------------------------------------------------------
Criteria for information breakdown. 

Histogram reports request. 

Latest transaction date. 
Maximum histogram report pages. 

Latest transaction time. 
Earliest transaction date. 
Earliest transaction time. 
Save/discard sorted log records. 

Response time reports request. 

Number of messages per vertical line. 

NOTE: The parameter choices are all optional, with defaults as 
indicated. The tmderlined characters in each parameter 
keyword indicate the minimum recognized abbreviation for each 
keyword. 

12-20 

J 



Chapter 12 Off-Line Utilities 

ANALYZE= 
specifies the criteria used for information breakdown. The value 
choices for opt may specify: 

o TOTAL--for system totals 

• REGION-for breakdown by region (Control Region log data. 
sets only). 

• TERM--for breakdown by terminal 

• ~UBSYS--for breakdown by parent subsystem 

• !ERB--for breakdown by verb 

Only the first letter of each option need be coded (except TO for 
TOTAL), thus A=(T,S,V) is valid. 

If this option is omitted, the default ANALYZE option provides 
statistics for all levels of breakdowns and traffic histograms by 
terminal, entire run and verb. 

HISTOGRAM= 
specifies whether or not histogram reports are requjred. 
YES if they are required; code NO if they are not required. 
default is YES. 

MAXDATE= 

Code 
The 

specifies the maximum date of transactions to be selectee by 
LOGANAL. Transactions that started before MAXDATE, but ended 
after, are also included. Code as a Julian date yyddd (yy=year, 
ddd=day of year). The maximum date must be greater than or equal 
to the minimum date. The default is no maximum date. 

MAXPAGE= 
specifies the maximum number of pages for a histogram report (up 
to 999 pages). The default is 2. If an individual report would 
exceed the number of pages coded for this option, scale is 
temporarily increased so that every report remains within bounds. 

MAXTIME= 
specifies the maximum time of transactions to be selected by 
LOGANAL. Transactions started before MAXTIME, but ended after, 
are also included. Code as hours only (hh); hours and minutes 
(hhmm); hours, minutes, and seconds (hhmmss); or hours, minutes, 
and seconds in hundredths (hhmmssth). The maximum tj.me must be 
greater than or equal to the minimum time. The default is no 
maximum time. 

MINDATE= 
specifies the minimum date of transactions to be selected by 
LOGANAL. Code as Julian date yyddd (yy=year, ddd=day of year). 
The minimum date must be less than or equal to the maximum date. 
The default is no minimum date. 

12-21 



Chapter 12 Off-Line Utilities 

MINTIME= 
specifies the m~mmum time of transactions to be selected by 
LOGANAL. Code as hours only (hh); hours and minutes (hhmm); 
hours, minutes, and seconds (hhmmss); or hours, minutes, and 
seconds in hundreths (hhmmssss). The minimum time must be less 
than or equal to the maximum time. The default is no minimum 
time. 

NOTE: When a time range is specified over multiple days 
(MAXDATE i MINDATE), the transactions for those days are 
summed together and the reports produced are based on the 
sum. That is, if MAXTIME=1000, MINTIME=OgOO, 
MAXDATE=78236, MINDATE=78230, the number of transactions 
from 9 to 10 for each day specified are added together 
and the output reports that result are based on that sum, 
as if one day were specified. Reports for each 
individual day are not produced. 

OUTPUT= 
specifies whether or not selected log data is to be saved. The 
OUTPUT option is used to capture the input log record data used 
by LOGANAL. This data can be used as input to LOGANAL for 
additional analysis without reading the entire log data set 
again. The data may be saved and collected over a period of time 
for cumulative analysis of log data. It is more compact than the 
original log data--only log data needed by LOGANAL is retained as 
46-byte fixed length records. 

If date and time selection criteria are used (MAXDATE, MINDATE, 
MAXTIME, MINTIME), then the LOGOUT output collects only the 
selected records. If YES is coded, the log data is written using 
ddname LOGOUT. If a different ddname is desired, code 
OUTPUT=ddname. If selected log data is not to be saved, code NO 
(default) . 

RESPONSE= 

SCALE= 

specifies whether or not response time reports are required. 
Code YES if they are required; code NO if they are not required. 
The default is YES. 

specifies the scale (number of messages) that each horizontal 
line of the histogram will represent (within constraints defined 
by MAXPAGE). The default is 1. 

12-22 

J 

J 



Chapter 12 Off-Line Utilities 

Figure 12-5 illustrates JCL for execution. (Note data set names 
are user-specified and need not correspond to those given below.) 

always 
required 

multiple 
volume 
logs 

as 
required 
by 
sort 
program 

required 
for 
OUTPUT=YES 
or 
OUTPUT= 
ddname 

r 

( 

IILOGANAL JOB 
II STEP 1 EXEC PGM=LOGANAL,PARM='HISTOGRAM=YES, 
II SCALE=100',REGION=200K 
IISTEPLIB DD DSN=INT.MODLIB,DISP=SHR 
IISYSPRINT DD SYSOUT=A 
IIPRINT DD SYSOUT=A 
IIERROR DD SYSOUT=A 
IILOGIN DD DSN=INT.INTERLOG,UNIT=xxx, 
II VOL=SER=xxxxxx DCB=(RECFM=VB. 
II BLKSIZE=xxxx,LRECL=xxxx),DISP=OLD 
II DD DSN=INT.INTLOG2, (etc., as above) 
II DD DSN=INT.INTLOG3, (etc., as above) 

IISYSOUT DD SYSOUT=A 
IISORTLIB DD DSN=SYS1.S0RTLIB,DISP=SHR 
liS ORTWKO 1 DD UNIT=SYSDA,SPACE=(TRK, (200) "CONTIG) 
I ISORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(200)"CONTIG) 

IISORTWK06 DD UNIT=SYSDA,SPACE=(TRK,(200)"CONTIG) 

Iiddname DD DSN=INT.SORTLOG,UNIT=xxx, 
II VOL=SER=xxxxxx, 
II DCB=BLKSIZE=(multiple of 46, 

default=920) , 
II SPACE=(TRK, (50,10)), DISP=( NEW, KEEP) 

OUTPUT=YES implies ddname=LOGOUT 

Figure 12-5. Sample JCL for Execution of LOGANAL 

Multi volume INTERLOG data sets from one execution of Intercomm 
should be processed so that the volumes are read in increasing chrono
logical order by LOGANAL. This ensures proper tracking of transactions 
spanning volumes. If volumes are out of order, statistics from those 
transactions will be lost. 

12-23 



Chapter 12 Off-Line Utilities 

Multiple INTERLOG data sets from separate executions of Intercomm 
can be read in any order as long as individual multivolume data sets, 
if any, are read in consecutive order, as above. When concatenating 
Multiregion INTERLOG data sets ensure that all data sets are for the 
same configuration. For satellite region data sets, the data sets must 
all be for the same satellite region. When control region log data 
sets are concatenated, all data sets must be from Intercomm execution 
using the same Region Description Table (RDT). 

For documentation of LOGANAL messages and corrective actions, see 
the Intercomm Messages and Codes. 

12.5 THE FILE LOAD PROGRAM (PMIEXLD) 

The Intercomm utilities include a program (PMILOAD) which 
sequentially reads in load modules from a partitioned data set, and 
creates a BDAM data set. There is one record created on the BDAM data 
set for each load module (with specified first three characters) on the 
partitioned data set. 

To create the load module for executing this program, use the 
JCL shown in Figure 12-6. The load module name to be created will then 
be PMIEXLD. 

II 
IILKED.SYSIN 

INCLlIDE 
INCLlIDE 
INCLlIDE 
INCLlIDE 
INCLlIDE 
INCLlIDE 
ENTRY 
NAME 

EXEC LKEDP,Q=LIB,LMOD=PMIEXLD 
DD * 
SYSLIB(BATCHPAK) 
SYSLIB(PMIFILET) 
SYSLIB(PMISERC3) 
SYSLIB(IXFHNDOO) 
SYSLIB(IXFHND01) 
SYSLIB(PMILOAD) 
PMILOAD 
PMIEXLD (R) 

Figure 12-6. JCL to Create PMIEXLD 

If LMDD=PMIEXLD is coded on the EXEC statement, the NAME card is 
not needed. When both LMOD and the NAME card are used, the names mus t 
be the same. 

12-24 

J 



Chapter 12 Off-Line Utilities 

This off-line utility is typically used for loading disk-resident 
table entries for Intercomm execution. However, it may be used for 
converting members of any partitioned data set to relative blocks 
(RBNs) of a BDAM data set, as long as the following naming conventions 
and table entries are met: 

• There must be an entry in the File Table (PMIFILET Csect) 
created via the GENFl'BLE macro for each BDAM data set to be 
loaded. Figure 12-7 illustrates the member PMIFILET defining 
Intercomm data sets for tables, and one user file. Note that 
a PMISTOP macro must follow the last entry. 

o The member names of the partitioned data set must follow the 
convention xxxOnnnn where nnnn varies from 0001 to 9999, 
incremented by 1 with no unassigned entries. (See Section 
12.5.1, "Partial File Load.") 

a The BDAM dataset must be named xxxOOO on its DD s ta tement. 
(See Figure 12-8.) 

PMIFILET CSECT 
ENTRY PMIFILTB 

PMIFILTB EQU * 
GENFTBLE FNAME=RCTOOO,BLKSIZE=1500,TYPE=BDAM 
GENFl'BLE FNAME=DESOOO,BLKSIZE=750,TYPE=BDAM 
GENFTBLE FNAME=VRBOOO,BLKSIZE=750,TYPE=BDAM 
GENFl'BLE FNAME=SECOOO,BLKSIZE=100,TYPE=BDAM 

* BLKSIZE FOR DESOOO,RCTOOO,VRBOOO CORRESPOND TO INTERCOMM RELEASE 
* SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE ENTRIES. 
* ADD USER FILE DESCRIPTIONS HERE. 

GENFTBLE FNAME=USERFILE, BLKSIZE=xxxx, TYPE=ISAM, 
DESNUM=7 

j 
PMISTOP 
END 

I 

I 
Figure 12-7. Sample File Table (PMIFILET) 

Each member of the partitioned data set becomes the n-1 RBN of 
the BDAM data set. At the first "member not found" condition, the load 
program fills out the current extent of the BDAM file with records 
containing binary zeros, unless Partial File Load is used. 

The JCL shown in Figure 12-8 may be used for execution to load 
the entire file; the SYSIN control card varies for Partial File Load. 

12-25 



Chapter 12 

II 
IISTEPLIB 
IlxxxOOO 
II 
II 
II 
IlxxxLOAD 
II 
IISYSPRINT 
IISYSIN 
xxxOOO 
If 

EXEC 
DD 
DD 

DD 
DD 
DD 
DD 

PGM=PMIEXLD,PARM='NOCHECK' 
DSN=INT.MODLIB,DISP=SHR 
DSNAME=xxxOOO,DISP=(,KEEP), 
SPACE=( ),UNIT=xxxx, 

Off-Line Utilities 

VOL=SER=xxxxxx, 
DCB=(DSORG=PS,BLKSIZE=xxxx,RECFM=F) 
DSN=INT.MODxxx,DISP=SHR 
DSN=INT.MODREL,DISP=SHR 
SYSOUT=A (default BLKSIZE is 605) 

* 

PARM='NOCHECK' 
is used to indicate that each table member being loaded does not 
contain four bytes of asterisks at its end. 

xxxOOO 
should be changed to DES, RCT (or RPT), VRB, or SEC representing 
the table file being created. If an existing file is being 
recreated, change the DISP parameter to OLD. 

xxxLOAD 
is the input PDS containing the table members (xxx00001-xxxOnnnn) 
to be loaded. xxx must be the same as on xxxOOO. 

Figure 12-8. JCL for File Load Program Execution 

Multiple files can be created in the same execution if there is a 
SYSIN control card for each file, and the pair of xxxOOO and xxxLOAD DD 
statements are defined for each associated output file and input PDS 
library. 

Use of this program for loading table entries for the utilities 
and sample JCL is contained in the Utilities Users Guide. Figure 12-9 
is a summary table reproduced from that document. 

12-26 

J 



Chapter 12 Off-Line Utilities 

====================-==================================================== 

Requirements 
----------------------------------------

ddname of disk 
resident table 
entries in 
Intercomm 
execution JCL 

Utility 

Edit Output Change/Display 
================================ =================== 

VRBOOO RCTOOO DESOOO 

~------------------- -------------------------------- -------------------
PMIFILET blocksize 750 1500 750 
specification at 
installation time 

~------------------- -------------------------------- ------------------
Symbolic Table INT.SYMVRB INT.SYMRCT INT.SYMDES 
Entry Library 

Load Module Table INT. MODVRB INT. MODRCT INT.MODDES 
Entry Library 

Table Entry 
Library member 
name convention 

--------------------------------
VRBOnnnn RPTOnnnn DESOnnnn 

Coding convention VERB macro, REPORT none 
within disk resi- RBN=nnnn macro, 
dent entry NUM=nnnn 

--------------------~--------------------------------~------------------

Core-resident 
table require
ments. 

Figure 12-9. 

VERBTBL PMIRCNTB PMIFILET 
CSECT: CSECT: CSECT: 

VERBGEN 
macro plus 
in-line assem
bly of disk 
resident 
entries 

None 
(OFT no.-1 
is used for 
RCTOOOrbn) 

GENFTBLE macro, 
DESNUM=DESOOOrbn 

or 
CHNGTB CSECT: 
DC A(DESOOOrbn) 

Conventions for Disk-resident Tables for the Utilities 

12-27 



Chapter 12 Off-Line Utilities 

The control card is printed on SYSPRINT, followed by one or more 
of the following messages: 

• PMILOAD PROCESSING COMPLETE 

• PROCESSING HAS BEEN COMPLETED FOR FILE xxxOOO 

• OF THE nnnnn BDAM BLOCKS WRITTEN, nnnnn CONTAINED DATA 

Error messages that may appear on SYSPRINT during execution, 
which result in an abend (U100), are: 

• xxxxxx IS AN INVALID FILE NAME 

• LOAD MODULE xxxOnnnn IS TOO LARGE FOR RECORD SIZE 

$ FILE xxxOOO CANNOT BE OPENED 

• AN INVALID SELECT OCCURRED ON FILE xxxOOO 

a THERE WAS A PERMANENT I/O ERROR ON FILE xxxOOO 

o NO RCDS WERE FOUND FOR FILE xxxOOO 

The following two error messages do not cause an abend: 

• ERROR IN INPUT CONTROL CARD--NO PROCESSING DONE 

• NO CORE AVAILABLE 

A condition code of zero at end-of-job indicates all processing 
completed successfully. Unsuccessful processing (see the last two 
messages) results in a condition code of 12. 

If an error message is printed, correct the error and rerun the 
job. See Messages and Codes listings of utility error messages for 
further explanation. 

12.5.1 Partial File Load 

The File Load Program allows the SYSIN data set to specify 
replacement of a specific member of the partitioned data set or 
creation of a BDAM data set by loading all members within a specified 
range of member names, starting with member xxx00001. Following are 
examples: 

Example 1 
To copy PDS member name xxx00007 to the existing BDAM data set 
xxxOOO, the SYSIN data set specifies: 

/ / SYSIN DD * 
xxx00007 

12-28 

J 



L 

Chapter 12 Off-Line Utilities 

For this processing, the DISP parameter for the file being 
updated (xxxOOO) must specify OLD or SHR. 

Example 2 
To create the BDAM data set xxxOOO from PDS member names xxx00001 
to xxxOnnnn, irrespective of the number of actual members on the 
PDS, the SYSIN data set specifies: 

II SYSIN DD * 
xxxOOO-nnnn 

The File Load Program will copy PDS members in ascending 
sequence to the BDAM data set xxxOOO beginning with xxx00001, 
which must be present. When a "member not found" condition 
arises, the File Load does not terminate, but the last member 
found will be copied to the BDAM data set· until the next 
"member found" occurs, or the "upper limit" member xxxOnnnn 
is encountered. To illustrate, assume members RPTOOOO 1 to 
RPT00050, RPT00100 to RPT00106 exist on the library 
INT.MODRCT. The File Load Program specification 

II SYSIN DD * 
RCTOOO-0110 

will cause creation of a BDAM data set (RCTOOO) with 110 
RBNs. The member RPT00050 will be duplicated in RBNs 49 to 
98 (once as the actual table entry RBN 49, repeated until 
RPT00100 is found and loaded to RBN 99). The member RPT00106 
will be duplicated in RBNs 105 to 109. For Partial File 
Load, the DISP parameter of the data set being created should 
specify OLD if a recreate, or NEW if the file does not exist. 

There is no limit to the number of control cards input via the 
SYSIN data set. Further, given the proper JCL, several BDAM data sets 
may be recreated and/or individually updated in one execution of the 
File Load Program. 

12-29 



Chapter 12 Off-Line Utilities 

12.6 BDAM FILE CREATION (CREATEGF) 

The CREATEGF program is used to create formatted BDAM data sets. 
The blocks are all formatted with binary zeros. This program should be 
used to format the disk queue data sets which are defined by the DFLN 
parameter in the SYCTTBL macro, or LUNIT/LCOMP (VTAM) macros. 

NOTE: When formatting disk queue data sets, the number of 
blocks must always be a multiple of eight. 

An additional feature is the ability to place data (for testing 
or real data) into the file in the relative block number desired as 
indicated on the REOORD card. Fi ve control cards can be used when 
executing CREATEGF. These are FILE, RECORD, FIXED, VARIABLE and END 
cards. If only formatting a BDAM data set without inserting data is 
desired, the only control card required is the FILE card. 

The format of the control cards is: 

• FILE card--to designate creation of a new file. 

Column 1--F 

Column 3-10--ddname 

Column 11-17--number of records to allow for in file; 
must be right-justified, blanks permitted on left. 

Column 19--0NLY option - if 0 or ONLY coded starting in 
column 19, CREATEGF will create only as many RBNs as 
requested. If omitted, CREATEGF will fill the last used 
extent with records, even if this causes more than the 
number of records requested to be produced. 

The ddname given must be used 
describes the file by giving the 
DSORG=DA. This DD statement must 
CREATEGF is executed. 

on a DD statement which 
DCB parameters BLKSIZE and 
be in the job stream when 

• REOORD card--to define the record to be created in the 
following cards. 

Column 1-3--R1S 

Column 4-5--blank 

Column 6-8--RBN of record to be created C.n EBCDIC). 

12-30 

J 



Chapter 12 Off-Line Utilities 

• FIXED card(s)--to designate a fixed-length data field to be 
placed in the file record indicated by the RECORD card. 
These cards must be in the order of the data fields on the 
file record. 

Column 1--X 

Column 2-3--Size of field 

Column 4--1=Binary; 2=Packed Decimal; 3=Character Image 

Column 10-70--Data (EBCDIC) 

where the maximum characters for each field are: 

1. Binary fields--maximum nine characters becoming four 
bytes binary 

2. Packed fields--maximum 29 characters becoming fifteen 
bytes packed 

3. Character fields--maximum 60 characters 

• VARIABLE Item Code card(s)--to place a field in record 
preceded by an item code, length, and (optionally) occurrence 
number. The maximum size of field defined for the FIXED card 
applies to this card as well. For this card, size of field 
must include one byte for occurrence number (if specified). 
Actual size of the field in record will include two bytes for 
item code and length. 

Column 1--I 

Column 2-3--size of field 

Column 4--1=Binary; 2:Packed Decimal; 3=Character Image 

Column 5-7--item code for data 

Column 8-9--line no. (or 0 or blank) 

Column 10--Data (EBCDIC) 

• END Record card--to define end of a record (block). 

Column 1--E 

When creating multiple data sets, any number may be created in 
one step. The Data Set Control Block (DSCB) for the data set created 
has an Option Code (OPTCD) indication. This can be overridden at 
execution time by coding an OPTCD subparameter on the DO card (for use 
with Intercomm File Handler). 

Figure 12-10 illustrates CREATEGF JCL and control cards. 

12-31 



Chapter 12 Off-Line Utilities 

/ / EXEC PGM=CREATEGF 
//STEPLlB DD DSN=INT.MODREL,DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//SYSSNAP DD SYSOUT=A 
//SYSUDUMP DD SYSOUT=A 
//DDNAME01 DD DCB=(DSORG=DA,BLKSIZE=blksize),DISP=(,KEEP), ••• 
//DDNAME02 DD DCB=(DSORG=DA,BLKSIZE=blksize),DISP=(,KEEP), ••• 
/ /SYSIN DD * 
F DDNAME010000080 
F DDNAME020000152 
R1S 001 
X021 1234 
X032 12345 
X053 FIELD 
I031001016789 

E 
/* 

This is all that is required for monitor disk queues 
Format a user file: 
The following data goes into this RBN 
Fixed binary field 
Fixed packed field 
Fixed character field 
Variable binary field with an item code of 001 
and a line number of 01. Note the length of 
03 includes one byte for the line number. 
End of record 
End of job 

Figure 12-10. Example of CREATEGF JCL and Control Cards 

12.7 OPSCAN -- SCAN FOR PROGRAM OPERATION CODES 

This program analyzes an Assembler Language source module and 
lists all those statements having significant operation codes. Among 
the selected operation codes are IBM macros GETMAIN, FREEMAIN, WAIT, 
POST, SPIE, STAE, CALL and data management functions, and Intercomm 
macros STORAGE, STORFREE, LINKAGE, PTNLINK, DISPATCH and other 
significant opcodes. The summary listing thus produced can be readily 
scanned for significant features of the source program. 

OPSCAN is executed using the Intercomm-supplied JCL Procedure 
OPSCN, described in Chapter 2. 

12-32 



L 

L 

L 

Chapter 12 Off-Line Utilities 

12.8 PRT1403 -- PRINT OUTPUT UTILITY BATCH REPORTS 

The PRT1403 Utility is used to format output from the Output 
Utility to the RPTOOO data set, that is, the Batch Report facility. 

The PRT1403 Utility provides a line-by-line formatted output as 
opposed to the snap dump formats that appear in Test Mode normally. 
Thus, the Batch Report feature can be used to get hard copy format ted 
output from Test Mode. It can also be used during 1i ve execution of 
Intercomm to obtain formatted output of reports, which for one reason 
or another (perhaps length) were put out to tape or disk, rather than 
sent to remote terminals. 

Before executing the PRT1403 Utility, a load module must be 
created. The JCL in Figure 12-11 is used to create the load module. 
The created load module is executed using the JCL in Figure 12-12. 

