
The MVS 3.8j Tur(n)key 4- System -- Version 1.00 -- Update 08

Installation

1. It is strongly recommended to create a backup copy of the system. Although the
update process has been thoroughly tested, a backup copy comes in handy if an
unforeseen error occurs.

2. Update 01, Update 02, Update 03, Update 04, Update 05, Update 06 and Update 07
are prerequisites for Update 08. Make sure Update 01, Update 02, Update 03,
Update 04, Update 05, Update 06 and Update 07 have been installed successfully
before trying to install Update 08.

3. Make sure that your tk4- folder does not contain a subfolder named update. If an

update folder has been left over from the installation of a previous update (i.e. from

Update 07) either delete it or rename it.

4. Unzip archive tk4-_v1.00_update_08.zip into the tk4- folder. Allow your unzip

utility to overwrite existing files and to merge into existing folders while unzipping the
archive.

5. a) Windows: Open folder tk4\update and click (or double click, depending on your

settings) apply_update.bat.

b) Linux or OS X: Open a shell window, change directory to the tk4-/update folder

and run ./apply_update.

6. You’ll be prompted for the credentials of an administrative user (i.e. HERC01/CUL8TR),

then the system will be IPLed, an update job will be executed and the system will be
shut down. Because this update changes SYS1.LPALIB the system will then be IPLed

a second time to rebuild the link pack area. This second IPL will be followed by an
immediate shutdown, concluding the update process.

Note: Although lots of informational message are displayed during the update
process most of the time, there may be update steps that will not display any
messages for a couple of minutes. In particular, step “EXHREST UNZIP” can take very

long on low performance host systems (ARM et al). This must not be misinterpreted
as a stall of the update process. Please be patient during these pauses and refrain
from manually interrupting the update process.

7. Once the update process has finished check listing.txt in the update folder for

errors. One of the following outcomes is expected:

07.55.10 JOB 1 IEF403I UPDATER - STARTED - TIME=07.55.10
07.55.10 JOB 1 IEFACTRT - Stepname Procstep Program Retcode
07.55.10 JOB 1 UPDATER DELCAT IEFBR14 RC= 0000
07.55.10 JOB 1 UPDATER DELVOL IEFBR14 RC= 0000
07.55.10 JOB 1 UPDATER ALLOC IEFBR14 RC= 0000
07.55.10 JOB 1 UPDATER CHKDONE IDCAMS RC= 0004
07.55.10 JOB 1 UPDATER PREPRC1 IEBCOPY RC= 0000
07.55.10 JOB 1 UPDATER PREPRC2 IEFBR14 RC= 0000
07.55.10 JOB 1 UPDATER PREPRC3 MAWK RC= 0000
07.55.10 JOB 1 UPDATER PREPRC4 IEBGENER RC= 0000
07.55.10 JOB 1 UPDATER PREPRC5 IEBUPDTE RC= 0000
07.55.16 JOB 1 UPDATER PREPRC6 IKJEFT01 RC= 0000
07.55.17 JOB 1 UPDATER PREPRC7 IKJEFT01 RC= 0000
07.55.17 JOB 1 *IEC501A M 480,UPDATE,SL,6250 BPI,UPDATER,CREDITS
07.55.17 JOB 1 UPDATER CREDITS IEBGENER RC= 0000
07.55.18 JOB 1 UPDATER EXHIBIT IEBGENER RC= 0000
07.55.18 JOB 1 UPDATER IMON370 IEBGENER RC= 0000
07.55.18 JOB 1 UPDATER REVIEW IEBGENER RC= 0000
07.55.19 JOB 1 UPDATER VFPRINTF IEBGENER RC= 0000
07.55.19 JOB 1 UPDATER AFPCNTRL IEBGENER RC= 0000
07.55.19 JOB 1 UPDATER XFERPTCH IEBGENER RC= 0000
07.55.19 JOB 1 UPDATER FTPDRAC IEBGENER RC= 0000
07.55.19 JOB 1 UPDATER MVSDDT IEBGENER RC= 0000
07.55.20 JOB 1 UPDATER SXMACLIB IEBGENER RC= 0000
07.55.20 JOB 1 UPDATER INDFILE IEBGENER RC= 0000
07.55.33 JOB 1 UPDATER ELEMENTS IEBCOPY RC= 0000
07.55.33 JOB 1 UPDATER POSTPRC1 IEBCOPY RC= 0000
07.55.33 JOB 1 UPDATER POSTPRC2 IDCAMS RC= 0000
07.55.33 JOB 1 UPDATER EXHREST DELCAT IEFBR14 RC= 0000
07.55.34 JOB 1 UPDATER EXHREST DELVOL IEFBR14 RC= 0000
07.56.56 JOB 1 UPDATER EXHREST UNZIP MINIUNZ RC= 0000