II JOB 
I I EXEC 
IILKED.SYSIN DD 

1* 

INCLUDE 
INCLUDE 

Figure 12-11. 

II JOB 
II EXEC 
IISTEPLIB DD 
IISYSIN DD 
II 
IISYSPRINT DD 
II 
IISYSUDUMP DD 
IISNAPDD DD 
IISYSSNAP DD 
IISYSSNAP2 DD 
1* 

Figure 12-12. 

LKEDP, P=INT ,Q=USR,LMOD=PRNTAPE 

* 
SYSLIB(PRT1403,BATCHPAK) 
SYSLIB(IXFHNDOO,IXFHND01) 

JCL to Create Load Module for PRT1403 Utility 

PGM=PRNTAPE 
DSN=INT.MODUSR,DISP=SHR 
DSN=RPTOOO,UNIT= __ ,VOL=SER= __ ,DISP=(OLD,DELETE), 
DCB=(RECFM=V,DSORG=PS,BLKSIZE=1004,LRECL=1000) 
SYSOUT=A, 
DCB=(DSORG=PS,BLKSIZE=133,RECFM=F) 
SYSOUT=A 
SYSOUT=A 
SYSOUT=A 
SYSOUT=A 

JCL to Execute PRT1403 Utility Load Module 

Note that UNIT and VOL=SER parameters on the SYSIN DD statement 
must correspond with parameters indicated in JCL when creating RPTOOO. 
DISP parameter may be altered if user wishes to keep the RPTOOO data 
set. Execution of PRT1403 produces output for the entire RPTOOO data 
set. 

12-33 



Chapter 12 Off-Line Utilities 

12.9 LIBCOMPR -- SYMBOLIC LIBRARY COMPARE 

The utility program LIBCOMPR compares two source data sets (or 
members of partitioned data sets). All statements that do not match 
are printed. See description of CHANGER program to produce a change 
deck from a source member comparison. 

The statement sequence field (columns 73-80) is used to determine 
corresponding records. Records are printed if: 

• A sequence number in one input data set is not matched ,in the 
other input data set. 

• Data in correspondingly numbered statements differs. 

Statements printed are identified as to which data set contains 
each statement. I f any statements are printed, a summary follows the 
listing. This summary indicates the number of statements read and the 
number printed from each data set. 

Two input DD statements (SYSUT1 and SYSUT2) and one output DD 
statement (SYSPRINT) are required. The input data sets must either 
have standard labels or the block size (multiple of 80) must be 
specified. 

To bypass listing SYSUT2 statements having unmatched sequence 
numbers, code PARM= 'S' on the EXEC statement. This is useful when 
comparing updates (SYSUT1) to a complete existing program (SYSUT2). 

A 
12-13 . 

sample JCL stream to execute LIBCOMPR is shown in Figure 
(Appropriate alteration should be made for particular cases.) 

II 
IISTEPLIB 
IISYSPRINT 
I/SYSUT1 
/ /SYSUT2 

EXEC PGM=LIBCOMPR,PARM='S' 
DD DSN=INT.MODREL,DISP=SHR 
DD SYSOUT=A 
DD DSN=LIBR1(MEMBER1),DISP=SHR 
DD DSN=LIBR2(MEMBER2),DISP=SHR 

Figure 12-13. Sample JCL to Execute LIBCOMPR 

12-34 

J 



L 

L 

Chapter 12 Off-Line Utilities 

12.10 UTILITY PROGRAMS TO CREATE INPUT TEST DATA 

There are two utility programs which can be used to create input 
data sets for batch testing: 

• CREATSIM--create input messages for BTAM terminal simulator 

• SIMCRTA--create input messages for Test Mode execution 

12.10.1 CREATSIM Program 

CREATSIM accepts only raw data, as from a terminal, and requires 
a separate execution for each message data set created. 

To execute CREATSIM, use the following JCL: 

II EXEC PGM=CREATSIM 
IISTEPLIB DD DSN=INT.MODREL,DISP=SHR 
IISYSPRINT DD SYSOUT=A 
IISYSUT2 DD DSN=message-data-set,DISP=(NEW, KEEP) , 
II UNIT=SYSDA,SPACE= ••• , 
II DCB=BLKSIZE=maximum-message-length+4 
IISYSIN DD * 
message-cards 

1* 

where SYSUT2 defines the sequential output data set containing the 
messages for one terminal which will be input to the BTAM simulator for 
an Intercomm execution. This data set is variable unblocked; the 
BLKSIZE must be at least as large as the largest message record to be 
created, plus 4. If no BLKSIZE is specified, the default is 304. 

From the SYSIN card-image input, CREATSIM constructs a 
variable-length output record from successive cards until a card with 
an EOB (X'26') or ETX (X'03') is found. The output record is then 
written to SYSUT2 and a new record is built starting with the next 
card. If for some reason it is not desired to fill all 80 columns with 
data, an end-of-card character must be punched following the data. 
This character is X'FF'. (Use graphic control described below to 
assign a graphic to X'FF'.) 

12-35 



Chapter 12 Off-Line Utilities 

Special characters, such as EOB, NL, etc., may be mul tipunched 
or, for convenience, other punchable graphic characters may be used. 
These will be converted by the creation program to the hex value for 
the special character. Internally provided conversion graphics 
(identify map) are: 

~========~===============================-===================== 
Input Output 

Graphic Hex Code Name Hex Code Name 
=========:========== ====================F===================== I X'5A' Exclamation point x'26' EOB,ETB 
---~---- ---------- -------------------- ---------- ----------., 

r-------- --------------------
Negation sign X'03' ETX X'5F' 

¢. X'4A' Cent sign X'31' EOT 
---------

J X'4F' 
-------------------------------~---------
Vertical bar X'11' SBA 

--------- -----------r---------
" X'1F' Double quote X'15' NL 

There are several types of input control cards which are coded 
starting in column 1. The graphic card sets one-time-only changes to 
the input translate table to define graphics for special character 
codes. Formats are: 

• GRAPHIC,CLR,ghh,ghh, ••• 

This clears the translate table for identify mapping and 
enters new graphic ghh where g is the input graphic and hh is 
the hex code for the character to be substituted. 

• GRAPHIC,ADD,ghh,ghh, ••• 

This form adds new definitions to the current translate table. 

• GRAPHIC,DEL,g,g, ••• 

This form deletes substitutions from the table for graphic g. 

There are also 3210 SBA generation cards. These cards simplify 
entering of 3210 SBA addresses. First the model is set, if not Model 2 
(default), by 

SBA,Mn 

where Mn is M1 or M2 for Model 1 or 2, respectively. 

12-36 



Chapter 12 Off-Line Utilities 

For each input field, SBA addresses are entered in the message stream 
by the following format: 

SBA,rrcc 

where rr is the row number (decimal) and cc the column (decimal) for 
the beginning of the following field. Rowand column are relative to 
1, and are defined in the ranges 01 to 24 and 01 to 80, respectively. 
The subsequent text card begins in column 1 and if it does not end in 
column 80, it must be delimited with an end-of-card character. 

For 3270 simulation, if SIM3270 is included in the Intercomm 
linkedit, the message text stream must be as follows: 

~ID CURSOR SBA rrcc verb SBA rrcc text-field ••. EOB 

Value g )jr> I 0102 vvvv I rrcc data I . 
Length 1 2 1 2 4 1 2 n 1 

where text-field is one or more input text fields separated by SBA 
cards. The SBA sequence for the verb is optional and the verb itself 
may be omitted if the terminal is defined as locked to a verb in the 
Intercomm Front End Network Table. 

For AID Values, see IBM 3270 documentation for graphic 
equi valents. A GRAPHIC card must be coded for CREATSIM to define a 
graphic equivalent for the Enter key, for example: 

GRAPHIC,ADD,<7D 

A sample input text stream to CREATSIM for verb CHEK to access account 
number 12345 from a formatted screen would be: 

GRAPHIC,ADD, JFF 
GRAPHIC,ADD,<7D 
<r>bj 
SBA,0102 
CHEK; 
SBA,0320 
12345; 
I 

define end-of-card (field) character 
define Enter key 
AID value and cursor location 
optional 

This could be followed by the AID value for the next message, etc. For 
posi tional (unformatted) input (such as an Intercomm control command), 
the text statement can be coded: 

)jhFLSH$TPUABC01$ALL! 

where $ represents the installation standard system separator character. 

12-37 



Chapter 12 Off-Line Utilities 

12.10.2 SIMCRTA Program 

SIMCRTA creates input messages for an Intercomm Test Mode 
execution, and handles multiple data sets in one run. It creates a 
message data set for each input terminal-ID specified via a MSG card. 

SIMCRTA accepts standard Back End test messages and will insert 
the correct end-of-line character (New Line or CR/LF) at the end of 
each data caro, based upon the STATION and DEVICE tables. It also 
inserts EOB and EOT (X'2637') at the end of each message. Any special 
characters, such as HT,. VT, etc., must be multipunched into the card. 
An EMS card must be used to indicate the end of each input message 
text. SIMCRTA will create as many terminal data sets as necessary at 
the same time. The message cards do not have to be in order of 
terminal-IDs. Figure 12-14 illustrates linked it and execution JCL for 
SIMCRTA. Note that the ddnames for the corresponding terminal data 
sets must consist of the terminal-ID preceded by an A; that is, NYC01 
must have a ddname of ANYC01. The different data sets may then be 
specified for SYSIN when executing Test Mode Intercomm. 

IILKEDCRTA 
IILKED.SYSIN 

IIEXECCRTA 
IISTEPLIB 
IIANYC01 
II 
II 
IIACNT01 
II 
II 
IISYSPRINT 
IISYSIN 
MSG AOOO 
DEMO 
FLN DDNAME01 
KEY ABCD 
FDN FIELD 
RPT 73 
EMS 
MSG HOOO 
DSPL 
FLN DDNAMEO 1 
FDN FIELD 
KEY ABCD 
RPT 73 
EMS 
1* 

EXEC LKEDP, Q=xxx,LMOD=EXSIMCRT 
DD * 
INCLUDE SYSLIB(SIMCRTA,TERMCONV,BINSRCH) 
INCLUDE SYSLIB(BATCHPAK,PMIEXTRM,PMISTATB,PMIDEVTB) 
EXEC PGM=EXSIMCRT 
DD DSN=INT.MODxxx,DISP=SHR 
DD DSN=INT.NYC01,DISP=(,CATLG),VOL=SER=yyyyy, 

DD 

DD 
DD 
NYC01 

CNT01 

UNIT=zzzz,SPACE=(500,(20,2),RLSE), 
DCB=(BLKSIZE=500,LRECL=500) 
DSN=INT.CNT01,DISP=(,CATLG),VOL=SER=yyyyy, 
UNIT=zzzz,SPACE=(500,(20,2),RLSE), 
DCB=(BLKSIZE=500,LRECL=500) 
SYSOUT=A 

* 
0001 

0002 

Figure 12-14. SIMCRTA Linkedit and JCL 

12-38 



Chapter 12 Off-Line Utilities 

12.11 CREATE KEYED BDAM FILE (KEYCREAT) 

KEYCREAT creates and preformats a keyed BDAM file of fixed-length 
unblocked dummy records. The key length and record size are determined 
by the DCB subparameters KEYLEN and BLKSIZE on the DD statement. The 
size of the file is determined by the number of records (blocks) 
indicated in the PARM field of the EXEC statement in the JCLj blocks 
will be written until the PARM value is reached. In thi~. case, the 
number of blocks supplied must be a multiple of the number of blocks 
per track of the device defined by the UNIT parameter on the DD 
statement describing the file (INTKEYFL). However, if the PARM value 
is omitted or 0, records will be written under control of the program 
(not the user) until the primary space allocation is filled. 

Figure 12-15 shows the JCL required to execute KEYCREAT. 

I I EXEC 
IISTEPLIB 
IISYSPRINT 
IISYSUDUMP 
IIINTKEYFL 
II 

II 
II 
II 
II 
II 

PGM=KEYCREAT(,PARM='number-of-records-to-create') 
DD DSN=INT.MODREL,DISP=SHR 
DD usual-installation-parameters 
DD SYSOUT=A (optional) 
DD DSN =data-s.et-name-to-be-crea ted, 
DISP=(NEW,{CATLG},DELETE), 

{KEEP } 
SPACE=allocation-parameter, 
VOL=SER=volserid, 
UNIT=dasd, 
DCB=(KEYLEN=key-length,BLKSIZE=blocksize, 

RECFM=F,DSORG=DA) 

Figure 12-15. KEYCREAT Execution JCL 

There is no restriction on the number of records to be created as 
supplied in the PARM field other than that the value must be numeric. 
The data portion of the records is initialized to binary zeros. 

Should an 1/0 error occur, the utility abnormally ends. Should 
the KEYLEN subparameter be omitted, the utility will issue an 
appropriate WTO message and abend with a User Code 4. Should the input 
PARM field contain nonnumeric characters or be too long, the utility 
will issue an appropriate WTO message and abend with User Code 8. An 
unsuccessful open of INTKEYFL's DCB results in a related system abend, 
as no SYNAD exit is provided. The WTOs are documented in Messages and 
Codes. 

12-39 



Chapter 12 Off-Line Utilities 

12.12 ICOMFEOF - Recover From Missing End of File 

IOOMFEOF recovers from a missing/invalid end of file condition on 
a sequential output file, such as can occur after an operating system 
or hardware failure in which the file was not closed. In particular, 
ICOMFEOF is designed to ensure that a valid end of file exists on 
INTERLOG, the Intercomm log, so that a restart is possible. IOOMFEOF 
may also be used against a TOTAL data base log file. Coding a PARM on 
the execute statement indicates a log file and the type of log. In 
this case, the name coded for the parm is used as the ddname of the log 
file to be processed. 

To determine if a valid EOF exists, the file (disk or tape) is 
read until one of the following occurs: 

1) A valid EOF is detected. In this case there is nothing to do. 

2) A no-record-found occurs. This indicates an invalid EOF on 
disk. 

3) A data check occurs. This indicates a missing EOF on tape. 

4) If PARM= INT... is specified, then the subject file is assumed 
to be an Intercomm log. In this case, the log code is 
validated and the time stamp is checked for the first message 
in each block. An invalid log code or a descending date/time 
is treated as a missing end of file. If single region 
logging is used in a Multiregion Intercomm system, log 
records on the control region log may not be in ascending 
order, because the time is set in the sate lli te region. A 
local global &DTMARGN may be set to allow for a descending 
time variance in minutes; see the comments at the beginning 
of module ICOMFEOF. 

5) If PARM=TOT ••• is specified, then the subject file is assumed 
to be a TOTAL log. In this case, each record is verified to 
have a monotonically ascending sequence number. If this 
check fails, a missing end of file is assumed. 

When a missing EOF is diagnosed, the EOF is written by issuing a POINT 
to position to the last block read successfully. The block is then 
rewritten and a CLOSE is issued, writing the EOF. 

Optionally a WTOR to the console operator can be issued requesting 
acceptance or refusal of the new EOF. Or, the operator may request an 
abend so that the System Manager can examine the cause of the missing 
EOF and the last valid record in the dump. See the description of 
message RL069R and abend 2222 in Messages and Codes. 

12-40 



Chapter 12 Off-Line Utilities 

Figure 12-16 shows the JCL required to execute ICOMFEOF. IF 
PARM=INT ••• or PARM=TOT ••• is specified, substitute the ddname coded in 
the parm field for NOEOF, because the latter is used only to process a 
sequential data set which is not either an Intercomm or TOTAL log file. 

II 
IISTEPLIB 
IISYSUDUMP 
IINOEOF 
II 

EXEC PGM=ICOMFEOF(,PARM= •••• ) 
DD DSN=INT.MODREL,DISP=SHR 
DD SYSOUT=A 
DD DSN=name-of-sequential-file, 
DISP=OLD,VOL=SER=volserid, ••• 

Figure 12-16. ICOMFEOF Execution JCL. 

(optional) 

NOTE: in order to recover a tape data set after an operating system 
failure, it is important that the tape either be pre-initialized 
with tape marks (if new see User Contributed Program 
Descriptions for sample program) having at least a tape mark at 
the end of the tape, or previously writ ten on until the end of 
the tape. This will prevent a runaway tape condition after the 
last block is read. In order to recover a disk data set after an 
operating system failure, the IBM utility IEBGENER must be 
executed to copy the entire data set (primary extent only) to 
another disk area. This will cause an end-of-file mark to be 
placed at the end of the extent. ICOMFEOF will then find and 
mark the real end of file (last valid record) within the extent. 
Any records created beyond the first extent will be lost as the 
DSCBs on disk are not updated until the file is closed. When 
copying the Intercomm log (INTERLOG), RECFM=U must be specified 
on both the input and output disk data sets for IEBGENER (also 
BLKSIZE=maximum block size; omit LRECL). 

12-41 



Chapter 12 Off-Line Utilities 

12.13 CHANGER--Produce Change Deck from Two PDS Members 

This program compares two partitioned data set Assembler Language 
members (an original and a modified version of a module), and produces 
an IEBUPDTE change deck consisting of IEBUPDTE control statements 
(CHANGE, INSERT, DELETE) and data statements, as necessary. This 
change deck, if applied to the original version of a module, as defined 
by the OLDMEM DD statement, would produce the new version of the same 
module, as defined by the NEWMEM DD statement. 

In this way, an original module may be copied to a user's private 
library and conveniently updated (online via TSO, for example) without 
disturbing the original, while at the same time keeping an accurate 
audit trail of modifications. Program output (the change deck) may be 
SYSOUT (printed or punched) or any desired card-image (LRECL=80) data 
set. The block size is of the user's choice. 

The two versions of the module must have the same sequence 
numbers except for the changes (deletions). 

JCL for executing the CHANGER program is: 

II 
IISTEPLIB 
IIOLDMEM 
//NEWMEM 
/ /CHANGEDK 

EXEC PGM=CHANGER 
DD DSN=INT.MODREL,DISP=SHR 
DD DSN=pds1(original),DISP=SHR 
DD DSN=pds2(modified),DISP=SHR 
DD {SYSOUT={A} },DCB=BLKSIZE=multiple-of-80 

{ {B}} 
{DSN=data-set} 

12-42 

l J 



Appendix A Intercomm Table Summary 

L Appendix A 

INTERCOMM TABLE SUMMARY 

-------- --------- =========-F========~================================ -------- ---------
NAME MACROS DSECTS FILE DESCRIPTION 
========= --------- ========== ========= ----------------------------------------- ---------------------------------
AIDSECT AIDDATA - AIDSECTS 3270 AID key replacement table 

AIDGRP 

BTAMSCTS SYCTIBL SCTLISTC (BTAMQ) Front End Terminal Queues 

PCENSCT 

BTVRBTB B1VERB PVRBTBLE F.E. Transaction Codes--Verbs 

PMISTOP 

CHNGTB (DC's) C/D-Fixed Format Identifiers 

COBPCBTB ICOMPCB DLIB DL/I Data Base Interface 

CPUIDTBL (DC's) 3735 Terminal CPU-ID lists 

DDQDSTBL DDQDS DDQSECTS DDQ queues dd names 

DDQENV SET. DDQ execution environment 

FDPTABL (DC's) FDPOOO 3735 Terminal FDP lists 

FDR FDHDR FDRLIST DESOOO C/D-File Record Description 

FDETL 

FENETWRK BDEVICE DEVTABL F.E. Network Definitions-BTAM 

LINEGRP LGDSECT 

BLINE PLNDSECT 

BTERM DIALTABL 

POLLIST PTRDSECT 
DFTRMLST PEXTABLE 

GFE GFEDSECT --GFE/Extended TCAM 

PMISTOP 

FIXTABLE ICOMFIX FIXSECT VS Page Fixing groups 

FORMTBLE (DC's) FGEN verbs/OFT numbers 
INTDEFMT DRFORM Data Entry Format Names/Numbers 

INTSCT SYCTTBL SCTLISTC (PMIQUE) Subsystem Control Table 

RESOURCE 

GENINDEX 

PCENSCT 

INTSPA SPALIST SPALIST System Parameter Area 

SPA Extension Area 
IXFDSCT1 IXFDSCTA IXFDSCTA Data Set Control Table 

A-1 



Appendix A Intercomm Table Summary 

USER-DEFINED TABLE LIST 

------------------ --------------------------- --------- --------- ---------
NAME MACROS DSECTS 

========= =========:========= 
KEYTABLE (DC's) 

LOGCHARS DEFINE MMUDSECT 

DEFAULTS 

COMMAND 

CNTLCHR 

ATTRIB 

LOGSETGB SET. 

LOGVRBTB LOGVERB 

LPINTFC LPINTFC 

LPVCON 

LPSPA LPSPA 

LPENTRY 

FILE 
------------------

================================== 
DESCRIPTION 

------------------------------------------------------------------
C/D-Key conversion routines 

MMU Device Processing Definitions 

--ASMLOGCH 

--COBLOGCH 

"':-PLILOGCH 

Log Analysis generation parms 

Log Analysis utility verbs 

Link Pack interface list 

Link Pack resident modules 

LUT VCT 

LUNIT 

LCOMP 

VTLSB 

VTCSB 

VTLVB 

VTIDTAB 

VCT 

LUDSECTS 

(VTAMQ) VTAM network definitions 

Terminal-id synonyms 

MMU maps MAPGROUP MMUDSECT INTSTORn MMU map definitions 

MAP 

SEGMENT 

FIELD 

ENnGROUP 

~UVTBL MMUVT MMUVT 

MRMCT REGCOM MCTDSECT 

NEWPOOLS ICOMPOOL RMDSECTS 

OVLYBTB (DC's) OVLYTBL 

PADDTBLE PADD 

PAGETBLE PAGETBL PGEDSECT (PAGES) 

PMIALTRP PMIALTRN ALTREPRT 

PMIBROAD BCGROUP BRODSECT 

PMIDEVTB DEVICE DEVLISTC 

PMIFILET GENFTBLE FTBLISTC 

A-2 

MMU vector table 

MRS-region communications 

Core pools descriptions 

Overlay B verb table 

Editing pad characters 

Terminal/Page file lists 

Alternate Terminal OFT Reports 

Broadcast MSG. terminal groups 

B.E. device descriptions 

File tables (E/O, C/D) 



L 

Appendix A Intercomm Table Summary 

USER-DEFINED TABLE LIST 

===================-=======:-========-================================= 
NAME CROS SECTS FILE DESCRIPTION 
-------- ---------- -------- -------- ----------------------------------------- ---------- -------- -------- ---------------------------------
PMIRDT. • REG ION 

SUBSYS 

GENRDT 

RDTSECTS 

MRPASSWD MPWDSECT 

MRS-Region Description Table 

RAP processing 

PMIRPTAB (DC's) OFT Terminal Restrictions 

PMISECTB STATION STALIST SECOOO Basic Security Processing Table 

SECVERBS SECTB 

GENSEC I 
PHISTATB STATION I STALIST 

I 
B.E. Terminal Table 

DVMODIFY DVMODIFY 

PMISTOP. 