07.57.06 JOB 1 UPDATER EXHREST RECV370 RECV370 RC= 0000
07.57.10 JOB 1 UPDATER EXHREST DSSREST DSSREST RC= 0000
07.57.10 JOB 1 UPDATER NUCCHECK IKJEFT01 RC= 0020
07.57.11 JOB 1 UPDATER NUCBACK IEBCOPY RC= 0000
07.57.28 JOB 1 UPDATER RESTORE HMASMP HMASMP RC= 0004
07.57.28 JOB 1 UPDATER SVCASM IFOX00 RC= 0000
07.57.29 JOB 1 UPDATER SVCLINK IEWL RC= 0004
07.57.29 JOB 1 UPDATER STEP1 IEBGENER RC= 0000
07.57.31 JOB 1 UPDATER STEP2 IFOX00 RC= 0000
07.57.31 JOB 1 UPDATER STEP3 IEBGENER RC= 0000
07.57.32 JOB 1 UPDATER STEP4 IFOX00 RC= 0000
07.57.32 JOB 1 UPDATER STEP5 IEBGENER RC= 0000
07.57.32 JOB 1 UPDATER STEP6 HMASMP HMASMP RC= 0000
07.57.38 JOB 1 UPDATER STEP7 HMASMP HMASMP RC= 0004
07.58.22 JOB 1 UPDATER CLEANUP IEBCOPY RC= 0000
07.58.22 JOB 1 IEF234E K 480,UPDATE,PVT,UPDATER
07.58.22 JOB 1 IEF404I UPDATER - ENDED - TIME=07.58.22

-- or --
08.05.11 JOB 2 IEF403I UPDATER - STARTED - TIME=08.05.11
08.05.12 JOB 2 IEFACTRT - Stepname Procstep Program Retcode
08.05.12 JOB 2 UPDATER DELCAT IEFBR14 RC= 0000
08.05.12 JOB 2 UPDATER DELVOL IEFBR14 RC= 0000
08.05.12 JOB 2 UPDATER ALLOC IEFBR14 RC= 0000
08.05.12 JOB 2 UPDATER CHKDONE IDCAMS RC= 0000
08.05.12 JOB 2 UPDATER PREPRC1 IEBCOPY *FLUSH*
08.05.12 JOB 2 UPDATER PREPRC2 IEFBR14 *FLUSH*
08.05.12 JOB 2 UPDATER PREPRC3 MAWK *FLUSH*
08.05.12 JOB 2 UPDATER PREPRC4 IEBGENER *FLUSH*
08.05.12 JOB 2 UPDATER PREPRC5 IEBUPDTE *FLUSH*
08.05.12 JOB 2 UPDATER PREPRC6 IKJEFT01 *FLUSH*
08.05.13 JOB 2 UPDATER PREPRC7 IKJEFT01 RC= 0000
08.05.13 JOB 2 *IEC501A M 480,UPDATE,SL,6250 BPI,UPDATER,CREDITS
08.05.13 JOB 2 UPDATER CREDITS IEBGENER RC= 0000
08.05.14 JOB 2 UPDATER EXHIBIT IEBGENER RC= 0000
08.05.14 JOB 2 UPDATER IMON370 IEBGENER RC= 0000
08.05.14 JOB 2 UPDATER REVIEW IEBGENER RC= 0000
08.05.14 JOB 2 UPDATER VFPRINTF IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER AFPCNTRL IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER XFERPTCH IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER FTPDRAC IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER MVSDDT IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER SXMACLIB IEBGENER RC= 0000
08.05.15 JOB 2 UPDATER INDFILE IEBGENER RC= 0000
08.05.27 JOB 2 UPDATER ELEMENTS IEBCOPY RC= 0000
08.05.27 JOB 2 UPDATER POSTPRC1 IEBCOPY *FLUSH*
08.05.27 JOB 2 UPDATER POSTPRC2 IDCAMS *FLUSH*
08.05.27 JOB 2 UPDATER EXHREST DELCAT IEFBR14 RC= 0000
08.05.27 JOB 2 UPDATER EXHREST DELVOL IEFBR14 RC= 0000
08.06.47 JOB 2 UPDATER EXHREST UNZIP MINIUNZ RC= 0000
08.06.58 JOB 2 UPDATER EXHREST RECV370 RECV370 RC= 0000
08.07.02 JOB 2 UPDATER EXHREST DSSREST DSSREST RC= 0000
08.07.02 JOB 2 UPDATER NUCCHECK IKJEFT01 RC= 0000
08.07.02 JOB 2 UPDATER NUCBACK IEBCOPY *FLUSH*
08.07.14 JOB 2 UPDATER RESTORE HMASMP HMASMP RC= 0004
08.07.14 JOB 2 UPDATER SVCASM IFOX00 RC= 0000
08.07.15 JOB 2 UPDATER SVCLINK IEWL RC= 0004
08.07.16 JOB 2 UPDATER STEP1 IEBGENER RC= 0000
08.07.17 JOB 2 UPDATER STEP2 IFOX00 RC= 0000
08.07.17 JOB 2 UPDATER STEP3 IEBGENER RC= 0000
08.07.18 JOB 2 UPDATER STEP4 IFOX00 RC= 0000
08.07.18 JOB 2 UPDATER STEP5 IEBGENER RC= 0000
08.07.18 JOB 2 UPDATER STEP6 HMASMP HMASMP RC= 0000
08.07.24 JOB 2 UPDATER STEP7 HMASMP HMASMP RC= 0004
08.08.04 JOB 2 UPDATER CLEANUP IEBCOPY RC= 0000
08.08.05 JOB 2 IEF234E K 480,UPDATE,PVT,UPDATER
08.08.05 JOB 2 IEF404I UPDATER - ENDED - TIME=08.08.05

IPL the system and verify that your regularly used functionality still works as
expected. If it does not, revert to your backup copy and report the problems to the
author.