PMITIMTB TMZONE 

PMlVERBS VERB 

TlMETBL Time-of-Day/Subsystem List 

VERBTBL VRBOOO Verb Editing Control (ECT) 
I PARM 

PMIELIN 

VERBGEN 

PTRNTBL PATRN C/D--Output Edit Patterns 

REENTSBS SUBMODS DYNDSECT Subroutine Codes/Entries 

RPTOOO OFT Report Spooling to Tape 

RCTLISTC RCTOOO OFT Report Definitions 

REP TAPE (DC's) 

RPT. . • • • REPORT 

LINE 

ITEM 

SAMTABLE MAPACCT SAMCB 

SECURITY (DC's) 

SETENV SET. 

SETGLOBE SET. 

TOTFILE TOTFLGEN 

TRANGEN GENERTRN 

TUNERTBL (DC'S) 

USERSPA (DC'S) 

USRBTVRB BTVERB 

TUNRTBLC 

PVRBTBLE 

USRSCTS SYCTTBL SCTLISTC 

USRSUBS SUBMODS DYNDSECT 

USRVERBS VERB,etc. VERBTBL 

I 

A-3 

SAM Reporting Areas 

Basic Security User Exit VCONs 

F.E. Network Environment 

System Control Globals 

TOTAL Data Base Files 

MSG--Transaction Generation 

Fine Tuner Commands SS names 

User Extention to INTSPA 

User additions to BTVRBTB 

User additions to INTSCT 

User additions to REENTSBS 

User additions to PMlVERBS 





Appendix B 

INTERCOMM MESSAGE HEADER 

The following lists the names and formats of all fields in the 
Intercomm message header, and describes their contents and 
changeability. 

===========--==========-======================================-=======~ 
Field . Alter 
Name Length Description Legend-

----------- ----------- -------------------------------------- ------------------ ----------- -------------------------------------- -------
MSGHLEN 2 Length of message, including header Y! 

(binary number) . I 
----------- ---------- --------------------------------------t-------~ 

MSGHQPR Teleprocessing segment I/O code: N I 

MSGHRSCH 

02/F2=full message 
OO/FO=header segment 
01/F1=intermediate segment 
03/F3=final (trailer) segment 

Receiving subsystem code high order 
byte (binary zero if terminal output) 

Y 

------------ ----------- -------------------------------------- -------
MSGHRSC 

MSGHSSC 

-----------------------
MSGHM1N 3 

Receiving subsystem code low order 
byte (binary zero if terminal output) 

Y 

Sending subsystem code low order M 
byte (binary zero if terminal input) ; 