Note 1: The update job adds EXH.EXHLIB and EXH.ESPLIB on PUB012 to the list of

APF authorized program libraries in SYS1.PARMLIB(IEAAPF00). To provide

recoverability, your original IEAAPF00 list is backed up to SYS1.PARMLIB.PREUPD08.

Should the automated editing of the list unexpectedly fail, restore your original
IEAAPF00 list and add the two libraries mentioned above manually.

SYS1.PARMLIB.PREUPD08 is not needed for system operations and can safely be

deleted, once the contents of SYS1.PARMLIB(IEAAPF00) has been verified.

Note 2: Steps SVCLINK, RESTORE and STEP7 of the update job modify the system

nucleus. To provide recoverability, your original SYS1.NUCLEUS library is backed up to

SYS1.NUCLEUS.PREUPD08. Should the system fail to IPL or otherwise fail to work as

expected, reinstate SYS1.NUCLEUS.PREUPD08. This should bring the system back to

normal operations, but of course at the cost of losing the nucleus changes. Report the
results of the apply_update run to the author. SYS1.NUCLEUS.PREUPD08 is not

needed for system operations and can safely be deleted, once the integrity of the new
nucleus has been verified.

8. Folder tk4-/update is not needed to operate the system, once the update has been

installed successfully. It is recommended to remove it to avoid interference with future
updates.

Fixes

Arbitrary Hercules Aborts During Shutdown Of Dual CPU Systems

On high performance Linux hosts with glibc 2.3.4 or newer and 6 or more

CPUs/cores/hyperthreads, Hercules arbitrarily aborts while performing the automated

shutdown of a dual processor TK4- MVS 3.8j system. The error is triggered by three

sysclear commands being issued in very quick succession by the automated shutdown

procedure on a dual processor system, which, given enough parallelism provided by the

host, leads to multiple frees of the same storage area. The default behavior of glibc in this

situation changed with version 2.3.4 from “print a short message and continue” to “print a

detailed message and abort”.

The automated shutdown procedure was changed to issue one sysclear command only, on

single as well as on dual CPU systems. Intensive testing showed that the error doesn’t occur

anymore when using the changed shutdown procedure. The root cause of this error most

probably is related to thread synchronization, which would need further investigation if it

turned out that the changed shutdown procedure doesn’t reliably prevent it from occurring.

It should be noted that setting the environment variable M_CHECK_ACTION to 1 reverts

glibc to the pre 2.3.4 behavior, thus also preventing the error from aborting Hercules. While

in most cases nothing bad happens when Hercules aborts after having shut down MVS, this

cannot be taken for granted, as the abort happens before Hercules closes the DASD files.

As such, ignoring the error introduces is a certain data corruption risk. For that reason, if you

regularly experience this error, please report it to the author.

Web Server Segmentation Faults

A segmentation fault occurring in Hercules when a 3705 Communications Controller was

displayed using the web console’s “display” link was fixed in comm3705.c.

Segmentation Faults Using NUMCPU=2 On 32-Bit OS X Snow Leopard

This problem was caused by using an invalid build procedure used to create the 32-bit

binaries for OS X in Update 07. The problem was solved by using the correct procedure to

build the 32-bit OS X binaries distributed with Update 08.

Error 49 When Binding To Specific Interface On OS X Snow Leopard

The reason for this problem was a slightly different behavior of earlier BSD systems (and

their forks, like OS X) than Linux, Windows and later BSD systems, when it comes to using a

sockaddr structure to bind a socket to a specific interface. Basically, on the older systems,

one should initialize all unused fields of the structure to zero before using it. This was fixed

for the OS X specific Hercules builds in tcpip.c.

Arbitrary Connection Failures On FTPD Data Connections In Active Mode

This problem was caused by a logic flaw in FTPD: If, after having issued the PORT

command, the ftp client manages to be faster sending the relevant transfer command (LIST,

RETR or STOR), than the daemon to complete the connection to the port given, the

transmission may get started although there is no active connection (yet). This is strictly

timing dependent and thus could occur on any host OS and in any topology. A patch for

ftpd.c was created and is applied to the FTPD version distributed with Update 08.

Incorrect Output From JCC Compiled C Programs When Using %p To Print Pointers

Using %p in printf format strings yielded arbitrary output (usually zero). This was a bug in the

JCC library. Thanks to Jason Winter for providing a fix!

New or Changed Function

Enhanced Parameterization

The following environment variables have been introduced:

Variable Default Description

S37X # Set to ldmod s37x to enable selected XA, ESA and z/Arch instructions

DYNCRYPT # Set to ldmod dyncrypt to enable selected z/Arch cryptographic instructions

FSYNC 0 Disable (0) or enable (1) DASD file synchronization with the host’s filesystem

GCINT 10 DASD garbage collection interval in seconds

Setting S37X or DYNCRYPT to the ldmod commands shown above enables the instruction set

extensions described in section “Instruction Set Extensions”. The default setting of #

executes a comment, resulting in a clean S/370 system without any instruction set

extensions.

The FSYNC and GCINT environment variables control the DASD file synchronization with the

host’s file system and the garbage collection activity. Enabling FSYNC and setting GCINT to

some low value increases robustness in the event of catastrophic failures (i.e. power outages

or other host system crashes) at the cost of a potential performance penalty. The Hercules

User Reference Guide recommends: “Specify FSYNC=1 and GCINT=5 if you are seriously

concerned about your data being lost due to a failure. FSYNC will ensure your data on disk is

coherent. However, FSYNC may cause noticeable performance degradation. Note that an

FSYNC will not be performed more often than every 5 seconds.” These parameters will be

applied to the primary TK4- DASD (as defined in conf/tk4-.cnf) only, not to the optional CBT

and source DASD, or to other locally configured DASD. The introduction of the FSYNC and

GCINT environment variables is the result of a proposal by David Jackson; thanks for the

idea!

For information on how to permanently set environment variables for use with TK4- see

README_MVS_TK4-_v1.00_update_01.pdf in the tk4-/doc folder.

CTCE -- Full Function CTC Adaptor

The Hercules version that comes with TK4- (“TK4- Hercules”) has been updated to support

the new CTCE device developed by Peter Jansen. The CTC adaptor implementations

available until now are only able to support TCP/IP related payloads, they lack the signaling

capabilities necessary to support classic 3088 payloads like NJE, SNA, JES3 coupling, XCF,

et al. Here the CTCE device comes into play: It supports most of the non TCP/IP related

CTC adaptor payloads and thus enables systems to use all the well-known communication

methods like JES2 NJE or SNA/NJE, SNA LU 6.x with ACF/VTAM, JES3 clusters, etc.

However, with the exception of JES3, none of these methods are currently available on MVS

3.8j. So, the CTCE device is only one side of the medal: For the first time it makes the re-

implementation of some of these communication methods on MVS 3.8j possible. But unless

someone steps in to really do it, there still isn’t much use for the CTCE functionality.

Presumably, implementing CTCA NJE support into JES2 would be relatively easy to do, as

there is no other missing software, i.e. it is mere coding inside JES2. All the SNA related

stuff, however, would require refurbishing VTAM to add ACF level functionality, which

probably comes close to a complete rewrite and is as such much more difficult than just a

“simple” NJE implementation in JES2.

In absence of a currently existing CTCE use case on the TK4- MVS 3.8j JES2 system itself,

a standalone verification program exercising very basic CTCA functionality has been created.

It is completely unrelated to the TK4- MVS 3.8j system and can be found in folder ctca_demo

of the TK4- distribution.

Thanks to Peter Jansen for making the CTCE device available!

MVSDDT 4.0

MVSDDT Server Version 2.4.1 has been replaced by version 4.0. MVSDDT Version 4.0 is

required to be installed on the client system to use the new server version. It can be

downloaded from http://mvsddt.altervista.org or from dataset

TK4-.SHELBY.MVSDDT.V400.ZIP. Thanks to Shelby Beach for providing this great debug

tool! For further information see HELP member MVSDDT.

SXMACLIB

The new macro library SYS2.SXMACLIB is mainly intended to provide support for the

instructions emulated by loading the Hercules s37x and dyncrypt modules when running in

S/370 mode. For more information, please see the $$S37X member of SYS2.SXMACLIB or

HELP member SXMACLIB.

To allow the structured programming macros provided with the original TK3 system to utilize

the additional s37x instructions, changes were required to the structured programming

macros. In general these changes should be transparent to the user. A few additional

features have been implemented in the structured programming macros. These new features

along with the capabilities provided by the original macros are fully documented in the

$$SPDOC member of SYS2.SXMACLIB or HELP member SXMACLIB.

Note: To avoid conflicts with the TK3 versions of the structured programming macros, it is

recommended to place SYS2.SXMACLIB before SYS2.MACLIB in the SYSLIB search order.

SYS2.SXMACLIB replaces the previously supplied macro libraries SYS1.ZMACLIB and

SYS2.Z9MACLIB, which are now aliases of the new library.

This library brings assembler programming on MVS 3.8j to an exciting new level. Thanks to

Shelby Beach for providing SYS2.SXMACLIB!

RFE/REVIEW 46.6

RFE/REVIEW release 45.6 has been replaced with release 46.6. Thanks to Greg Price for

maintaining and continuously improving RFE/REVIEW and thus bringing capabilities similar

to those of ISPF/PDF to MVS 3.8j! For further information see HELP member RFE.

IMON/370 Build 16.01.02

IMON/370 build 12.01.07 has been replaced with build 16.01.02. Thanks to Greg Price for

bringing his famous system monitor to MVS 3.8j! For further information, press PF1 while in

IMON/370 to read the help pages.