Message Collection 
~~~~~~;-~~~;~~~-~~~~~;-~;;~~~~~-~;----r---~---~j 

------------ ----------- ------------------------------------- --------. 
MSGHDAT 6 Julian date (YY.DDD). The period N 

MSGHTIM 

MSGHTID 

is a one-byte message thread number 
(for resource management and/or 
message restart purposes). 

8 Time stamp (HHMMSSTH) N 

5 Terminal identification (originating Y 
terminal on input messages, 
destination terminal on output) 
or Broadcast Group Name 

---------- ------------------------------------- --------

B-1 



Appendix B Intercomm Message Header 

=============-==========F======================================F======== 
Field Alter 
Name Length Description Legend* 

F============ ========== ====================================== ======== 
MSGHCON 2 Reserved area N 

MSGHCON+1 
(MSGHRETN) 

.MSGHPID 

foo------------MSGHSSCH 

(1) Subsystem Return Code (Log Code X'FA' 
entries only) 

5 Reserved area 

Sending subsystem code high order 
byte (binary zero if terminal input) 

-------------~---------- --------------------------------------
MSGHUSR 1 Reserved (see below) 

N 

--------
N 

M 

L 

-------------~---------- --------------------------------------~--------
MSGHBMN 2 Front End message number (binary) N 

-------------~---------- -------------------------------------- --------
MSGHLOG 1 Log Code (see Chapter 9) L 

MSGHBLK Reserved area 
-------------~----------~--------------------------------------

MSGHVMI 1 Verb or Message Identifier inter-

*Alter Legend: 

preted by receiving subsystem as 
required, and by FESEND. 

--------
N 

--------
Y 

Y - must be filled in by application program for a message for 
Output Utility, a terminal, or another subsystem. For calls 
to FESEND(C), MSGHVMI should be set to X'57' or X'67' as 
appropriate for output messages, and MSGHRSCH/C must be 
binary zeros (low values). 

M - Should be filled in for user's own information (required by 
Intercomm for restart) 

N - 00 NOT TOUCH (must be copied from input message header to 
output message header) 

L - may be modified for user codes based on subsystem logic. 

B-2 

J 



Appendix B 

Nom: 

Intercomm Message Header 

Log records are blocked by LOGPUT with a Block Descriptor 
Word containing the block length at the beginning of the 
block. The individual message records wi thin the block 
do not, however, contain Record Descriptor Words. 
Intercomm uses the length in the message header to 
increment to the next message in the block. Therefore, 
the blocks are written as RECFM=U. Do not use 
programming or JCL access to the log as RECFM=VB. 

MSGHUSR is used for interface with Intercomm modules as follows: 

1. If the input verb had HPRTY=YES coded for the BTVERB macro; 
MSGHUSR contains a C' P' to request priority queuing for the 
subsystem. The user may move a C'P' to this field to request 
priority queuing for output messages to a terminal (via 
FESEND) or to another subsystem (via Message Collection). 

2. For messages to be processed by the Edit Utility; contains 
C 'F' to indicate that the input message was from a 3270 CRT 
and contains SBA sequences. 

3. For output messages to a switched async device (Teletype, 
Dataspeed 40, and· 2740); a C'B' requests disconnect after 
transmitting the output message. 

4. For output messages to a switched Teletype or Dataspeed 40 
device; a C'X' requests using the alternate call-list for the 
next input message (as described in the BTAM Terminal Support 
Guide) • 

5. For output messages to a switched IBM 7770 device; this field 
must contain one of several optional values, as described in 
the BTAM Terminal Support Guide. 

If none of the above considerations are applicable, the subsytem 
may use this field for messages queued to other user subsystems, or for 
special logging information, as desired. The LOGPRINT utility always 
prints the value coded in this field (in hexadecimal). 

B-3 



J 

J 

J 



Appendix C 

USER CODING OF THE SCT OVERLAY INDEX 

As illustrated in Figure C-1, the following coding conventions 
must be utilized when the SCT Overlay Index is coded by the user: 

• Code an ENTRY statement for SPA references, as follows: 

ENTRY SCXFSOG1,SCXESCX,SCTRES 

• The first word must be labeled SCXESCX, as one of the fields 
in the SPA Csect is an address constant referencing this 
label (SPAPSCX). 

lit The header of the Subsystem Control Table Index consists of 
the three fields SCXESCX, SCXFRSS and SCXLRSS. SCXESCX is an 
address constant pointing to the last detail entry in the 
index. The end of the index has been given a labe 1 SCXEND. 
Since each detail entry is twelve bytes long, the constant 
A(SCXEND-12) will point to the first word of the last entry, 
even if new overlay groups are inserted in the index during 
future maintenance. 

• The fields SCXFRSS and SCXLRSS contain the address of the 
~ first and last entries in the resident portion of the 

Subsystem Control Table. Code as A(O) if there are no 
resident or dynamic load SCTs. The value SCTSIZE has been 
subtracted from the address of the end of the group to 
establish the starting address of the last entry. 

L 

• At the beginning of the Subsystem Control Table, the label 
SCTRES must be placed on a DS statement that establishes a 
fullword boundary for the beginning of the first entry for a 
resident subsystem in the table. The end of the first entry 
has been flagged with the label SCTERES1. At the end of the 
table (following all of the overlay groups), these labels 
have been used in an EQU statement to establish the size of 
an individual entry (SCTSIZE). This size is an important 
figure in coding the address constants in the index. 

• The first word following the entries for the resident portion 
of the Subsystem Control Table is indicated by the label 
SCTLRES. The first word following each subsequent overlay 
group is labeled SCTLOVn, where n identifies the overlay 
group. With these labels established, the coding of the 
index can proceed. 

C-1 



Appendix C 

• 

• 

o 

User Coding of the SCT 
Overlay Index 

The coding of detail entries for each subsystem group 
consists of the fields SCXFSOGn, SCXLSOGn and SCXOVNMn, 
where n is varied to distinguish between overlay subsystem 
groups • 

The OVLY number is the constant value coded at SCXOVNMn. 
(Overlay numbers 1, 2 and 3 are reserved for Overlay 
Regions B, C and D.) Numbers 4 through 62 are used for 
subsystem groups in Overlay Region A. SCXFSOGn is the 
address of the first entry in the Subsystem Control Table 
for each overlay group. SCXLSOGn is the address of the 
last entry in the group; the value SCTSIZE is used to 
calculate this address. Each detail entry is padded at 
the end with three bytes. Coded as shown in the example, 
the labels SCTLRES and SCTLOVn serve the dual purpose of 
defining the address of the last entry in the preceding 
group, and the starting point of the next group. 

When the overlay index is user-coded, the GENINDEX macro 
must specify OVLYNDX=NO. 

C-2 

J 



Appendix C User Coding of the SCT 
Overlay Index 

* THE THREE FOLLOWING FIELDS CONSTITUTE THE HEADER OF THE SYSTEM 
* CONTROL TABLE INDEX 
SCXESCX DC A(SCXEND-12) ADDR 1 ST WRD, LAST DTL ENTR Y • 

ADDR 1ST SCT FOR RES SIS. 
ADDR LAST SCT FOR RES SIS. 

SCXFRSS DC A(SCTRES) 
SCXLRSS DC A(SCTLRES-SCTSIZE) 
* * THE FOLLOWING CODE ESTABLISHES A DETAIL ENTRY IN THE INDEX FOR 
* THE FIRST OVERLAY GROUP. 
SCXFSOG1 DC A(SCTLRES) 
SCXLSOG1 DC A(SCTLOVl-SCTSIZE) 
SCXOVNM1 DC AL1(4) 

DC 3B '0' 
* 

ADDR 1ST SCT FOR OVLY FOUR· 
ADDR LAST SCT FOR OVLY FOUR 
OVLY NUMBER. 
PADDING. 

* THE FOLLOWING CODE ESTABLISHES A DETAIL ENTRY IN THE INDEX FOR 
* THE SECOND OVERLAY GROUP. 
SCXFSOG2 DC A(SCTLOVl) 
SCXLSOG2 DC A(SCTLOV2-SCTSIZE) 

ADDR 1ST SCT FOR OVLY FIVE 
ADDR LAST SCT FOR OVLY FIVE 
OVLY NUMBER. SCXOVNM2 DC AL1(5) 

DC 3B'0' PADDING. 

* * DETAIL ENTRIES FOR ADDITIONAL OVERLAY GROUPS MAY BE INSERTED HERE 
* SCXEND 
* 

EQU * ADDR OF END OF INDEX. 

* FOLLOWING IS THE SYSTEM CONTROL TABLE. 
* 
SCTRES DS OF 

SYCTTBL 
SCTERESl DS OF 

SYCTTBL 
SYCTTBL 
SYCTTBL 

SCTLRES DS OF 
* BEGINNING OF 

SYCTTBL 
SYCTTBL 
SYCTTBL 

SCTLOV1 DS OF 
* * BEGINNING 

SYCTTBL 
SYCTTBL 
SYCTrBL 

OF 

SCTLOV2 
* 

DS OF 

1ST SCT FOR RES SIS. 

ADDITIONAL SCT'S 
FOR RESIDENT OR DYNAMICALLY 
LOADED SUBSYSTEMS. 

OVERLAY A GROUP ONE 
SCT'S FOR 

OVERLAY 
GROUP 4 

OVERLAY A GROUP TWO 
SCT'S FOR 

OVERLAY 
GROUP 5 

* ADDITIONAL OVERLAY GROUPS 6 THROUGH 59 MAY BE INSERTED HERE. 
* 
SCTSIZE EQU SCTERES1-SCTRES 

GENINDEX OVLYNDX=NO 
PCENSCT 
END 

Figure C-1 User-Coded Subsystem Control Table Index Structure 

C-3 



J 



Appendix D 

INTERCOMM USER EXITS 

D.1 INTRODUCTION 

Generally, user exits are conditionally called (CALLIF) for 
special processing, for example: 

• Additional error recovery (terminals, files, etc.) 

• Cancelling/modifying/routing of messages 

• Additional security checking 

a Statistics gathering 

• Additional startup and closedown processing 

• VTAM interface processing 

D.2 CODING CONVENTIONS 

Unless otherwise documented for the specific user exit, the 
following coding conventions for user-coded or user-modified exits from 
Intercomm processing routines must be observed: 

~ Written in Assembler Language only 

~ Reentrant (establish and chain save areas) 

• Use standard linkage conventions; at entry 

R15 contains address of user exit 

R14 contains return address to caller 

R13 points to caller's save area 

RO generally not used 

R 1 contains a parameter, Or points to a parameter 
list which contains one or more addresses or 
values, as documented for each exit 

R2-12 may contain additional parameter values, as 
applicable 

D-1 



Appendix D Intercomm User Exits 

D.3 

• If STORAGE macro used to acquire save/work area, RENT=NO must 
be coded 

• SPALIST address can be acquired via GETSPA macro 

• Do not give up control to the Dispatcher either directly 
(dispatcher macros) or indirectly (call to Intercomm service 
routine or user subroutine) if documented as prohibited 

• Most of the exits are called in thread 0 (system thread) 

• Intercomm macros for application programming documented in 
Basic System Macros and the Assembler Language Programmers 
Guide may be used; be aware of putting the caller in a wait 
state if an INTENQ macro is issued 

8 Intercomm control commands may be issued (format message and 
queue via FESEND, or via FESENDC if message storage area to be 
copied) 

.. At exit, if documented, user must pass back a return code, 
either via register 15 or in a status word 

o Exit must return to caller. 

LIST OF USER EXITS 

Note the following: 

Source: YES indicates sample source code provided on SYMREL 

Doc: the Intercomm manual in which the user exit is described, as 
follows: 

ETG = BTAM Terminal SU220rt Guide 

DBMS = Data Base Management Users Guide 

DEIG = Data Entr~ Installation Guide 

ESS = Extended Securit~ S~stem 

M&C = Messages and Codes 

ORM = 0Eerating Reference Manual 

SNA = SNA Terminal SUEEort Guide 

TSG :. TCAM SUEEort Users Guide 

UUG = Utilities Users Guide 

D-2 

J 

J 



Appendix D Intercomm User Exits 

------------------ ------------ ==========================================; --------- -------- ------- ----
Name Caller Source DOC Comments 
~========= ======== =======F==== =========================================== 
CHNGEXIT CHANGE 

COPYEXIT COPYSS 

DDQEXIT DDQINTFC 

DEUSEXIT INTENTRY 

DEUSEXTR INTDEXTR 

INQEXIT BMHOOO 

IOEXIT RMNADISA 

SECUEXIT INTSEC02 

SNAPEXIT PMISNAP1 

SPINEXIT SPINOFF 

SPSNEXIT SPIESNAP 

TCAMSTRT STARTUP 3 

TCAMCLSE CLOSDWN3 

, USERINIT 
I 

I 
STARTUP 3 I 

LOGPUT i I USERLOGE 

PDATBASE I I USERPDBE 
I ) 
i 
'USRBSCEX BSCLEASE I 

USRBTLOG BTSEARCH YES 
VTRECVE YES 

USRCANC SYCT400 YES 
IJKTLOOP 
MRCSAMOD 

USaCHKPT CHECKPT3 

USRCLOSE CLOSDWN3 YES 

USRCLSE1 USRCLOSE 

UUG called before updating a file 

BTG allow/cancel COpy processing 

segmented input messages processing 

DEIG Data Entry input data editing etc. 

DEIG Data Entry extracted record processing 

BTG modify header/free msg. before queuing 

ORM for thread or file hung-I/O time-out 

ESS ADD/SIGNON/SIGNOFF processing 

ORM determine whether to take a snap 

ORM use to generate job to print SNAPDD 

ORM determine whether to take snap 126 

TSG Basic TCAM startup after Qs open 

TSG Basic TCAM closedown processing 
I 
I TSG I Basic TCAM - check TCAM MCP active 
1 I 

I 
ORM I log statistics gathering 

DBMSIDATBAS calls statistics gathering (TOTAL) 
I 

BTG leased CPU optional error recovery 

BTG after verb verification-log input msg (F1) 
SNA after input msg. received, header 

formatted 

ORM See PMICANC-issue 'message cancelled' 

aRM called prior to write checkpoint record 

aRM issue 'Intercomm closed' message 

ORM additional closedown processing 

D-3 



Appendix D Intercomm User Exits 

: ----------------- ========-======-=====-==========================================~ 

Name Caller 
---------- ------------------ --------

USRCONVE CONVERSE 

USRCONV1 CONVERSE 

USRECR Y BLHIN 
BLHOT 

USRER129 BUlIN 
BLHOT 

USRESTRT LOGPROC 

USROTEDT PMIOUTPT 
FESEND 

USROUTCK PMIOUTPT 

USRPRMPT I NTSE CO 0 

USRSAM01 SAMSECT 

USRSECOO INTVRBOO 
INTSECOO 
INTSEC02 

Source DOC Comments 
=======-----F=========================================== 

YES 

YES 

called when entered from subsystem 

called when entered from Subsystem 
Controller (next message received) 

BTG error recovery message handling 

BTG 129 Card Read/Punch hardware error 
recovery 

ORM restart message option 

ORM formatted output message changes 

ORM cancel message formatting by Output 

ESS suppress sign-on prompt message at startup 

ORM SAM user function routines (01-10) 

ESS security statistics gathering, etc. 

USRSEREX BLMSGCOL YES ORM Serial Restart - Front End input 
message queuing exit I 

II USRSGNOF 

USRSGNON 
I 

PMISIGN 

PMISIGN 
! , 

USRSTART STARTUP3' YES 

USRSI'RT1 USRSTART 

USRTDWN BDIAL 
TPUMSG 

USRTPUP TPUMSG 

USRTRAP TRAP 

USRWTO WTOMOD 

USRXIN BIliIN 

ORM Basic Security sign-off checking 

ORM Basic Security sign-on checking 

ORM issue 'Intercomm started' message 

ORM additional user startup processing 

BTG terminal disconnected processing 
BTG terminal down (TDWN) processing 

BTG terminal up (TPUP) processing 

M&C user TRAP debugging 

M&C additional system message output routing 

BTG input msg. modification before queuing 

D-4 



Appendix D Intercomm User Exits 

F======== =========-=======-==== =========================================== 
Name Caller Source DOC Comments 

=========:========= ============:=========================================== 
HALT VTLUCMD SNA SPLU$TPUxxxxx$HALT processing 

INQUEUE VTRECVE SNA before rosg. queued for Back End 

LOGON VTEXITS SNA after OPNDST completed 

LUS VTRECVE SNA LUS (sense data) received 

OTQUEUE VTQMJD SNA before msg. put on component queue 

OUTSEG VTSEND SNA if VTLSB specifies SOUTSEG=USER 

: RCVEXCD VTRECVE SNA invalid input message 

i SHUTD VTLUCMD SNA SPLU$TPUxxxxx$SHUTD processing 
I 

SIGNAL VTEXITS SNA Signal Expedited Flow command received 
l 
I 

I SNDABT VTSEND SNA SEND error recovery processing 
I 

I 
i SNDEXR VTRESP SNA negative response received 
I 

~ I SNDNRM VTRESP SNA positive response received 

: VTURLRX1 VTEXITS YES SNA Intercomm-supplied version of VTUSRLRX 
! exit 

VTUROTX1 VTQ~D YES SNA Intercomm-supplied version of OTQUEUE exit 

VTURSDX1 VTREGP YES SNA Intercomm-supplied version of SNDNRM exit 

VTUSLGNX VTEXITS SNA final validation of LOGON request 

VTUSRLRX VTEXITS SNA VTAM RELREQ exit scheduled 

VTUSVSDX VTLUCMD SNA VTCN$SHUTD command processing 

D-5 





L 

L 

INDEX 

Abend intercept routines 
--and closed program loops 
--described 
--and Dispatcher task queues 

4-13 
8-5--8-7 

4-2 
8-23 
5-21 

--and system tuning statistics 
--and thread resource dump 
See also SPIEEXIT and STAEEXIT. 

Abend protection for sequential 
output files 6-7--6-8,6-22,6-29,6-31 

AID processing 3-3, 8-5, 12-37 
ALIAS FAR attribute 6-31, 6-34 
Aliased files 6-29, 6-31 
ALLOC parameter, 

FILE command 6-9, 6-11--6-12 
AMGINTFC module 6-46 
AMIGOS access method 6-3, 6-41 
AMODGEN li brary 7 -21 , 7 -27 
ANALYZE option, LOGANAL utility 

12-8,12-11,12-20--12-21 
ASGN command 
ASMOC procedure 
ASMPC procedure 
ASMPCL procedure 
ASMPCM procedure 
ASP 

10-6 
2-6,2-8,2-11 

2-6,2-8,2-11--2-12 
2-6,2-8,2-12 

2-6,2-8 
7-14 

Assembler Language 
--coding conventions 3-55 

6-57 
3-41 

--and DISAM 
--and Dynamic Linkedit facility 
--and dynamically loadable 

subsystems 
--and generalized 

3-39 

sub tasking 3-59--3-60 
--and indicative dumps 8-7 
--and input messages 3-2 
--and ISAM 6-6 
--and Link Pack Area 7 - 31 
--and LOCATE facility 6-38 
--and page preloading 7-25 
--and resident subsystems 3-53--3-54 
--and Subroutine Overlay Region 3-58 
--and subystem interface 3-45 
--and System Accounting and 

Meas urement 8-20 
--and Transient Subroutine 

Overlay Region 3-56--3-57 
--and user-written security 

routines 
ASYNCH module 

10-19 
3-38, 3-45, 11-21 

1-1 

ASYNCH parameter, 
ICOMLINK macro 

Asynchronous Overlay 
Loader 

ASYNCLDR module 
ASYNLDR parameter, 

SPALIST macro 
Auditing. See Resource 
AUTOFF parameter, 

3-38, 3-45 

1-8, 3-38, 3-45 
3-40 

3-38, 3-45 
Audit and Purge. 

STATION macro 
AUTOLOK parameter, 
Automatic Sign-off 

10-6, 
BTVERB macro 

10-5, 
AUXS parameter, SYCTTBL 
AVRB command 

10-15 
3-10 

10-15 
3-34 
10-9 

5-17 --5-18 

macro 

AOA abend 

Backout-on-the-Fly 6-8 
Basic Security System 

--defined 10-1 
--Multiregion consideration 10-20 
--processing options 10-2--10-3 
--sign-on/sign-off security 

--processing 10-6 
--and SPALIST parameters 10-6 
--and SYCTTBL parameter 10-7 
--user exits 10-7--10-8 
--using a sign-on/sign-off 

terminal 10-5 
--and Station Table 

--BTVERB macro 10-13 
--GENSEC macro 10-11 
--SECVERBS macro 10-11--10-13 
--STATION macro 10-11,10-14--10-15 

--loading operator codes 
on disk 10-17--10-18 

--parameters 10-14--10-15 
--range of verbs per 

terminal 10-15--10-17 
--station security 10-17--10-18 
--transaction security 

10-15--10-17 
--UNIVER and OPER parameters 10-14 

-- structure 10-10 
--transaction security 

--range of verbs per 
terminal 

--SPALIST parameter 
--SYCTTBL parameter 
--use of 

--user-written security 

processing 

10-15--10-17 
10-9 

10-10 
10-9 

routines 



--coding of 
--linkedit requirements 

10-18--10-19 
10-20 
10-19 
10-19 
10-19 

--security table 
--SPALIST parameter 
--SYCTTBL parameter 

Batch mode 
Batch Report feature. 
BATCHPAK module 
BATCHPGM--and separate 

File Handler 
BCGROUP macro 
BDAM 

6-50,7-38 
See PRT1403. 

use of 
6-50 

6-51 
3-14 

--and block-id 
--and Data Set 

parameter 
Control Table 

6-35 

6-40 
6-23 
6-52 

(internal) 
--DD statements 
--and DISAM 
--disk queues 
--and Display utility 
--error status indicators 
--exclusive control 
--file creation 
--and READ function 
--record format 
--and WRITE function 

BDEVICE macro 
BEGN command 
BINSRCH module 
BISAM 

1-3 
1-6 

6-39 
6-29,6-31 

12-30--12-32 
6-37 
6-56 
6-37 
3-5 

11-16 
3-7 

--and Data Set Control Table 
(internal) 6-40 

--DCBs 6-32 
--error status indicators 6-39 
--exclusive control 

6-3--6-4,6-30,6-33 
--and File Attribute Records 6-29 
--and GET function 6-37 
--index 6-31 
--overlapped GET and READ/WRITE 

processing 6-5--6-6 
--QISAM via 6-2,6-21,11-7 
--and READ function 6-37 
--update-only data sets 6-29 
--and WRITE function 6-37 

BLDL list 1-8,3-54,3-56 
BLDL parameter, SYCTTBL macro 3-39 
BLDVRP parameter, SPALIST 

macro 6-14,6-31 

1-2 

BLHTRACE module 
BLINE macro 
BLMSGCOL module 
BLRI parameter, SYCTTBL 

macro 
Broadcast Table 
BROADCST Csect 
BROADRTN module 
BSAM 

7-27 
7-16--7-17,8-2 

9-21--9-22 

3-34, 11-2 
3-14--3-15,7-13 

3-14,7-12 
3-14 

--and Data Set Control Table 
(internal) 6-40 

6-7 --and Flip-Flop faciUty 
--and overlapped GET and 

READ/WRITE processing 
--and READ function 

6-5--6-6 
6-37 

--and shareability of sequential 
data sets 6-25 

6-7 
6-37 

11-21 
11-19 

--and undefined record support 
--and WRITE function 

BSEGMOD module 
BSTAT2 module 
BTAM Front End 
--defined 
--dispatching priority 
--execution JCL 
--generalized Front End, 

interface of 
--and MVS operation 
--and page fixing 
--and terminal simulator 

1-2 
11-18 

7-14--7-16 

1-3 
7-27 
7-23 

facility 1-9,8-1--8-5 
--and transaction security 10-11 

BTAM terminal simulator 

BTAMLINE module 
BTAMQ data set 
BTAMSCTS table 
BTAMSEQ counter 

1-9, 8-1--8-5, 11-2 
7-27 

7-7 
2-28 
11-4 

BTAMSIM. See BTAM Terminal simulator. 
BTERM macro 

--BLINE, BTERM sequence 7-16--7-17 
--and BTAM terminal simulator 

facility 8-2--8-3 
--and conversational verbs 3-11 
--and locked verb facility 3-10 
--and message restart 9-2,9-13 
--and system logging 

BTSEARCH module 
9 -4 , 11 -14 , 11 - 18 

7-27, 11-4 



BTSPA table 11-4 
BTVERB macro 

--and ASGN and DSGN commands 10-6 
3-7 

3-8--3-9 
3-10--3-11 

--described 
--examples 
--and locked verb facility 
--and message header 
--and message recovery 
--and overlay regions 
--and priority verbs 
--SECUR parameter 
--and short verbs 
--and sign-on/sign-off 

security 
--and subsystem queue 

specifications 
--and transaction security 
--use of 

BTVER1FY module 
BTVRBNDX Csect 

B-3 
9-23 
3-43 
3-10 

10-6,10-9 
3-10 

10-6,10-9 

3-35 
10-11 
10-13 
11-21 

3-7, 7-22 
BTVRBTB table 

--described 
--example 

1-11, 2-28, 3-7 
3-8--3-9 

--and File Handler 
Statistics Report 

--and Network Table 
--and overlay regions 
--and Transaction Security 

BUFL parameter, 
L1NEGRP macro 

BUFNO parameter, 
L1NEGRP macro 

B37 FAR attribute 

6-45 
3-12 
3-43 

10-11 

7-27,11-13 

7-27,11-13 
6-8,6-31 

CALCRBN module 
CALLOVLY macro 
CANC parameter, 
CATCH macro 
CFMS support 
CFMS1NTF module 
CHANGE module 

3-35 
3-41, 3-56--3-57 

SYCTTBL macro 3-6--3-7 
5-18--5-21 
6-64--6-65 

6-46, 6-64--6-65 
3-21 

Change/Display utility 
--defined 
--and Dynamic Data Queuing 

facility 
--and message restart 
--and Page Facility 
--requirements 

CHANGER utility 
CHCKPTSS subsystem 

1-6, 3-2 

3-23 
9-13 
3-24 
3-21 

12-42 
9-9 

1-3 

Checkpointing 
--and closedown 
--data 
--file 
--and 1NTERLOG 
--and message restart 

7-12 
9-10 
9-1 
9-3 

9-18 
9-8--9-9 

9-8 
9-8, 9-16--9-17 

9-8, 9-17 
1COMLINK macro 9-15 

--processing 
CHECKPT entry point 
CHEKPTFL data set 
CHECKPT3 module 
CHKRES parameter, 
CKL1NK module 
CKOVLYNO module 

7-36 
3-34, 3-43 

CKUSL parameter, SPAL1ST macro· 9-8 
CKUSR parameter, SPAL1ST macro 9-8 
CLDNL1M parameter, SPAL1ST macro 7-3 
CLDTO parameter, SPALIST macro 7-13 
Closedown 
--broadcast message 
--described 
--and message restart 
--and page fixing 
--and PL/1 Optimizer 
--simulator 
--Test Mode 
-- time limit 
--user exits 

3-14 
7-12--7-13 

9-14 
7-20 
3-53 

8-5 
8-28 
7-13 
7-13 
7-12 CLOSDWN3 module 

CNVREST parameter, 
COBOL 

SYCTTBL macro 9-13 

--and Dynamic Linkedit facility 3-40 
--and 1SAM files 6-6 
--JCL procedures 2-6, 2-12--2-14 
--and message editing 3-2 
--programming conventions 3-55 
--resident subroutines 3-53--3-54 
--and Subsystem Control Table 3-26 
--subsystem interfaces 3-45--3-47 

COBOL parameter, 1COML1NK macro 3-46 
COBPC procedure 2-6,2-8,2-12 
COBPCL procedure 2-6,2-8,2-12 
COBPUT module 3-46, 3-52, 7-23 
COBREENT module 
--and called subroutines 3-46 
--and page fixing 7-23 
--and reentrant COBOL subsystems 3-55 
--and resident subroutines 3-54 
--and Resource Audit and Purge 5-1 

COBSTORF module 3-46, 7-23 



COBUPC procedure 
COBUPCL procedure 
COBUPCLD procedure 
Cold start 

2-6,2-8,2-12 
2-6,2-8,2-12 
2-6,2-8,2-12 

COMPRESS procedure 
Concurrent processing limits 
Control terminal 

7-14 
2-6, 2-16 

3-35 

--and BTAM terminal simulator 8-2 
--and MVS-tuning considerations 11-21 
--and sign-on/sign-off 

security 10-6, 10-15 
--and transaction security 10-9 

CONY parameter, 
BTERM macro 3-11, 11-22 

3-11,11-22 

3-11, 11-22 

CONY parameter, 
BTVERB macro 

CONY parameter, 
LCOMP macro 

CONY parameter, 
LUNIT macro 

Conversational verbs. 
3-11, 11-22 

See Verbs, 
Conversational. 

CONVERSE facility 
--and conversational 
--and intermediate 

message storage 
--and message restart 
--and overlay regions 
--and PL/1 
--and thread dump 

COPY procedure 
Core queues--subsystem 
Core use monitoring 
Core Use Statistics 
--defined 
--and linked it 
--and MVS tuning 

recommendations 
--sample output 
--specifying 

verbs 3-11 

3-24 
3-11,9-13 

3-43 
3-51 
5-23 

2-6, 2-17 
3-34--3-35 

5-6 

1-5, 11-3 
5-11 

--and storage cushion size 

11-21 
5-12--5-15 
5-10, 5-11 

11-10 
11-19 --and system tuning 

COREACC parameter, 
SPALIST macro 

COREACCT macro 
COREINDEX FAR attribute 
CREATEGF utility 

--and CHEKPTFL 
data set 

5-7,5-12 
5-10--5-11 

6-31, 11-22 

9-8--9-9, 9-17 

1-4 

--described 
--and disk queues 
--JCL and control cards 

12-30--12-31 
3-35 

12-32 
CREATSIM utility 8-2, 8-4, 12-35 

11-22 
11-22 
11-22 

CRT parameter, BTERM macro 
CRT parameter, LCOMP macro 
CRT parameter, LUNIT macro 
CRUNCH module 
CUSHION parameter, SPALIST macro 

3-21 

--described 5-3, 5-7 
--and MVS 11-11, 11-21 
--and subpool space 

fragmentation 
CUSHTM parameter, 

SPALIST macro 

Data event control block 
Data Set Control Table 
--address of 
--and BSAM/BISAM 
--defining 
--described 
--exclusion of DD 

statements from 
--and FILE command 
--function 
--generation of 
--initialization 
--and LOCATE facility 
--options 
--program references to 
--status information 
--and thread resource dump 

DCB parameters 

11-10 

5-7, 11-10 

6-39 

6-43 
6-6 

6-20 
6-18 

6-23 
6-9 

1-12 
6-46 
6-28 
6-38 
6-42 
6-39 
6-21 

5-22--5-23 

--required 6-24,7-8 
--and SYSPRINT for Dispatcher 4-2 
--system 8-10 
--user-specified 6-42--6-44 

DSCT parameter, ICOMLINK macro 6-20 
DD parameters 6-23--6-24 
DD statement requirements 7-6--7-8 
Ddnames, reserved 6-26--6-28 
DDQ. See Dynamic Data Queuing. 
DDQDSTBL sample table 
DDQENV taole 
DDQMOD module 
DDQSTART module 
DEALL parameter, 

2-28 
2-23 
6-46 
6-46 

FILE command 6-9, 6-11--6-12 
DEBUG parameter, ICOMLINK macro 7-28 



Debugging facilities 11-23 
DECB. See Data event control 
DELOAD module 

block. 
3-40 

5-20, 11-16 
3-21 

3-5, 3-13--3-14 

DELY command 
DESOOO data set 
DEVICE macro 
Device Table 
--and BTAM terminal simulation 8-2 
--described 
--function 
--and Log Input facility 

3-13--3-14 
1-11 
8-26 

--and Message Mapping Utilities 
requirements 

--and SIMCRTA utility 
--and Station Table 

3-15 
12-38 
3-12 

DFA. See Dynamic File Allocation. 
DFLN parameter, 

SYCTI'BL macro 
DIADD entry point 
DIDEL entry point 
DIGET entry point 
DIPUT entry point 
DIREAD entry point 
DIREL entry point 
DIRELEX entry point 
DISAM 

--BDAM records 
--data base structure 
--defined 
--des cri bed 
--and DISCONV utility 
--and DISREORG utility 
--File Handler 
--file record formats 
--ISAM offset value 
--operations 
--variable length records 

3-34, 11-12 
6-61--6-62 

6-62 
6-60--6-61 

6-61 
6-58--6-59 

6-63 
6-62--6-63 

6-56 
6-53 
6-3 

6-52--6-53 
6-63 
6-63 

6-53--6-56 
6-56 
6-57 

6-57--6-63 

DISAM parameter, ICOMLINK macro 
6-57 
6-56 
6-63 DISCONV utility 

DISEL entry point 
Disk queues--subsystem 
Disk-resident tables 

6-57--6-58 
3-34--3-35 

--and Change/Display Utility 3-21 
12-27 
3-15 

3-18--3-19 

--conventions for the utilities 
--and Edit Utility 
--and Output Format Table 
--and security operator 

codes 
DISPATCH maCrO 

10-17--10-18 
4-1, 4-11 

1-5 

Dispatcher 
--and abend processing 
--and closed program loops 
--described 
--and execution groups 

8-6 
4-12, 8-6 
4-1--4-13 

--and File Attribute Records 
3-38 
6-20 
6-30 
3-59 
4-11 

--and File Handler 1-3, 6-1, 
--and 
--and 

generalized sub tasking 
IJKDELAY module 

--and 
--and 
--and 

IJKPRINT module 
IJKTLOOP module 
IJKTRACE module 

--and Interregion SVC 
--and logging user exit 
--and Overlay A subsystems 
--and page pre loading 
--and queues 
--residency of 

4-2 
4-12--4-13 

4-2--4-10 
7-29 

9-7 
3-38 
7-20 

4-1--4-2 
1-6 

--and Resource Audit and Purge 5-2 
9-22 
8-9 
8-6 

8-12 

--and serial restart user exit 
--and SNAPEXIT user exit 
--and SPIEEXIT module 
--and SPINEXIT user exit 
--and SPSNEXIT user exit 
--and STAEEXIT module 
--and Subroutine Overlay Region 
--and task priority 
--and thread resource dumps 
--and user exits 
--and USERLOGE user exit 
--and USRSEREX user exit 
--and VS execution groups 

DISPLAY module 

8-6 
8-6 

3-58 
11-9 
5-21 

D-2 
9-7 

9-22 
3-38 
3-21 
6-63 DISREORG utility 

DIWRITE entry point 
DSCT. See Data Set Control 
DSGN coiiUiiand 

6-59--6-60 
Table. 

DTIMS parameter, SPALIST macro 
Dumps. See Indicative dumps and 

10-6 
3-17 

thread 
resource dumps 

DUPLEX FAR attribute 
Duplex files 
DVMODIFY macro 
DVRB command 

6-31 
6-29, 6-31, 6-34 

3-12, 3-15 
10-9 

macro 11-21 
6-11--6-12 

DWSCHK parameter, SPALIST 
DYNALLOC macro 
Dynamic core pool 

facility 
Dynamic Data Queuing 

5-8--5-10,5-27 

--and data set allocation 11-4 



--defined 
--and global tables 
--and multimessage queuing 
--and MVS tuning recommendations 

1-5 
2-23 
3-22 
11-22 

--and Resource Audit 
and Pur ge 5-1--5-2 

--and serial restart 9-20--9-21 
--and system table 2-28 
--and thread resource dumps 5-22 

Dynamic File Allocation 1-6,6-8,6-41 
Dynamic Linkedit Facility 3-39--3-42 
Dynamic Loading 
--described 1-1--1-8, 3-39--3-40 
--and Link Pack feature 1-36 
--and MAXLOAD parameter, 

SPALIST macro 
--and MVS operation 
--and PL/1 

subsystems 
--and QUICKCELL 

11-8, 11-11 
1-28 

3-50--3-51, 3-55 

--and region organization 
11-5 
1-6 

3-53 
5-1 

8-10 
3-54--3-56 

--and resident subroutines 
--and Resource Audit and Purge 
--and spinoff snaps 
--of subroutines 
--and Subsystem Control 

Table entries 
--and Subsystem Controller 
--and system tuning statistics 
--and Test Mode 

dumps 

3-29 
1-3 

8-23 
8-28 
5-22 

1-1 
--and thread resource 

Dynamic subpool area 
Dynamically loaded 

subroutines 
Dynamically loaded 

subsystems 

3-54--3-55 

DYNLINK parameter, 
ICOMLINK macro 

DYNLLIB data set 
DYNLLOAD module 
DYNLOAD parameter, 

ICOMLINK macro 
DYNLSUBS Csect 
DYNPOOL parameter, 
DYNREQ1 Csect 

3-39--3-42,3-53 

3-40,3-56 
11-22 
3-56 

3-40,3-56 
3-56, 5-23 

ICOMLINK macro 5-9 
3-26 

ECB. See Event Control Block. 
ECB parameter, SYCTTBL macro 3-35 
ECT. See Edit Control Table. 
Edit Control Table 1-12, 3-15 

1-6 

EDIT parameter, BTVERB macro 9-23,10-9 
Edit subroutines 3-16 
Edit Utility 
--described 1-6 
--and Edit routine VCONs 3-25 
--and message flow 3-2 
--and message header B-3 
--and overlays 3-45 
--and page fixing 1-23 
--requirements 3-15--3-16 
--and transaction security 10-9 

EDITRTN parameter, SPALIST macro 3-16 
ENDCHAR parameter, BDEVICE macro 3-5 
Enqueue/Dequeue facility 3-43,5-19 
ENVIRON global table 2-23 
EOB parameter, DEVICE macro 3-5 
EOT parameter, DEVICE macro 3-5 
ERRADDR parameter, STORAGE macro 5-4 
ERRLOCK FAR attribute 6-31 
ESETL macro (IBM) 6-5 
ESS. See Extended Security System. 
ESTAE macro (IBM) 8-5 
Event Control Block 

--and asynchronous overlay loader 1-8 
--and event queues 4-1 
--and File Attribute Records 6-30 
--and Interregion SVC 7-29 
--and VS system tuning 

considerations 
--and WAIT lis t 

Event queues. See Queues, event 
Exclusive control 

7-24 
4-3 

--and access methods 
--described 

6-3--6-4 
1-4 

--and File Attribute Records 
6-21, 6-29--6-31, 

--and subsystem program logic 
--time-out 
--and VSAM cross-region shared 

control 
EXEC list. See Execution lists. 
Execution groups. See VS 

execution groups. 
Execution lists 
Execution queues. See Queues, 

execution 

6-33 
11-1 
6-40 

6-22 

4-4 

EXGRP parameter, SYCTTBL macro 
--described . 7-25 

J 



--and execution group processing 3-31 
--and Link Pack Area 7-36 
--and overlapped GET and READ/ 

WRITE processing 6-5 
--and Subsystem Control 

Table entries 3-29,3-31,11-7 
EXTDSCT. See External Data 

Set Control Table. 
Extended Security System 
--defined 
--and interregion SVC 
--and page fixing 
--and serial restart user 
--and startup user exit 

External Data Set 
Control Table 

10-1 
1-28,1-29 

1-23 
exit 9-23 

1-13 

6-35, 6-38 
EXTONLY parameter, 

SPALIST macro 3-24--3-25, 6-50 

FAB. See File Attribute Block. 
FAR. See File Attribute Record. 
Fast Message Switch facility 3-22 
Fast Snap facility 8-14, 11-15 
FASTS NAP data set 8-13--8-14, 11-15 
FDR. See Format Description Record. 
FECM. See Front End Control Message. 
FECMMOD module 3-23 
FEMACGBL table 3-1, 3-13, 3-21 
FEMSG module 1-21, 11-19 
FENET\fflK sample table 2-28 
FESEND module 
--and message header B-3 
--and message sequence number 11-4 
--and output messages 3-3, 3-5 
--and output user exit 3-20 
--and T est Mode 8-28 
--and user exits D-2 

FETABLE parameter, ICOMLINK macro 3-12 
FHCW. See File Handler Control Word. 
FHST comm-and 6-9, 6-45, 11-3 
FHSTATS global 

(SETGLOBE) 
File Attribute Block 
File Attribute Record 

--and aliased files 
--and batch programs 
--and CFMS 
--described 
--examples 

2-26,6-46--6-41 
6-18, 6-28 

6-34 
6-50 
6-65 

--and exclusive control 

6-28--6-33 
6-34 
6-4 
6-8 --and Flip/Flop facility 

1-7 

--and ISAM files 
-··messages 
--parameters 
--processing 
--and read-only data sets 
--and variable-length files 

6-6 
6-34 

6-31--6-33 
6-21 
6-25 

6-7 
--and VSAM local shared 

resources 6-15--6-16 
FILE command 
--and File Attribute Records 6-29 
--and freeing deallocated 

files 6-12, 6-16 
--parameters 6-9--6-10 
--and serial restart user exit 9-23 
--and VSAMCRS FAR attribute 6-29 

File contention 11-1 
File Handler 
--access methods 

--AMIGOS 
--BISAM 
--BSAM 

6-2--6-12 
6-3 
6-5 
6-5 

--DISAM 6-3, 6-52--6-53 
6-56 

6-53--6-56 
--BDAM records 
--DISAM File Handler 
--index file reorganization 

(DISREORG) 6-63 
--ISAM conversion utility 

(DISREORG) 6-63 
6-51 

6-57--6-63 
6-61--6-62 

6-62 

--ISAM offset value 
--operation 

--DIADD 
--DIDEL 
--DIGET 
--DIPUT 
--DIREAD 
--DIREL 
--DIRELEX 
--DISEL 
--DIWRITE 

--dynamic buffering 
--dynamic deallocation 

reallocation 
--exclusive control 
--file recovery 
--Flip/Flop facility 
--lAM 
--ISAM 
--overlapped GET and 

6-60--6-61 
6-61 

6-58--6-59 
6 ... 63 
6-62 

6-51--6-58 
6-59--6-60 

6-4 
and 

6-9--6-12 
6-3--6-4 

6-8 
6-7--6-8 

6-3 
6-2, 6-6 

READ/WRITE processing 6-5--6-6 



--QISAM 
--QSAM 
--retry of ALLOC or DEALL 

after error 
--status of files while 

Page 

6-2, 6-5 
6-5 

6-11 

deallocated 6-2 
--sub tasking of DYNALLOC macro 6-2 
--undefined record support 6-7 
--variable length sequential 

file support 6-7 
--VSAM 6-3, 6-13--6-17 

--cross-region shared 
control 6-22 

--ISAWVSAM 
compatibility 

--Local Shared 
Resources 

--sharing VSAM files 
--CFMS support 
--and closed loop detection 

deactivation 
--and closedown 
--components 

--abend protection 

6-3, 6-17 

6-14--6-15 
6-15--6-17 
6-64--6-65 

4-13 
7-12 

6-18--6-22 

--Data Set Control Table 6-18, 
6-22 
6-20 
6-20 --initialization 

--processing 
--QISAM scan mode via BISAM 
--termination 
--VSAM cross-region shared 

6-21 
6-21 
6-22 

control 6-22 
--data set specifications 6-23--6-28 

--data set disposition 6-26 
--read-only data sets 6-25 
--required DCB parameters 6-24 
--required DD parameters 

--reserved ddnames 
6-23--6-24, 7-8 

6-26--6-28 
--shareability of 

sequential data sets 
--SYSIN/SYSOUT data sets 

--described 1-3--1-4, 
--File Attribute Records 

6-25 
6-26 

6-1--6-2 

6-21, 6-28--6-34 
--file control commands 6-9 
--and generalized sub tasking 3-59 
--and Link Pack Module 6-51,7-33 
--and message restart user exit 9-15 

1-8 

--options 6-40--6-44 
--conditional assembly 6-40 
--exclusive control time-out 6-40 

6-42 
6-41 

--IXFDSCTA options 
--sub tasked GETs 
--user-specified DCBs 6-42--6-44 

3-38 
7-23 

user exit 9-22 
8-11 

6-45--6-49 

--and overlays 
--and page fixing 
--and serial restart 
--and spinoff snaps 
--Statistics Report 

--Local Shared Resources 
Statistics 

--and MVS tuning 
6-47--6-48 

recommendations 11-21 
--statistics file 6-48--6-49 

--and subsystem program logic 11-7 
--and terminal input data sets 8-2 
--and unlabeled tapes 9-18 
--using separately from 

Intercomm 
File Handler Control Word 
File Load program 

6-50--6-51 
6-35,6-43 

3-15, 3-19, 12-24--12-29 
File Recovery 6-8, 9-7, 12-6 
File Table 2-28, 3-21, 12-25 
FINDBUCK extry point 5-11 
Fine Tuner commands 11-15 
FIXTABLE table 7-21 
Flip/Flop facility 6-7--6-8 
FMCSWTO parameter, SPALIST macro 7-5 
Format Description Records 3-21 
FORTLINK procedure 3-53 
Fortran 3-53, 3-55 
FPMIWTO parameter, SPALIST macro 7-5 
FQES module 7-26--7-27, 11-1 
Fragmentation, subpools 11-10 
Free queue element list 4-3--4-4 
FREE parameter, SYCTTBL 

macro 
FREE=CLOSE JCL parameter 
Front End Control Message 

3-45, 11-10 
6-9, 6-26 

3-23 
Table Front End Network Configuration 

--and CREATSIM utility 
--defined 
--and execution JCL 
--and locked verbs 
--and MVS operation 
--and system tuning 

12-37 
1-11 
7-16 
3-10 
7-28 

11-13,11-24 

J 



--and Verb Table 3-12 
terminal Front End queues. See Queues, 

Front End Teleprocessing 
Interface 1-1--1-4, 4-1 

Front End Verb Table 
--and adding a subsystem 
--and conversational verbs 
--described 
--entries in 

3-33 
3-11 

1-11, 3-7 
3-7 

--examples 
--and locked verb facility 

3-8--3-9 
3-10--3-11 

3-12 
3-42--3-43, 3-45 

3-10 

--and Network Table 
--and overlays 
--and priority verbs 
--and short verbs 
--and transaction codes 
--and transaction security 

FUNCNO parameter, 
USRTRACK macro 

GAMFQES module 
General Purpose Subsystem 

3-10 
3-2 

10-9 

8-19--8-20 

7-27,11-11 

3-32, 9-23, 11-19 
Generalized Front End 1-3 
Generalized Sub tasking 

Facility 3-59--3-60, 6-5, 6-12, 6-41 
GENFl'BLE macro 12-25 
GENINDEX macro 
--and PCENSCT macro 3-33, 3-35 
--and Subsystem Control Table 3-26 
--and user-coded SCT index C-2 
--and VS execution groups 7-25 

GENSEC macro 10-11 
GENSW parameter, SPALIST macro 9-8 
GET function 6-36--6-37, 6-39, 6-41 
GET parameter, 

SYCTTBL macro 3-45, 11-10 
GETSPA macro 7-36, D-2 
GETV function 6-36--6-37 
GFE. See Generalized Front End. 
Globals. See INTGLOBE,SETGLOBE,SETENV. 
GPSS. SeelGeneral Purpose Subsystem. 
Graphics-terminals 7-16--7-17 

HASP 7-14 
Histograms. See Traffic histograms. 
HPRTY parameter, 

BTVERB macro 3-10, 3-35, B-3 

1-9 

lAM access method 
IAIM:10CR module 

6-3, 6-31, 6-41 
2-24 

IBM 2260 Display Station 
IBM 2740 Display Station 

8-1, 
IBM 2741 Display Station 
IBM 2780 Display Station 
IBM 3270 Display Station 

8-1 

11-3, 11-18 
8-1 
8-1 

--and BTAM terminal simulation 
facility 8-1--8-2, 8-4--8-5 

--and CREATSIM utility 8-2, 8-4 
--and MVS tuning 11-22 
--and Polling List Table 11-13 
--and SIM3270 module 8-5 
--and transmission 

considerations 
lCOMBDAMXCTRL FAR attribute 
lCOMCESD module 
lCOMCHN Csect 
ICOMDYNL module 
lCOMFEOF utility 
--described 
--and Flip/Flop facility 

11-18 
6-31,11-22 

3-40, 7-6 
5-10 
3-40 

12-40 

--and message restart 
lCOMFIX macro 
lCOMIN data set 
lCOMINX Csect 
lCOMLINK macro 

9-17, 
7-21, 

6-28, 6-34, 

6-8 
9-19 
7-24 
6-50 
5-10 

--and Basic Security 
--and checkpointing 
--and COBOL subsystems 
--and dynamically loaded 

pools 
--and dynamically loaded 

subroutines 
--and dynamically loaded 

core 

10-20 
9-15 
3-46 

5-9 

3-56 

subsystems 
--and execution of 
--and File Handler 

3-40 
Intercomm 7-2,7-35 
data set 

control table 
--and IJKCESD Csect 
--and IJKTLOOP processing 
--and linked it generation 
--and message restart 
--and MONOVLY processing 
--and Output Format Table 
--and Overlay A subsystems 
--and PL/1 subsystems 

6-20 
4-10 
4-13 

7-2--7-4 
9-15 
3-45 
3-18 
3-38 

--and QISAM scan mode via BISAM 
3-52 
6-21 



--and separate assembly of Front End 
Verb and Network Tables 3-12 

--and startup user exit 7-12 
--and System Accounting and 

Measurement facility 
--and system cancel (PMIDEBUG) 

8-19 
7-28 
8-23 
8-28 

--and System Tuning Statistics 
--and Test Mode 
--and Transient Subroutine 

Overlay Area 3-58 
ICOMPOOL Csect 5-2, 5-10--5-11, 5-27 
ICOMPOOL macro 

--and adding a subsystem 
--described 
--and dynamically loaded 

core pools 
--and MVS tuning 

considerations 
--and NEWPOOLS module 
--parameters 
--and QUICKCELL 
--sample JCL 

3-33 
5-7--5-8 

5-9 

11 - 20 -- 11 - 21 
5-~, 

5-7 
11-15 

5-8 
5-23 --and thread resource dump 

--and user-defined storage pools 5-2 
--and VS system tuning 

considerations 
--wastage 

ICOMSBS table 
ICOMSNAP Csect 
I COMTASK module 
ICOMVCON module 
IDENTIFY feature (OS) 

3-60, 

7-24 
5-12 
3-53 
8-9 

6-12, 6-41 
3-40, 7-6 

6-41 
IGCICOM. See Interregion SVC. 
IJKCESD module 4-2, 4-10, 4-13 