ZP60023 Rework 2016-08-06

The primary purpose of usermod ZP60023 is to provide DAS at the task level through an

update of the program check first level interrupt handler (PCFLIH). Previous reworks,

however, also hooked into the PCFLIH to emulate a few frequently used XA, ESA and z/Arch

instructions. All of these instructions are now emulated on the TK4- Hercules layer when the

s37x dynamic module is loaded. Thus the instruction emulation part of ZP60023 is no longer

needed and was removed. Thanks to Greg Price for providing MVS 3.8j DAS capabilities!

http://mvsddt.altervista.org/

Note: The previously installed rework 2012-01-07 is retained as

SYS1.UMODCNTL(ZP60023@). If the MVS component of TK4- Update 08 is to run on a

Hercules platform not providing full s37x support (namely the Spinhawk and Hyperion lines),

ZP60023@ can be applied instead of ZP60023 to reactivate the PCFLIH based instruction

emulation support.

Additional Type 3/4 SVCs

The original TK4- SVC table, which had been taken over from TK3 without modifications, has

only one unused type 3 and one unused type 4 non APF, non preemptible SVC generated.

These types are the most common ones used by application programs when it comes to

performing authorized processing. Given that MVSDDT 4.0 takes the single free type 3 slot

(SVC 233), some of the many unused type 2 slots were repurposed: SVCs 220-226 are

newly generated as type 3, SVCs 227-229 are newly generated as type 4, which now gives a

total of 10 additional type 3/4 slots. The source of this change is can be found in

SYS1.SYSGEN.CNTL, member IOGEN. This member always holds the current configuration

of the TK4- MVS 3.8j system.

EXHIBIT

The EXHIBIT system presents the operating system status at a glance and provides many

useful functions to interactively modify about any setting one can think of. Thanks to Gerhard

Postpischil for making EXHIBIT available to the MVS 3.8 community! For further information

see HELP member EXHIBIT.

IND$FILE 2.0.5

IND$FILE release 1.1.1 has been replaced with release 2.0.5. Thanks to Mike Rayborn for

making IND$FILE file transfer functionality for 3270 terminal emulations available to the MVS

3.8 community! For further information run the IND$FILE command without arguments from

a TSO READY prompt, or from RFE or RPF menu 6.

RAC Based Authentication and Authorization for FTPD

To allow running the FTP daemon on internet accessible systems or on multi user systems at

a reasonable risk, the most critical security weaknesses of Jason Winter’s original FTPD

implementation have been hardened using a minimalistic integration into the MVS Resource

Access Control (RAC) framework. Given the considerable complexity it adds to the FTPD

configuration, using this security enhanced FTPD version will not make much sense on the

typical single user TK4- system, as long as it is not accessible from the internet. For that

reason, TK4- Update 8 still comes with Jason’s original unsecured FTPD being configured.

HELP member FTPD-RAC has all the information needed to activate and configure the

security enhanced version of FTPD, its source can be found under HLQ JCC.FTPD-RAC.

CHAT, A Socket Programming Example

The EMAIL program provided by Jason Winter as a socket programming example with his

original distribution of the TCP/IP instruction performs an SMTP communication using data

read from SYSIN. As most SMTP servers didn’t require authentication back in 2002, this

program was a meaningful example, allowing sending e-mail from MVS to an arbitrary

recipient on the internet. Nowadays, however, no real e-mail server accepts SMTP dialogs

without prior authentication. This basically makes the EMAIL program useless, even as an

example.

Quite a few support questions around TCP/IP support showed that there is a need for a

usable “low complexity” socket programming example (the “high complexity” one would of

course still be FTPD). For that reason CHAT, a modification of the EMAIL program, was

created by replacing the hardcoded SMTP dialog with an interactive dialog between a TSO

terminal session and a network-cat tool (ncat, netcat, socat, etc.) running elsewhere. CHAT

is installed ready to use in SYS2.CMDLIB. Its source can be found in JCC.TCPIP.SRC. See

HELP member CHAT for more details.

Enhanced JRP Printer Translate Table

Depending on the code pages in use by the 3270 terminal emulation and application

programs like REVIEW, code point BA or AD is displayed as left bracket, and code point BB

or BD is displayed as right bracket. The EBCDIC character set defines BA/BB as brackets,

while some newer compilers (namely JCC and GCC) allow or even require using AD/BD. As

delivered, the JRP utility prints only BA/BB as brackets, leading to ugly output when the file

to be printed uses AD/BD for brackets. The JRP internal printer translate table in module

JRP300 has been ZAPped using job SYS2.CNTL(JRP300$) to print both variants as

brackets.

AFPCNTRL Utility -- Control AFP (Additional Floating Point) Register Availability

The S/370 architecture originally provides four floating point registers, numbered 0, 2, 4, and

6. Later architectures or features provide additional floating point (AFP) registers, numbered

1, 3, 5, 7, and 8 to 15. The new AFPCNTRL Utility can be used to enable or disable the AFP

registers. Note that enabling the AFP registers on MVS 3.8j has a potential system integrity

impact, when those registers are used by more than one job at a time. Thus it is strongly

recommended to enable them only when needed and disable them after usage. See HELP

member AFPCNTRL for details.