IJKDELAY module 4-11--4-12 
IJKDSP01. See Dispatcher. 
IJKPRINT module 4-2--4-3, 4-13 
IJKTHRED entry' point 5-21 
IJKTLOOP module 4-12, 8-6 
IJKTRACE module 4-2--4-10, 4-13 
IJKTSTOP module 4-12--4-13 
IJKWHOIT module 4-2, 4-10--4-11, 4-13 
IMASPZAP program 2-17 
IMCD command 7-12--7-13, 8-5, 10-9 
Indicative dumps 

--described 
--and spinoff snaps 
--and system tuning 

INDUMP parameter, 
SPALIST macro 

8-7--8-9 
8-11 

11-15, 11-19 

8-7--8-8 

1-10 

Innovation Access Method. See lAM. 
Input-output block 6-39 
Installation 
--execution JCL 7-4--7-8, 
--interregion SVC 
--JCL for local terminals 
--JCL for remote terminals 
--libraries 
--Link Pack Feature 
--linkedit 
--and maintenance 

responsibilities 
--MVS operations 
--OS/VS operations 
--overview 
--page fixing 

7-14--7-15 
7-29 

7-16,7-17 
7 -16--7-17 

2-1--2-4 
7-30--7-33 

7-1--7-4 

2-19--2-22 
7-27--7-28 
7 -17 --7 -20 

2-1 
7-23 

--preparation of the Intercomm 
region 7-34--7-35 

--preparation of the operating 
system 

--system control functions 
7-33 
2-23 
2-28 --system control tables 

--system global tables 2-24--2-27 
--VS installation 

procedures 7-21--7-23 
--VS SYSGEN considerations 7-25--7-26 

INTDBLOK module 9-15 
INTDEQ macro 
INTENQ macro 

5-19, 6-6, 6-22 

--and overlapped GET and 
READ/WRITE processing 6-6 

--and Resource Audit and Purge 5-1 
--and thread resource dump 5-22--5-23 
--use of 5-19 
--and user exits 5-1 
--and VSAM cross-region shared 

control 
INTERLOG data set 

6-22 

--and BTAM terminal simulator 
facility 

--described 
--entries 
--and File Attribute 

8-4 
9-1--9-4 
9-5--9-6 

Records 6-29, 6-31--6-32 
6-7--6-8 

12-40--12-41 
--and Flip/Flop facility 
--and ICOMFEOF utility 
--and LABEL parameter 11-15 

11-14, 11-22 
11-4, 11-6, 11 -14 

--log buffers 
--log codes 



--and LOGANAL utility 
11-3--11-4, 

--and logging user exit 
--and LOGPRINT utility 
--and message accounting 
--and MVS tuning 

recommendations 

12-23--12-24 
9-7 

12-1 
9-12 

--and restart/recovery JCL 
11-22 
9-16 

--and System Accounting and 
Measurement 8-15, 8-20, 11-3 

8-28 
11-5 

--and Test Mode 
--tracing messages on 

Interregion SVC 
--described 
--and MVS operation 
--and VS installation procedures 

7-29 
7-28 
7-21 

--and VSAM files shared across 
regions 

--and VSAM Local Shared 
Resources 

--and VSAMCRS FAR attribute 
INTGLOBE global table 
--described 
--Edit Utility requirements 
--and File Handler options 
--function 
--listing 
--Output Utility 

6-17 

6-14 
6-50 

2-24 
3-16 
6-40 
2-23 

2-24--2-25 

requirements 3-17--3-18 
--and Resource Management options 5-4 
--and task management 4-1 

INTKEYFL file 12-39 
INTLOAD module 3-39--3-41 
INTPAGE module 7 -27 
INTPOST macro 4-3 
INTSAVE save area 5-21 
INTSCT table 2-28,3-17,3-21,3-27--3-28 
INTSECOO module 6-46 
INTSPA table 
--described 2-28,3-24 
--and File Handler 
--and Log Input facility 

6-50 
8-25 

--and Resource Management 5-6, 5-11 
7-26 
8-11 
6-46 

--and SPIE macro 
--and spinoff snaps 

INTSTORF module 
INTSTOR9 data set 
INTSTS module 
INTSTSPR Csect 
INTWAIT macro 

8-5 
8-23 
8-23 

3-59, 4-1, 4-11 

1-11 

lOB. See Input-output block. 
IOCODE parameter, STATION macro 3-13 

5-20 
4-1--4-3 

IOEXIT user exit 
IPOST Queue 
ISAM files 
--and AMlGOS 6-3 
--and conditional assembly of 

File Handler 6-41 
--creating and defining 6-6 
--and DISAM 6-52--6-53, 6-57, 6-63 
--and DISPLAY module 1-6 
--and dynamic buffering 6-4 
--and File Attribute 

Records 6-30, 6-32, 11-22 
6-37 

6-3 
6-23 
6-39 

--and GET function 
--and lAM 
--and JCL 
--and LOCATE facility 
--and MVS tuning 

recommendations 11-20, 11-22 
--and subsystem program logic 11-7 
--VSAM/ISAM compatibility 6-3, 6-17 

IXFB37 module 6-8, 6-22,6-46 
IXFCHKPT module 6-46 
IXFCREAT module 6-46 
IXFCTRL module 6-46 
IXFDISAM module 6-46,6-53 
IXFDSCTA. See Data Set Control Table. 
IXFDSCTB member 6-43 
IXFDSCT1 module 6-9,6-46,6-51 
IXFDSCT2 module 6~20,6-46 
IXFDSCT3 module 6-20,6-46 
IXFDYALC module 6-46 
IXFFAR module 
--and batch processing 6-50 
--described 6-21 
--and FAR messages 6-34 
--and File Attribute Records 6-28 
--and File Handler Statistics 6-46 
--function 6-18 

IXFHNDOO module 6-20,6-46,6-50 
IXFHND01. See File Handler. 
IXFLOG module 
IXFM:lNOO Csect 
IXFM:lN01 Csect 
IXFM:lN09 Csect 
IXFQISAM module 
IXFRPTIQ entry point 
IXFRPT01 module 
IXFRVRSE module 
IXFSNAPL module 

6-46 
6-18, 6-50 
6-18, 6-35 

6-22, 6-41, 7-12 
6-21,6-46,7-32 

6-45 
6-45--6-46 

6-46 
6-46 



IXFVERF1 module 6-46 
IXFVSCRS module 

6-16--6-17,6-22,6-46,6-50 

JCL 
--to assemble 2-6, 
--to assemble and link 
--for BTAM terminals 
--for CHANGER utility 
--for CHEKPTFL data set 
--to compile a COBOL 

2-11--2-13 
2-6, 2-12 

7 -16--7-17 
12-41 
9-17 

program 2-6, 2-12--2-13 
--to compile and link a COBOL 

program 2-6, 2-12--2-14 
--to compile and link a 

Fortran program 2-6, 2-12 
--to compile and link a 

PL/1 program 2-7, 2-16 
--to compile a PL/1 program 

2-7, 2-15--2-16 
--for CREATEGF utility 12-32 
--for CREATSIM utility 12-35 
--for dynamic linkedit 3-40--3-41 
--for execution of Intercomm 7-4--7-8 
--for ICOMFEOF utility 12-40 
--for INTERLOG data set 9-17--9-18 
--for KEYCREAT utility 12-39 
--for LIBCOMPR utility 12-34 
--and libraries 2-3--2-4 
--for linkedit of Intercomm 7-2--7-4 
--for linked it of 

subystem 2-14--2-15, 3-39 
--for LOGDISK data set 9-18 
--for Log Input facility 8-26 
--for Overlay A linked it 3-38 
--for PRT1403 utility 12-33 
--for RESTRTLG data set 9-18--9-19 
--for SIMCRTA utility 12-38 
--for Test Mode 8-29 
--to update symbolic library 2-13 
--for utility execution 2-16--2-18 

JOBCAT DD statement 6-13,7-15 

KEYCREAT utility 
KEYFLIP module 

LANG parameter, 

6-23, 12-39 
6-50, 7-29 

SYCTTBL macro 3-36, 3-46, 3-53 
LCOMP macro 3-10--3-11 
LEN parameter, ICOMPOOL macro 5-7--5-8 

1-12 

LGBLK parameter, 
SPALIST macro 

LGNUM parameter, 
SPALIST macro 

LIBCOBDL procedure 
LIBCOMPR utility 
LIBE procedure 
LIBEASM procedure 
LIBECOB procedure 
LIBCOBDL procedure 
LIBELINK procedure 
Libraries 
Line Control 
LINEGRP macro 

--and BTAM terminal 
facility 

--and buffer pools 
--examples 
--and MVS operation 

9-3, 9-15 

9-15--9-16 
2-6,2-8,2-13 

12-34 
2-6,2-8,2-13 
2-6,2-8,2-13 
2-6,2-8,2-13 
2-6,2-8,2-14 
2-6,2-8,2-14 

2-1--2-4, 7-6 
1-3, 1-10 

simulation 
8-3--8-4 

11-13 
7-17 

7-27--7-28 
--and remote terminals 

accessed via BTAM 
--and startup 

Link Pack facility 

7-16 
8-3 

--and batch programs using 
File Handler 

--described 
--eligible components 
--and IJKCESD module 

6-51, 7-38 
7-30--7-31 

7-32 
4-10 

11-21 --and MVS tuning considerations 
--and nonresident service 

routines 
--and preparation of the 

Intercomm region 
--and preparation of the 

Link Pack Module 
--and preparation of the 

operating system 
--and startup 
--and Test Mode 
--and user routines in Link 

1-7 

7-34--7-35 

7-33--7-34 

7-33 
4-10 
8-28 

Pack Area 7-35--7-37 
--and VSAM files shared across 

regions 6-16 
LINKAGE macro 

--and Assembler Language 
subsystems 5-17 

7-36 --and Link Pack Module 
--and Resource 

Management 
--and STORAGE macro 

5-4, 5-6, 5-17 
5-4 



Linkedit. See JCL. 
Linkedit considerations 

--Assembler Language subsystems 3-45 
--COBOL subsystems 3-45--3-47 
--Fortran subsystems 3-53 
--PL/1 subsystems 3-49--3-53 
--and subroutine interfaces 

--dynamically loaded 
subroutines 3-54--3-56 

--resident subroutines 3-53--3-54 
--Subroutine Overlay 

Region 3-58--3-59 
--subroutines linked with 

dynamically loaded 
subsystems 

--Transient Subroutine 
3-54 

Overlay Area 
Li ve operation 
LKEDE procedure 
LKEDO procedure 
LKEDP procedure 
--described 
--function 

3-56--3-58 
7-14--7-17 

2-6,2-8,2-14 
2-6,2-8,2-14 

--and Intercomm linkedit 

2-14--2-15 
2-6 
7-2 

7-33 --and Link Pack Module 
--parameters 

LKEDPL1 procedure 
LKEDT procedure 
LMOD parameter, LKEDP 
LNAME parameter, 

SUBMODS macro 
LOAD command 
LOADNAM parameter, 

2-6, 2-8, 
2-6, 2-8, 

procedure 

2-8 
2-15 
2-15 
3-39 

3-54, 5-23 
3-39--3-40, 9-23 

SYCTTBL macro 3-39, 3-51 
LOADOVLY module 3-38, 3-58 
LOADPAGE module 7-21, 7-24, 7-28 
LOADSCT module 3-40--3-41 
Local Shared Resources. See VSAM. 
LOCATE facility 6-38--6-40, 6-43 
LOCK command 3-10--3-11, 9-23 
LOCK parameter, BTERM macro 3-10 
LOCK parameter, FILE command 6-12 
LOCK parameter, LCOMP macro 3-10 
LOCK parameter, LUNIT macro 3-10 
Locked verbs. See Verbs, locked. 
LOCKEXE parameter, BTVERB macro 3-11 
Log Analysis. See LOG ANAL utility. 
Log codes 9-5--9-6,11-4,11-6,11-14 

1-13 

Log Input facility 
LOG parameter, BTERM macro 
LOG parameter, LUNIT macro 
LOG parameter, SUBSYS macro 

8-24--8-26 
11-14 
11-14 
11-21 

LOG parameter, 
SYCTTBL macro 8-15,11-4,11-21 

LOGANAL utility 
--creating load module 
--described 
--execution of 
--function 
--generating LOGVRBTB 
--generation parameters 
--installation of 
--response time reports 
--and SPIE macro 
--traffic histograms 

LOGCHARS table 
LOGDCLGB member 
LOGDISK data set 
Logging 9-3--9-7, 

12-19 
12-8 

12-19--12-24 
11-2 

12-18--12-19 
12-16--12-18 

12-16 
12-11--12-16 

7-26 
12-8--12-10 

2-28 
12-16, 12-23 

9-16, 9-18 
11-13, 11-18 

See also INTERLOG. 
LOGINDO parameter, SPALIST macro 8-25 
LOGINPUT. See Log Input facility. 
LOGPRINT utility 
--control records 
--described 
--JCL for executing 
--and message header 
--sample output of 
--and system tuning 

12-3--12-7 
12-1--12-3 

7-15,8-29,12-3 
B-3 

12-1--12-2 
11-2--1-3 

9-18--9-19 LOGPROC module 9-14--9-15, 
LOGPUT module 

--and File Handler Statistics 
--and logging user exit 
--and LOGTROUT 
--and Message Accounting 
--and message header 
--and restart JCL requirements 
--and suppression of log 

entries 
LOGSETGB member 
LOGTROUT table 
LOGVERB macro 
LOGVRBTB table 

2-23, 

12-16, 

6-46 
9-7 

11-14 
9-12 
B-3 

9-16 

11-14 
12-16 
11-14 
12-18 

12-12, 12-16, 12-18--12-19 
4-12--4-13 

ICOMLINK macro 4-13 
7-14 

Loop tracing 
LOOPTIM parameter, 
Low core condition 
LOWLIM parameter, 

ICOMPOOL macro 5-7--5-8, 5-12, 5-23 



LPENTRY macro 
LPINTFC macro 
LPINTFC module 
LPSPA macro 
LPSPA module 

7-37--7-38 
7-34 

7-31, 7-34, 7-37--7-38 
7-33 

--assembly of 
--and execution JCL 
--linked it of 
--and LPENTRY macro 
--and startup 

LPSPALIB data set 
LPSTART module 
LPVCON macro 
LSR FAR attribute 

7-33 
4-10 
7-33 
7-38 

4-10, 7-'31 
4-10,4-13,7-34 

6-51, 7-31, 7-38 
7-37 

6-15,6-31, 6-50, 11-22 
LSYNCH parameter, 

BTERM macro 
LSYNCH parameter, 

9-16, 11-13, 11-18 

LUNIT macro 9-16, 11-13, 11-18 
LSYNCH parameter, SYCTTBL macro 

--and critical subsystems 9'-4 
9-16 

11-18 
--and synchronous logging 
--and system tuning 11-13, 

LUNIT macro 
--CONV parameter 
--LOCK parameter 
--LOG parameter 
--LSYNCH parameter 
--RESTART parameter 

Maintenance 
MANAGER module 

--assembly of 

3-11 
3-10 

11-14 
9-4, 11-18 

9-2, 9-13 

2-19--2-22 

5-4, 5-6, 5-19 
--and core block detail 

statistics 
--described 
--and dynamically 
--execution of 
--linked it of 
--and save areas 
--and SETGLOBE 

5-10--5-11 

loaded pools 
5-3 

5-27 
5-12 

5-11, 5-19 

--and SPA Extension 

5-4 
5-6, 5-19 

5-18 
5-21--5-27 
8-15--8-20 

3-2, 3-6 
3-24 

--and thread resource dump 
MAPACCT macro 
MAPIN module 
MAP OUT module 
MAXLOAD parameter, 

SPALIST macro 3-40, 11-11, 11-20 

MAXSIGN parameter, 
STATION macro 10-5, 10-15 

MBPR parameter, 
SPALIST macro 11-10--11-11, 11-21 

MCP. See Message control program. 
MDELY parameter, SPALIST macro 11-16 
Message Accounting 9-7, 9-11--9-12 
Message cancellation 3-5--3-7 
Message Collection 

--and blocking and unblocking 
of disk queues 11-12 

--and Link Pack facility 7-33 
--and message header 11-14, B-3 
--and message sequence number 11-4 
--and PL/1 subsystem interface 3-51 
--and response time reports 12-15 
--and serial restart 9-21 
--and time controlled messages 3-61 

Message control program (TCAM) 1-2 
Message header 

1-14 

--and broadcast groups 
--format 
--and logging user exit 
--and message cancelled 
--and priority verbs 

3-14 
B-1--B-3 

9-7 
condition 3-6 

--and sign-on/sign-off security 
3-10 
10-8 
3-36 
8-26 

--and subsystem Jdentifier 
--and Test Mode 

Message Management 
--Back End Table specifications 

for the utilities 
--Broadcast Table 3-14 
--Change/Display utilities 3-21 
--Device Table 
--Edit Utility 

3-13--3-14 
3-15--3-16 

--Message Mapping Utilities 3-15 
--Output Utility 

--adding OFT entries 
--error messages 
--user exit USROTEDT 
--user exit USROUTCK 

--Front End Verb Table 
--conversational verbs 
--entries 
--example 
--locked verb facility 
--priority verbs 

3-18 
3-19 
3-20 
3-20 

3-11 
3-7 

3-8--3-9 
3-10--3-11 

3-10 
--separate assembly of the 

Verb and Network Tables 3-12 



-message flow 
-input messages 3-2--3-4 
--message cancellation user 

exit 3-5 
--message cancelled condition 3-6 
--message/subsystem 

cancellation 3-5--3-7 
--subsystem stopped 

condition 3-6--3-7 
--message processing facilities 

--Front End Control Message 
facility 3-23 

--intermediate message data 
storage 

--message switching 
--multimessage queuing 
--Page Facility 

--subsystem queue 
specifications 

--System Parameter Area 
--time controlled message 

processing 
Message Mapping Utilities 

--and Broadcast Table 
--data sets for 
--and disk-resident tables 
--and FESEND 

3-24 
3-22 

3-22--3-23 
3-24 

3-34--3-35 
3-24--3-25 

3-61--3-62 

3-14 
2-2 
1-7 

8-28 
--function 1-5, 3-2 
--and message cancelled condition 3-6 
--and message mapping 

definitions 1-12 
--and message-ending characters 3-5 
--and page fixing 7 -23 
--requirements 2-28,3-15 
--and SPALIST STOCORE parameter 11-11 
--and Store/Fetch strings 11-11 
--and Test Mode 8-28 

Message recovery. See 
Restart/recovery. 

MFT/VS1 
--and dynamically loaded 

subsystems 
--and LOGPUT block size 
--and OS/VS operations 
--and pool blocks 
--and QUICKCELL 
--and SPALIST CUSHION parameter 
--and SPIE macro 

3-40 
9-17 
7-19 
5-17 

11-15 
5-7 

7-26 

--and WTP user message limit 7-26 
--and 50A abends 5-17 

MMNCL parameter, SPALIST macro 11-15 
MMU. See Message Mapping Utilities. 
MMUVTBL table 2-28 
MNCL parameter, SYCTTBL macro 

--and CFMS support 
--defined . 11-8, 
--and Fortran subsystem 
--and NUMCL parameter 
--and overlapped GET and READ/ 

WRITE processing 
--and scheduling 
--and serial restart 
--and system tuning 11-8--11-9, 
--and VSAM ESDS files 

MODCNTRL macro 
--and Assembler Language 

subsystems 
--and dynamically loaded 

subroutines 
--and dynamically loaded 

6-64 
11-15 
3-53 

11-12 

6-5 
3-35 
9-20 

11-21 
6-13 

3-55 

3-55 

subsystems 3-39 
--and resident subroutines 3-53 
--and Resource Audit and Purge 5-1 
--and thread resource dump 5-22 

MODLIB library 2-2, 2-8, 2-28 
MODLIB procedure 2-7, 2-18 
MODMDF library 2-2 
MODREL library 2-2, 7-6, 8-20 
MODSEC library 10-18 
MODUSR library 2-2, 2-28, 7-33 
MONOVLY module 3-29, 3-42--3-43, 3-45 
MONOVLY parameter, ICOMLINK macro 3-45 
MRBATCH module 7-26 
MRCSALN parameter, SPALIST macro 11-21 
MRCSAMOD module 7-27 
MRINTER module 7-27 

1-15 

MRLOGOT module 7 -27 
MRMCT sample table 2-28 
MROTPUT module 7-27 
MRPURGE module 7 -27 
MRQMNGR module 7 -27, 11-4 
MRS. See Multiregion Support. 
MSGAC module 9-12 
MSGCOL. See Message 
MSGHBMN field 
MSGHDRC member 
MSGlfl..OG field 
MSGH~N field 
MSGHMRDX field 
MSGHRETN field 

Collection. 
8-27, 11-3--11-4 

10-8 
9-14 

9-12,11-3--11-4 
9-14 

3-6 



MSGHRSC field 
--and message restart 
--and serial restart 
--and SYCTTBL macro 
--and Test Mode 

MSGHRSCH field 
--and message restart 
--and serial restart 
--and SYCTTBL macro 
--and Test Mode 

MSGHSSC field 
MSGHSSCH field 
MSGHTID field 

user exit 9-14 
9-23 
3-36 

8-26--8-27 

user exit 9-14 
9-23 
3-36 

8-26--8-27 
9-21--9-22 

3-31, 9-21--9-22 

3-14, 8-26--8-27, 9-14--9-15 
MSGHUSR field 3-10, 3-35 
MSGHVMI field 

--and Output Utility 
requirements 3-17 

--and overlays 3-43--3-45 
--and response time reports 12-12 
--and sign-on/sign-off security 10-8 
--and Test Mode 8-26--8-27 

NSPR parameter, 
SPALIST macro 11-10--11-11, 11-21 

Multiregion Support 
--and abend interception 8-6 
--and BTAM terminal simulator 

facility 8-2 
--and cross-memory post failure 8-6 
--defined 
--and INTERLOG 
--and interregion SVC 
--and locked verb facility 

1-10 
11-4 
7-29 
3-11 
8-24 --and Log Input Facility 

--and LOGANAL utility 
--and message restart user 

12-24 
exit 9-14 
7-27--7-28 --and MVS operations 

--and MVS tuning 
recommendations 

--and Network Table 
--and Output user exit 
--and page fixing 
--and response time 

11-21--11-22 
3-12 
3-20 
7-24 

reports 12-11--12-12, 12-15 
10-20 
9-21 
8-6 

11-3 

--and Security 
--and serial restart 
--and STAEEXIT 
--and system statistics displays 

--and Test Mode 8-28 
--and Verb Table 3-12 

MULTI SPA module 6-51, 7-38 
Multitasking. See Subtasking. 
MVS/MVT 

--and Assembler Language 
subsytems 

--and dynamically loaded 
subsystems 

--and Fast Snap facility 
--and FILE command 

5-17 

3-40 
8-13 

--and linkedit RENT parameter 
6-9 
2-5 

9-17 --and LOGPUT block size 
--MVS operation 
--MVS tuning 

recommendations 
--OS/VS operation 
--and pool Csects 

7-27--7-28 

11-19 --11-20 
7-19 
5-10 

--and Resource Audit and Purge 5-17 
5-7 

7-26 
8-11 

6-13, 8-6 

--and SPALIST CUSHION parameter 
--and SPIE macro 
--and spinoff snaps 
--and STAEEXIT 
--and swapping 
--and SYSOUT data sets 
--and VSAM file support 
--and 30A abends 
--and AOA abends 

11-17 
6-26 
6-13 
5-17 
5-17 

NAME parameter, SUBMODS macro 3-54 
NCP parameter (DCB) 

1-16 

--and BSAM/BISAM files 6-6 
--and dynamic file deallocation and 

reallocation 6-11 
--and Flip/Flop facility 6-7--6-8 
--and 1NTERLOG data set 9-16 
--and NCPWA1T FAR attribute 6-30,6-32 
--and required DCB parameters 6-24 

NCPWA1T FAR 
attribute 6-7--6-8, 6-30, 6-32 

Network Configuration Table. See 
Front End Network Configuration 
Table. 

NEWPOOLS table 2-28,5-4,5-8--5-9,5-11 
NEWSNAP data set 8-11 
NQTIM parameter, SPALIST 

macro 
NRCD command 

5-19, 11-19 
7-12--7-13, 8-5, 10-9 

J 

J 



NTIMS parameter, SPALIST 
macro 3-17, 11-11 

NUMBER parameter, ICOMPOOL macro 5-7 
NUMCL parameter, SYCTTBL macro 
--and data set contention 11-19 

3-34, 11-12 --defined 
--and MVS tuning 

recommendations 
--and thread hung user exit 

11-21 
5-20 

OBJLIB procedure 2-7, 2-8, 2-18 
Off-line File Load utility 10-18 
Off-line utilities. See Utilities, 

offline. 
OFT. See Output Format Table. 
OPEN FAR attribute 
--and Flip/Flop facility 
--and MVS tuning 

recommendations 
--sub parameters 
--and VSAM alternate index 

OPER parameter, GENSEC macro 
OPER parameter, 

6-8 

11-22 
6-32 
6-13 

10-11 

STATION macro 10-5, 10-14--10-15 
OPSCAN module 12-32 
OPSCN procedure 2-7, 2-18 
OPTIONS parameter, IXFDSCTA macro 6-6 
ORDER statements-VS 5-10,7-2,7-22,7-24 
OS. See MVS/MVT and MFT/VS1. 
Ouput Format Table 

--adding entries to 
--defined 
--and error messages 
--and MVS tuning 

recommendations 
--and startup broadcast 

Output Utility 
--and Broadcast Table 

3-18--3-19 
1-12 
3-19 

11-22 
message 7-12 

3-14 
--and disk-resident table entries 1-7 
--and Dynamic Data Queuing 3-23 
--function 1-6 
--and message flow 3-2 
--and Message Mapping Utilities 3-15 
--and message restart 9-13 
--and Page facility 3-24 
--and page fixing 7-23 
--requirements 3-17 
--residency 11-18 

--and serial restart 9-20 
--and Test Mode 8-28 

Overlay 
--conversion of subsystems to 3-42 
--and Dispatcher 1-4 
--and Edit Control Program 3-16 
--index 

--generation of 
--and Subsystem Control 
--user coding of 
--verification of 

--loading 

3-33 
Table 3-26 

C-1--C-3 
3-34 

1-8 
--Overlay 

group 
--Overlay 

and D 
--Overlay 

Table 

A and VS execution 
subsystems 3-31, 3-37--3-38 
Regions B, C 

Region Verb 

--and resolution of VCONs 
--structure 
--Subroutine Overlay 

3-42--3-45 

3-42--3-45 
3-41 

1-7 

Region 3-58--3-59 
--and Subsystem Control Table 3-29 
--and Subsystem Controller 1-3 
--and system tuning 11-8 
--and System Tuning Statistics 8-23 
--Transient Subroutine 

Overlay Region 
--use of 
--and VS execution 

3-56--3-58 
3-36 

groups 3-31, 3-37--3-38 
OVLY parameter, SYCTTBL macro 

1-17 

--coding conventions 
--examples of 
--and overlapped GET 

WRITE processing 
--and overlay index 

3-29 
3-30, 3-37--3-38 
and READ/ 

--and resident subsystems 

6-5 
3-33--3-34 

7-25 
--and subsystems accessed by 

multiple verbs 
--and VS execution groups 

3-31 
3-31 

OVLYSTR parameter, 
ICOML1NK macro 3-38, 3-45, 3-58 

PAGE. See Page 
Page Facility 
Page fixing 

--and F1XTABLE 

Facility. 
1-5,2-28,3-24,3-51 

7-21 



--guidelines 
--and MVS operation 
--and MVS tuning 

7-23--7-24 
7-27 

recommendations 11-19 
--and OS/VS operation 7-19--7-20 
--table 5-10, 7-21, 7-24 
--and VS installation 7-21 

Page preloading 7-19--7-21, 7-25 
Partial File Load 12-25, 12-28--12-29 
PASS macro 5-18, 5-21 
PATCH procedure 2-7, 2-17 
PCEN parameter, 

SYCTTBL macro 
PCENSCT macro 
PENTRY member 
PERMRES parameter, 
PGFX command 

3-35, 11-12 
3-33, 3-35 

3-51 
SUBMODS macro 3-54 

7-20--7-21 
PL/1 

3-40 
6-6 

--linkedit considerations 3-52--3-53 

--and dynamic linked it 
--and 1SAM files 

--and message editing 
--procedures 2-7, 
--programming conventions 
--and resident subroutines 
--subsystem interface 

PL1ENTRY member 
PL1V table 

3-2 
2-15--2-16 

3-55 
3-53--3-54 
3-49--3-52 
3-51, 3-53 

PL1 parameter, 1COML1NK macro 
PL1 parameter, SYCTTBL macro 

3-51 
3-52 
3-49 
7-26 PL11NTFC macro 

PL1LNK parameter, 
PL 1V table 
PMIAUTOF module 
PM1BROAD table 
PM1CANC module. 

SYCTTBL macro 3-49 
3-51 

10-20 
2-28,3-14,7-12 

See USRCANC. 
PM1CKFTB module 
PM1CLDWN entry point 
PM1CLZZZ Csect 

3-21 
7-12 
3-34 

PM1COBOT module 
PMIDCB table 
PMIDEBUG module 
PMIDEVTB table 
PMIDLOAD module 
PMIEDIT module 

3-46, 7-23 
8-10--8-11 

7-28 
2-28,3-13 

3-56 
3-16 

PMIEXLD. See File Load Program. 
PMIFILET. See File Table. 
PMIFIXA module 7-20--7-21 

PMIF1XB subsystem 
PM1HARDW module 
PMIHEADR module 
PM1LINK2 entry point 

7-20 
7-18 

10-20 
5-22 

PMILOAD. See File Load Program. 
PMINQDEQ. See Enqueue/Dequeue Facility. 
PMIOUTPT. See Output Utility. 
PMIOVLY module 
PMIPCH procedure 
PMIPGLD module 
PMIPL1 module 
--described 
--linkedit considerations 
--and page fixing 
--programming conventions 

3-58 
2-7, 2-17 

7-21, 7-28 

3-51 
3-52 
7-23 
3-55 

--and Resource Audit and Purge 5-1 
3-51 
7-10 

2-7, 2-17 

--use of 
PMIPRIME entry point 
PMIPRT procedure 
PMIQUE DD statement 
PMIRCEND Csect 
PMIRCNTB Csect 
PMIRDTOO sample table 

7-7 
3-18 
3-18 
2-28 

PMIRTLR Csect 
PMISECT Csect 
PMISECTB Csect 
PNISIGN module 
PMISNAP macro 
PMISNAP1 module 

5-6 
10-11 
10-11 

10-6, 10-20 
8-7, 8-10, 8-13 

1-18 

--and Fast Snap facility 
--and File Handler statistics 

8-13 
6-46 
7-27 --and MVS operation 

--and SPIEEXIT 
--and user snap exit 

PMISTATB table 
--and GENSEC macro 
--and sign-on/sign-off 

security 
--and STATION macro 
--and Station Table 
--and Transaction Security 

PM1STOP DD statement 

8-6 
8-9 

10-11 

10-8, 10-10 
10-14 

2-28,3-12 
10-10 

--and excluding data sets from 
the internal DSCT 

--and Flip/Flop facility 
--illustrated 
--and LPSPALIB DD statement 
--and reserved ddnames 
--and VSAM user catalog 

PMISTOP macro 

6-23 
6-8 

7-15 
4-10,7-34 

6-27 
6-13,7-15 

J 

J 



--and Broadcast Table 3-14 
--and Device Table 3-13--3-14 
--and File Table 3-21,12-25 
--and Front End Verb Table 3-7 
--and' Output Format Table 3-18 
--and Overlay Verb Table 3-43 
--and Station Table 3-12--3-13,3-15 
--and Time Zone Table 3-61 

PMISTUP entry point 7-2, 7-8 
PMITEST. See Test Monitor. 
PMITIMTB table 
PMIVERBS table 
PMHiTO macro 
PMIWTOR macro 

3-61 
2-28,3-15,3-21 

5-20, 7-5 
7-5 

11-13 
macro 11-13 

Polling List Table 
POLTM parameter, BLINE 
Pool dumps 5-21, 5-28 

5-7 
5-10 

5-3--5-4, 5-27 
5-10, 5-27 

5-9--5-11, 7-8 
RTNLINK macro 7-25 

Pool use statistics 
POOLACCT Csect 
POOL DUMP module 
POOLEND Csect 
POOLSTRT module 
PRELOAD parameter, 
PREPLI module 

--and page fixing 
--and PL/1 linked it 

7-23 
3-52 

--and PL/1 subsystem 
interfaces 

--and SPIE macro 
PREPL1 module 

--and page fixing 
--and PL/1 linkedit 

3-49, 3-51 
7-26 

7-23 

--and PL/1 subsystem interface 
3-52 
3-49 
7-26 --and SPIE macro 

PREPROG module 
Priority queues 
Priority verbs. See Verbs, 
Procedures 

3-46, 7-23 
3-34,7-23 

priority. 
2-5--2-18 

See also individual procedure names. 
PRTY parameter, 

SYCTTBL macro 
PRT1403 utility 
PRYMSGS parameter, 

11-9, 11-18 
12-33 

SYCTTBL macro 3-10, 3-35, 11-12 
PTRNTBL table 2-28,3-21 
Purging. See Resource Audit and Purge. 
PUT function- 6-36--6-37, 6-39 
PUTV function 6-36--6-37 

QBUILD entry point 
QISAM 
--via BISAM 
--exclusive control 
--and GET function 
--and LOCATE facility 
--and OPEN FAR attribute 
--and overlapped GET and 

READ/WRITE processing 
--and PUT function 
--Scan Mode via BISAM 

5-1, 5-22 

6-2, 

6-37, 

6-6, 

6-21 
6-4 

6-41 
6-40 
6-32 

--and subsystem program logic 

6-5 
6-37 
6-21 
11-7 
6-41 --and sub tasked GETs 

QLB. See Queue Locate Block. 
QOPEN entry point 5-1, 5-22 
QSAM 

--and GET function 
--and LOCATE facility 
--and overlapped GET and 

6-37, 6-41 
6-40 

READ/WRITE processing 
--and PUT function 

6-41 
6-37 

--and shareability of data sets 6-25 
--and subtasked GETs 6-41 
--and undefined record support 

QTAMDCB entry point 
6-7 

8-10 
5-22 

1-3,3-2--3-3 
Queue Locate Block 
Queue Management routines 
Queues 
--described 
--Dispatcher 
--event 
--execution 
--priority 
--subsystem 
--task 
--terminal 
--time 
--types of 

1-3 
4-2 

4-1, 6-1 
4-1 

3-34 
3-34--3-35 

4-1--4-2 
11-13 

4-1 
4-1 

. See also Dynamic 
Quick frees 
QUICKCELL 

Data Queuing. 

Quiesce facility 

5-13 
11-15 
7-18 

RAP. See Region Associated Processing. 
RBN parameter, 

STATION macro 10-14, 10-18 
RCB. See Resource control block. 
RCBSADD parameter, 

SPALIST macro 5-13, 5-17 

1-19 



RCBSINT parameter, SPALIST 
macro 

RCTOOO data set 
READ function 6-5, 
Read-only data sets 
READBACK module 
READONLY FAR 

5-16--5-17 
3-19, 11-21 

6-36--6-37, 6-39 
6-25 
9-15 

attribute 6-16, 6-32--6-33, 6-65 
RECOBOL parameter, ICOMLINK macro 3-46 
Reentrant subsystems 

--Assembler Language 
--COBOL 
--and COBREENT 

3-45, 

--and Link Pack Module 
--PL/1 
--and REENTSBS 
--resident 

3-45 
3-54--3-55 

3-54 
7-36 

3-52, 3-54 
3-46 

--and SYCTl'BL LANG parameter 
3-36 
3-36 

REENTSBS table 
--and COBOL programming 

conventions 
--and COBOL subystem interfaces 

3-55 
3-46 
2-28 --deletion of entries in 

--and dynamically loaded 
subroutines 

--and dynamically loaded 
subsystems 

--and IJKDELAY 
--linked it 
--listing of release 

version 
--modification of 
--and PL/1 subsystems 
--and resident subroutines 
--and SUB MODS macro 
--and thread resource dump 
--and USRSUBS 

REENTSB1 Csect 
REG parameter, GETSPA macro 

3-54 

3-39 
4-11 
3-56 

3-48--3-49 
2-28 
3-51 
3-53 

3-53, 3-56 
5-22--5-23 
2-28,3-46 

3-48, 7-23 
7-36 

Region Associated 
Processing 

REGION macro 
Region organization 
RELEASE function 

10-20, 11-22 
11-21 

1-6 

--and batch programs using 
File Handler 

--and closing of data sets 
--described 

6-50 
6-44 

6-35--6-36 

--and dynamic buffering 6-4 
--and File Attribute Records 6-29 
--and File Handler parameters 6-35 
--and File Handler termination 6-22 
--and IXFHND01 6-21 
--and LOCATE facility 6-38 
--parameters 6-36 
--and shareable sequential 

data sets 6-25 
--and VSAM cross-region shared 

control 6-22 
RELEX function 6-36 
RENT parameter, STORAGE macro 5-4, D-2 
Reports table. See Output Format Table. 
REQONDDQ module- 9-21 
RES parameter, SUBMODS macro 3-54 
RESETPL macro 7 -27 
Resident Intercomm routines 1-6 
Resident subroutines 3-53--3-54, 3-60 
Resident subsystems 
--residency considerations 
--and resident subroutines 
--and response time and 

throughput 
--and Subsystem Control 

Table 
Resident tables 
RESOURC parameter, 

3-36 
3-53 

1-6, 3-36 

3-28--3-29 
1-6, 1-8 

SYCTTBL macro 3-29, 6-5, 11-8 
Resource Auditing and Purging 

1-20 

--described 1-5, 5-1--5-2 
--installation 5-16--5-20 

--Enqueue/Dequeue facility 5-19 
--linkedit 5-19 
--macro specifications 5-17--5-18 
--SETGLOBE settings 5-16 
--SPALIST parameters 5-16--5-17 
--and thread hung user exit 5-20 

Resource control block 
--and AOA abend 
--and core use statistics 
--described· 
--and installation 
--and macro specifications 
--and pool dumps 
--and RMFON/OFF 
--and SPA and SPA Extension 
--and SPALIST macro 
--table 

5-17--5-18 
5-13 

5-1--5-2 
5-16 

5-17--5-18 
5-27 
5-3 

5-19 
5-16 

5-16--5-17 

J 

J 



--and thread resource 
dump 5-18, 5-21, 5-23 

RESOURCE macro 3-29, 6-5, 11-8 
Resource Management 
--core-use statistics 5-2--5-3, 11-3 
--debugging aids 

--pool dump 
--thread resource 

--described 

5-27--5-28 
dump 5-21--5--26 

1-4--1-5, 5-1 
6-4 --and dynamic buffering 

--installation with core-use 
monitoring and pools 5-6--5-15 

--core block detail 
statistics 

--defining the Intercomm 
pools 

--dynamically loaded 
core pools 

--linked it 
--sample output 
--SETGLOBE settings 
--SPALIST parameters 

5-10--5-11 

5-7 --5-10 

5-9--5-10 
5-11 

5-12--5-15 
5-6 

5-6--5-7 
--installation with Resource 

Audit and Purge 5-16--5-20 
--Enqueue/Dequeue facility 5-19 
--linkedit 5-19 
--macro specifications 5-17 
--SETGLOBE settings 5-16 
--SPALIST parameters 5-16--5-17 
--thread hung user exit 5-20 

--modules and globals 5-3--5-6 
--and PL/1 automatic 

variable storage 3-50 
--resource audit and purge 5-1--5-2 
--and SPALIST subpool requirement 

specifications 11-10 
--storage cushion 5-3 
--and user-defined storage pools 5-2 

Response Time Reports 12-11--12-16 
RESTART parameter, BTERM macro 9-13 
RESTART parameter, 

EXEC statement 9-11, 9-16 
RESTART parameter, LUNIT macrO 9-13 
RESTART parameter, SYCTTBL macro 

--and closedown subsystem 
--and MVS tuning 

recommendations 
--and serial restart 
--and System Accounting and 

Measurement 

9-14 

11-21 
9-21 

8-15 

--and user responsibility 
9-2, 9-13 in restart 

Restart/Recovery 
--concatenation of disk files 

for restart 
--and CONVERSE facility 
--and ICOMFEOF 
--implementation 
--message accounting 
--message restart concepts 
--message restart logic 
--message restart user 

9-19 
3-11 

12-40 
9-15--9-20 

9-12 
9-2 

9-12--9-14 

exit 9-14--9-15 
--and missing end of file 12-40 
--the restart process 9-11 
--serial restart 9-20--9-23 
--system failure & recovery 9-1 

RESTORE3 module 9-15 
RESTRTLG data set 9-16, 9-19 
Retriever 7-33, 12-15 
REUSE parameter, 

SYCTTBL macro 
RLSE command 
RMCATCH entry point 
RMFNQ Csect 
RMFOFF entry point 
RMFON entry point 
RMINTEG global 
RMNADISA module 5-3--5-4, 
RMNQOFF entry point 
RMNQON entry point 
RMPASS entry point 
RMPC Csect 
RMPURGE module 

--and AOA abends 
--defined 

3-39, 11-9 
3-23, 8-2 

5-3 
5-3 
5-3 
5-3 

5-6,5-27 
5-19--5-20 

5-3 
5-3 

5-3, 5-18 
5-3 

--and File Handler statistics 

5-18 
5-3 

6-46 
4-2 

5-19 
5-4 

5-18 
5-21 

1-21 

--and IJKTRACE 
--and linkedit of Intercomm 
--and MANAGER module 
--and Resource Management 
--and thread resource dump 
--and VSAM cross-region shared 

control 6-22 
RMSAVE (MANAGER save area) 5-21,8-8 
RMSTIM parameter, SPALIST macro 5-7 
RMTRACE module 

RSL U command 
5-2--5-4, 5-7, 5-11--5-12 

11-18 



RSMGMNT Csect 
RTNLINK macro 

5-3, 5-21 
5-6, 5-17, 7-25 

SAM. See System Accounting and 
Measurement. 

SAM access method 
SAM parameter, ICOMLINK macro 
SAME15 module 

6-23 
8-19 
8-20 

SAMSECT module 
SAMTABLE member 
Save areas 

8-19 
8-19--8-21 

5-4--5-6 
3-52 
3-35 

SBSP parameter, SYCTTBL macro 
SCHED parameter, SYCTTBL macro 
SCT. See Subsystem Control Table. 
SCTLISTC Dsect 10-19 
SECF command 10-9 
SECN command 10-9 
SECU command 9-23 
SECU parameter, SYCTTBL macro 10-19 
SECUR parameter, BTVERB 

macro 10-6, 10-9 
SECUR parameter, ICOMLINK macro 10-20 
SECUREOO module 10-20 
SECUREO 1 module 10-20 
SECURE02 module 10-20 
Security. See Basic Security System 

and Extended Security System. 
SECURITY Csect 
Security Table 
SECVERBS 

10-19 
10-19--10-20 

macro 10-9, 10-11--13, 10-15--10-17 
SECOOO data set 10-11, 10-14, 10-18 
Segmented messages 
SEGREST parameter, 
SELECT func tion 

3-17 
SYCTTBL macro 9-13 

--and aliased files 
--described 
--and dynamic buffering 
--and IXFHND01 
--parameters 
--and shareable sequential 

data sets 
--and VSAM files shared 

across regions 
SELECT entry point 

6-34 
6-35--6-36 

6-4 
6-21 
6-36 

6-25 

6-16 
5-1, 5-22 

SEP parameter, SPALIST 
macro 3-3, 3-15, 8-27 

Separator character 

--described 
--and Edit Utility 
--and locked verbs 
--and SETENV table 
--and System Parameter Area 

3-2--3-3 
3-15 
3-10 

3-3, 3-15 
10-1 

SETENV table 
--and conversational verbs 
--and dispatching priority 
--and Edit Utility 
--function 
--and linkedit 
--and separator character 

3-11 
11-18 
3-15 

1-11, 2-23 
7-2 

3-3, 3-15 
SET GLOBE table 

1-22 

--and AMIGOS access method 6-3 
--and batch subsystems using 

File Handler 6-50 
--and conversational verbs 11-22 
--described 2-24 
--and Dispatcher 4-1--4-2 
--and Edit Utility 3-16 
--and Fast Snap facility 8-13 
--and File Handler 6-40--6-41,6-50 
--and File Handler Statistics 

Report 
--function 
--and lAM access method 
--and Interregion SVC 

6-46 
1-11, 2-23 

6-3 
7-29 

--and 1SAM/VSAM compatibility 6-17 
7-2 

2-26--2-27 
8-24--8-25 

--and linked it 
--listed 
--and Log Input facility 
--and MVS tuning 

recommendations 
--and Output user exit 
--and Output Utility 
--and pool integrity validation 
--and Resource Management 

--with core-use monitoring 

11-22 
3-20 
3-18 

5-6 
5-1.1 

and pools 5-6, 5-11--5-12 
--with Resource Audit 

and Purge 5-16, 5-19 
--and VS installation procedures 7-21 

SETL macro (IBM) 6-5 
SETOVLY macro 4-3 
SEXSNAP parameter, SPALIST macro 8-10 
SGNTIME parameter, SPALIST 

macro 10-6, 10-15 
SHARE MFT/MVT Project (IBM) 11-15 



~ 

SHARE parameter, INTENQ macro 5-19,6-6 
Shareable sequential 

data sets 6-25--6-26 
Short verbs. See Verbs, 
SIMCARDS data set 
SIMCRTA utility 

short. 
8-2--8-3 

12-35, 12-38 
8-5, 12-37 

10-6, 10-15, 10-20 
SPALIST macro 7-5 

SIM3270 module 
SIGN command 
SMCSWTO parameter, 
SMLOG data set 

--and pool dump 5-27 
--and Resource Auditing 5-18 
--and thread resource dump 5-21, 5-23 

SNA. See System Network Architecture. 
SNAPDD data set 7-8, 8-7, 8-10--8-11 
SNAPEXIT user exit 8-9 
SNAPPGS parameter, SPALIST 

macro 8-10--8-11 
Snaps 
--of Dispatcher task queues 4-2 
--Fast Snap facility 8-13--8-14 
--and indicative dump option 
--and SPINOFF 8-10--8-12 
--and SPIEEXIT 8-6 
--and STAEEXIT 8-6 
--and system performance 11-5 
--and thread resource dump 5-21 

SONOFF parameter, SPALIST 
macro 10-6--10--7 

SOSO parameter, SYCTTBL 
macro 10-7, 10-20 

SPA. See System Parameter Area. 
SPA Csect 5-6 
SPA Extension. See SPAEXT Csect. 
SPA parameter, RTNLINK macro 5-6 
SPAC parameter, SYCTTBL 

macro 3-51, 11-10--11-11, 11-21 
SPADEVTB field 3-13 
SPAEXT Csect 
--defined 
--and dynamically loaded 

subsystems 
--length of 
--and Link Pack Module 
--and Resource Management 

3-24 

3-39 
3-25 

7-36--7-37 

--with core-use monitoring 
and pools 5-6, 5-11 

--with Resource Audit 
and Purge 5-16, 5-19 

--and thread resource dumps 
--and serial restart 

SPAHOLD switch 
SPALIST macro 

--ASYNLDR parameter 

5-27 
9-22 

5-7, 5-27 

3-38 

1-23 

--and batch programs using 
File Handler 

--BLDVRP parameter 
--and checkpoints 
--CKUSL parameter 
--CKUSR parameter 
--CLDNLIM parameter 
--and closedown 
--COREACC parameter 
--CUSHION parameter 
--CUSHTM parameter 
--described 
--DTIMS parameter 
--DWSCHK parameter 
--and dynamically loaded 

6-50 
6-14 
9-8 
9-8 
9-8 

7-13 
7-12-7-13 

5-7,5-12 
5-3, 11-21 

5-7,11-10 
3-24--3-25 

3-17 
11-21 

subsystems 3-40 
--ECB parameter 3-35 
--and Edit Utility 3-15--3-16 
--EDITRTN parameter 3-16 
--and enqueue time-outs 11-19 
--EXTONLY parameter 3-24--3-25 
--and Fine Tuner 11-15--11-16 
--FMCSWTO parameter 7-5 
--FPMIWTO parameter 7-5 
--and generalized subtasking 3-60 
--GENSW parameter 9-8 
--and global WTO and MCS routing 7-5 
--and indicative dump option 8-7--8-9 
--INDUMP parameter 8-7--8-8 
--LGBLK parameter 9-3, 9-15 
--LGNUM parameter 9-15--9-16 
--and Link Pack Module 7-36 
--and Log Input Facility 8-25 
--and logging 9-3 
--LOGINDO parameter 8-25 
--MAXLOAD parameter 3-40,11-11,11-20 
--MBPR parameter 11-10, 11-21 
--MDEL Y parameter 11-16 
--and message cancelled condition 3-6 
--MMNCL parameter 11-15 
--MRCSALN parameter 11-21 
--MSPR parameter 11-10, 11-21 
--and MVS tuning 

recommendations 
--NQT1M parameter 

11-20--11-21 
11-19 



--NTIMS parameter 
--and Output Utility 

3-17, 11-11 
3-17 

--and Overlay A and VS execution 
groups 

--RCBSADD parameter 
--RCBSINT parameter 
--and resident subroutines 

3-38 
5-13 

5-16--5-17 
3-53 

--and Resource Management 
--with core-use monitoring 

and pools 
--with Resource Audit 

and Purge 
--and restart/recovery 
--RMSTIM parameter 
--and RTNLINK macro 
--and save areas 
--and scheduling criteria 
--and security 

5-13 

5-16, 5-19 
9-15--9-16 

5-7 
5-6 
5-6 

11-10 

10-5--10-10, 10-15, 10-19 
--SEP parameter 3-15, 8-27 
--and separator character 3-3, 8-27 
--SGNTIME parameter 10-6, 10-15 
--and sign-on/sign-off 

security 
--SMCSWTO parameter 
--SNAPPGS parameter 
--SONOFF parameter 
--and spinoff snaps 
--SPMIWTO parameter 
--STOCORE parameter 
--and storage cushion 
--STSTIME parameter 
--STUSPIE parameter 
--and subpool space 
--and sub tasked GETs 

10-5--10-6 
7-5 

8-10--8-11 
10-6--10-7 
8-10--8-11 

7-5 
11-11, 11-21 

5-3 
8-23, 11-11 

8-6 
11-10 

--and System Tuning Statistics 
6-41 
8-23 

11-11 
9-8 

8-27--8-28 
3-17, 11-11 

--TASKNUM paramter 3-60, 6-41, 
--TCHP parameter 
--and Test Mode 
--TIMS parameter 
--TRACETM parameter 
--and Transaction 

Security 
--TRANSEC parameter 
--TSTEND parameter 
--and user exits 

5-7 

10-8--10-10 
10-9--10-10 
7-12, 8-28 

D-2 
--and user-written security 

routines 
--USERSEC parameter 

10-19 
10-19 

--and VSAM Local Shared 
Resources 

--WTO parameter 
--WTOPFX parameter 

7-5, 
6-14 

11-14 

SPAMSNM counter 
SPASTATB field 
SPA USER label 
SPIE macro (IBM) 

7-5 
11-4 
3-12 
3-25 

--and VS2 
SPIEEXIT module 

--and closed loop detection 

7-26 

4-13 
--described 
--and IJKTLOOP 
--and PL/1 
--and SNAP EXIT 
--and SPIE macro (IBM) 

SPIESNAP module 

8-5--8-6 
4-13 
3-52 
8-9 

7-26 

--and closed loop detection 4-13 
--and Dispatcher task queues 4-2 
--and IJKTLOOP 4-13 
--and IJKTRACE 4-2 
--and pool dumps 5-27 
--and SPIEEXIT 8-6 
--and thread resource dump 5-21 
--user exit 8-6 

SPINEXIT user exit 8-12 
SPINOFF module 8-10--8-11, 8-12, 8-14 
Spinoff snaps 8-10, 11-14 
SPLG command 11 -18 
SPMIWTO parameter,SPALIST macro 7-5 
SPPL command 7 -16 
SPSNEXIT user exit 8-6 
SSPOLL module 5-3 
STAE macro (IBM) 8-5 
STAEXIT module 

1-24 

--and closedown 
--described 
--and File Handler 
--and IJKTLOOP 
--and IJKTRACE 
--and MVS operation 
--and page fixing 
--and PL/1 

8-23 
8-5--8-7 

termination 6-22 
4-13 

4-2, 4-13 
7-27--7-28 

7-20 

--and SPIE macro (IBM) 
3-52 
7-26 
4-13 --and STAERTRY 

--and startup 
--and subsystem time-out 
--and System Tuning Statistics 

7-8 
4-2 

8-23 

J 

J 



--and TDUMP 5-21 
--and thread resource dump 5-21 
--and VSAM file support 6-13 

STAERTRY module 4-13, 7-26--7-27, 8-6 
STALIST macro 10-7 
Standards 2-21--2-22 
Startup 

--broadcast message 3-14, 7-12 
--and checkpoints 9-8 
--described 7-8--7-12 
--and dynamically loaded core 

pools 
--and File Attribute Records 

5-9 
6-29 
6-18 

11-10 
--and File Handler 
--and fragmentation prevention 
--and generalized 

sub tasking 
--and I COMPOOL 
--and logging 
--and page fixing 
--and PL/1 subsystems 
--and sub tasked GETs 

3-59, 6-41 
5-8 

9-3, 9-7 
7-20 
3-53 

--and VS installation procedures 
6-41 
7-21 

--and VSAM Local Shared 
Resources 

STARTUP3 module 
STAT command 
STATFILE data 

6-14 
6-46, 7-8, 7-26--7-27 

11-3 

set 6-45--6-46, 6-48--6-49 
STATION macro 

--and Basic Security 
system 

--sign-on/sign-off 
security 

--station security 
--transaction 

10-2--10-4 

10-5--10-6 
10-17--10-18 

security 10-9, 10-15--10-17 
--parameters 10-14--10-15 
--and Station Table 3-12--3-13, 10-11 

Station Table 
--and Basic Security system 10-1 

--coding for security 
processing 

--GENSEC macro 
--operator codes 
--parameters 
--range of verbs per 

terminal 

10-10--10-18 
10-11 

10-17--10-18 
10-14--10-15 

10-15--10-17 

--SECVERBS macro and VERBS 
parameter 10-11--10-13 

--structure 10-10 
--UNIVER and OPER 

parameters 10-14 
--and sign-on/sign-off 