Instruction Set Extensions

TK4- Hercules has been updated to support over 300 instructions from newer architectures

in S/370 mode. Together with the assembler support in SYS2.SXMACLIB this allows to

assemble and run many programs written for newer systems (namely MVS/XA, MVS/ESA,

OS/390 and z/OS) on MVS 3.8j, as long as they don’t need any architectural features

(namely AMODE 31 and ATL storage) or operating system support specific to the newer

system. The same holds true for load modules created on these newer systems, i.e. many of

them can just run out of the box on MVS 3.8j.

These instructions are enabled or disabled by loading or unloading dynamic modules s37x

(everything except cryptographic instructions) and dyncrypt (cryptographic instructions only).

As the presence of these instructions contradicts the original TK4- concept of providing a

clean S/370 system, they are disabled by default. They must be explicitly enabled to use

them.

To enable the instruction set extensions for the current TK4- run only, enter

ldmod s37x

and

ldmod dyncrypt

at the Hercules console or at the Hercules web console.

To enable the instruction set extensions permanently use the parameterization described in

“Enhanced Parameterization”.

Remarks on the instruction set extensions:

 Some of the floating point instructions that get enabled by the instruction set

extensions require the AFP registers to be available, even if they don’t use them. See

“AFPCNTRL Utility -- Control AFP (Additional Floating Point) Register Availability” for

information on the AFP registers.

 The instruction set extensions enable the EPSW instruction. It should be noted that

this problem state instruction may yield unexpected or undesirable results when used

in a virtual machine under VM/370 (which, however, is out of scope for TK4-).

Basically one could even argue, that making this instruction available in S/370 mode

breaks the S/370 claim, that it can be 100% virtualized in software -- which surely isn’t

intended. This argument came in late. To prevent delays releasing TK4- Update 08,

the ESPW instructions remains enabled for the time being. In case any problems

would arise from this, a separate set of Hercules binaries will be provided which

excludes the instruction. Should any need for both cases (instruction available or not

available) come up, the presence of the instruction will be made externally

configurable in a later TK4- Update.

The following table lists all instructions that get enabled by the instruction set extensions:

ADB ADD (long BFP)
ADBR ADD (long BFP)
AEB ADD (short BFP)
AEBR ADD (short BFP)
AFI Add Immediate
AGSI Add immediate long storage
AHI Add Halfword Immediate
AHIK add distinct halfword immediate
AHY add halfword y
ALC Add logical with carry
ALCR Add logical with carry register
ALFI Add Logical immediate
ALGSI Add logical with signed immediate long
ALHSIK add logical distinct signed halfword immediate
ALRK add logical distinct register
ALSI Add logical with signed immediate
ALY add logical y
ARK add distinct register
ASI Add immediate storage
AXBR ADD (extended BFP)
AY add y
BASSM Branch and Save and Set Mode
BRAS Branch Relative and Save
BRASL Branch Relative and Save Long
BRC Branch Relative on Condition
BRCL Branch Relative on Condition Long
BRCT Branch Relative on Count
BRXH Branch relative on index high
BRXLE Branch relative on index low or equal
BSM Branch and Set Mode
CDB COMPARE (long BFP)
CDBR COMPARE (long BFP)
CDFBR Convert from fixed (32 to long BFP)
CDFR Convert fixed to float long register
CEB COMPARE (short BFP)
CEBR COMPARE (short BFP)
CEFBR Convert from fixed (32 to short BFP)
CEFR Convert from fixed to float short register
CFC Compare and form codeword
CFDBR Convert to fixed (long BFP to 32)
CFDR Convert from float long to fixed register
CFEBR Convert to fixed (short BFP to 32)
CFER Convert from float short to fixed register
CFI Compare Immediate
CFXBR Convert to fixed (extended BFP to 32)
CFXR Convert from float extended to fixed register
CGHSI Compare halfword immediate long storage
CHHSI Compare halfword immediate halfword storage
CHI Compare Halfword Immediate
CHRL Compare halfword relative long
CHSI Compare halfword immediate storage
CHY compare halfword y
CIB Compare immediate and branch
CIJ Compare immediate and branch relative
CIT Compare immediate and trap
CKSM Checksum
CLCLE Compare logical long extended
CLCLU Compare logical long unicode
CLFHSI Compare logical immediate fullword storage
CLFI Compare Logical Immediate
CLFIT Compare logical immediate and trap fullword
CLGHSI Compare logical immediate long storage