security 10-17 
--and station security 10-17--10-18 
--and transaction security 

10-9, 10-15--10-17 
--and BTAM terminal simulator 8-2 
--described 3-12--3-13 
--function 1-11 
--and Log Input Facility 8-26 
--and MMU requirements 3-15 
--and SIMCRTA utility 12-38 

Statistics, system 11-2--11-3 
STATINDX Csect 3-12,7-22 
STEPCAT DD statement 6-13,7-15 
STLG command 11-18 
STLU command 10-15 
STOCORE parameter,SPALIST 

macro 
STOP command 
Storage cushion 

--defined 

11 -11, 11 -21 
5-6,8-7,8-19,9-23 

1-4, 5-3 
5-27 

5-4 

1-25 

--and pool dumps 
--and save areas 
--and SPALIST CUSHION 

parameter 5-3, 5-7 
--and SPALIST CUSHTM parameter 5-7 
--and subpool space 

fragmentation 
STORAGE macro 

--and AOA abend 
--and CORE resource 
--ERRADDR parameter 
--example 
--and File Handler 
--and FREEMAIN macro 
--and MANAGER module 

type 

11-10 

5-17 --5-18 
5-1 
5-4 
5-5 

6-43 
(IBM) 5-17--5-18 

--and Output user exit 
5-3 

3-20 
5-4, D-1 
5-4--5-5 

user exit 9-22 
5-17 

D-1 

--RENT parameter 
--and save areas 
--and serial restart 
--and STORFREE macro 
--and user exits 
--and user-defined storage pools 
--and USRSEREX module 

5-17 
9-22 



--and 30A abend 
--and 50A abend 

5-17 
5-17 

Storage pools. See Resource Management. 
STORAGEM entry point 

5-3, 5-16, 5-21--5-22 
Store/Fetch utility 

--and data set allocation 
--described 
--function 
--and MVS tuning 

recommendations 
--and page fixing 
--and SIM3270 module 

11-14 
3-24 

1-5 

11-21--11-22 
7-23 

--and STOCORE SPALIST parameter 
8-5 

11-11 
8-23 
5-20 

--and System Tuning Statistics 
--and thread hung user exit 

STORFRED entry point 
--and AOA abend 
--and core-use statistics 
--and MANAGER module 
--and thread resource dump 
--use of 

STORFREE macro 
--and MANAGER module 
--and Resource Audit and 

5-17--5-18 
5-13 

5-3 
5-21 
5-6 

5-3 

Purge 5-16--5-17 
--and serial restart user exit 9-22 
--and sign-on/sign-off security 10-8 
--and STORAGE macro 5-17 
--SYS parameter 5-18 
--and user-defined storage pools 5-2 
--and USRSEREX module 9-22 

STPL command 7 -16 
STRT command 5-6, 8-7, 8-18,9-23 
STS. See System Tuning Statistics. 
STSLOG data set 8-24 
STSTIME parameter, SPALIST 

macro 8-23, 11-11 
STUOVLY Csect 4-10, 7-8 
STUSPIE parameter, SPALIST macro 8-6 
SUB. See Subroutine Overlay Region. 
SUBC parameter, SYCTTBL macro 3-36 
SUBH parmaeter, SYCTTBL macro 3-36 
SUBMODS macro 

--and dynamically loaded 
subroutines 

--and dynamically loaded 
subsystems 

--and IJKDELAY module 

3-54, 3-56 

3-39 
4-11 

--and resident subroutines 3-53--3-54 
--and thread resource dump 5-22--5-23 

Sub pools 
--dynamic subpool area 1-7 
--space criteria 11-9--11-10 
--and storage cushion 1-4, 5-3 
--and thread resource dump 5-23 

Subroutine interfaces 3-53--3-59 
Subroutines, dynamically loaded. See 

dynamically loaded subroutines. 
Subroutine Overlay Region 3-58--3-59 
SUBSYS macro 11-21 
Subsystem Control Table 

--adding a subsystem to 
--and Basic Security 

3-33 

system 10-6, 10-18, 10-20 
--and COBOL subsystems 3-45 
--coding entries in 3-29--3-31 
--coding indices to 3-33, C-l--C-3 
--defined 1-11 
--described 3-26--3-34 
--and disk queue data sets 3-33, 3-35 
--and dynamic program loading 1-7 
--and File Handler Statistics 

Report 
--and IJKWH01T 
--and 1NTSCT 
--and Link Pack Module 
--and Multiregion security 

6-45 
4-10 
3-26 
7-35 

10-20 
--and Output Utility require-

ments 3-17 
--and overflow disk queue 

allocation 3-33 
--and Overlay A subsystems 3-37 
--overlay index C-l--C-3 
--and Overlay Regions B,C and D 3-42 
--and sign-on/sign-off security 10-6 
--and SYCTTBL macro 3-26--3-28 
--and system tuning 11-2, 11-11 
--and user-written security 

routines 
--verification of 
--and VS execution groups 

Subsystem Controller 

10-18 
3-34 

3-31, 7-25 

--defined 1-1, 1-3 
--and Dispatcher 1-4, 4-1--4-2 
--and dynamically loaded 

subsystems 3-39 

1-26 



--and freeing storage 5-18 
--and 1JKTRACE module 4-2 
--and message cancellation 3-5, 3-20 
--and Output user exit 3-20 
--residency of 1-6 
--and SP1EX1T module 8-6 
--and task priority 11-9 
--and time controlled message 

processing 
--and transaction security 
--and user-written security 

3-61 
10-9 

routines 10-18--10-19 
Subsystem management 
--generalized sub tasking 

--implementation 3-60 
--special sub tasks 3-59--3-60, 6-5 

--residency considerations 
--Dynamic Linkedit 

facility 3-40--3-42, 3-53 
--dynamically loaded 

subsystems 3-39--3-42, 3-53 
--Overlay A and VS execution 

groups 3-37--3-38, 3-53 
--Overlay B,C and D 3-42--3-45 
--resident subroutines 

3-40--3-42, 3-53 
--resident subsystems 3-36, 11-7 

--subroutine interfaces and linkedit 
considerations 

--dynamically loaded 
subroutines 

--resident subroutines 
--Subroutine Overlay 

3-54--3-55 
3-53--3-54 

Region (SUB) 3-58--3-59 
--subroutines linked with dynamical-

ly loaded subsystems 3-54 
--Transient Subroutine Overlay 

Region (TRAN) 3-56--3-58 
--Subsystem Control Table 

--adding a subsystem to 3-33 
--coding SCT indexes (GEN1NDEX)3-33 
--and dynamically loadable 

subsystems 
--and 1ntercomm-supplied 

subsystems 
--and overflow disk queue 

allocation 
--and Overlay A 

3-29 

3-32 

3-33 
3-29--3-30 

--and Overlay B,C and D 3-29 
--and resident subsystems 3-29 
--verification of 3-34 
--and VS execution groups 3-31 

--subsystem interface and linkedit 
considerations 

--COBOL subsystem inter
faces 

--COBOL subsystem 
considerations 

--Fortran subsystems 

3-45--3-46 
linkedit 

--PL/1 linked it 

3-46--3-47 
3-53 

considerations 3-52--3-53 
--PL/1 subsystem inter-

faces 3-49--3-52 
--subsystem processing specifications 

--queue specifications 3-34--3-35 
--scheduling and concurrent 

processing limits 3-35 
SUBTASK macro 3-59--3-60, 11-11 
Sub tasking 
--general 
--GETs 
--special 

SVC. See 1nterregion 

3-59--3-60,6-12 
6-5,6-41 

3-59--3-60 
SVC and Fast Snap 

facility. 
Switched asynchronous devices B-3 
SWOF command 10-9, 10-15--10-16 
SWON command 10-9, 10-15--10-16 
SYCTTBL macro 

--AUXS parameter 
--and Basic Security 10-2, 

3-34 
10-7 
3-39 --BLDL parameter 

--BLR1 parameter 3-34, 
--and BTVERB macro 
--CANC parameter 
--and CFMS support 
--CNVREST parameter 

11-12 
3-43 

3-6 
6-64 
9-13 

--and COBOL dynamic working 
storage 

--DFLN parameter 
--and dispatching 
--and dynamically 

subsystems 
--ECB parameter 
--EXGRP parameter 

3-45 
3-34--3-35, 11-12 

priority 11-18 
loaded 

3-39 
3-35 

3-29,3-31,3-37,7-25,7-36 
--File Attribute Records 6-32 
--and File Handler Statistics 

Report 
--FREE parameter 

6-45 
3-45 

1-27 



--and Front End Verb Table 3-43 
--and GENINDEX macro 3-33 
--GET parameter 3-45 
--LANG parameter 3-36, 3-46, 3-53 
--and Link Pack Module 7-35--7-37 
--LOADNAM parameter 3-39, 3-51 
--LOG parameter 11-14, 11-21 
--and logging 9-14, 11-14 
--LSYNCH parameter 9-4, 11-14, 11-18 
--and message cancelled condition 3-6 
--and message restart 9-13--9-14,9-21 
--MNCL parameter 

--and CFMS support 6-64 
--described 11-8--11-9 
--and Fortran subsystems 3-53 
--and message management 3-53, 11-8 
--and MVS Tuning recommenda-

tions 11-21 
--and overlapped GET and READ/ 

WRITE processing 6-5 
3-35 --and processing limits 

--and MVS tuning 
recommendations 

--NUMCL parameter 
11-21 

3-34, 11-12, 11-18--11-19, 11-21 
--and Overlay A subsystems 3-37 
--and Overlay B,C and D 

subsystems 
--OVLY parameter 
--PCEN parameter 
--and PL/1 subsystems 
--PL1 parameter 
--PL1LNK parameter 
--and priority verbs 
--PRTY parameter 11-9, 
--PRYMSGS parameter 
--and RESOURCE macro 

3-43 
3-37, 7-25 
3-35, 11-2 

3-49 
3-49 
3-49 
3-10 

11-18--11-19 
3-35, 11-12 

--RESOORC parameter 3-35, 6-5, 
11-8 
11-8 

--RESTART parameter 
--and closedown subsystem 
--and MVS tuning 

recommendations 
--and serial restart 
--and System Accounting and 

Measurement 
--REUSE parameter 
--SBSP parameter 
--SCHED parameter 

3-39, 

--and scheduling and concurrent 
processing limits 

9-14 

11-9 
9-21 

8-15 
11-9 
3-52 
3-35 

3-35 

--SECU parameter 
--SEGREST parameter 
--and serial restart 
--SOSO parameter 10-7, 
--and sign-on/sign-off security 
--SPAC parameter 11-10--11-11, 
--SUBC parameter 
--SUBH parameter 
--and subpool space 

requirements 

~ 

10-19 
9-15 
9-21 

10-19 
10-6 

11-21 
3-36 
3-36 

11-12 
--and Subsystem Control 

Table 3-26--3-31 
--and subsystem queue 

specifications 3-34--3-35, 11-12 
--and subsystem reentrancy 3-36 
--and subsystem residency 

3-36--3-37, 3-39, 3-43 
--and subsystem stopped condition 3-6 
--and System Accounting and 

Measurement 8-15 
--and system tuning 11-8--11-9, 11-21 
--TCTV parameter 

5-20,6-17,11-21--11-22 
--THRSH parameter 3-35 
--TISE parameter 10-10 
--and transaction security 10-10 
--and user-written security 

routines 10-19--10-20 
--and VS execution groups 7-36 
--and VS system tuning 

considerations 7-25 
--WTO parameter 7-5, 11-14 

SYCT400. See Subsystem Controller. 
SYMLIB library 2-2, 2-23 
SYMLIB procedure 2-7, 2-18, 3-24--3-25 
SYMMDF library 2-2 
SYMREF data set 2-3--2-4 
SYMREL li brary 

--defined 
--and 
--and 
--and 
--and 
--and 
--and 

Interregion SVC 
JCL procedures 
Output Format Table 
sample exit routines 
sample tables 
SET tables 

--and Subsystem Control Table 
--and System Parameter Area 

2-2 
7-29 

2-5 
3-18 
9-21 
2-28 
2-23 
3-27 
3-24 

SYMSCR li brary 
SYMSEC library 

2-3 
10-17--10-18 

1-28 

J 

J 



L 

SYMUCL library 
SYMUSR library 

--defined 
--and linked it 
--and system control tables 
--and System Parameter Area 

2-2 

SYS parameter, STORAGE macro 
SYS parameter, STORFREE macro 
SYSGEN 

2-2 
7-2 

2-28 
3-24 
5-18 
5-18 

--and VS 
SYSSNAP data set 
SYSSNAP2 data set 
System Accounting and 
--defined 
--implementa tion 
--reports from 
--and resource usage 

7-25--7-26 
8-26 

8-26, 8-28 
Meas urement 

8-15, 11-3 
8-19--8-20 
8-20--8-21 

categories 8-15--8-18 
--sample report 8-22 
--and user accumulators 8-18 
--user exit routines 8-18--8-19 

System DCBs. See DCB parameters, 
system. 

System log. See INTERLOG. 
System Network Architecture 

See also VTAM Front End. 
System Parameter Area 
--creation of 
--described 1-11, 
--Extension 
--and Link Pack 

Module 7-31, 
--residency of 
--and Resource Management 
--and security options 
--and security subroutines 
--and separator character 

1-2 

3-21 
3-21 

3-24--3-25 
3-25 

1-36--7-37 
1-6 

5-6, 5-11 
10-2 

10-18 

--and sign-on/sign-off security 
10-1 
10-8 
8-10 
3-12 
2-23 
11-2 

--and spinoff snaps 
--and Station Table 
--and system control functions 
--and system tuning 
See also INTSPA and SPALIST. 

System tuning 
--described 11-1 
--factors affecting system performance 

--data set allocation 11-13--11-14 
--Front End parameters 11-13 

--general 
--QUICKCELL 

11 -6, 11-14 
11-15 

--subpool space and scheduling 
criteria 11-9 

11-7 --subsystem program logic 
--subsystem queuing 

parameters 
--subsystem residency and 

11-12 

scheduling parameters 11-7 
--system log specifications 11-14 

--fine tuner commands 11-15--11-16 
--MVS tuning 

recommendations 
--and performance 

evaluation 
--response time 

considerations 
--tracing a message on 

the log 
System Tuning Statistics 

--and closedown 
--described 
--implementation of 
--interval 
--reports from 
--and SPAL1ST parameter 

11-19 --11-22 

11-1--11-3 

1 1 -16 --11 -19 

11-3--11-6 

7-12 
8-23, 11-3 
8-23--8-24 

11-11 
8-23, 11-9 

STSTlME 11 -11 

TABLE parameter, SECVERBS macro 10-11 
Tables 
--disk-resident 

--and Change/Display Utility 3-21 
--conventions for the 

utilities 
--defined 
--and Edit Utility 

12-27 
1-1 

3-15 
--and Output Format 

Table 
--and security 

codes 
--global 
--page fixing of 
--resident 
--summary of 
--system control 
--system control 

tables 

3-18--3-19 
operator 

10-17--10-18 
2-24--2-27 

1-23 
1-6, 1-8 
A-1--A-3 

2-28 
functions and 

2-23 
See also individual table names. 

TALY command 

1-29 



--and Fine Tuner 
--and serial restart user exit 

11-15 
9-23 
11-3 
5-20 

--and system statistics displays 
--and thread hung user exit 
--and VSAM files shared across 

regions 
Task management 

--Dispatcher queues 
--described 

--related service routines 
--IJKCESD 
--IJKDELAY 
--IJKPRINT 
--IJKTLOOP 
--IJKTRACE 
--IJKWHOIT 

Task Input-Output Table 
--and File Handler 

6-17 

4-1 

4-10 
4-11--4-12 

4-2 
4-12--4-13 
4-2--4-10 

4-10--4-11 

6-19--6-20 
--Dispatcher and related service 

routines 4-1 
TASKNUM parameter, SPALIST 

macro 3-60, 11-11 
TASKNUM parameter, SUBTASK 

macro 3-59--3-60, 6-41 
TCAM Front End. See TCAM Interface. 
TCAM Interface -

--and BTAM terminal simulator 8-1 
--defined 1-2 
--and dispatching priority 11-18 

3-2--3-3 
7-27 

11-20--11-21 
processing 11-18 

--and message flow 
--and MVS operation 
--and MVS tuning 
--and queue and log 
--and system DCBs 
--and transaction security 

TCAMVER module 
TCHP parameter, SPALIST macro 
TCTV parameter, SYCTTBL macro 

--and generalized sub tasking 
--and MVS tuning 

8-10 
10-11 
11-21 

9-8 

3-59 

recommendations 11-21--11-22 
--and subsystem time-outs 
--and thread hung user exit 

11-19 
5-20 

--and VSAM files shared across 
regions 

TDUMP module 
--and closed loop detection 
--defined 
--and IJKTLOOP 
--linked it 

6-17 

4-13 
5-1, 5-3 

4-3 
5-19 

--and Resource Audit and Purge 5-4 
--and SPIESNAP 5-27 
--and thread resource dump 5-21 

TDWN command 3-3 
TERM option, Log Analysis 12-8,12-11 
Terminal queues. See Queues, terminal. 
Terminal simulator facility. See BTAM 

terminal simulator. 
Test Mode 

--and closedown 7-12 
--described 
--input card formats 
--message creation utility 

1-9 
8-27 

12-38 
8-26--8-29 

12-33 
8-29 

10-11 

--operation 
--and PRT1403 utility 
--sample JCL 
--and SECVERBS macro 
--and system tuning 

Test Monitor 
11-2 

6-46,8-26,8-28 
TEST parameter, ICOMLINK macro 8-28 

LINKAGE macro 7-36 TEST parameter, 
Thread resource dump 
--described 
--function 
--and indicative dumps 
--sample 

Thread Status Table 
THRSH parameter, SYCTTBL 
TIME list 
TIME parameter, STATION 

macro 
Time Zone Table 

5-21--5-23 
1-5 
8-7 

5-24--5-26 
5-21 

macro 3-35 
4-4 

10-6,10-15 
3-61--3-62 

Timer queues. See Queues, time. 
TIMS parameter, SPALIST 

1-30 

macro 3-17,11-10--11-11 
TIOT. See Task Input-Output Table. 
TISE parameter, 
TMZONE macro 
TOTAL data base 

SYCTTBL macro 10-10 

TPUMSG module 
TPUP command 

3-61 
7-5,12-40--12-41 

11-19 
10-15 

TPUP parameter, BTERM macro 
TRACETM parameter, SPALIST macro 
Tracing facilities 

8-3 
5-7 

11-23 
TRACKMOD module 
TRAFFIC Csect 
Traffic histograms 
TRAFF!CQ module 

8-19 
7-25 

12-8--12-10 
7-25 

TRAN. See Transient Subroutine Overlay 
RegiOn:'" 



L 

TRANS parameter,ICOMLINK 
macro 3-45,3-58 
TRANSEC parameter, SPALIST 

macro 
Transient Subroutine 

Region 
TRAP module 
TRIGGER module 

10-9--10-10 
Overlay 
3-56--3-59, 11-19 

5-6, 5-27, 7-27 
3-61 
5-21 TSTATAB entry point 

TSTEND parameter, SPALIST 
macro 7-12, 8-28 

Tuning techniques. See System tuning. 

Undefined records 6-7 
UNIVER parameter, STATION macro 10-14 
UNLK command 3-10--3-11 
UNLOCK, parameter, FILE command 6-12 
UPDATEONLY FAR attribute 6-32 
User exits 

--checkpointing 
--closedown' 
--coding conventions 
--listed 
--logging 
--message restart 
--output 
--serial restart 
--for sign-on/sign-off 

9-9 
7-13 

D-1 
D-2-D-5 

9-7 
9-14--9-15 

3-20 
9-20--9-23 

security 10-7--10-8 
--snap processing 8-6,8-9,8-12 
--startup 7-11--7-12 
--from Subsystem Controller 3-5--3-7 
--from System Accounting and 

Measurement 8-18--8-19 
--thread hang (disabled) 5-20 

USERINIT user exit 7-9 
USERLOGE user exit 9-7 
USERSEC parameter, SPALIST macro 10-19 
USERSPA 2-28,3-24--3-25,7-35--7-38 

--and checkpointing 9-8 
USRBTLOG user exit 9-3 
USRBTVRB member 2-28,3-7,3-9 
USRCANC user exit 3-5--3-7 
USRCHKPT user exit 9-9 
USRCLOSE user exit 3-14, 7-13 
USRCLSE1 user exit 7-13 
USRESTRT user exit 9-14 
USROTEDT user exit 3-20 
USROUTCK user exit 3-20 
USRSAMnn exit routines 8-18--8-20 

Page 

USRSCTS member 2-28,3-28 
USRSEREX user exit 9-20--9-23 
USRSGNOF user exit 10-7--10-8, 10-20 
USRSGNON user exit 10-7--10-8, 10-20 
USRSTART user exit 3-14, 7-11--7-12 
USRSTRT parameter,ICOMLINK macro 7-12 
USRSTRT1 user exit 6-42, 7-11--7-12 
USRSUBS member 2-28, 3-46 
USRTRACK macro 8-18--8-20 
USRVERBS member 2-28, 3-15 
Utilities 

1-31 

--off-line 
--BDAM file creation 

(CREATEGF) 12-30--12-32 
--create keyed BDAM file 

(KEYCREAT) 12-39 
--create input data to simulator 

(CREATSIM) 12-35--12-37 
--create input messages for 

Test Mode (SIMCRTA) 12-38 
--disk-resident table conventions 

for the utilities 12-27 
--File Load program (PMIEXLD) 

--described 12-24--12-26 
--JCL for 12-26 
--partial file load 12-28--12-29 

--log analysis (LOGANAL) 
--creating load module for 12-19 
--described 12-8 
--execution of 12-19--12-24 
--generating LOGVRBTB 

--generation 
parameters 

--installation of 
--response time 

reports 
--sample JCL 
--traffic histograms 

12-18--12-19 

1 2 - 16 -- 12 - 18 
12-16 

12-11--12-16 
12-23 

12-8--12-9 
--log display (LOGPRINT) 

--control records for 
--described 
--JCL for 
--sample output 

12-3--12-7 
12-1 
12-3 
12-2 

--print Output Utility batch 
reports (PRT1403) 

--produce change deck for 
two PDS members (CHANGER) 

--recover from missing end of 
file (ICOMFEOF) 

12-33 

12-41 

12-40 



--scan for program operation 
codes (OPSCAN) 12-32 

--symbolic library compress 
(LIBCOMPR) 12-34 

See also individual utility names. 
--on-line 1-5--1-6 
See also Change/Display, Edit, MMU, 

Output Utility 

Variable-length records 6-7 
Verb 3-2--3-3, 3-7, 3-10--3-11 
Verb Table. See Front End Verb Table. 
Verbs 
--conversational 3-11 
--and Front End Verb Table 3-7--3-9 
--locked 3-10--3-11 
--and Log Analysis. See LOGVERB. 
--for overlay regions- 3-42--3-44 
--priority 3-10 
--purpose of 3-7 
--short 3-10 
--and transaction 

security 
--unlocked 

10-9, 10-15--17 
3-10--3-11 

VERBS parameter, STATION 
macro 10-9, 10-11, 10-15--10-17 

VERBTBL Csect 3-15 
VRBOOO data set 3-15 
VS 

--and data set allocation 11-13 
--and dynamically loaded core 

pools 
--execution groups 

5-10 

3-29--3-31, 3-36--3-37, 7-28 
--and Interregion SVC 7-29 
--and Link Pack Module 7-36 
--operation 7-19--7-26 

--installation procedures 

--page fixing 
--page pre loading 
--subsystem tuning 

7-21--7-23 
7-20, 7-23--7-24 

7-20 

considerations 7-25 
--SYSGEN considerations 7-25--7-26 
--system tuning considerations 7-24 
--VS1: WTP user message limit 7-26 
--VS2: SPIE macro 7-26 

--and QUICKCELL 11-15 
--and RCB table 5-16 
--response time considerations 11-17 
--and VSAM file closing 6-13 

VSAM 
--alternate index 

processing 6-11, 6-13, 6-25 
--and batch programs using 

File Handler 
--data set specifications 
--exclusive control 5-20, 
--execution JCL 
--and File Attribute 

records 
--and FILE command 
--file support 
--files shared across 

regions 6-16--6-17, 
--and GETV function 
--and globals 
--ISAM/VSAM compatibility 
--Local Shared Resources 

6-4, 

6-50 
6-23 
6-30 
7-15 

6-32--6-33 
6-11 

6-13--6-17 

6-30, 7-29 
6-37 
6-41 

6-3, 6-17 

--and exclusive control 6-4 
--and File Attribute Records 6-31 
--statistics 6-47--6-49 
--and system tuning 11-7 
--using 6-14--6-15 

--and LOCATE facility 6-39--6-40 
--and MVS tuning 11-20, 11-22 
--and PUTV function 6-37 
--and reallocation of data sets 6-11 
--and thread hung user exit 5-20 

VSAMCRS FAR attribute 

VSINIT module 
6-15--6-17, 6-33, 6-50 

7-21 
VS1. See MFT/VS1. 
VS1LOADR module 
VS2. See MVS/MVT. 
VTAM Front End 

3-40 

--and BTAM terminal simulator 8-1 
1-2 
4-2 

I-32 

--defined 
--and IJKTRACE 
--and message flow 
--and message sequence 
--and MVS operation 
--and output messages 
--and RSLU command 
--and SECVERBS macro 
--and SETENV 

3-2, 3-5 
numbers 11-4 

7-27 
3-5 

11-18 
10-11 
2-23 

--and system statistics displays 11-3 
11-8 
11-3 

--transmission considerations 
--and VTST command 

VTERRMOD module 4-2 



L 

L 

VTRECVE module 
VTSAMP sample table 
VTST command 

11-4 
2-28 
11-3 

WAIT list·~ 4-3 
Warm start 7-14 
WRITE function 6-5, 6-37, 6-39 
WRlTEOVER FAR attribute 6-7--6-8, 6-33 
WTO parameter, SPALIST macro 11-14 
WTO parameter, SYCTTBL macro 11-14 
WTOPFX parameter, SPALIST macro 7-5 
WTP user message limit (VS1) 7-26 

XCTL FAR attribute 6-30, 6-33 

1-33 