CLHHSI Compare logical immediate halfword storage
CLHRL Compare logical halfword relative long
CLIB Compare logical immediate and branch
CLIJ Compare logical immediate and branch relative
CLRB Compare logical and branch register
CLRJ Compare logical and branch relative register
CLRL Compare logical relative long
CLRT Compare logical and trap register
CLST Compare logical string
CLY compare logical y
CMPSC Compression call
CPSDR copy sign fpr long reg
CRB Compare and branch register
CRJ Compare and branch relative register
CRL Compare relative long
CRT Compare and trap register
CSST Compare and swap and store
CU14 Convert UTF-8 to UTF-32
CU24 Convert UTF-16 to UTF-32
CU41 Convert UTF-32 to UTF-8
CU42 Convert UTF-32 to UTF-16
CUSE Compare until substring equal
CUTFU Convert UTF-8 to unicode
CUUTF Convert unicode to UTF-8
CVBY convert to binary y
CVDY convert to decimal y
CXBR COMPARE (extended BFP)
CXFBR Convert from fixed (32 to extended BFP)
CXFR Convert from fixed to float extended register
CXR Compare floating point extended register
CY compare y
DDB Divide (long BFP)
DDBR Divide (long BFP)
DEB Divide (short BFP)
DEBR Divide (short BFP)
DIDBR Divide to integer (long BFP)
DIEBR Divide to integer (short BFP)
DL Divide logical
DLR Divide logical register
DXBR Divide (extended BFP)
EFPC Extract FPC
EPSW Extract PSW
EXRL Execute relative long
FIDBR Load FP integer (long BFP)
FIDR Load FP integer floating point long register
FIEBR Load FP integer (short BFP)
FIER Load FP integer floating point short register
FIXBR Load FP integer (extended BFP)
FIXR Load FP integer float extended register
IILF Insert Immediate
IILH Insert Immediate
IILL Insert Immediate
IPM Insert Program Mask
KDB Compare and signal (long BFP)
KDBR Compare and signal (long BFP)
KEB Compare and signal (short BFP)
KEBR Compare and signal (short BFP)
KIMD compute intermediate message digest
KLMD compute last message digest
KM cipher message
KMAC compute message authentication code
KMC cipher message with chaining
KMCTR cipher message with counter
KMF cipher message with cipher feedback
KMO cipher message with output feedback
KXBR Compare and signal (extended BFP)
LAA load and add
LAAL load and add logical
LAN load and and
LAO load and or
LARL Load Address Relative Long
LAX load and exclusive or
LB Load Byte
LBR Load Byte
LCDBR Load complement (long BFP)
LCDFR load complement fpr long reg
LCEBR Load complement (short BFP)
LCXBR Load complement (extended BFP)
LCXR Load complement float extended register

LDE Load lengthened floating point short to long
LDEB Load lengthened (short to long BFP)
LDEBR Load lengthened (short to long BFP)
LDER Load length float short to long register
LDXBR Load rounded (extended to long BFP)
LEDBR Load rounded (long to short BFP)
LEXBR Load rounded (extended to short BFP)
LEXR Load rounded float extended to short register
LFAS load fpc and signal
LFPC Load FPC
LHI Load Halfword Immediate
LHR Load halfword register
LHRL Load halfword relative long
LHY load halfword y
LLC Load Logical Character
LLCR Load Logical Character
LLH Load Logical Halfword
LLHR Load Logical Halfword
LLHRL Load logical halfword relative long
LLILF Load Logical Immediate
LLILH Load Logical Immediate
LLILL Load Logical Immediate
LNDBR Load negative (long BFP)
LNDFR load negative fpr long reg
LNEBR Load negative (short BFP)
LNXBR Load negative (extended BFP)
LNXR Load negative floating point extended register
LOC load on condition
LOCR load on condition register
LPD load pair disjoint
LPDBR Load positive (long BFP)
LPDFR load positive fpr long reg
LPEBR Load positive (short BFP)
LPXBR Load positive (extended BFP)
LPXR Load positive floating point extended register
LRL Load relative long
LRV Load Reversed
LRVH Load Reversed Halfword
LRVR Load reversed register
LT Load and Test
LTDBR Load and test (long BFP)
LTEBR Load and test (short BFP)
LTXBR Load and test (extended BFP)
LTXR Load and test floating point extended register
LXD Load lengthened floating point long to extended
LXDB Load lengthened (long to extended BFP)
LXDBR Load lengthened (long to extended BFP)
LXDR Load length float long to extended register
LXE Load lengthened float short to extended
LXEB Load lengthened (short to extended BFP)
LXEBR Load lengthened (short to extended BFP)
LXER Load length float short to extended register
LXR Load (Extended)
LY load y
LZDR Load Zero (long)
LZER Load Zero (short)
LZXR Load Zero (extended)
MAD Multiply and add floating point long
MADB Multiply and add (long BFP)
MADBR Multiply and add (long BFP)
MADR Multiply and add floating point long register
MAE Multiply and add floating point short
MAEB Multiply and add (short BFP)
MAEBR Multiply and add (short BFP)
MAER Multiply and add floating point short register
MAY Multiply and add unnorm long to extended FP
MAYH Multiply and add unnorm long to extended high
MAYHR Multiply and add unnorm long to ext high reg
MAYL Multiply and add unnorm long to ext low FP
MAYLR Multiply and add unnorm long to ext low register
MAYR Multiply and add unnorm long to ext register
MDB Multiply (long BFP)
MDBR Multiply (long BFP)
MDEB Multiply (short to long BFP)
MDEBR Multiply (short to long BFP)
MEE Multiply floating point short
MEEB Multiply (short BFP)
MEEBR Multiply (short BFP)
MEER Multiply floating point short register

MFY Multiply (Long Displacement)
MHI Multiply halfword immediate
MHY Multiply halfword (Long Displacement)
ML Multiply logical
MLR Multiply logical register
MS Multiply single register
MSD Multiply and subtract floating point long
MSDB Multiply and subtract (long BFP)
MSDBR Multiply and subtract (long BFP)
MSDR Multiply and subtract floating point long reg
MSE Multiply and subtract floating point short
MSEB Multiply and subtract (short BFP)
MSEBR Multiply and subtract (short BFP)
MSER Multiply and subtract floating point short register
MSFI Multiply single immediate fullword
MSR Multiply single register
MSY multiply single y
MVCLE Move long extended
MVCLU Move long unicode
MVGHI Move long from halfword immediate
MVHHI Move halfword from halfword immediate
MVHI Move fullword from halfword immediate
MVST Move string
MXBR Multiply (extended BFP)
MXDB Multiply (long to extended BFP)
MXDBR Multiply (long to extended BFP)
MY Multiply unnormalized long to extended FP
MYH Multiply unnormalized long to extended high FP
MYHR Multiply unnormalized long to ext high FP reg
MYL Multiply unnormalized long to extended low FP
MYLR Multiply unnormalized long to ext low FP reg
MYR Multiply unnormalized long to extended register
NILF And Immediate
NILH And immediate
NILL And Immediate
NRK and distinct register
NY and y
OILF Or Immediate
OILH Or Immediate
OILL Or Immediate
ORK or distinct register
OY or y
PCC perform cryptographic computation
PCKMO perform cryptographic key management operation
PFD Prefetch data
PFDRL Prefetch data relative long
PKA Pack ASCII
PKU Pack unicode
RLL Rotate left single logical
SAM24 Set Addressing Mode - 24 bit addressing
SAM31 Set Addressing Mode - 31 bit addressing
SDB Subtract (long BFP)
SDBR Subtract (long BFP)
SEB Subtract (short BFP)
SEBR Subtract (short BFP)
SFASR set fpc and signal
SFPC Set FPC
SHY subtract halfword y
SLAK shift left single distinct
SLB Subtract logical with borrow
SLBR Subtract logical with borrow register
SLFI Subtract logical immediate
SLLK shift left single logical distinct
SLRK subtract logical distinct register
SLY subtract logical y
SQD Square root floating point long
SQDB Square root (long BFP)
SQDBR Square root (long BFP)
SQDR Square root floating point long register
SQE Square root floating point short
SQEB Square root (short BFP)
SQEBR Square root (short BFP)
SQER Square root floating point short register
SQXBR Square root (extended BFP)
SQXR Square root floating point extended register
SRAK shift right single distinct
SRK subtract distinct register
SRLK shift right single logical distinct
SRNM Set BFP rounding mode (2 bit)

SRST Search string
SRSTU Search string unicode
STFPC Store FPC
STHRL Store halfword relative long
STOC store on condition
STRL Store relative long
STRV Store Reversed
STRVH Store Reversed Halfword
STY store y
SXBR Subtract (extended BFP)
SY subtract y
TAM Test Addressing Mode
TBDR convert float long to bfp long reg
TBEDR convert float long to bfp short reg
TCDB Test data class (long BFP)
TCEB Test data class (short BFP)
TCXB Test data (extended BFP)
THDER convert bfp short to float long reg
THDR convert bfp long to float long reg
TMLH Test Under Mask High
TMLL Test Under Mask Low
TP Test Decimal
TRE Translate Extended
TROO Translate One to One (ETF2 installed)
TROT Translate One to Two (ETF2 installed)
TRTE Translate and test extended
TRTO Translate Two to One (ETF2 installed)
TRTR Translate and Test Reverse
TRTRE Translate and test reverse extended
TRTT Translate Two to Two (ETF2 installed)
UNPKA Unpack ASCII
UNPKU Unpack unicode
UPT Update tree
XILF Exclusive Or Immediate
XRK exclusive or distinct register
XY exclusive or y

Jürgen Winkelmann, winkelmann@id.ethz.ch, September 22, 2016

mailto:winkelmann@id.ethz.ch

	The MVS 3.8j Tur(n)key 4- System -- Version 1.00 -- Update 08
	Installation
	Fixes
	Arbitrary Hercules Aborts During Shutdown Of Dual CPU Systems
	Web Server Segmentation Faults
	Segmentation Faults Using NUMCPU=2 On 32-Bit OS X Snow Leopard
	Error 49 When Binding To Specific Interface On OS X Snow Leopard
	Arbitrary Connection Failures On FTPD Data Connections In Active Mode
	Incorrect Output From JCC Compiled C Programs When Using %p To Print Pointers

	New or Changed Function
	Enhanced Parameterization
	CTCE -- Full Function CTC Adaptor
	MVSDDT 4.0
	SXMACLIB
	RFE/REVIEW 46.6
	IMON/370 Build 16.01.02
	ZP60023 Rework 2016-08-06
	Additional Type 3/4 SVCs
	EXHIBIT
	IND$FILE 2.0.5
	RAC Based Authentication and Authorization for FTPD
	CHAT, A Socket Programming Example
	Enhanced JRP Printer Translate Table
	AFPCNTRL Utility -- Control AFP (Additional Floating Point) Register Availability
	Instruction Set Extensions

